Lecture 9 Superconductors

Superconductivity

Semiclassical theory

Berry curvature effects

Summary

Discovery of Superconductivity

H. K. Onnes, Comm. Leiden 120b, 122b, 124c (1911)

Nobel Price in Physics 1913

"for his investigations on the properties of matter at low temperatures which led, inter alia to the production of liquid helium"

Characters of Superconductivity

Meissner effect (perfect diamagnetism) equilibrium effect Persistent currents metastable effect

Microscopic theory

Cooper pair:

$$\phi(\mathbf{r}_1\sigma_1,\mathbf{r}_2\sigma_2) = (\downarrow\uparrow - \downarrow\uparrow)\phi(\mathbf{R},\mathbf{r})$$

spin-singlet $r = r_1 - r_2$ S or D wave

Energy can be lowered below 2 x fermi energy, if interaction is attractive, which can be mediated by phonons, etc.

Bardeen - Cooper - Schrieffer (1957)

http://eng.super-kics.or.kr/infos/history

 $\Psi = \left[\int_{\mu} (\mu_k + \nu_k c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger}) |vac\rangle \right]$

Bogoliubov de-Gennes theory

Interaction Hamiltonian

$$H = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \frac{1}{N} \sum_{\mathbf{k}\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$

Mean-field approximation

$$H = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \Delta_{\mathbf{k}}^{*} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \right) + \sum_{\mathbf{k}} \Delta_{\mathbf{k}} \left\langle c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} \right\rangle$$

Bogoliubov transformation

$$\begin{array}{lll} c_{\mathbf{k}\uparrow} &=& u_{\mathbf{k}}^{*}\gamma_{\mathbf{k}\uparrow} + v_{\mathbf{k}}\gamma_{-\mathbf{k}\downarrow}^{\dagger} \\ c_{-\mathbf{k}\downarrow}^{\dagger} &=& u_{\mathbf{k}}\gamma_{-\mathbf{k}\downarrow}^{\dagger} - v_{\mathbf{k}}^{*}\gamma_{\mathbf{k}\uparrow} \end{array}$$

• $\gamma_{\mathbf{k}}$ obey fermionic commutation

$$\left\{\gamma_{\mathbf{k}}^{\dagger},\gamma_{\mathbf{k}'}\right\}=1~\left\{\gamma_{\mathbf{k}}^{\dagger},\gamma_{\mathbf{k}}^{\dagger}\right\}=0$$

Diagonalization

$$H = \sum_{\mathbf{k}} E_{\mathbf{k}} (\gamma_{\mathbf{k}\uparrow}^{\dagger} \gamma_{\mathbf{k}\uparrow} + \gamma_{\mathbf{k}\downarrow}^{\dagger} \gamma_{\mathbf{k}\downarrow}) + E_{g}$$

Nanbu-Dirac picture

BCS ground state is given by filling the quasi-hole band:

$$H = \sum_{\mathbf{k}} E_{\mathbf{k}} \gamma_{\mathbf{k}\sigma}^{\dagger} \gamma_{\mathbf{k}\sigma} + E_{g} \longrightarrow \gamma_{\mathbf{k}\sigma} |\Psi\rangle = 0 \longrightarrow |\mathsf{BCS}\rangle = \mathcal{N} \prod_{\sigma \mathbf{k}} \gamma_{\sigma \mathbf{k}} |0\rangle$$

Topological and Geometrical effects

Cooper Pair condensation

Expected applications in:

- Topological superconductors
- Non-centrosymmetric superconductors
- Triplet superconductors
- Multiband superconductors

Semiclassical quasiparticle dynamics

Construct a quasiparticle wave packet

$$|\Psi_{\sigma}(\mathbf{r}_{c})\rangle = \int [d\mathbf{k}] \,\alpha(\mathbf{k},t) \gamma_{\sigma\mathbf{k};\mathbf{r}_{c}}^{\dagger} |G\rangle$$

$$\mathbf{k}_{c} \qquad \mathbf{r}_{c} \qquad \text{Center of WP in real and momentum space}$$

Semiclassical equations of motion and Berry curvatures:

$$\dot{r} = \nabla_{k}E + \dot{k} \times (\nabla_{k}\rho \times \nabla_{k}\theta) + \nabla_{k}(\rho v^{s} - B \times \tilde{d}) \cdot \dot{r} - \dot{r} \cdot \nabla_{r}(\rho \nabla_{k}\theta)$$

$$\frac{\Omega_{k}}{\Omega_{rk}}$$

$$\dot{k}$$

$$= -\nabla_{r}E + \dot{r} \times \left(e\rho B - \nabla_{r}\rho \times v^{s} + \nabla_{r} \times (B \times \tilde{d})\right) - \nabla_{r}(\rho \nabla_{k}\theta) \cdot \dot{k} + \dot{k} \cdot \nabla_{k}(\rho v^{s} - B \times \tilde{d})$$

$$\Omega_{r}$$

$$\Omega_{kr}$$

Z. Wang, L. Dong, C. Xiao and Q. Niu, PRL 126, 187001 (2021)

Momentum-space Berry Curvature

The Berry curvature in the momentum space

effective charge
$$\rho = \frac{\xi_k}{E_k}$$
 SC phase $\theta = \frac{1}{2} \arg \Delta$

- The formula is simplified by neglecting band geometry
- Effective charge changes sharply across Fermi surface

Geometry and topology

Berry curvature Ω_k concentrates around the Fermi surface

Contrast: $B_k = -\nabla_k \times \nabla_k \theta$ S. Murakami et al., PRL 90, 057002 (2003)

Example: Square lattice with d+id Pairing

Yang et al PRB 98, 104515 2018

$$\widehat{H} = \sum_{\sigma,\mathbf{k}} \xi_{\mathbf{k}} c_{\sigma\mathbf{k}}^{\dagger} c_{\sigma\mathbf{k}} + \sum_{\mathbf{k}} \left[(\Delta_{\mathbf{k}} + i\Delta_{\mathbf{k}}') c_{\uparrow\mathbf{k}}^{\dagger} c_{\downarrow-\mathbf{k}}^{\dagger} + h.c. \right]$$

Berry curvature Ω_k

Chern number C

Real-space Berry Curvature

The Berry curvature in the real space:

Dipole moment from the charge distribution of the wave packet

$$\widetilde{\boldsymbol{d}} = \frac{1}{2} (\rho^2 - 1) \nabla_{\boldsymbol{k}} \theta$$

Quasiparticle properties

Anomalous thermal Hall	$\kappa_{xy} = \frac{1}{T} \int [d\mathbf{k}] \Omega_{\mathbf{k}} \int_{E_{\mathbf{k}}}^{\infty} d\eta \eta^2 f'(\eta, T) $ <i>f</i> : Fermi distribution function
Anomalous Nernst	$\alpha_{xy}^{e} = -\int [d\mathbf{k}] \frac{\partial g}{\partial T} (\rho \Omega_{\mathbf{k}} + \partial_{k_{x}} d_{y}) \qquad g = T \ln(1 - f(\mathbf{k}, T))$
Anomalous spin Nernst	$\boldsymbol{\alpha}_{xy}^{s} = -\int \left[d\boldsymbol{k} \right] \frac{\partial g}{\partial T} (\boldsymbol{s} \Omega_{\boldsymbol{k}} + \partial_{k_{x}} \boldsymbol{d}_{y}^{s})$
Phase-space measure	$\mathcal{D}(\boldsymbol{r}, \boldsymbol{k}) = 1 + \operatorname{Tr} \boldsymbol{\Omega}_{\boldsymbol{k}\boldsymbol{r}} - \boldsymbol{\Omega}_{\boldsymbol{r}} \cdot \boldsymbol{\Omega}_{\boldsymbol{k}}$
Density of states	$n(\mathbf{r},\omega) = \int [d\mathbf{k}] \mathcal{D}(\mathbf{r},\mathbf{k})[\mu ^2 \delta(\omega - E) + \nu ^2 \delta(\omega + E)]$
Momentum space	$n(\mathbf{k}) = \iint d \omega d\mathbf{r} \mathcal{D}(\mathbf{r}, \mathbf{k}) [\mu ^2 \delta(\omega - E) + \nu ^2 \delta(\omega + E)]$

Z. Wang, L. Dong, C. Xiao and Q. Niu, PRL 126, 187001 (2021) C. Xiao and Q. Niu, PRB 104, L241411 (2021)

Example: Anomalous Thermal Hall Effect

Semiclassical energy current:

$$\mathbf{j}^{\mathrm{E}}(\mathbf{r}) = \int_{\mathbf{k}_{c}} Df(E) E\dot{\mathbf{r}}_{c}|_{\mathbf{r}_{c}=\mathbf{r}}$$

Intrinsic thermal Hall current:

$$\mathbf{j}^{\mathrm{E}} = -\nabla T \times \frac{\partial}{\partial T} \int_{\mathbf{k}} h \mathbf{\Omega}_{\mathbf{k}} \qquad \qquad h(E,T) = -\int_{E}^{\infty} d\eta f(\eta) \eta$$

Thermal Hall conductivity:

$$\kappa_{xy}^{q} = \frac{2}{T} \int [d\mathbf{k}] \,\Omega_{\mathbf{k}} \,\int_{E_{k}}^{\infty} d\eta \eta^{2} f'(\eta, T)$$

C. Xiao and Q. Niu, PRB 104, L241411 (2021)

Quantized thermal Hall conductivity

Our formula κ_{xy}^q accounts for the quasiparticles beyond the condensate, it is reasonable to make the connection of

Comparing with the previous BdG result obtained with Green function method

$$\kappa_{xy}^{BdG} = \frac{1}{T} \int [d\mathbf{k}] \,\Omega_{\mathbf{k}} \left(\int_{E_{k}}^{\infty} - \int_{-E_{k}}^{\infty} \right) \eta^{2} f'(\eta, T)$$

Sumiyoshi et al., JPSJ 82, 023602 (2013)

We can obtain the condensate result of

$$\kappa_{xy}^{0} = -\frac{1}{T} \int [d\mathbf{k}] \,\Omega_{\mathbf{k}} \,\int_{-\infty}^{\infty} d\eta \eta^{2} f'(\eta, T) = \frac{\pi C k_{B} T}{6\hbar}$$

Supercurrent

We can regard the supercurrent as the charge current carried by the filled quasi-hole band:

 $\mathbf{j} = -e \int d\mathbf{k} \left(\rho \dot{\mathbf{r}}_{c}\right)$ Doppler shift from the supercurrent velocity: $E_{\mathbf{k}} = E_{0\mathbf{k}} + \mathbf{v}_{s} \cdot \frac{\partial \xi_{\mathbf{k}}}{\partial \mathbf{k}}$

$$\dot{\mathbf{k}}_{c} = 0$$

$$\dot{\mathbf{r}}_{c} = \frac{\partial E_{0\mathbf{k}}}{\partial \mathbf{k}} + \frac{\partial}{\partial \mathbf{k}} (\mathbf{v}_{s} \cdot \frac{\partial \xi_{\mathbf{k}}}{\partial \mathbf{k}})$$

$$\mathbf{j} = e\tilde{n}_{s} \cdot \mathbf{v}_{s}$$

$$\downarrow$$

$$\mathbf{j}$$

$$\mathbf{j}$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\int d\mathbf{k} \frac{\rho \partial^{2} \xi}{\partial k_{\alpha} \partial k_{\beta}}$$

For an inhomogeneous system with $\partial E/\partial r_c \neq 0$,

Toy Models

Honeycomb lattice with d+id pairing

$$\widehat{H} = \sum_{\sigma, \mathbf{k}} \xi_{\mathbf{k}} c_{\sigma \mathbf{k}}^{\dagger} c_{\sigma \mathbf{k}} + \sum_{\mathbf{k}} [\Delta_{\mathbf{k}} c_{\uparrow \mathbf{k}}^{\dagger} c_{\downarrow - \mathbf{k}}^{\dagger} + h. c.]$$
$$\Delta(\mathbf{k}) = \sum_{i=1}^{3} \Delta_{i} \cos(\mathbf{k} \cdot \mathbf{R}_{i} - \varphi_{\mathbf{k}})$$
$$(\Delta_{1}, \Delta_{2}, \Delta_{3}) \equiv (2\Delta, -\Delta + i\sqrt{3}\Delta', -\Delta - i\sqrt{3}\Delta')$$

Jiang et al, PRB 77, 235420 (2008)

TBG tight-binding model $H = -\mu \sum_{i} \tilde{c}_{i}^{\dagger} \tilde{c}_{i} + t_{1} \sum_{\langle i,j \rangle} \tilde{c}_{i}^{\dagger} \tilde{c}_{j}$ $+ \sum_{[i,j]} \tilde{c}_{i}^{\dagger} [(t_{2}\sigma_{0} + it_{3}\sigma_{y}) \otimes \sigma_{0}] \tilde{c}_{j} + h.c.$ $\Delta(\mathbf{k}) = \sum_{i=1}^{3} \Delta_{i} \cos(\mathbf{k} \cdot \mathbf{R}_{i} - \varphi_{\mathbf{k}})$

Liu et al, PRL 121, 217001 (2018) Yuan et al., PRB 98, 045103 (2018)

Berry Curvature distribution

Summary

- Equation of motion for SC quasiparticles
- Berry curvatures in real, momentum, and phase space
- Berry curvature effects in transport properties