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Abstract. Entity alignment plays an essential role in the knowledge
graph (KG) integration. Though large efforts have been made on explor-
ing the association of relational embeddings between different knowledge
graphs, they may fail to effectively describe and integrate the multi-
modal knowledge in the real application scenario. To that end, in this
paper, we propose a novel solution called Multi-Modal Entity Alignment
(MMEA) to address the problem of entity alignment in a multi-modal
view. Specifically, we first design a novel multi-modal knowledge embed-
ding method to generate the entity representations of relational, visual
and numerical knowledge, respectively. Along this line, multiple repre-
sentations of different types of knowledge will be integrated via a multi-
modal knowledge fusion module. Extensive experiments on two public
datasets clearly demonstrate the effectiveness of the MMEA model with
a significant margin compared with the state-of-the-art methods.

Keywords: Multi-modal knowledge · Entity alignment · Knowledge
graph

1 Introduction

Knowledge graph (KG), which is composed of relational facts with entities con-
nected by various relations, benefits lots of AI-related systems, such as recom-
mender systems, question answering, and information retrieval. However, most
KGs are constructed for specific purposes and monolingual settings, which results
in the separate KGs with gaps of different descriptions for even the same con-
cepts. Therefore, entity alignment techniques are urgently required to integrate
the distinct KGs by linking entities referring to the same real-world identity.

Along this line, many efforts have been made in exploring the associations of
distinct KGs and querying knowledge completely by entity alignment. In gen-
eral, prior arts could be roughly grouped into two categories, i.e., similarity-based
methods [9,12] and embedding-based methods [3,20]. Early studies mostly focus
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on the attribute similarity, such as string similarity [12] and numeric similar-
ity [16]. However, these methods often suffer from the attribute heterogeneity,
which makes the entity alignment error-prone [15]. Recently, in view of the rapid
development of knowledge graph embedding, many researchers have attempted
to utilize embedding-based models for the entity alignment problem [10,15]. In
spite of the importance of prior arts, existing researches mainly focus on the
semantics or concept knowledge graphs alignment but largely ignore the multi-
modal knowledge from the real scenarios.

Indeed, in real-world application scenarios, knowledge is usually summarized
in various forms, such as relational triples, numerical attributes and images.
These distinct knowledge forms not only can play an important role as extra
pieces of evidence for the KG completion, but also highly support the entity
alignment task. For instance, Fig. 1 illustrates a toy example of entity alignment
for multi-modal knowledge graphs, in which the image of “Fuji” can clearly
demonstrate that the entity type is the mountain. Moreover, the similar images
and numerical attributes (such as “Height” and “Latitude”) can be helpful for
aligning the same entity between two KGs. Unfortunately, it is not trivial to
leverage multi-modal knowledge to the entity alignment problem. On the one
hand, the alignment task is challenging in terms of computational complexity,
data quality, and acquisition of prior alignment data in large-scale knowledge
graphs. On the other hand, the inevitable heterogeneity among different modal-
ities makes it difficult to learn and fuse the knowledge representations from
distinct modalities. Therefore, traditional techniques may fail to deal with this
task.

To conquer these challenges, in this paper, we propose a novel solution called
Multi-Modal Entity Alignment (MMEA) for modeling the entity associations of
multi-modal KGs and finding entities referring to the same real-world identity.
To be specific, we first propose a multi-modal knowledge embedding method
to discriminatively generate knowledge representations of three different types
of knowledge, i.e., relational triples, visual contents (images) and numerical
attributes. Then, to leverage multi-modal knowledge for the entity alignment
task, a multi-modal fusion module is designed to integrate knowledge repre-
sentations from multiple modalities. Extensive experiments on two large-scale
real-world datasets demonstrate that MMEA not only provides insights to take
advantages of multi-modal knowledge in the entity alignment task, but also out-
performs the state-of-the-art baseline methods.

2 Related Work

Generally, the related work can be classified into two perspectives, i.e., entity
alignment and multi-modal knowledge graph.

2.1 Entity Alignment

Actually, the entity alignment problem has been one of the major studies in
the knowledge graph area for a long time. Early researchers mainly focus on
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Fig. 1. A toy example of entity alignment between multi-modal knowledge graphs

exploring the content similarity to align the entities between different KGs.
LD-Mapper [12] utilizes entity nearest neighbor similarity and string similarity.
RuleMiner [9] refines a set of matching-rules with an Expectation-Maximization
algorithm. SILK [16] measures entity similarity with string equality and similar-
ity, numeric similarity and so on.

Recently, it is notable that entity alignment based on knowledge graph
embedding representation becomes popular in the area. The current meth-
ods often embed entity to a low-dimensional space and measure the simi-
larity between entity embeddings. Embedding-based methods concentrate on
the semantics or concept so that they have a better analysis of knowledge.
IPTransE [20] is an iterative method through joint knowledge embedding.
BootEA [14] iteratively labels possible entity alignments as the training data,
and employs an alignment editing method to reduce the error accumulation dur-
ing the iterations. SEA [10] utilizes an awareness of the degree difference in
adversarial training and incorporates the unaligned entities to enhance the per-
formance. KDCoE [2] adds entity descriptions for entity alignment with a semi-
supervised learning method for joint training. Furthermore, there are several
methods utilizing attributes to strengthen the performance of entity alignment
model. AttrE [15] uses a large number of attribute triples to generate character
embeddings, and employs the relationship transitivity rule. IMUSE [6] achieves
entity alignment and attribute alignment with an unsupervised method, and
employs bivariate regression to merge alignment results. Additionally, GCN [17]
uses relations to build the structures of graph convolutional networks and com-
bines relations and attributes. However, these methods ignore the multi-modal
knowledge from the real scenarios.

2.2 Multi-modal Knowledge Graph

In diverse domains, researchers study multi-modal learning in order to extract
semantic information from various modalities. Multi-modal information such
as structural and visual features is significant for entity alignment. PoE [7] is
proposed to find entity alignment in multi-modal knowledge graphs through
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extracting relational, latent, numerical and visual features. In addition, the most
relevant task to our multi-modal entity alignment is multi-modal knowledge rep-
resentation. Considering visual features from entity images for knowledge rep-
resentation learning, IKRL [19] integrates image representations into an aggre-
gated image-based representation via an attention-based method. MKBE [11]
models knowledge bases that contain a variety of multi-modal features such as
links, images, numerical and categorical values. It applies neural encoders and
decoders which embed multi-modal evidence types and generate multi-modal
attributes, respectively. [8] proposes a multi-modal translation-based method,
which defines the energy of a knowledge graph triple as the sum of sub-energy
functions that leverages structural, visual and linguistic knowledge representa-
tions. On the whole, multi-modal knowledge graph is still a novel problem, and
the entity alignment has not been fully discussed.

3 Methodology

In this section, we formally introduce the entity alignment task for multi-modal
knowledge graphs (KGs) and give an overview of our proposed model, i.e., Multi-
Modal Entity Alignment (MMEA). Then, we describe the details of MMEA.
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Fig. 2. The framework overview of MMEA.

3.1 Preliminaries and Technical Framework

Notation and Problem Definition. A multi-modal knowledge graph can be
noted as G = ( ̂E,R, I,N,X, Y, Z), where ̂E,R, I,N denote the sets of entities,
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relations, images and numerics, and X,Y,Z denote the sets of relational triples,
entity-image pairs and numerical triples, respectively. With multi-modal knowl-
edge embedding, we denote E(r), E(i), E(n) as entity embeddings for relational,
visual and numerical information, respectively.

The task of entity alignment refers to matching entities describing the same
thing in the real world from different knowledge graphs, which is beneficial for
people to acquire knowledge completely, and it is not necessary to find related
information of the same entity from multiple knowledge graphs anymore. Let
G1 = ( ̂E1, R1, I1, N1,X1, Y1, Z1) and G2 = ( ̂E2, R2, I2, N2,X2, Y2, Z2) be two
different KGs. H =

{

(e1, e2)|e1 ∈ ̂E1, e2 ∈ ̂E2

}

denotes the set of aligned entities
across knowledge graphs.

Framework Overview. In this paper, we propose a multi-modal model for
entity alignment, namely Multi-Modal Entity Alignment (MMEA) model, which
can automatically and accurately align the entities in two distinct multi-modal
knowledge graphs. As illustrated in Fig. 2, our proposed MMEA consists of two
major components, i.e., Multi-Modal Knowledge Embedding (MMKE) and Multi-
Modal Knowledge Fusion (MMKF). In the MMKE module, we extract the rela-
tional, visual and numerical information to complement the absence of useful
entity features. Then, with the MMKF module, we propose a novel multi-modal
knowledge fusion method to minimize the distance of aligned entities from two
distinct KGs across the multi-modal knowledge in the common space and design
an interactive training stage to optimize the MMEA end-to-end.

3.2 Multi-modal Knowledge Embedding

Multi-modal knowledge plays a significant part in knowledge representations. In
our multi-modal knowledge graph, there are three types of data modality, i.e.,
relational, visual and numerical data. Relational data refer to relational triple
with entity associations, visual data mean the image of entities, and numeri-
cal data represent the attribute value. We will detail three types of knowledge
embedding in the following section.

Relational Knowledge Representations. Relational triples are the main
part of KGs, which are essential to judge the association of entities from different
KGs. Under the relational data, we adopt the most representative translational
distance model: TransE [1]. Given a fact (h, r, t) ∈ X, h and t can be associated
by r in a low-dimensional continuous vector space. The process named transla-
tion adjusts the distance between h + r and t in the space constantly, in order
that h+r is equal to t as much as possible when (h, r, t) holds. In multi-relational
data, there are certain structural similarities. Such as (“Fuji”, “Location
city”, “Shizuoka”) and (“Eiffel”, “Location city”, “Paris”) in the embed-
ding space, we have “Shizuoka” – “Fuji” ≈ “Paris” – “Eiffel”. Through the
relationship “Location city”, we can acquire “Eiffel” + “Location city”
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≈ “Paris” from “Fuji” + “Location city” ≈ “Shizuoka” automatically. The
scoring function which we take to be L2-norm is defined as follows:

frel(h, r, t) = −||h + r − t||22. (1)

To learn the entity embeddings from relational data, we apply the margin-
based [18] loss function with γ > 0 over the training set:

Lrel =
∑

τ+∈D+

∑

τ−∈D−
max(0, γ − frel(τ+) + frel(τ−)). (2)

Here, D+ and D− are positive and negative examples sets, respectively. Given
a positive example τ+ = (h, r, t), we supplement the set of positive examples
through the exchange strategy. The exchange strategy means that if h has been
aligned by h̄ in the other knowledge graph, (h̄, r, t) will be expanded into the
set D+. For t, the exchange strategy generates (h, r, t̄) in D+ identically. The
supplementary relational triples benefit linking two diverse knowledge graphs
in the unified low-dimensional continuous vector space. The definition of D− is
described as follows:

D− =
{

(h′, r, t) |h′ ∈ ̂E ∧ h′ �= h ∧ (h, r, t) ∈ D+ ∧ (h′, r, t) /∈ D+
}

∪
{

(h, r, t′) |t′ ∈ ̂E ∧ t′ �= t ∧ (h, r, t) ∈ D+ ∧ (h, r, t′) /∈ D+
}

.

Negative examples sampled by replacing the head or tail entities of real rela-
tional triples at random are arranged to approximate the partition function.

Visual Knowledge Representations. Sometimes the relational structure
information of knowledge graphs can cause ambiguity. When finding the entity
aligned with “Fuji” in the other knowledge graph, “Fuji Mountain” and
“Fujifilm” exist. The visual features characterize the appearance of the entity
more intuitively and vividly than relational knowledge, and we can distinguish
“Fuji Mountain” from “Fujifilm” because the one is a mountain, and the other
one is a company logo. Therefore, visual data serve as a vital part of multi-modal
knowledge graphs and visual features disambiguate the relational information to
some extent.

In order to extract visual features, we achieve the vectorization of images
and each of entity images is embedded into a vector. However, image vectors
can not be directly applied in this scene, hence we project them to associate
with entity embedding vectors. We learn embeddings for images according to the
VGG16 [13] model. The model pre-trained on the ILSVRC 2012 dataset derived
from ImageNet [5] is applied in our model. The filters in a stack of convolutional
layers have the receptive fields of 3 × 3. We develop 13 convolutional layers
which have different depths in various architectures. They are followed by 3 fully-
connected layers, but we remove the last fully-connected layer and the softmax
layer, then obtain the 4096-dimensional embeddings for all entity images. Given
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a pair
(

e(i), i
) ∈ Y in the visual knowledge, we use the following score function

to utilize visual features:

fvis(e(i), i) = −||e(i) − tanh(vec(i))||22, (3)

where vec(·) denotes the projection, and tanh(·) is a kind of activation function.
Based on the above score function, we minimize the following loss function to
optimize the visual knowledge representations:

Lvis =
∑

(e(i),i)∈Y

log
(

1 + exp
(

−fvis(e(i), i)
))

. (4)

Numerical Knowledge Representations. The numerical triple is denoted
as

(

e(n), a, n
) ∈ Z in the numerical data, where a denotes the attribute key,

and n denotes the numerical value. Attribute keys and corresponding numerical
values form the key-value pairs to describe entities. Formally, relational struc-
tures only model the translation between head entities and tail entities while
numerical features supplement the information between some entities which can
not be constituted of a relational fact in the knowledge graphs. For instance, the
“height” of “Fuji” is 3775.63 and the “height of “Fuji Mountain” is 3776.24,
hence we deduce that they are likely to refer the same thing for entity alignment.

First of all, we deal with numeric since continuous value needs special treat-
ment. Sparse numerical data demands to be fitted to a simple parameter distri-
bution, and the radial basis function (RBF) [4] meets our requirement exactly.
The RBF network is able to approximate any non-linear function and handle the
issues of analyzing data regularity. It has good generalization ability and has a
fast speed of convergence.

We convert numerical information to embeddings in high-dimensional spaces
with applying a radial basis function as follows:

φ
(

n(e(n),ai)

)

= exp

(

− (

n(e(n),ai) − ci

)2

σ2
i

)

, (5)

where ci denotes the radial kernel center, σi denotes the variance and they are
both vectors. Firstly, all corresponding numerical values for each attribute key
will be normalized. After normalization, ci and σi can be computed in the RBF
neural network through the supervised method.

In addition, we intend to extract features from attribute keys and corre-
sponding numerical values of entities, which indeed form the key-value pairs.
We concatenate the embedding of an attribute key and its numerical vector
got from the RBF layer. This process generates a new 2×d matrix denoted by
M =

〈

a, φ(n(e(n),a))
〉

. Then we define the score function to measure the plausi-
bility of the embeddings:

fnum(e(n), a, v) = −||e(n) − tanh(vec(CNN(tanh(M)))W)||22, (6)
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where CNN denotes l convolutional layers, and W means a fully-connected layer.
We reshape the feature map to a vector, then project it to the embedding space.
The loss function is given as follows:

Lnum =
∑

(e(n),a,n)∈Z

log
(

1 + exp
(

−fnum(e(n), a, v)
))

, (7)

where Z denotes the set of numerical triples in the numerical data. Exchang-
ing aligned entities in the involved numerical triples, because they refer to the
same real-world object across different knowledge graphs and they own the same
numerical features. If a numerical triple (e, a, n) exists and (e, ē) appears in the
seed entity alignment, (ē, a, n) is added to Z.

3.3 Multi-modal Knowledge Fusion

Information from different independent sources under different modalities com-
plements each other. Commonly, multi-modal features tend to correlate, which
provide additional redundancy for better robustness. The features in the three
types of modality could not be directly extracted to one space, therefore we
propose a Multi-Modal Knowledge Fusion (MMKF) module to integrate knowl-
edge representations from multiple modalities. MMKF migrates multi-modal
knowledge embeddings from separate spaces to a common space. Common space
learning enables multi-modal features to benefit from each other. It enhances the
complementarity of multiple modalities which improves the accuracy of the task
of entity alignment. The loss function is designed as follows:

Lcsl(E,E(r),E(i),E(n)) = α1||E − E(r)||22 + α2||E − E(i)||22 + α3||E − E(n)||22,
(8)

where E denotes the entity embeddings in the common space, and E(r), E(i) and
E(n) are the entity embeddings in the spaces of relational, visual and numerical
knowledge, respectively. Besides, α1, α2 and α3 are ratio hyper-parameters for
each type of knowledge.

Since aligned entities have identical meaning in different knowledge graphs, it
is intuitive for us to make those aligned entities closer in the common space. The
distance between aligned entities is calculated as ‖e1 − e2‖, where e1, e2 ∈ E.
Taking the distance into account, we adapt the alignment constraint approach
in the common space to minimize the mapping loss:

Lac(E1,E2) = ||E1 − E2||22, (9)

where E1 and E2 denote embeddings of entities in the sets of ̂E1 and ̂E2, which
are defined as follows:

̂E1 =
{

e1|e1 ∈ KG1 ∧ e1 ∈ ̂E ∧ (e1, e2) ∈ H
}

̂E2 =
{

e2|e2 ∈ KG2 ∧ e2 ∈ ̂E ∧ (e1, e2) ∈ H
}

,
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where H denotes the set of aligned entities across different knowledge graphs.
For the purpose of making up for imbalance among different types of knowl-

edge, we design an interactive training stage which learns embeddings of three
multi-modal (relational, visual and numerical) knowledge and optimizes the com-
mon space learning during an epoch, repeatedly. We constrain all entity embed-
dings with L2 normalization to regularize embedding vectors. Firstly, we train
image embeddings from VGG16 and obtain the 4096-dimensional embeddings
for all the entities. Then, at each step, the parameters are updated by Lrel, Lvis,
Lnum, Lcsl and Lac.

4 Experiments

In this section, we evaluate MMEA on two real-world datasets, and demonstrate
that MMEA provides insights to take advantages of multi-modal knowledge in
the entity alignment task and outperforms the baselines which were shown to
achieve state-of-the-art performance for entity alignment.

4.1 Experimental Settings

Datasets. In our experiments, we use two multi-modal datasets which were
built in [7], namely FB15K-DB15K and FB15K-YAGO15K. FB15K is a repre-
sentative subset extracted from the Freebase knowledge base. Aiming to maintain
an approximate entity number of FB15K, DB15K from DBpedia and YAGO15K
from YAGO are mainly selected based on the entities aligned with FB15K.
Table 1 depicts the statistics of multi-modal datasets. Each dataset provides
20%, 50%, and 80% reference entity alignment as training sets, respectively.

Evaluation Metrics. We utilize cosine similarity to calculate the similarity
between two entities and employ Hits@n, MRR, and MR as metrics to evaluate
all the models. Hits@n means the rate correct entities rank in the top n according
to similarity computing. MR denotes the mean rank of correct entities and MRR
denotes the mean reciprocal rank of correct entities. The higher values of Hits@n
and MRR explain the better performance of the method, while the lower value
of MR proves it.

Implementation Details. All the experiments are tuned for both datasets.
For MMEA we initialize the embeddings of KGs in each type of knowledge
with Xavier initializer and restrain their lengths to 1. The dimensions of all the
embeddings are set as 100. We adopt the mini-batch method with the batch size
of 5000. We start to valid every 10 epochs after 300 epochs and stop the training
when the metric MRR is declining continually in the valid set. We set all the
learning rates to 0.01 except that the learning rate of common space learning
is 0.004. In addition, the max epochs are set as 600. More specifically, γ in the
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relational knowledge representation is 1.5. In the numerical knowledge represen-
tation, l and the number of filters are both set as 2. The kernel size is 2 × 4. α1,
α2, and α3 in the common space learning are selected as {1, 0.01, 1} on FB15K-
DB15K dataset and {1, 1, 0.01} on FB15K-YAGO15K dataset, respectively. We
optimize all the above loss functions using stochastic gradient descent (SGD).

Table 1. Statistics of multi-modal datasets.

Datasets Entities Relations Attributes Relational
triples

Numerical
triples

Images Links

FB15K 14951 1345 116 592213 29395 13444 –

DB15K 12842 279 225 89197 48080 12837 12846

YAGO15K 15404 32 7 122886 23532 11194 11199

4.2 Compared Methods

To demonstrate that MMEA framework outperforms the state-of-the-art entity
alignment models, we compare it with the following methods:

• TransE [1] is a typical translational method for knowledge graph embed-
ding. We perform this method in the entity alignment task by sharing the
parameters between aligned entities.

• MTransE [3] learns the translation matrix to map the aligned entities from
different knowledge graphs in the unified space. It acquires a great deal of
seed alignment, otherwise the translation matrix will be inaccurate.

• IPTransE [20] obtains entity embeddings through employing an iterative
and parameter sharing method. Additionally, soft alignment and multi-step
relation paths are utilized to align entities from different KGs.

• SEA [10] served as a semi-supervised method realizes the adversarial training
with an awareness of the degree difference and leverages both labeled entities
and the abundant unlabeled entity information for the alignment.

• GCN [17] adopts GCNs to encode the structural information of entities, and
combine relation and attribute embeddings for the entity alignment task.

• IMUSE [6] generates lots of high-quality aligned entities with an unsuper-
vised method. Besides, a bivariate regression is utilized to merge the align-
ment results of relations and attributes better.

• PoE [7] combines the multi-modal features and measures the credibility
of facts by matching the underlying semantics of the entities and mining
the relations contained in the embedding space. Regarding computing the
scores of facts under each modality, it learns the entity embeddings for entity
alignment.
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4.3 Results and Analyses

We partition the datasets to compare the results of all models. For each dataset,
we use the 20%, 50%, 80% data as training sets, and the remains are treated as
testing sets, respectively.

Table 2. 20% alignment results on two datasets. (R.: Relational knowledge, N.: Numer-
ical knowledge, V.: Visual knowledge)

Models FB15K-DB15K FB15K-YAGO15K

Hits@1 Hits@5 Hits@10 MR MRR Hits@1 Hits@5 Hits@10 MR MRR

R. MTransE 0.359 1.414 2.492 1239.465 0.0136 0.308 0.988 1.783 1183.251 0.011

IPTransE 3.985 11.226 17.277 387.512 0.0863 3.079 9.505 14.443 522.235 0.07

TransE 7.813 17.95 24.012 442.466 0.134 6.362 15.11 20.254 522.545 0.112

PoE-l 7.9 – 20.3 – 0.122 6.4 – 16.9 – 0.101

SEA 16.974 33.464 42.512 191.903 0.255 14.084 28.694 37.147 207.236 0.218

R. + N. GCN 4.311 10.956 15.548 810.648 0.0818 2.27 7.209 10.736 1109.845 0.053

IMUSE 17.602 34.677 43.523 182.843 0.264 8.094 19.241 25.654 397.571 0.142

R. + N. + V. PoE-lni 12.0 – 25.6 – 0.167 10.9 – 24.1 – 0.154

MMEA 26.482 45.133 54.107 124.807 0.357 23.391 39.764 47.999 147.441 0.317

Performance Comparison. Table 2 lists the results of all the models with 20%
alignment data on FB15K-DB15K and FB15K-YAGO15K datasets. The results
for PoE are taken from [7]. From the overview, our proposed MMEA achieves the
state-of-the-art performance for entity alignment. Specifically, there are several
observations. First, MMEA performs better than all the other methods. Com-
pared with these methods, Hits@1, Hits@5, Hits@10, MRR are at least improved
by 8.88%, 10.456%, 10.584%, 0.093 and 9.307%, 11.07%, 10.852%, 0.099, and MR
is at least decreased by 58.036 and 59.795 on two datasets. The results indicate
that MMEA is more suitable for multi-modal knowledge graphs from the real
scenarios. Second, solutions with multi-modal knowledge generate better results
than solutions with a single modality in most cases. Both MMEA and PoE-
lni outperform MTransE, IPTransE, TransE and PoE-l, which indicates that as
increasing numerical and visual knowledge leads to improvements, the effects of
multi-modal knowledge have been proven. Third, MMEA outperforms PoE-lni
absolutely, suggesting our modeling for multi-modal knowledge is more effective,
and multi-modal fusion method with common space is better.

Figure 3 shows the experimental results with different test splits on FB15K-
DB15K and FB15K-YAGO15K datasets. In most cases, especially when only
20% alignment data is split to the training set, MMEA with a significant margin
compared with the state-of-the-art methods could make full use of limited data.
Moreover, it demonstrates the robustness and effectiveness of MMEA once again.

Ablation Study. To further validate the effectiveness of multi-modal knowledge
in the task of entity alignment, we design two variants for ablation study, namely
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MMEA-R and MMEA-RN. MMEA-R is a variant of MMEA with only relational
knowledge, and MMEA-RN is a variant of MMEA with relational and numeri-
cal knowledge. According to the experimental results, MMEA outperforms both
MMEA-R and MMEA-RN, which reveals that multi-modal knowledge comple-
ments the absence of useful entity features, and MMEA provides insights to take
advantages of multi-modal knowledge. Moreover, it is obvious that our multi-
modal knowledge fusion method could leverage multi-modal knowledge for entity
alignment.

Fig. 3. Experimental results with different test splits on two datasets.

In summary, all above evidences demonstrate that MMEA framework has
a good ability to find entities referring to the same real-world identity from
different KGs by taking full advantages of multi-modal knowledge and achieves
state-of-the-art performance for entity alignment (Table 3).

Table 3. Ablation study.

Models FB15K-DB15K FB15K-YAGO15K

Hits@1 Hits@5 Hits@10 MR MRR Hits@1 Hits@5 Hits@10 MR MRR

20% MMEA-R 24.957 43.084 51.581 143.171 0.340 22.199 38.563 46.493 160.576 0.305

MMEA-RN 26.209 44.982 53.759 125.874 0.355 23.091 39.589 47.689 154.908 0.314

MMEA 26.482 45.133 54.107 124.807 0.357 23.391 39.764 47.999 147.441 0.317

50% MMEA-R 40.95 61.362 69.721 58.093 0.505 39.161 56.696 63.956 65.848 0.477

MMEA-RN 41.436 61.691 70.089 54.53 0.51 39.509 56.959 63.979 65.255 0.48

MMEA 41.653 62.1 70.345 54.257 0.512 40.263 57.231 64.51 62.969 0.486

80% MMEA-R 58.256 80.192 86.466 14.557 0.679 58.803 77.078 83.132 15.308 0.672

MMEA-RN 58.411 80.355 86.76 14.493 0.681 59.377 78.22 83.34 14.745 0.68

MMEA 59.034 80.405 86.869 14.129 0.685 59.763 78.485 83.892 14.512 0.682
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5 Conclusion

In this paper, we proposed a novel solution for the entity alignment task in
multi-modal knowledge graphs, which integrated multiple representations of dif-
ferent types of knowledge based on knowledge embedding. Moreover, a multi-
modal fusion method was designed through common space learning to migrate
features under different knowledge spaces. Extensive experiments on two real-
world datasets demonstrated the robustness and effectiveness of our solution
for multi-modal entity alignment, which outperformed several state-of-the-art
baseline methods with a significant margin.

Acknowledgments. This research was partially supported by grants from
the National Key Research and Development Program of China (Grant No.
2018YFB1402600), and the National Natural Science Foundation of China (Grant No.
61703386, U1605251).

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

2. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training embeddings
of knowledge graphs and entity descriptions for cross-lingual entity alignment.
arXiv preprint arXiv:1806.06478 (2018)

3. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embed-
dings for cross-lingual knowledge alignment. arXiv preprint arXiv:1611.03954
(2016)

4. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm
for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

6. He, F., et al.: Unsupervised entity alignment using attribute triples and relation
triples. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA
2019. LNCS, vol. 11446, pp. 367–382. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18576-3 22

7. Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.:
MMKG: multi-modal knowledge graphs. In: Hitzler, P., et al. (eds.) ESWC 2019.
LNCS, vol. 11503, pp. 459–474. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21348-0 30

8. Mousselly-Sergieh, H., Botschen, T., Gurevych, I., Roth, S.: A multimodal
translation-based approach for knowledge graph representation learning. In: Pro-
ceedings of the Seventh Joint Conference on Lexical and Computational Semantics,
pp. 225–234 (2018)

9. Niu, X., Rong, S., Wang, H., Yu, Y.: An effective rule miner for instance matching
in a web of data. In: Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, pp. 1085–1094 (2012)

http://arxiv.org/abs/1806.06478
http://arxiv.org/abs/1611.03954
https://doi.org/10.1007/978-3-030-18576-3_22
https://doi.org/10.1007/978-3-030-18576-3_22
https://doi.org/10.1007/978-3-030-21348-0_30
https://doi.org/10.1007/978-3-030-21348-0_30


MMEA: Entity Alignment for Multi-modal Knowledge Graph 147

10. Pei, S., Yu, L., Hoehndorf, R., Zhang, X.: Semi-supervised entity alignment via
knowledge graph embedding with awareness of degree difference. In: The World
Wide Web Conference, pp. 3130–3136 (2019)

11. Pezeshkpour, P., Chen, L., Singh, S.: Embedding multimodal relational data for
knowledge base completion. arXiv preprint arXiv:1809.01341 (2018)

12. Raimond, Y., Sutton, C., Sandler, M.B.: Automatic interlinking of music datasets
on the semantic web. LDOW 369 (2008)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

14. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowl-
edge graph embedding. In: IJCAI, pp. 4396–4402 (2018)

15. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs
using attribute embeddings. Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 297–304 (2019)

16. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on
the web of data. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp.
650–665. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-
9 41

17. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via
graph convolutional networks. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 349–357 (2018)

18. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep
embedding learning. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 2840–2848 (2017)

19. Xie, R., Liu, Z., Luan, H., Sun, M.: Image-embodied knowledge representation
learning. arXiv preprint arXiv:1609.07028 (2016)

20. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge
embeddings. In: IJCAI, pp. 4258–4264 (2017)

http://arxiv.org/abs/1809.01341
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-642-04930-9_41
https://doi.org/10.1007/978-3-642-04930-9_41
http://arxiv.org/abs/1609.07028

	MMEA: Entity Alignment for Multi-modal Knowledge Graph
	1 Introduction
	2 Related Work
	2.1 Entity Alignment
	2.2 Multi-modal Knowledge Graph

	3 Methodology
	3.1 Preliminaries and Technical Framework
	3.2 Multi-modal Knowledge Embedding
	3.3 Multi-modal Knowledge Fusion

	4 Experiments
	4.1 Experimental Settings
	4.2 Compared Methods
	4.3 Results and Analyses

	5 Conclusion
	References




