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Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics
in magnetic Bloch bands
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We have derived a set of semiclassical equations for electrons in magnetic Bloch bands. The velocity and
energy of magnetic Bloch electrons are found to be modified by the Berry phase and magnetization. This
semiclassical approach is used to study general electron transport in a dc or ac electric field. We also find a
close connection between the cyclotron orbits in magnetic Bloch bands and the energy subbands in the
Hofstadter spectrum. Based on this formalism, the pattern of band splitting, the distribution of Hall conduc-
tivities, and the positions of energy subbands in the Hofstadter spectrum can be understood in a simple and
unified picture.

I. INTRODUCTION

The semiclassical method has played a very important
role in studying electron dynamics in periodic systems.1 In
this approach, the effect of a periodic potential is treated by
quantum-mechanical methods and yields usual band struc-
ture for energy spectrum, while an extra electromagnetic
field is treated as a classical perturbation. The velocity of an
electron in the one-band approximation is given by

ṙ5
]En~k!

\]k
, ~1.1!

whereEn is the energy spectrum for thenth band. The dy-
namics of quasimomentumk is governed by the Lorentz-
force formula

\ k̇52eE2eṙ3B, ~1.2!

whereE andB are the external electric and magnetic fields.
These equations may be regarded as the equations of motion
for the center of mass of a wave packet in ther andk spaces.
A tremendous amount of work has been done to justify these
simple looking formulas and their quantization.2

These formulas, however, become invalid if the magnetic
field is so strong that it is no longer appropriate to be treated
as a perturbation. In this case, we need to solve the Schro¨-
dinger equation with the following Hamiltonian:

H05
1

2m S 2 i\
]

]r
1eA0~r ! D 21V~r !, ~1.3!

whereA0(r ) is the vector potential of a homogeneous mag-
netic field,3 andV(r ) is a periodic potential. The eigenener-
gies of Eq.~1.3! will be called magnetic Bloch bands, and its
energy eigenstates, magnetic Bloch states. A crucial differ-
ence between a Bloch state and a magnetic Bloch state lies in
their translational properties. The HamiltonianH0 is not in-
variant under lattice translation becauseA0(r ) cannot be a

periodic function if the mean value ofB is not zero. How-
ever,H0 can be made invariant under ‘‘magnetic’’ translation
operators, which are the usual translation operators multi-
plied by a position-dependent phase factor.4

We first give a brief review of the magnetic translation
symmetry. In order to simplify the discussion, we assume the
motion of electrons is confined in a plane@r5(x,y)# and the
magnetic field is along thez direction. A magnetic Bloch
state is the state that satisfies

H0Cnk~r !5En~k!Cnk~r !, ~1.4!

as well as

T̃1~R1!Cnk~r !5eik1R1Cnk~r !,

T̃2~R2!Cnk~r !5eik2R2Cnk~r !, ~1.5!

where T̃1 and T̃2 are magnetic translation operators. Al-
though T̃1 and T̃2 commute with the Hamiltonian by con-
struction, they do not commute with each other unless there
is an integer number of flux quantumf0 enclosed by
uR13R2u. Therefore, when the magnetic flux is a rational
multiple p/q of the flux quantumf0 per unit cell of the
lattice ~plaquette!, we must choose a ‘‘magnetic’’ unit cell
containingq plaquettes in order that bothk1 andk2 be good
quantum numbers.Cnk thus defined forms a complete set
and satisfies the orthogonality condition

^Cn8k8uCnk&5dn8ndk8k . ~1.6!

The domain ofk is a magnetic Brillouin zone~MBZ!, which
is q times smaller than a usual Brillouin zone. Furthermore,
because of the magnetic translation symmetry, the MBZ has
exactly aq-fold degeneracy. We will call each repetition unit
a ‘‘reduced’’ MBZ.

One example of magnetic Bloch bands is the subbands
split from Bloch bands due to a magnetic field. The number
of subbands into which a band splits depends on the mag-
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netic flux per plaquette in an intricate way.5 If f5p/q ~in
units of f0), a Bloch band will split intoq magnetic sub-
bands. On the other hand, if the magnetic field is very strong,
it is more appropriate to treat the lattice potential as a per-
turbation, then a Landau level will be broadened and split
into p subbands.

For a usual solid with a lattice constanta55 Å, the mag-
netic field has to be as large as 104 T in order forp/q to be
of order unity. This is the reason the splitting was once con-
sidered impossible to observe. However, the field strength
can be greatly reduced to a few tesla if we use an artificial
lattice with a much larger~say, 500 Å! lattice constant. Evi-
dence for such splitting has appeared in recent transport
measurements.6 It is expected that more evidence will
emerge in the future by using a very pure sample in a very
low temperature environment. Under such circumstances,
what is the dynamics for electrons in such magnetic Bloch
bands?

Using the magnetic Bloch states as an unperturbed basis,
we found the following semiclassical dynamics in magnetic
Bloch bands:7

ṙ5
]En~k!

\]k
2 k̇3Vn~k! ~1.7!

and

\ k̇52eE2eṙ3dB, ~1.8!

whereEn(k) consists of a band energyEn(k) and a correc-
tion from the magnetic moment of the wave packet~this
correction did not appear in Ref. 7!. Vn(k) is the ‘‘Berry
curvature,’’ whose integral over an area bounded by a path

C in k space is the Berry phaseGn(C).
8 E and dB are

external fields added to the already presentB0 field. These
equations will be derived and explained in detail in Sec. II.

Despite the similarities between Eqs.~1.1!, ~1.2! and Eqs.
~1.7!, ~1.8!, there are several essential differences. See Table
I for a comparison between this semiclassical dynamics and
the conventional one. The last item in Table I, about the
quantization of orbits, will be explained in Sec. IV. We have
to emphasize that thedB in Eq. ~1.8! is the field applied to
the magnetic Bloch states; it is not the total magnetic field
applied to the sample. This separation is particularly useful
whenB(x,y) is composed of a large constant partB0 and a
small nonuniform partdB(x,y). In this case, we can calcu-
late the effect ofB0 exactly and treatdB(x,y) as a classical
perturbation.

This paper is organized as follows. Section II is devoted
to the derivation of Eqs.~1.7! and ~1.8!. Their use in calcu-
lating transport properties in a dc or ac electric field is dem-
onstrated in Sec. III. The presence ofdB will lead to forma-
tion of cyclotron orbits in magnetic Bloch bands, similar to
the formation of cyclotron orbits in usual Bloch bands. This
is explained in Sec. IV. In Sec. V, we explore the connection
between these cyclotron orbits and the Hofstadter spectrum.
In Sec. VI, we estimate the energy levels in the Hofstadter
spectrum by calculating the cyclotron energies in magnetic
Bloch bands. Finally, this paper is summarized in Sec. VII.

II. DERIVATION OF THE SEMICLASSICAL DYNAMICS

The method we use is to construct a wave packet out of
Cnk ~hence it has already included the effect ofB0), and
study its motion governed by the following Hamiltonian:

TABLE I. Comparison between properties of the usual and magnetic Bloch bands.

Bloch band Magnetic Bloch band@(p/q)f0 per plaquette#

Unperturbed Hamiltonian
H05

1

2mS2i\
]

]r D
2

1V~r ! H05
1

2m F2 i\
]

]r
1eA0~r !G21V~r !

Translation operators T(R)5eR•]/]r T̃(R)5eie/\*0
Rdr8•A0(r1r8)eR•]/]r

Number of plaquettes 1 plaquette q plaquettes
per unit cell

Range ofk vector One Brillouin zone One magnetic Brillouin zone
~one Brillouin zone divided byq)

Perturbing fields E,B E,dB

Velocity of electron ṙ5]En(k)/\]k ṙ5]En(k)/\]k2 k̇3Vn(k),
En(k)5En

mag(k)1(e/2m)dB•Ln(k)

Dynamics fork \ k̇52eE2eṙ3B \ k̇52eE2eṙ3dB

Quantization condition
for cyclotron orbits

Area(Cm)52p(m1
1
2)eB/\

Area~Cm!52pSm1
1
22

G~Cm!

2p DedB/\
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H5
1

2m F2 i\
]

]r
1eA0~r !1edA~r ,t !G21V~r !, ~2.1!

where2]dA/]t5E, and ¹3dA5dB. For simplicity we
assume bothE and dB are uniform; the derivation is still
valid if they are slowly varying in space and/or time.

A. Wave packet in a magnetic Bloch band

Our derivation will be confined to one energy band by
neglecting interband transitions; therefore, the band indexn
is henceforth dropped. Consider the following wave packet
centered atr c which is formed from the superposition of
magnetic Bloch states,

uW0&5E
MBZ

d2k w~k!uC~k!&, ~2.2!

wherew(k) is a function localized aroundkc ~see Fig. 1 for
an illustration!. It has to be chosen such that

E d2k k uw~k!u25kc , ~2.3!

and

^W0ur uW0&5r c . ~2.4!

By defining uk(r )5e2 ik•rCk(r ), the mean position ofW0

can be written as

^W0ur uW0&5E d2k8E d2k w* ~k8!w~k!K C~k8!US 2 i
]

]k
eik•r D Uu~k!L

5E d2k8E d2k w* ~k8!w~k!F S 2 i
]

]kD d~k2k8!1d~k2k8!K u~k!U i ]

]kUu~k!L
cell

G
5E d2kFw* ~k!i

]

]k
w~k!1uw~k!u2K u~k!U i ]

]kUu~k!L
cell

G , ~2.5!

where we have used the identity9

K u~k8!Uei ~k2k8!•r i
]

]kUu~k!L
5d~k2k8!K u~k!U i ]

]kUu~k!L
cell

. ~2.6!

The subscript means that the spatial integration is restricted
to a magnetic unit cell. By defining

A~k!5 i K u~k!U ]

]kUu~k!L
cell

, ~2.7!

Eq. ~2.4! can be written as

E d2kFw* ~k!i
]

]k
w~k!1uw~k!u2A~k!G5r c . ~2.8!

B. Effective Lagrangian for a moving wave packet

The dynamics of a moving wave packet is governed by
the following effective Lagrangian

L~r c ,kc , ṙ c,k̇c!5 KWU i\ ]

]tUWL 2^WuHuW&, ~2.9!

whereW is a wave packet centered atr c andkc in the pres-
ence of external electromagnetic fields (kc is treated as a
generalized coordinate here!. We can always choose a gauge
such that the vector potentialdA is locally gauged away at a
chosen pointr5r c . At this particular point, the moving
wave packetW is the same as theW0 in Eq. ~2.2!.10 The
value ofW nearr c can be approximated as

W~r !5e2 ie/\dA~rc ,t !•rW0~r !. ~2.10!

First, we evaluate the energy of this wave packet, which is
^WuHuW&5^W0uH8uW0&, with

H85
1

2m H 2 i\
]

]r
1eA0~r !1e@dA~r ,t !2dA~r c ,t !#J 2

1V~r !

.H01
e

2m
$@dA~r ,t !2dA~r c ,t !#•P1H.c.%. ~2.11!

FIG. 1. Schematic plots for the motion of wave packets inr and
k space.
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P is the mechanical momentum operator corresponding to
H0 . For simplicity, we choose the circular gauge fordB,
which givesdA(r ,t)52Et1 1

2dB3r , and leads to

H8.H01
e

2m
dB•L , ~2.12!

whereL5(r2r c)3P is the mechanical angular momentum
of the wave packet about its center of mass. Therefore,

^WuHuW&.E~kc!1
e

2m
dB•^W0uL uW0&. ~2.13!

The second term represents the energy correction due to
magnetic moment of the wave packet. Notice that while a
wave packet in an ordinary Bloch band does not rotate, a
wave packet in a magnetic Bloch band usually does.

For the first term on the right hand side of Eq.~2.9!, we
have

KW0U i\ ]

]tUW0L 5^W0uedȦ~r c ,t !•r uW0&

1E d2k w* ~k!i\
]

]t
w~k!

5edȦ~r c ,t !•r c1E d2kuw~k!u2\
]

]t
g~k,t !

.edȦ~r c ,t !•r c1\
]

]t
g~kc ,t !, ~2.14!

wherew(k)[uw(k)ue2 ig(k,t). Up to terms of total time de-
rivative, which have no effect on the dynamics, the last line
can be written as

2edA• ṙ c2\ k̇c•
]

]kc
g~kc ,t !. ~2.15!

Using the condition in Eq.~2.8! and neglecting another term
of total time derivative, we can write Eq.~2.15! as

2edA• ṙ c1\kc• ṙ c1\ k̇c•A~kc!. ~2.16!

Combining Eqs.~2.13! and ~2.16!, we have a final form
for the effective Lagrangian~omitting subscriptc)

L~r ,k, ṙ ,k̇!52edA~r ,t !• ṙ1\k• ṙ1\A~k!• k̇2E~k!,
~2.17!

whereE(k)[E(k)1(e/2m)dB•L (k). Under a gauge trans-
formation for A0(r ), the Berry potentialA(k) will be
changed by a term like]kx(k), and this will only change
L by a total time derivative. This is also true if a different
gauge is chosen fordB. Therefore, the dynamics is invariant
under gauge transformation.

The dynamical equations in Eqs.~1.7! and ~1.8! can be
obtained straightforwardly from this Lagrangian by using the
Euler-Lagrange equation. The relation betweenV(k) and
A(k) is

V~k!5¹3A~k!, ~2.18!

which can also be written as (z-component!

V~k!5 i S K ]un
]k1

U]un]k2
L 2 K ]un

]k2
U]un]k1

L D . ~2.19!

This is the familiar Berry curvature in the study of the quan-
tum Hall effect.11

III. TRANSPORT IN MAGNETIC BLOCH BANDS

A. Transport by an electric field

The next step is to combine the semiclassical equations
with the Boltzmann equation to study the transport properties
of magnetic Bloch electrons. The Boltzmann equation is

ṙ•
] f

]r
1 k̇•

] f

]k
5S ] f

]t D
coll

, ~3.1!

where f5 f (r ,k) is a distribution function. The effect of im-
purities is included in the collision term (] f /]t)coll . We use
the relaxation time approximation to replace it by
2( f2 f 0)/t(k). For a random distribution ofd impurities
v0( id(r2r i), the impurity scattering rate is

t~EF!215
p

\
r~EF!niv0

2 , ~3.2!

whereni is the area density of impurities. This rate is pro-
portional to the density of statesr(EF) at Fermi energy,
which varies wildly withEF because the energy spectrum is
discrete. However, since the following calculation is con-
fined to only one band,t will be approximated by a constant.

The equations of motion of an electron subject to a uni-
form electric field are

ṙ5
]E~k!

\]k
1
e

\
E3V~k!, k̇52eE, ~3.3!

whereE(k) is the reduced form ofE(k) in the absence of
dB. Substituting the expressions forṙ andk̇ in Eq. ~3.3! into
Eq. ~3.1!, and settingf5 f 0 on the left hand side of Eq.~3.1!,
we obtain

f5 f 02tS ]E

\]k
•

] f 0
]r

1
e

\
~E3V!•

] f 0
]r

2
e

\
E•

] f 0
]k D ,

~3.4!

where f 0 is the distribution function in equilibrium. Electric
current is given by

J52eE d2k

~2p!2
f ṙ . ~3.5!

It can be decomposed into three parts,JV1Jt1Jm, with the
following definitions:

JV52E3
e2

\ E d2k

~2p!2
f 0V~k!,

Jt5e2tE d2k

~2p!2 S 2
] f 0
]E D vb~vb•E!,

Jm5etE d2k

~2p!2 S 2
] f 0
]E D vS v• ]m

]r D . ~3.6!
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In these expressions,vb is the velocity]E /\]k due to energy
dispersion, andv is the total velocity in Eq.~3.3!. The mean-
ing of these currents is explained below.

First, JV is the Hall current. This is most evident consid-
ering a filled band withf 051. In this case, bothJt andJm

vanish, and onlyJV is nonzero. The integral ofV(k) over
one magnetic Brillouin zone divided by 2p is always an
integer, which is the topological Chern number discovered
by Thoulesset al.11 Therefore we have

JV52C
e2

h
E3 ẑ ~CPZ!. ~3.7!

This formula represents the quantization of Hall current for a
magnetic Bloch band.

Second,Jt is the diffusion current due to disorder scatter-
ings. It can be put in the following form:

Jt5e2E d2k

~2p!2 S 2
] f 0
]E D E

0

`

dt vb~ t !vb~0!•E, ~3.8!

wherevb(t)[e2t/tvb(0) is the current relaxed by scatterings
after timet. At very low temperature, it can be simplified to

Jt5e2g~EF!D•E, ~3.9!

where g(EF) is the density of states at Fermi energy.
D[*0

` dt^vb(t)vb(0)& is the diffusion tensor, and the angu-
lar bracket̂ & means averaging over the Fermi surface.12

Third, Jm is the current due to density gradient. It can be
put in a form similar toJt in Eq. ~3.9! at low temperature,
but with two changes.~1! The velocityvb in D is replaced by
the total velocityv that includes the curvature term.~2! The
driving forceeE is replaced by]m/]r . To evaluate this cur-
rent, we need to know the explicit form ofV(k). This in
general requires numerical calculation~see Sec. VI!.

We remark that, even though the derivation of Eq.~3.8! is
based on a uniform electric field, its validity goes beyond
that. It is actually a kinetic formulation, first proposed by
Chambers, that is also valid in the presence of a magnetic
field ~for magnetic Bloch bands, the magnetic field is
dB).13

B. Perturbation by an ac electric field

The semiclassical method is much simpler to use than full
quantum-mechanical approaches. This is most evident when
the perturbation is changing in time. We illustrate this by
considering a magnetic Bloch electron in an ac electric field.
To simplify the discussion, we will neglect the effect of dis-
order and focus on the dynamics itself.

Assuming that a uniform electric field along thex direc-
tion oscillates with a low frequencyv, we then have

ṙ5
]E~k!

\]k
2
e

\
E0e

ivtV~k!ŷ, \ k̇52eE0e
ivtx̂. ~3.10!

Considering a square lattice with the following energy spec-
trum:

E~k!52@cos~k1a!1cos~k2a!#, ~3.11!

and substituting the solutionk(t) into the ṙ equation in
~3.10!, we have

\ ẋ52a sinS eE0a\v
sin~vt !2k0xaD

\ ẏ522a sin~k0ya!2
eE0
\

V„k~ t !…cos~vt !, ~3.12!

where (k0x ,k0y) is the initial value ofk. It is not difficult to
see that after many cycles of oscillation, there is a net drift
along thex direction with average velocity

^ẋ&52
2a

\
sin~k0xa!J0~z!, ~3.13!

where J0 is the zeroth order Bessel function, and
z[eE0a/\v is a ratio between two energy scales.15 It can be
seen that the original band transport velocity
22a/\ sin(k0xa) is modified by J0(z) because of the ac
field. The electron is immobile along thex direction when
z is a zero of the Bessel function. This resembles the collapse
of the usual Bloch band in the ac Wannier-Stark ladder
problem.16

C. How to divide B into B0 and dB

Finally, we comment that the use of semiclassical equa-
tions is based on the assumption that impurities do not alter
the band structure. Therefore, the electron dynamics between
collisions can be nicely described by Eqs.~1.7! and ~1.8!.
This assumption is no longer valid whenq is large. In that
case, disorder broadening tends to merge the subbands and
wash out the fine structure.~This will be clearer after the
discussion of hierarchical structure of the energy bands in
Sec. V.! However, it was found that despite the energy spec-
trum having singularB dependence, the density of states
appears as a continuous function of the magnetic field.14

Therefore, we divide total magnetic fieldB into B0 and
dB, whereB0 is related to the band structure undestroyed by
disorder, anddB is a small perturbation. In this case, the
semiclassical dynamics in the magnetic Bloch band ofB0 ,
driven by E and dB, will be employed in the Boltzmann
equation.

IV. MAGNETIC PERTURBATION AND HYPERORBITS

The usual Bloch electron will circulate around the Fermi
surface along a constant energy contour in the presence of a
magnetic field. It is well known that the quantization of cy-
clotron orbits leads to the famous de Haas–van Alphen ef-
fect. In this section, we study a similar type of cyclotron
motion in magnetic Bloch bands. It will be seen that this
investigation yields very fruitful results. In particular, it of-
fers a very simple explanation for the complex Hofstadter
spectrum, which will be shown in Sec. V and Sec. VI.

A. General properties of hyperorbits

Combining the two equations in~3.3!, we can eliminate
ṙ to obtain

\ k̇52eZdB~k!
]E~k!

\]k
3dB, ~4.1!
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whereZdB(k)[@11V(k)dBe/\#21 is a curvature correc-
tion factor. This equation determines the trajectories of mag-
netic Bloch electrons ink space. It is not difficult to see that
k moves along a constant energy contour ofE(k) @which is
slightly different fromE(k)#. In a classical picture, it is the
drifting-center trajectory of the tighter cyclotron orbit formed
from B0 . However, we have to emphasize that the existence
of hyperorbits is of quantum origin and cannot be explained
classically. To differentiate them from the usual orbits of
Bloch electrons, we will call them ‘‘hyperorbits.’’17 The hy-
perorbit in real space is derived fromṙ5 k̇3 ẑ(\/edB),
which is thek orbit rotated byp/2 and scaled by the factor
\/edB. It is also possible to define an effective cyclotron
mass according to its frequency. However, this frequency
will be very sensitive to its energy if the magnetic Bloch
band is narrow, which is usually the case.

There are several ways to verify the existence of hyperor-
bits. One way is through the measurement of magnetoresis-
tance oscillation that originates from the quantization of hy-
perorbits. This oscillation has a much shorter period than the
usual de Haas–van Alphen oscillation because the effective
magnetic fielddB is much smaller. The other way of verify-
ing it is by using an electron focusing device to detect its
real-space orbit.18 This method has been used to map out the
shape of a Fermi surface by measuring the shape of cyclotron
orbits.19 Another possible approach is to observe the ultra-
sonic absorption spectrum of the sample. The energy of an
ultrasonic wave will be absorbed when it is in resonance
with the hyperorbits. Similar method has been used to detect
the existence of composite fermions in half-filled quantum
Hall systems.20

B. Quantization of hyperorbits

In a previous paper, we have derived the quantization con-
dition using Lagrangian formulation combined with the path-
integral method.7 Here, it will be rederived using a slightly
different approach. Substitutingṙ5 k̇3 ẑ(\/edB) into the
Lagrangian in Eq.~2.17!, we will obtain an effective La-
grangian for the quasimomentumk,

L~k,k̇!5
\2

2edB
~k1k̇22k2k̇1!1\ A• k̇2E~k!. ~4.2!

It can be easily shown that Eq.~4.1! does follow from this
L. The generalized momentum for coordinatek is equal to

p5
]L

] k̇
52

\2

2edB
k3 ẑ1\A~k!. ~4.3!

~This leads to the following effective Hamiltonian:

H~k,p![p• k̇2L~k,k̇!5E~k!. ~4.4!

Notice that becauseH does not depend onp, the coordinate
k will be a constant of motion and the dynamics is trivial. A
Hamiltonian that gives correct dynamics will be given in
Appendix A. Since it is not central to our derivation, we will
not discuss it here.!

The quantization of hyperorbits is given by
rp•dk5(m1g)h, wherem is a non-negative integer and
g will be taken to be 1/2. It leads to area quantization ink
space,

1
2 R

Cm

~k3dk!• ẑ52pSm1
1

2
2

G~Cm!

2p D edB

\
, ~4.5!

where

G~Cm!5 R
Cm

A•dk ~4.6!

is the Berry phase for orbitCm . The orientation ofCm is
chosen such that the sign of the area on the left hand side of
Eq. ~4.5! equals the sign ofdB.

The total number of hyperorbits in a MBZ is determined
by requiring the area of the outermost orbit be smaller than
the area of a MBZ. Assume the flux before perturbation is
B0a

25p/q, then the number of hyperorbits in a MBZ is
equal tou1/(qdf)1su,7 wheredf[dBa2e/h, ands is the
Hall conductivity of the parent band. These hyperorbits are
the lowest order approximation to the split energy subbands.
They will be broadened by tunnelings between degenerate
orbits. Since the MBZ isq-fold degenerate, the above num-
ber has to be divided byq to get the actual number of daugh-
ter bands,

D5
u1/~qdf!1su

q
. ~4.7!

This formula is essential for understanding the splitting pat-
tern of the Hofstadter spectrum.

The Hall conductivity for a subband can be calculated in
the following way: In the presence of bothE and dB, the
velocity of a magnetic Bloch electron consists of two parts,1

ṙ5
\

edB
k̇3 ẑ1

E3 ẑ

dB
. ~4.8!

The first term is the velocity of revolution, and the second
term is the velocity of drifting alongE3B direction. The
current density for a filled subband is

J52E d2k

~2p!2
\

dB
k̇3 ẑ2eE d2k

~2p!2
E3 ẑ

dB
. ~4.9!

The first integral is zero for a closed orbit. Therefore, the
Hall conductivity is obtained from the drifting term, which
leads tosyx( or simplys)5re/dB, wherer is the electron
density per unit area. This will be used in the next section to
determine the Hall conductivities for subbands in the Hofs-
tadter spectrum.

V. THE HOFSTADTER SPECTRUM

A. Hierarchical structure of the spectrum

The discussion in the preceding section presumes that we
know dB. But this is not apparent if the magnetic fieldB is
homogeneous. In this case, we can still divide it into two
parts, but where is the dividing point betweenB0 anddB? A
natural way of dividingB ~or f) is to write it as a continued
fraction,
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f5
1

f 11
1

f 21
1

f 31•••

, ~5.1!

and truncate it according to the accuracy we need. Ther th
order approximation off will be written aspr /qr .

21 For
example, if f51/(21A2), we will have p1 /q151/3,
p2 /q252/7,p3 /q355/17, . . . , etc., which are truncations of

1

21A2
5

1

31
1

21
1

21•••

. ~5.2!

Theqr ’s satisfy the following recursion relation:

qr115 f r11qr1qr21 , ~5.3!

which relates the number of subbands at neighboring orders.
There is also a relation betweenp’s andq’s,

pr11qr2prqr115~21!r . ~5.4!

It follows that the extra magnetic flux between ther th order
and the (r11)th order truncation is

df r5
pr11

qr11
2
pr
qr

5
~21!r

qr11qr
. ~5.5!

Since the sign ofdf r alternates from one order to the next,
the direction ofdB also alternates.22

Notice that for a chosen fractionpr /qr , the size of a
MBZ is fixed. Without perturbation from the part that is trun-
cated away, a wave packet will move on a straight line. The
trajectory is curved because ofdf r . The higher the order of
approximation we use, the smaller thedf gets and the larger
the radius of the hyperorbit becomes. In the ideal case, with-
out any complications due to disorder, thermal broadening,

etc., we expect there will be a hierarchical structure of hy-
perorbits due to different orders of approximation. This
structure finds its correspondence in the hierarchical struc-
ture of the Hofstadter spectrum23 ~Fig. 2!.

B. Distribution of Hall conductivities and splitting
of energy bands

A magnetic Bloch band carries quantized Hall current,
and this current will redistribute among daughter bands in
such a way that the total Hall current for subbands equals the
original current.24 We will call this the ‘‘sum rule.’’ The cur-
rent distribution among subbands, which is also quantized in
each subband, was obtained by Thoulesset al.11 In their fa-
mous paper, they found that the subband Hall conductivities
are the integer-valued solutions of the Diophantine equation.
Here we show that semiclassical dynamics offers an alterna-
tive and very heuristic solution to this problem. The Hall
conductivities calculated will be used in Eq.~4.7! to calcu-
late the number of magnetic subbands after splitting.

The general expression for the Hall conductivity of a
‘‘closed’’ subband iss5re/dB @see Eq.~4.9! and below#.
Therefore,s can be determined ifr and dB are known.
Consider a subband at ther th order of splitting. Since all
subbands at this level share the same number of states, each
subband will haver r5r0 /qr , wherer0 is the density of
states for the original Bloch band. The perturbation field for
a subband at this level isdBr5hdf r21 /(ea

2). Therefore,
we have

s r
close5

er r
dBr

5~21!r21qr21 ~ in units of e2/h!.

~5.6!

~Sinces151 for a closed subband at the first level,q0 will
be set to 1.! We have to emphasize that Eq.~5.6! is valid for
every closed subbandsat ther th order. Combining Eq.~4.7!
with ~5.6!, we can determine the number of daughter bands
being split from anr th order parent band, which is

FIG. 2. Hofstadter spectrum for a square lat-
tice generated from a tight-binding model
(q<60). Only thef<1/2 part is shown since the
spectrum is symmetric with respect tof51/2.
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D r
close5

u~21!rqr111s r
closeu

qr
5 f r11 . ~5.7!

The Hall conductivity for an open subband is more diffi-
cult to obtain. It requires the knowledge of the exactk tra-
jectory to figure out the first integral in Eq.~4.9!. However,
for a square or a triangular lattice, there is an easier way of
calculating it. This is so because there is only one open orbit
in every MBZ for either lattice~see Fig. 3!. Therefore, there
is only one open daughter band for every parent band. Its
Hall conductivity can be figured out by using the ‘‘sum
rule’’:

sparent5( sdaughter. ~5.8!

For example, at the first order, we have
s1
open5s02( f 121)s1

close52( f 121), wheres050 since it
is a Bloch band at the very beginning. Forr>2, the Hall
conductivity of an open daughter band at ther th order is

s r
open5s r21

close2~ f r21!s r
close

5~21!r22qr222~ f r21!~21!r21qr21

5~21!r21qr211~21!rqr , ~5.9!

where we have assumed that its parent is a ‘‘closed’’ band.
Using Eq.~4.7!, we see that this open band~now as a parent!
will split into

D r
open5 f r1111 ~5.10!

subbands under perturbation. It can be shown that the same
result as Eq.~5.9! is obtained if its parent is an ‘‘open’’ band
~with f r11 daughters!. This checks the consistency of this
calculation. It is clear that the extra splitting of one subband
from each open parent band~there areqr21 of them! ac-
counts for the extraqr21 in the recursion relation Eq.~5.3!

We give one example to demonstrate the use of these
rules. Consider a square lattice withf51/(21A2). Because
s1
close51, ands1

open522, the distribution ofs ’s for the three
subbands at the first order is

s 15~1,22,1!, ~5.11!

where we have puts1
open in the middle since for a square

lattice the open subband is located at the center of a parent
band~Fig. 3!.

These three bands will be split into seven subbands due to
the extra fluxdf15p2 /q22p1 /q152/721/3. Sincef 252,
the pattern of splitting will be, according to Eqs.~5.7! and
~5.10!,

D 15~2,3,2!. ~5.12!

Furthermore, sinces2
close523 and s2

open54 according to
Eqs.~5.6! and ~5.9!, the Hall conductivity distribution is25

s 25~23,4,23,4,23,4,23!. ~5.13!

Consequently, we have

D 25~2,3,2,3,2,3,2!. ~5.14!

The Hall conductivities we just obtained are the same as
those derived from the Diophantine equation. Actual pattern
of splitting is shown in Fig. 4 for comparison. The distribu-
tion in Fig. 4 for the left~or right! five subbands in Eq.~5.14!
appears to be (2,1,2), instead of (2,3)@or (3,2)#. However,
closer examination reveals that the left~right! three subbands
actually come from the same parent. In fact, slight asymme-
try in the distribution is inevitable because whenf is
changed by a small amount, an electron state cannot sud-
denly jump out of the band edge to the middle of a gap.

Equations~5.6!–~5.10! also apply to a triangular lattice.
The only difference is thatsopen no longer locates at the
center of a parent band. Given the samef51/(21A2), we
now have

s 15~1,1,22!,

D 15~2,2,3!,

s 25~4,23,23,4,4,23,23!,

D 25~3,2,2,3,3,2,2!. ~5.15!

This again conforms with the actual spectrum and the solu-
tions of the Diophantine equation with subsidiary constraints
suitable for a triangular lattice.26

VI. CALCULATIONS OF ENERGY SPECTRUM,
CURVATURE, MAGNETIC MOMENT,

AND CYCLOTRON ENERGY

In this section, we give detailed calculations ofEn(k),
Vn(k), andLn(k). They are used in calculating the cyclo-
tron energies using the quantization formula Eq.~4.5!. The
cyclotron energies will be used to estimate the subband en-
ergies in the Hofstadter spectrum. In doing so, we not only
presume the one-band approximation~on which Fig. 2 is

FIG. 3. Schematic plots of the constant energy contours in the
reduced MBZ of a square lattice and a triangular lattice. Dashed
lines are the open orbits. FIG. 4. Pattern of energy splitting forf in Eq. ~5.2!. Different

orders of approximation give 3, 7, and 17 subbands, respectively.
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based!, but also neglect the interorbit transitions that broaden
~and may slightly shift! the energy levels. The latter approxi-
mation leads to negligible error if the bandwidths under con-
sideration are very small. Similar calculations have been
done by Wilkinson, and his results have been very
successful.27 However, we believe that the approach pro-
posed here is conceptually simpler, and is easier to general-
ize to other types of lattices.28

A. Calculation of energy spectrum for parent bands

The following calculation is based on the tight-binding
model. We will only give a very brief explanation of this

approach. For more details, we request readers to refer to
Ref. 29. In the tight-binding approximation, a Bloch state is
expanded as~for f5p/q)

C~k!5(
l51

q

al~k!c l~k!, ~6.1!

wherek is restricted to a reduced MBZ. The basisc l(k) is
defined to bec(k112pf l ,k2), wherec(k) is a Bloch state
before the magnetic perturbation. A tight-binding Hamil-
tonian in the absence ofdB, when being expressed on the
basis ofc l , is aq3q matrix ~the lattice constanta is set to
1!,

Hl 8,l52S cos~k112p/q! eik2 0 • 0 e2 ik2

eik2 cos~k114p/q! eik2 � � 0

0 eik2 � � � •

• � � � eik2 0

0 � � eik2 cosS k11~q21!
2p

q D eik2

e2 ik2 0 • 0 eik2 cos~k1!

D . ~6.2!

En(k) andal
n(k) are nothing but the eigenvalues and eigen-

vectors of this matrix. For example, ifp/q51/3, then a
straightforward calculation shows that theEn(k)’s are solu-
tions of the following characteristic equation:

2E316E52@cos~3k1!1cos~3k2!#. ~6.3!

There are three roots for eachk, and variation ofk over the
MBZ leads to the three energy bands forf51/3 ~see Fig. 2!.
It is not difficult to see that the band edges are located at
~from high to low! E1(g),E1(0),E2(0),E2(g),E3(g), and
E3(0), whereg5(p/3,p/3).

B. Calculation of Berry curvature

To calculate the Berry curvature in Eq.~2.19!, we need to
know the eigenvectors ofHl 8 l . Before doing that, we will try
to rewrite Eq.~2.19! in a form suitable for the tight-binding
calculation. First, we insert a complete state(n8uun8&^un8u
inside the dot products that appear in Eq.~2.19!. Since we
are using the one-band approximation,n8 only runs through
subbands in the same parent band, and

Vn~k!5 i (
n851

q

8 F K U]un]k1
Uun8L K un8U]un]k2

L 2c.c.G , ~6.4!

where we have dropped a term withn85n since
^unu]/]kuun& is purely imaginary and does not contribute to
the curvature. With the help of the identity

K un8U ]

]kUunL 5

K un8U]H̃]k UunL
En82En

, ~6.5!

where H̃[e2 ik•rHeik•r @this and the followingH ’s are the
unperturbed Hamiltonian in Eq.~1.3!; the subscript 0 is
dropped for brevity#, we can rewrite Eq.~6.4! in the form

Vn~k!5 i(
n8

8 F K unU ]H̃

]k1
Uun8L K un8U ]H̃

]k2
UunL

~En82En!
2 2c.c.G .

~6.6!

Expanding un by c̃ lk(r ), which is defined to be
e2 ik•rc lk(r ), we have

K un8U]H̃]k UunL 5(
l 8,l

al 8
n8* al

nK c̃ l 8U]H̃]k Uc̃ l L
5(

l 8,l
al 8
n8* al

n ]

]k
^c̃ l 8uH̃uc̃ l&

1~en2en8!(
l 8,l

al 8
n8*al

nK cG l 8U]c̃ l

]k L . ~6.7!

For a Bloch state in the absence of a magnetic field, we can
choose the phase such that the inner product^c̃ l 8u]c̃ l u]k& is
zero. Therefore,

K un8U]H̃]k UunL 5(
l l 8

al 8
n8* al

n ]Hl 8,l

]k
. ~6.8!
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Beyond this stage, the calculation is straightforward since we
only need to calculateal

n from Eq. ~6.2! and combine Eqs.
~6.6! and ~6.8! to obtainVn(k).

Again we choose a simple fractionp/q51/3 and calculate
the Berry curvature distributions for the three magnetic sub-
bands. The result is shown in Fig. 5, in which the range of
k vector is one reduced MBZ~the basic unit of repetition!.
Note that the curvature tends to concentrate on four inner
band edges because the electron states near inner gaps are

changed the most from the original Bloch states that have
zero Berry curvature. The curvatures from the three bands
cancel locally, that is,

(
n51

3

Vn~k!50, ;k. ~6.9!

This is in general true for anyq and can be easily proved
from Eq. ~6.6!. This is a stronger condition than the~global!

FIG. 5. Distributions of Berry curvatureVn(k) ~in units ofe2/h). V1(k) is equal toV3(k) shifted by (p/3,p/3).
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sum rule(nsn50. Finally, integration ofVn(k) over a MBZ
divided by 2p gives us integers (1,22,1). These are indeed
the Chern numbers we expected@see Eq.~5.11!#.

C. Calculation of magnetic moment

The self-rotating angular momentum of the wave packet
^L &nk in Eq. ~2.13! can be written in a from that is more
tractable for calculation:

Ln~k!5 i
m

\ F K ]un
]k1

UH̃2EnU]un]k2
L 2 c.c.G . ~6.10!

Derivation of this formula is given in Appendix B. Equation
~6.10! can also be rewritten as

Ln~k!5 i
m

\ (
n8

8 F K unU ]H̃

]k1
Uun8L K un8U ]H̃

]k2
UunL

En82En
2c.c.G .

~6.11!

Derivation of Eq.~6.11! is very similar to the derivation of
Eq. ~6.6!. The only change is that the extra factor of
H̃2En in the numerator cancels aEn82En in the denomi-
nator.

Ln(k) can be readily calculated by combining Eq.~6.8!
with Eq. ~6.11!. The result is shown in Fig. 6~again for
f51/3). Similar to the distribution ofVn(k), Ln(k) also has
peaks near inner band edges. The total magnetizations from
all three bands cancel each other. However, unlike the cur-
vature, they do not cancel locally at eachk point.

We remark that this magnetization energy first appeared in
a paper by Kohn.2 His objective was to study the effective
Hamiltonian for Bloch electrons in a weak electromagnetic
field. This term is in general zero for Bloch bands, but can be
nonzero in the presence of spin-orbit interaction. In the latter
case, it contributes an extrag factor to Bloch electrons.29An
expression that is the same as the right hand side of Eq.
~6.10! has also been obtained by Rammal and Bellissard.30

Without them/\ factor ~and apart from a factor of 2!, it is
called the Rammal-Wilkinson form.

D. Calculation of cyclotron energy

After obtainingEn(k), Vn(k), andLn(k), we can deter-
mine the cyclotron energies according to the quantization
formula Eq. ~4.5!. In the following example, we add
df521/201 to f51/3. This gives f8522/67
51/(311/22). According to the simple rules derived in the
preceding section, the original magnetic bands are expected
to split into 22, 23, and 22 subbands, respectively. In Table

II, we compare the exact spectrum with the quantized cyclo-
tron energies. Only part of the subbands from the parent
band in the middle is shown. We show two numbers~for two
band edges! in the first row when the bandwidth forEHofst is
larger than 1024. TheEcyclo’s in the second row are obtained
by fine-tuning the pathCm in Eq. ~4.5!, with uncertainty on
the order of 1024. It can be seen that the match between
Ecyclo andE Hofst is quite satisfying. We have done calcula-
tions for subbands from other parent bands, and they also
show similar accuracy.

Notice that the energy levels from fractions likef51/f
are broadened cyclotron levels in an ordinary Bloch band.
They do not split from a magnetic parent band. In this case
Vn(k) andLn(k) are zero, and Eq.~4.5! reduces to the usual
Onsager quantization formula. Numerical result based on
this simplified formula for the cyclotron energies also agrees
very well with the positions of subbands in Fig. 2 as ex-
pected.

VII. SUMMARY

Electron states in a lattice subject to a homogeneous mag-
netic field satisfy magnetic translation symmetry and have
bandlike energy spectrum similar to the usual Bloch band.
However, to our knowledge, the semiclassical dynamics of
magnetic Bloch electrons has never been studied explicitly.
One reason is that the observation of band-splitting remains
an experimental challenge to date; the other reason might be
due to the fact that magnetic Bloch bands, unlike Bloch
bands, can be changed easily by varying an external mag-
netic field. However, our study has shown that the inquiry of
magnetic Bloch bands can be very rewarding in itself. Major
findings in this paper are summarized below:

The Berry curvature of magnetic bands plays a crucial
role in the dynamics. It gives electrons an extra velocity in
the direction ofE3B, and this term directly relates to the
quantization of Hall conductivity. This semiclassical dynam-
ics, combined with the Boltzmann equation, is used to study
electron transport in a dc or ac electric field.

In the presence ofdB, the energy dispersionE(k) is
shifted from the usual band energy because of the nonzero
magnetic moment. Similar to usual Bloch electrons, mag-
netic Bloch electrons execute cyclotron motion on the con-
stant energy surface ofE(k). However, the quantization con-
dition for cyclotron orbits has to be modified from the usual
Onsager condition because of the Berry phase. Based on this
modified formula, we obtain a simple rule that calculates the
number of daughter bands for every parent band in the Hof-
stadter spectrum. Furthermore, a fairly heuristic explanation
for the distribution of Hall conductivities is given using the
picture of cyclotron orbit drifting.

TABLE II. Hofstadter spectrum~for f522/67) and the cyclotron energies calculated from Eq.~4.5!. Only
the top ten subbands for the middle parent band are shown. The last column is the subband closest to the
parent band edgeE2(0)50.7321.

EHofst 0.0618 0.1067 0.1566 0.2124 0.2747 0.3443 0.4221 0.5098 0.6098 0.7266
0.0678 0.1085 0.1570 0.2125

Ecyclo 0.0632 0.1063 0.1558 0.2115 0.2738 0.3435 0.4212 0.5086 0.6082 0.7240
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These quantized orbits are closely related to the energy
bands in the Hofstadter spectrum. We give detailed numeri-
cal calculations forVn(k) and Ln(k) based on the tight-
binding model for the case off51/3. They are used in the
calculation of cyclotron energies using the quantization con-
dition, and the result is in very good agreement with the
actual spectrum. This shows that the complex pattern of the
Hofstadter spectrum is nothing more than the broadened cy-

clotron energy spectrum in magnetic Bloch bands.
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FIG. 6. Distributions of angular momentumLn(k) ~in units of 2m/\).
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APPENDIX A

Note that there is nok̇ dependence inp @because there is
no kinetic energy termk̇2 in L(k,k̇)#. In this case, it is more
rtinent to treat Eq.~4.3! as a constraint on the variablesk and
p,

u~k,p![p1
\2

2edB
k3 ẑ2\A~k!.0. ~A1!

Strictly speaking, this constraint cannot be used before ob-
taining the equations of motion, therefore we use. to dis-
tinguish it from a real identity.31A general Hamiltonian for a
system with constraints is given by

H* ~k,p!5H~k,p!1l•u5E~k!1l•u, ~A2!

wherel5(l1 ,l2) are arbitrary functions ofk andp. The
dynamical equations for this Hamiltonian are

k̇5
]H*

]p
5l,

ṗ52
]H*

]k
52

]E

]k
1

\2

2edB
l3 ẑ1\(

i
l i

]Ai

]k
,

~A3!

where we have discarded a term]l/]k•u50. According to
Eq. ~4.3!, we should also have

ṗ52
\2

2edB
k̇3 ẑ1\(

i
k̇i

] A

]ki
. ~A4!

Equating~A3! to ~A4!, and replacingl by k̇, we will get Eq.
~4.1!.

APPENDIX B

We will rewrite the angular momentum of a wave packet in Eq.~2.13! in terms of magnetic Bloch functions. By defining
w̃(k)5eik•rcw(k), we have

Ln~kc!5E d2k8E d2k w* ~k8!w~k!^Cn~k8!u~r2r c!3PuCn~k!&

5E d2k8E d2k w̃* ~k8!w̃~k!^un~k8!uei ~k2k8!•~r2rc!~r2r c!3P̃~k!uun~k!&, ~B1!

whereP̃ is the momentum operator on theuun& basis. Since

P̃~k!uun~k!&5(
n8

uun8~k!&^un8~k!uP̃~k!uun~k!&, ~B2!

and

^un~k8!uei ~k2k8!•~r2rc!~r2r c!uun8~k!&5 idn,n8
]

]k8
d~k2k8!2 i K ]un

]k8
Uei ~k2k8!•~r2rc!Uun8L

5 idn,n8
]

]k8
d~k2k8!2 id~k2k8!K ]un

]k8
Uun8L , ~B3!

we have

Ln~kc!52 i E d2kF ]

]k
w̃* ~k!Gw̃~k!3^P&n2 i E d2kuw̃~k!u2K ]un

]k U 3P̃~k!UunL . ~B4!

BecauseP̃(k)5(m/\)]H̃/]k, the integrand of the second term can be written as

m

\ K ]un
]k1

U ]H̃

]k2
UunL 2~k1↔k2!5

m

\

]

]k2
K ]un

]k1
U H̃UunL 2

m

\ K ]un
]k1

UH̃U]un]k2
L 2~k1↔k2!

5
m

\ K ]un
]k1

U]un]k2
L En1

m

\ K ]un
]k1

UunL ]En

]k2
2
m

\ K ]un
]k1

UH̃U]un]k2
L

2~k1↔k2!5
m

\ K ]un
]k U3~En2H̃ !U]un]k L 1K ]un

]k UunL 3^P&n . ~B5!
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Therefore we have

Ln~kc!5 i
m

\ K ]un
]k U3~H̃2En!U]un]k L U

k5kc

2 i E d2kuw̃~k!u2K ]un
]k UunL 3P^Pn&2 i E d2kF ]

]k
w̃* ~k!Gw̃~k!3P^P…n . ~B6!

The last two terms cancel because of Eq.~2.8!, and this leads to Eq.~6.10! Notice that this result is independent of the way
a wave packet is constructed since there is now(k) dependence in the new expression.
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