Lecture 2 New dynamics of Bloch electrons

Condensed matter theory
Particle view in crystals
Berry curvature in semiclassical dynamics
Anomalous Hall effect in magnets
Valley Hall effect in graphene

What is condensed matter physics?

Definitions:

- 1/3 of physics ---- according to Walter Kohn
- solid & liquid --- traditional definition
- hard & soft matter ---- according to deGennes
- structure & transport: the old PRL division
- basis of materials science and engineering
- The role of theory in this field:
 - To develop useful models for experimental systems
 - To reveal mechanisms for observed phenomena
 - To develop accurate methods to predict properties
 - To establish a systematic world view of condensed matter

Walter Kohn, Nobel prize (1999)

力学
$$\vec{F} = m\vec{a}$$

 $F = -\frac{Gm_1m_2}{\sigma^2} \qquad \nabla \cdot \vec{B} = 0$

 $\dot{\vec{p}} = -\frac{\partial H}{\partial \vec{a}}$ $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$

电动 $\nabla \cdot \vec{E} = \frac{\rho}{c}$

 $\delta \int_{t}^{t_{b}} \mathcal{L}(\vec{q}, \dot{\vec{q}}, t) \, dt = 0 \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad i\hbar \frac{\partial}{\partial t} \psi = \hat{H} \, \psi \qquad S = k_{B} \ln \Omega$

 $\dot{\vec{q}} = \frac{\partial H}{\partial \vec{p}} \qquad \nabla \times \vec{B} = \mu \vec{J} + \epsilon \mu \frac{\partial \vec{B}}{\partial t} \qquad \rho(\vec{r}, t) = |\psi(\vec{r}, t)|^2$

$$E = \hbar \omega$$

量子

 $ec{p}=\hbar ec{k}$

热统

 $dU = \delta Q + \delta W$

 $\oint \frac{\delta Q}{T} \le 0$

 $Z = \sum e^{-\beta H}$

 $[\hat{x}, \hat{p}] = i\hbar$ $f = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1}$

Crystal properties

- Structure and ordering
- Electronic bands
- Collective excitations
- Equilibrium and transport responses

Microscopic to macroscopic properties

Newtonian Dynamics (1687)

- Absolute space and time: continuous and flat
 - Gravity is just another force
 - Einstein (1916): gravity reflects space-time deformation
- Canonical phase space (1834)
 - Hamilton's equations and Liouville's theorem
 - Basis for statistical and quantum mechanics

$$\dot{\vec{q}} = rac{\partial H}{\partial \vec{p}} \quad \dot{\vec{p}} = -rac{\partial H}{\partial \vec{q}}$$

Bloch dynamics (1928)

- Real space becomes homogeneous beyond atomic scales: meta space
- Momentum space becomes a finite torus for each band
 - Band energy is periodic in k

$$\varepsilon(k+2\pi/a)=\varepsilon(k)$$

• Particle dynamics in a band

$$\dot{x} = \partial_k \varepsilon$$
,

$$\dot{k} = -eE - e\dot{x} \times B$$

Can be made canonical and quantized by the Peierles substitution (1933)

$$k \rightarrow k + eA$$
, $\epsilon \rightarrow \epsilon - e\phi$

• Provide a basic theory for metals, semiconductors, and insulators (Luttinger & Kohn 1955).

Postdoc life with Walter Kohn

• 1987-1990 UC Santa Barbara

Walter Kohn's 10 most cited papers

1 KOHN, W; SHAM, LJ. Cited: 31952

Self-consistent Equations Including Exchange and Correlation Effects

2 HOHENBERG, P; KOHN, W Cited: 26305

Inhomogeneous Electron gas

3 LUTTINGER, JM; KOHN, W. Cited: 2354 Motion of Electrons and holes in perturbed periodic Fields

4 Kohn, W; Becke, AD; Parr, RG **Cited:** 1569 Density functional theory of electronic structure

5 LANG, ND; KOHN, W Cited: 1523

Theory of Metal Surfaces-Charge Density and Surface Energy

6 KOHN, W; ROSTOKER, N Cited: 1119

Solution of the Schrodinger Equation in Periodic Lattices with an Application to Metallic Lithium

7 LANG, ND; KOHN, W Cited: 1031

Title: Theory of Metal Surfaces – Work Function

8 Kohn, W **Cited:** 1035

Nobel Lecture: Electronic structure of matter-wave functions and density functionals

9 Kohn, W Cited: 903

Shallow impurity States in Silicon and Germanium

10 KOHN, W **Cited:** 885

Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas

Topological phases of matter

Quantum Hall effects

von Klitzing 1980

Q.K. Xue 2013

Topological insulators and superconductors

David Thouless 2016 Nobel prize

Semiclassical Equations of Motion

Magnetic field in momentum space

Berry curvature in k space

magnetic Bloch bands

Ferromagnetic bcc Fe

Yao et al, PRL (2004)

Anomalous Hall effect

velocity

$$\dot{\mathbf{x}} = \frac{\partial \mathcal{E}}{\partial \mathbf{k}} + e \mathbf{E} \times \mathbf{\Omega},$$

distribution

$$g(\mathbf{k}) = f(\mathbf{k}) + \delta f(\mathbf{k})$$

• current

$$-e^2 \mathbf{E} \times \int d^3 \mathbf{k} \ \mathbf{f}(\mathbf{k}) \mathbf{\Omega} - e \int d^3 \mathbf{k} \ \delta \mathbf{f}(\mathbf{k}) \frac{\partial \mathcal{E}}{\partial \mathbf{k}}$$

Remarks

- For band insulators, we have the Chern number.
- In metals, the Berry curvature gives an intrinsic contribution: Karplus-Luttinger (1954)
- There are also extrinsic contributions
 - Smit: Skew Scattering (1955)
 - Berger: side jump (1970)
- Theoretical understanding of AHE was dominated by the extrinsic mechanisms until 2002.

Intrinsic AHE in ferromagnets

- Semiconductors, Mn_xGa_{1-x}As
 - Jungwirth, Niu, MacDonald, PRL (2002), J Shi's group (2008)
- Oxides, SrRuO₃
 - Fang et al, Science, (2003).
- Transition metals, Fe
 - Yao et al, PRL (2004), Wang et al, PRB (2006), X.F. Jin's group (2008)
- Spinel, CuCr₂Se_{4-x}Br_x
 - Lee et al, Science, (2004)
- First-Principle Calculations-Review
 - Gradhand et al (2012)

Anomalous Hall Effect in Metal

Mn5Ge3: Zeng, Yao, Niu & Weitering, PRL 2006

Berry curvature from inversion symmetry breaking

- Honeycomb lattice with sublattice bias
- Energy bands

$$\varepsilon(q) = \pm \sqrt{\Delta^2 + 3t^2q^2/4}$$

• Berry curvature

$$\Omega(\mathbf{q}) = \pm \tau_z \frac{3a^2 \Delta t^2}{2(\Delta^2 + 3a^2 a^2 t^2)^{3/2}}$$

• Xiao, Yao, Niu (2007)

Valley Hall Effect

Observed 2014-2015:
MoS2 (Mak et al)
Graphene on hBN (Gorbachev et al)
Graphene bi-layer (Sui et al)

Summary

Our world view of solid state has been greatly shaped by quantum mechanics:

Old particle view fails on the atomic scale

Energy momentum structure is modified into Bloch bands in crystals

New particle view re-emerges in Bloch bands beyond atomic scales

Berry curvature effects further modifies the dynamics

with dramatic effects including topological effects