

分光计测量三棱镜折射率

姓名: 刘元彻 学号: PB21020505 班级: 21 级物理学院 1 班 日期: 2022 年 3 月 29 日

1 实验目的

掌握基本的光学精密测量的方法。利用分光计测定三棱镜顶角和谱线的最小偏向角,以此求得透镜的 折射率。

在此过程中,学习如何调节分光计、消除"偏心误差"的方法。

2 实验仪器

分光计, 汞灯, 双面平面镜, 三棱镜(本实验台没有配备遮光板)

3 实验原理

一束单色光以 i_1 角度入射到三棱镜的一个光学面上,经过透镜两次折射,从另一光学面折射出来,出射角记为 i_2' 。入射光和出射光之间的夹角 δ 记为偏向角。当棱镜顶角 A 一定时,偏向角大小随入射角变化而变化。当 $i_1=i_2'$ 时, δ 取最小值,即为最小偏向角 δ_{\min}

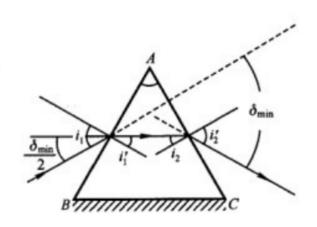


图 1: 最小偏向角测量原理示意图

根据几何关系,和透镜的折射定律(斯涅耳定律):

$$i_1' = \frac{A}{2} \tag{1}$$

$$\frac{\delta_{\min}}{2} = i_1 - i_1' \tag{2}$$

$$\sin i_1 = n \sin i_1' \tag{3}$$

以上各式子联立, 可以解得

$$n = \frac{\sin\frac{\delta_{\min} + A}{2}}{\sin\frac{A}{2}}$$

4 实验步骤

- 1. 粗调装置, 使平行光管、载物台平面、望远镜筒光轴大致对齐
- 2. 调整平行光管和目镜的焦距,使得视野中谱线、十字叉丝清晰可见。
- 3. 将双面反射镜放置在载物台上,接通目镜光源,利用各半调节法细调光轴水平(以绿十字落在十字叉 丝上十字线为准)。
- 4. 调节完毕后,将三棱镜置于载物台上,再次调节使得三棱镜光学面垂直于光轴(以绿十字落在十字叉丝上十字线为准)。
- 5. 测量三棱镜顶角, 使得两个光学面分别正对望远镜筒, 记下两个游标盘读数。本步骤重复三次。
- 6. 测量绿色光线的最小偏向角。找到最小偏向角后记录两游标盘读数;之后撤去三棱镜,只转动望远镜和平行光管正对,记下两游标盘读数。本步骤重复三次。
- 7. 仿照上面的步骤,测量其他谱线的最小偏向角。(本实验中,测定了汞灯紫色谱线和双黄线长波线的最小偏向角)
- 8. 整理仪器,结束实验。
- 9. 数据处理和误差分析。

5 测量记录 (原始数据)

本实验中,测量时有读数越过表盘一周的情形。这些情形会在原始数据表格中以 $(+360^\circ)$ 的形式体现。

所有 θ_1 和 θ_2 表示同一次测量中两个游标盘的读数。

表 1: 三棱镜顶角测量

测量对象	θ_1	$ heta_2$	$ heta_1'$	$ heta_2'$	$\Delta heta_1$	$\Delta heta_2$
1	352°05′	$172^{\circ}04'$	$112^{\circ}05'(+360^{\circ})$	$292^{\circ}05'$	120°00′	120°01′
2	352°06′	172°05′	112°06′(+360°)	292°05′	120°00′	120°00′
3	352°06′	$172^{\circ}06'$	$112^{\circ}06'(+360^{\circ})$	$292^{\circ}05'$	120°00′	119°59′
平均	-	-	-	-	120°00′	120°00′

表 2: 绿色谱线最小偏向角测量

测量对象	$ heta_1$	$ heta_2$	$ heta_1'$	$ heta_2'$	$\Delta heta_1$	$\Delta heta_2$
1	138°20′	$318^{\circ}19'$	$84^{\circ}12'$	$264^{\circ}11'$	54°08′	54°08′
2	136°50′	316°50′	82°42′	262°41′	54°08′	54°09′
3	137°32′	$317^{\circ}31'$	83°24′	$263^{\circ}24'$	54°08′	54°07′
平均	-	-	-	-	54°08′	54°08′

表 3: 双黄线长波线最小偏向角测量

测量对象	θ_1	$ heta_2$	$ heta_1'$	$ heta_2'$	$\Delta \theta_1$	$\Delta heta_2$
1	125°50′	$305^{\circ}51'$	$72^{\circ}14'$	$252^{\circ}14'$	53°36′	$53^{\circ}37'$
2	127°51′	307°51′	74°14′	254°13′	53°37′	53°38′
3	129°46′	309°45′	76°09′	256°10′	53°37′	53°35′
平均	-	-	-	-	53°37′	53°37′

表 4: 蓝紫色谱线最小偏向角测量

测量对象	$ heta_1$	$ heta_2$	$ heta_1'$	$ heta_2'$	$\Delta heta_1$	$\Delta heta_2$
1	130°30′	$310^{\circ}30'$	$74^{\circ}05'$	$254^{\circ}05'$	56°25′	56°26′
2	126°34′	306°33′	70°08′	250°07′	56°26′	56°26′
3	128°36′	$308^{\circ}36'$	$72^{\circ}10'$	$252^{\circ}09'$	56°26′	56°27′
平均	-	-	-	-	56°26′	56°26′

6 数据处理与误差分析

6.1 数据处理

首先根据计算,透镜顶角测量值 \bar{A} 应该是:

$$\bar{A} = 180^{\circ}00' - \frac{120^{\circ}00' + 120^{\circ}00' + 120^{\circ}00'}{3} = 60^{\circ}00'$$

对绿色谱线,最小偏向角为 (将 $\Delta\theta_1$ 和 $\Delta\theta_2$ 求平均后,求三组的平均值):

$$\delta_{areen} = 54^{\circ}08'$$

对双黄线,最小偏向角为 (将 $\Delta\theta_1$ 和 $\Delta\theta_2$ 求平均后,求三组的平均值):

$$\delta_{uellow} = 53^{\circ}37'$$

对蓝紫色谱线,最小偏向角为(将 $\Delta\theta_1$ 和 $\Delta\theta_2$ 求平均后,求三组的平均值):

$$\delta_{blue} = 56^{\circ}26'$$

6.2 误差分析

以下所有误差分析中,取P = 0.95。

6.2.1 顶角测量

A 类不确定度:由表格中的数据,实验次数取 n=3,代入标准差公式可求得 A 的标准差为:

$$\sigma_A = \sqrt{\frac{\sum (\frac{\Delta\theta_1 + \Delta\theta_2}{2} - \bar{A})^2}{n - 1}} = 30.0$$
"

A 类标准不确定度

$$u_A = \sqrt{\frac{\sum (\frac{\Delta\theta_1 + \Delta\theta_2}{2} - \bar{A})^2}{n(n-1)}} = 17.3$$
"

分光计本身的仪器允差 $\Delta=1'$,置信系数 $C=\sqrt{3}$,代入公式得测量角度时的 B 类标准不确定度:

$$u_{\theta} = \frac{\Delta}{C} = 34.64$$

在顶角计算的过程中,

$$A = \pi - \frac{\Delta\theta_1 + \Delta\theta_2}{2}$$

对这个式子求微分,将会知道测定顶角 A 的 B 类不确定度为:

$$u_B = 2u_\theta = 1'9.28$$
"

本实验中,测量次数为 3,查表可知 $t_3=4.30, k_p=1.96, P=0.95$ 。于是计算顶角的展伸不确定度为:

$$U_A = \sqrt{(t_p u_A)^2 + (k_p u_B)^2} = 2'35$$
", $P = 0.95$

最终顶角的测量结果应该记为: $A = \bar{A} + U_A = 60^{\circ}00' \pm 02'35", P = 0.95$

6.2.2 最小偏向角测量: 以绿色谱线为例

A 类不确定度:由表格中的数据,实验次数取 n=3,代入标准差公式可求得 δ 的标准差为:

$$\sigma_{\delta} = \sqrt{\frac{\sum (\frac{\Delta\theta_1 + \Delta\theta_2}{2} - \bar{\delta})^2}{n - 1}} = 30.0$$

A 类标准不确定度

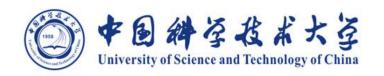
$$u_A = \sqrt{\frac{\sum (\frac{\Delta\theta_1 + \Delta\theta_2}{2} - \bar{\delta})^2}{n(n-1)}} = 17.3$$
"

分光计测量角度时的 B 类标准不确定度:

$$u_{\theta} = \frac{\Delta}{C} = 34.64$$

注意到测量最小偏向角时的表达式:

$$\delta = \frac{\Delta\theta_1 + \Delta\theta_2}{2}$$


对这个式子求微分,将会知道测定最小偏向角 δ 的 B 类不确定度为:

$$u_B = 2u_\theta = 1'9.28$$
"

本实验中,测量次数为 3,查表可知 $t_3=4.30, k_p=1.96, P=0.95$ 。于是计算最小偏向角的展伸不确定度为:

$$U_{\delta} = \sqrt{(t_p u_A)^2 + (k_p u_B)^2} = 2'35$$
", $P = 0.95$

最小偏向角测量结果应该记为: $\delta = \bar{\delta} + U_{\delta} = 54^{\circ}08' \pm 02'35", P = 0.95$

6.2.3 折射率测量: 以绿色谱线为例

三棱镜对绿色光的折射率:

$$n_{green} = \frac{\sin\frac{\overline{\delta_{green}} + \bar{A}}{2}}{\sin\frac{\bar{A}}{2}} = 1.679$$

对以上计算式取对数,然后做全微分可得:

$$\frac{\Delta n}{n} = \frac{1}{2}(\cot\frac{\delta_{green} + A}{2} - \cot\frac{A}{2})\Delta A + \frac{1}{2}\cot\frac{\delta_{green} + A}{2}\Delta\delta_{green}$$

利用不确定度合成公式(这里存在一步舍入):

$$U_n = \frac{\bar{n}}{2} \sqrt{(\cot \frac{\delta_{green} + A}{2} - \cot \frac{A}{2})^2 U_A^2 + (\cot \frac{\delta_{green} + A}{2})^2 U_{\delta}^2} = 0.001, P = 0.95$$

于是最终的测量结果是: $n_{green}=\bar{n}+U_n=1.679\pm0.001, P=0.95$ 不确定度可以标记为: $\frac{\Delta n}{n}=\frac{0.001}{1.679}=0.06\%$, 符合实验的精度要求。

6.3 扩展实验:不同谱线的折射率

图2: 玻璃折射率随波长变化关系

利用上面所得的实验数据,可以计算得(误差分析过程如上类似,这里略去):

$$n_{blue} = 1.700 \pm 0.001, P = 0.95$$

 $n_{green} = 1.679 \pm 0.001, P = 0.95$
 $n_{uellow} = 1.674 \pm 0.001, P = 0.95$

查表得知,标准汞灯在以上谱线对应的波长是:

 $\lambda_{blue} = 435.84$ nm $\lambda_{green} = 546.07$ nm $\lambda_{yellow} = 579.07$ nm

绘制出波长与折射率对应的散点图在本小节开头处给出。可以看出,在实验范围内,三棱镜玻璃对不同色光的折射率随光的波长增大而减小。

7 讨论与思考题

7.1 讨论

使用分光计的精密光学实验要求的测量不确定度不大于 0.3%, 经过分析, 本实验能够满足要求。可能仍存在的误差因素分析: 实验中光谱线相对于十字叉丝线仍有宽度, 可能会造成测量上的误差; 同时, 最小偏向角的测定中可能存在"极值"难以被肉眼精确确定, 从而存在误差。

7.2 思考题:光轴调节的过程

不能说明光轴没有调好。因为在平面双面镜各半调节法的过程中,只能保证被双面镜平分的两个螺钉在同一个高度;对于恰好与平面镜共线的螺钉,不能保证这颗螺钉的高度与另外两颗一致。后续过程中,利用三棱镜再次调节水平,则会校正这颗螺钉的高度,最后使台面水平。