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Lagrangians or Amplitudes? FRAZLLXE
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Lagrangian Method: Lagrangian—>Feynman Rules—>Amplitudes
» Focus on concrete scattering procedures.
P i.c. scalar field as the simplest QFT.

» Terribly complicated for higher spin fields, with gauge
redundancy.

Amplitude Method: Amplitudes for a theory!
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The simplest theory is scalar fields theory:
> ie. \p? theory
> L= 18’%08 ©— 1mchz + l)\cp‘l
2 K2 4!
» No spinor indices, no Lorentz indices.

» Quite simple amplitudes:
A T T

—m?2 +ie

Figure: Feynman Rules for Ap* theory

Really?
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BCFW: On-shell recursion relations of amplitudes.
» Analytic continuation for momentum p(z) and amplitudes M (z).
» BCFW Shift: p1 = p1(2) =p1 +2q, p2 — p2(2) = p2 — 2q.
» On-shell: keep p?(2) = p3(z) = 0, thus ¢*> = 0 means q is

complex.

pa2(zp)

pi(zp)

Figure: BCFW recursion relation
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pa(zp)

n LUR=AILR h N —_h

pi(zp)

Figure: BCFW recursion relation

Now we can focus on the certain propagator:

1 1 1

P2(z)  (p1(2) + Liepapa i) P2(0)+22q- P

P2
» A single pole at zp = 5 F
q .

10/56
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Traverse the whole diagram, we find several single poles of M (z):

2
Y
2q- B

zZp; = (j traverse the diagram except 1,2)

And we easily derive residues:

Res[P?(2)M(2), 2p,] = > Mr({p1(zp), 1}, {~P(zp), h}, L)
h=+

XMR({pZ(ZP)v hQ}v {P(ZP)7_h}7 R)
According to Cauthy’s residues theorem, we know:

MO)= Y Melipi(ep) i), (-P(ep) i}, L) % 5

i traverse, h==4

xMpr({p2(zp), ha},{P(zp),—h}, R) + Residue at co

Liu Yuanche
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From BCFW recursion, we decompose an n-point amplitudes as
smaller:
1

Amplitudes = Left subgraph amplitude X ————
P Z sap P edge momentum?

edges,heliciy

x Right subgraph amplitude + Residue at co

Naively we take the residue at oo as 0 to get a wonderful relation.
However, this can be wrong! According to:

> J. Bedford, A. Brandhuber, B. J. Spence and G. Travaglini
[arXiv:hep-th/0502146]

» F. Cachazo and P. Svrcek, [arXiv:hep-th/0502160]

» P. Benincasa, C. Boucher-Veronneau and F. Cachazo
[arXiv:hep-th/0702032].

Liu Yuanche 12/56
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Conclusion:
anything, — 1 anything, — 1
> MYang—Mills = s MGravity - )

> AL 0

Surprisingly, the so-called “simplest” A\p? forbids BCFW recursion!
Why?




“Simplest” \p* FRAZLLXE
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Recall our diagram decomposition:

pa2(zp)

p1(zp)

Figure: BCFW recursion relation

We have natually assumed that p; and ps is separated on either side of
the certain factorization channels, P.

It is highly non-trivial that ensuring these channels factorize correctly
guarantees that all channels factorize correctly

Encoded in the statement that A/ (z) — 0 when z — oo.
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Simplicity and structure is not everywhere!
1. Amplitudes of “simplest” A¢* cannot be recursed.

2. Amplitudes of “most complicated” YM,Gravity have many
hidden symmetries.

3. Easy Lagrangians # easy amplitudes!

Now that we want amplitudes eventually, why don’t we calculate
amplitudes straightly?

Today we will focus on A/ = 4s maximally supersymmetric tree
amplitudes, and find what SUSY gives us beyond our tradition
Lagrangian methods.
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SUSY Algebra

Recall QFT, with Poincare Poin(1, 3) symmetry generated by P* and
M. Poincare Algebra writes:

[Py, P, =0
[M/uu Mpa] = i(gMO'MVp + gupMua - gupMua - gl/aMup)
(M, Pp] = =g Pp + igpw Py

SUSY extended these relations, to be the so-called SUSY Algebra.

Liu Yuanche



SUSY Algebra

Explicitly, we introduce undotted spinors Qé and dotted spinors Qé
[PﬁuQé] = [P;L?le] =0
[M,uw Q{y] = i(o-,uu)aﬂQlé
[M;wy Qld] = i(‘?m/)dBQIﬁ
and they satisfy their conjugate relations:
{Qév Qé} = 5aBZIJ
{Q4,Q7%) = ¥z
{Q6.Q77} = 2(c")apP6"

This is SUSY algebra, and we name @ and Q as “supercharge”.

Liu Yuanche
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With s the highest spin of the theory, we have s = 1 for ' = 4 SYM
and s = 2 for ' = 8 SUGRA.

These maximally SUSY allow us to construct a supermultiplet, whose
CPT conjugate is just itself.

P> All states in SUSY are related by continuous SUSY
transformations.

> All amplitudes in maximally SUSY should be labelled by
smooth Grassmann parameters.

Let’s try to write amplitudes. We care more about massless
amplitudes, so we take Z/ = 0.

Liu Yuanche
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Supercharge Q?, and Q¢ implies 2 kinds of symmetries.
» Spinor indices « and ¢, implies Lorentz symmetry.
» SUSY indices [ and J, implies SUSY SU(N') R-symmetry.

P> An object with an (upper) lower [ index is in the (anti-)
fundamental representation of SU (N)

Thus, we use supercharge to create coherent states:

177, A, A) = @@ |15\ X)
7, A, A) = eQraw™n" | _g X X)

with (w\) = [@A] = 1, and 17, 7" two Grassmann variables.

Liu Yuanche



Coherent States
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Q@ and Q are applied to spin states:
1 ~N & N 1 I
Qral=8) =dal=s+3) , Q%+s) =A% |+s - 3)

Of course, ) and () conjugates:
Q+)=Ql-) =0

w is fixed up to a shift: wy ~ wa + cAg,thus ) ~ |7 + crAq). We
can fix this redundancy by denoting 17, = wanr1

Liu Yuanche



1 and 7 presentation
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Note that states labelled by 1 and 7 can diagnalize @ and Q:
Qra 1) = A |), Q™ |m) = X" [n)

When we use |eta), we call the amplitude is in the 7 representation,
while |77) for 7] representation. They are related via a Grassmann
Fourier Transform:

i) = / e 0y, ) = / &V e |7)

Liu Yuanche 24/56



SUSY Transformations FRBEZLLXS
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Recall the definition of coherent states, we have:

Ta T | _
@1 Iy = [+ (CA)), e ) = &™) |7

» () shifts n and rephases 7.
» (Q will do the opposite.

These SUSY transformations change Grassmann parameters only,
while A, A stay invariant.

Scattering amplitudes are smooth functions of Grassmann variables:

M({n’u >‘7,7 5‘1}) {’F]{u AE? 5‘2})

Liu Yuanche



SUSY Transformations
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Recall that little group transformations of spinor is t = A~2%,we have:

M ({tims, tidi t7 N s {65 M, e, P )
— H 2562 M ({ma, Mo, N b5 {7, A, A )

Note that t;\; = A, t;lj\i = S\i, we know:
M (i3 ) = e I W M (11 4+ (Ai€) 755 + [NaC])

Shift and rephase imply special structures of amplitude M.

Liu Yuanche 26/56
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First we consider shift. An obvious trick is that we take a certain
Grassmann variable:

M(n;) = M(n; + (Ni, €))
For instance, we take

C _ 7721)\104 - 771[)\211

&)

Surprisingly, n; — 0,72 — 0.
With this trick,we can set 2 Grassmann variables to 0.
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Then we consider rephase. Recall that in QFT, we have:
M(pi) = ¢ 2171 M (p;)

which reflects spacetime translation invariance of the amplitude, as:
=W pyM
J

Now that we have: M (n;) = €2 Xf’”M(m)

caused by @ SUSY transformations, we know all amplitudes must be
proportional to:

Liu Yuanche
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Moreover, we have to consider a hidden relation.

> Since maximally SUSY is a CPT invariant theory, our choice by
n and 7 can only reflect its PT invariance:

/HdNTZz‘eﬁm"M(m) = M (i)

We have to argue that there should be A <> . However, with a PT
reversal, (A\jA;) <> [AiA]

> We can treat the new amplitude still in 7 representation, only to
evaluate with n; — 7;
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In this section, we will see the vanishing of M T and M+ 7+,
First we take the amplitude:

JyrT— / Ay N M (s, )
use ( SUSY, we let 71 vanish:
Mt — /de oV M0, )

For Grassmann variables, [ dn(x) = ;7(*),50:

Liu Yuanche 32/56



Accidental Symmetry ¥EAZLLXE
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Then, similar tricks for M T+t

Mt = /dan cee dN??n—1dN77nM(7717 vy in—1, ﬁn)
= /de .. dNnn_ldNﬁneﬁ"(A"1+B"2)M(O, 0, s Mne1,7n)

This time we cancel 71, 72. A, B can be calculated as equation(1),
but we don’t need to write it explicitly. We just take

Na = An1 + Bng,ny = Cn1 + Do, A, B, C, D are constants
independent of 7;. Hence:

NdVn, — TV n.dV,

Just integrate over 7, and get M++++— =0
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MHV Amplitude
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For spin s, MHV amplitude is defined as:

METtT :/dN"ildNﬂ2---dNnn72dN7_]n71dNnnM(7717772a- s Mn—2,Tn—1,7n)

As showed above, we have 71, 12 vanished:

M(T]b 25+ Mn—2, ﬁn—b ﬁn) :eZ?:n71 Ti(Asmt-Binz)

XM(anvnéa"'777;1—277771—177711)
This time, we have to get 4;, B;:
(2(n —1)) 2n)
A = 2Ty Y
n—1)1 nl
5 =1y (n1)

Liu Yuanche
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Also take: 1,1 = Ay + Bing, n, = Aony + Bane with a Jacobian:

7 <<2<n 1) <n1<>1;>§2n> (0~ 1)1) )N _ <<<n<12§>n> )N

the last step depend on Schouten Identity.

» It seems that Jacobian should be 7 ~!. If you think so, please
read this article.

Thus, the integral can be written as:

—1)n
M = <<(n<12>> /d 1 dV i d g - o

/dNnn_ldNnnenn—lnn—lennnnM(O’ 07 7]37 cry 7771—27 ﬁn—h ﬁn)



https://zhuanlan.zhihu.com/p/99444159

MHV Amplitude FEAZELE G
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Integrate over #,,—1, 7, to have a partly 7 representation:

N
—— n—1)n
M = («<12>)>> /dNnn—ldNnndNng--.dNnn_g

M(O7077737 cee 777n—2a77n—1777n)

We have (or haven’t?) know that for Grassmann varibles #:

/dnlz(), /dnnzl

So, we can treat 6(n — 1) as (n — n’). Exactly, for Grassmann odd ¢:

SB (X1 + p1*02) = 6(61)5(62) (M)

Liu Yuanche
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Having used these properties to resume 71, n2,we conclude that:

N
Y <<("<I2§)”>) Mot

This is the well-known form of the Ward identities for MHV
amplitudes. It implies:

M(i—, j=) = (i) Myiv(Ni, M)

N 1
» For N = 4 SYM, Myny = [12) (23) . (nl) is the famous

Parke-Taylor amplitude.

> While for N = 8 SUGRA, M is more complicated—not
holomorphic, depending on both A;, A; as well.
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Invalid Cancellation ¥R HZELX ‘é
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» When reseaching the MHV amplitude, we set 771 2 — 0 by
equation (1).

» But for 3-point amplitudes, (12) maybe 0, so that our
cancellation is invalid.

In fact, we know in 3-point problem, either all (ij) = 0 or all [ij] = 0.

> So we can always find the non-zero term, and set it to zero.




3-point MHV amplitude

With 3-point YM and GR amplitudes, we can fix the amplitude by

SUSY: Aln) An)
N — i i
M) (M2R3BL)F  (12) (23) BL))?
Here: A(m) = 52N(Z sz')

An) = /dNWem52N(Z Ail;)

» The denominator is fixed by the required little group
transformation of the amplitude. (As Parke-Taylor amplitude)

» ¢ function part can be verified by integrating over 7;
[12]43
([12]23][31])*

> e Mt = [dNipdV M (n,m2,0) =




As for 4-point..? FRAZLLXE
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The same methods can be applied to determin the full 4-pt amplitude.
» A special case is M (11, 12,73, 74)

> Set ;2 — 0, picking up the phase factor with e7n—1* ¢/*, then
no additional phase when shifting 73 4.

Do the same calculations, with (in A/ = 8 SUGRA):

o 12) [34 4 @ @ =
M (n1,m2,M3,74) = WGXP [ (m ) (83 gﬁg <723>
Set all these to zero, as expected for Lorentz invariance,we have:

M = (12) BA)* ¢ (- + polyn.(s,1,u)

Liu Yuanche 42/56
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Special SUSY

We’ve known in normal YM or GR theory, amplitudes with certain
helicities may cause z — oo divergence.

However, in maximally SUSY theories, all amplitudes vanish at
infinite complex momentum.

» The key point is that, we stimultanously shift #:
> A = A+ 2he, Aa = Ao — 2A1 = 01— N1+ 21

When we use Q SUSY to send 7;(2), n2 — 0, our translation
parameter:

_ dom(z) —Mi(2)me _ Aamn — Aime
(1(=)2(2)) (12)

¢

» ( is manifestly z independent.

Liu Yuanche
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Therefore we have:

M({m(2), \(2), A}, {2, A2, Aa(2) }, i)
=M ({0, A\1(2), M}, {0, Ao, Aa(2), mi + (Ci)})
Mt

Thus we construct a 2 (—s) amplitude, which surely converge as 1/z°
at large z. Thus, recursion relation can be very safe.

Liu Yuanche 46/56
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We just write the SUSY Recursion realtion as :

M —Z/dNT/ML({nl(ZPi):)‘l(zPi)75\1}’77);2

XMR({n?(Zpi)v )‘2? S‘Q(ZPJ}? 77)

Careful! My, and Mg are functions of zp,. That is to say, a given
amplitude is determined by a recursion relation involving lower-point
amplitudes with different external states.

» Examples in Johannes M. Henn & Jan C. Plefka, Scattering
Amplitudes in Gauge Theory.

Liu Yuanche
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Recall that for the for the usual BCFW recursion relations in YM and
Gravity, there is a natural asymmetry between particles 1,2.

» Exactly, we always try to shift A\; and Ay to guarantee
convergency.

» Thus particle 2 should have negative helicity, while particle 1
won’t.

> But in SUSY, we’ve proved that all amplitudes converge.

So, deform Ay and s are both valid, implying a brand new relation
which cannot be directly derived by PT invariance:

_ 1 _
Z/dNnML ({m (zpp) A1 (zpp) A} mone) 53 MR ({2, 22, A2 (2P, ) } o mymm) =
L,R L

- 1 -
S [ bt ({mAn R (rg) omon) M ({2 (2) 2 (s24) Se} o 1m)
L,R R
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Since N = 8 amplitudes converge as 1/22 faster than A" = 4, we
have another surprising relation concluded from SUSY recursion:

0= ;/dSWML ({m (zp) 21 (zp), A1} ,m) ;%MR ({m2, A2, A2 (zP)} ;)

» This relation can be derived by consider M (z)’s residue.
For pure GR, a similar relation writes:

0=2> My ({p1(zp), 1}, {~P(zp),h}) %MR ({p2 (zp) s h2},{P (zp), —h})
L,h

> Still invalid in pure Yang-Mills.

Liu Yuanche
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What’s Different?

A unique technique for SUSY is called Quadruple cut, allowing us to
calculate one-loop SYM amplitudes with a linear combination of
several tree level amplitudes.

P Consider a n-point tree amplitudes with an extra soft gluon
emitted—IR divergent.

» But the 1-loop correction to origin M, (also IR divergent) can
perfectly cancel this divergence.

n

1 _
_572 (_Si,i—i-l) €Mtree

i=1

1-loop __
Mg =

Compute in terms of linear combinations of products of tree level
amplitudes!




What’s Different?

However, there EXISTs something different between N' = 4 and
N =8

In ' = 4 SYM, all relations derived from quadruple cut are familiar
recursion relations.

> Actually, the origin idea of BCF recursion was inspired by the IR
singular behavior of ' = 4 SYM

While in ' = 8 SUGRA, quadruple cut may give brand new
equations, independent of recursion relations.

Liu Yuanche
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In this article, we take a look at the SUSY amplitudes, and their
recursion relations.

» Grassmann representation of amplitudes.

» Accidental symmetry by deforming Grassmann variables to zero.
» Unique recursion relations different from BCFW.

» IR divergences and differences between SYM and SUGRA.

> ..

So, it’s time to answer the question: What is the simplest quantum
field theory?
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What is the simplest quantum field theory?

>
>
>

CPT invariance.

No explicit gauge redundancy.

Smooth helicity parameters, instead of discrete little group
indices.

Beautiful recursion relations at tree level, with good behavior at
large z.

Good IR and UV behavior at loop level, better with complete
divergence cancellation.
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Thank you for your listening!

Conclusion Liu Yuanche 56/56
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