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Electron band structure in a two-dimensional periodic magnetic field
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In this paper we study the energy spectrum of a two-dimensional electron gas (2DEG) in a two-

dimensional periodic magnetic field. Both a square magnetic lattice and a triangular one are considered.
We consider the general case where the magnetic field in a cell can be of any shape. A general feature of
the band structure is bandwidth oscillation as a function of the Landau index. A triangular magnetic lat-
tice on a 2DEG can be realized by the vortex lattice of a superconductor film coated on top of a hetero-
junction. Our calculation indicates a way of relating the energy spectrum of the 2DEG to the vortex
structure. We have also derived conditions under which the effects of a weak magnetic modulation,
periodic or not, may be reproduced by an electric potential modulation, and vice versa.

I. INTRODUCTION

The behavior of a two-dimensional electron gas
(2DEG) in a homogeneous magnetic field modulated by a
periodic electric potential or magnetic field is a subject of
some recent investigations. ' In the case of a one-
dimensional electric modulation (1DEM}, resonance be-
tween the cyclotron radius 8, and the period of modula-
tion a results in an unusual magnetoresistance oscilla-
tion. ' It was found that the electrons do not move
along the trench formed by the modulation potential
when 2R, =(tt —

—,')a, and move with maximum velocity
when 2R, =(tt+ —,')a, where tt is an integer. Because R,
changes with the magnetic field, the magnetoresistance
oscillates when the strength of the magnetic field in-
creases. This result has been explained quantum mechan-
ically by Gerhardts, Weiss, and von Klitzing, and classi-
cally (when R, »a) by Beenakker. A variant system
that uses a one-dimensional magnetic modulation
(1DMM) instead of a 1DEM shows similar behaviors.
In this case the electron drift is absent when
2R, =(tc+ —,'}a, and a maximum drift velocity along the
trench is obtained when 2R, =(tt —

—,
' )a.

A delicate structure in the electron energy spectrum
emerges when the modulation is two dimensional. It is
well known that the spectrum in a magnetic field with a
two-dimensional electric modulation (2DEM) exhibits
fractal behavior —the so-called Hofstadter spectrum.
The fragmentation of bands will suppress the part of the
magnetoresistance that comes from the variation of band
conductivity, and only a weaker, diffusion-related magne-
toresistance oscillation can be observed. Fractal spectral
structure also exists for a two-dimensional magnetic
modulation (2DMM), which was studied by Wu and Ul-
loa recently. They also studied the collective excitations
of the electron gas, and found that it does not map out
the Hofstadter spectrum exactly. Although it would be
interesting to observe the excitation spectrum of a
2DMM system, there is sti11 no attempt at an experimen-
tal realization that we know of.

In this paper we study the energy spectrum of the

2DEG as a function of quasimomentum, and show that
there is a one-to-one correspondence between it and the
spatial distribution of the magnetic field. Both a rec-
tangular magnetic lattice and a triangular one are con-
sidered. The latter can be generated using a supercon-
ductor in a vortex state. Therefore we can have a period-
ic modulation on a 2DEG by coating a superconductor
film on top of a semiconductor heterojunction. Using
the connection between the energy spectrum and the
shape of the magnetic modulation, we can use the 2DEG
as a probe for getting some basic parameters of the super-
conductor film.

We also explore the possible connection between elec-
tric and magnetic modulations. There is a mapping at
the operator level between the Hamiltonians of a 1DMM
system and a 1DEM system. No such simple mapping
exists between 2D modulation systems. However, the
matrix elements of the Hamiltonian of a 2DMM are simi-
lar in structure to those of a 2DEM. Hence, it is possible
to have a formal connection between these two, albeit in
a nontrivial way. The cases with one-dimensional and
two-dimensional periodic modulations, and nonperiodic
field distributions are discussed.

This paper is organized as follows: In Sec. II we study
systems with weak perturbations. In Sec. III the exact
energy spectrum is obtained by diagonalizing the Hamil-
tonian matrix. In Sec. IV a way of relating the vortex
structure to the behavior of a 2DEG is discussed. In Sec.
V we discuss the correspondence between the electric
modulations and magnetic field modulations. The last
section is a conclusion.

II. %PEAK MODULATION

A. Rectangular lattice

Consider a 2DEG in a homogeneous magnetic field Bp

perturbed by a weak rectangular magnetic lattice B(x,y).
In order to simplify the notation, we choose the magnetic
length A, =(A/eBo)'~ to be the unit of length, Bo to be
the unit of magnetic field, and %co, to be the unit of ener-
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gy, where co, =eBolm is the cyclotron frequency. This is
the most natural choice of units in the sense that all phys-
ical quantities are around the order of unity in the regime
of interest. The Hamiltonian can be written as

(, („"(k),kz)= — g B(l,m)[L„'(z& )+L„' )(z& )]1~ 2
I, m = —cc

I
( 1)lm

™
1

Xe
—ikl a

~ aH =— i— —y + A, (x,y)
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2lm 277
a&
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2 (6)

+——i + A, (x,y)
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2 Bp

We have chosen the vector potential of the homogeneous
magnetic field to be Ao(x, y) = —yi.

A=(x,y)=A„(x,y)i+A (x,y)j

is the vector potential of the perturbing field.
An eigenfunction of the unperturbed Hamiltonian for

the nth level is

+n —ik&x —(1/2)(y+k& )

p„k (x y)= —e ' e ' H„(y+k, ),
L

where 1V„ is a normalization constant, L is the size of the
system, and k& is a constant. Since the perturbed system
has rectangular symmetry, we would like to construct
from (2) an unperturbed eigenstate with the same symme-
try. Assume a& and a2 to be the lattice constants.
Discrete translation operators that commute with the
Hamiltonian (1) are the magnetic translation operators
T]y T2 ~

T] Tj

T2 =e T2

where B(l,m) are the Fourier components of B(x,y),

B(x,y)=+B(l,m)e 'e
lm

and L„' is the associated Laguerre polynomial (L'
(
—=0).

Notice that B(x,y) is in units of Bo. Equation (6) can be
readily reduced to the result of a system with a one-
dimensional sinusoidal perturbation in Ref. 3.

Using the asymptotic form of the associated Laguerre
polynomials in the large-n limit, it can be shown that, in
the four-point approximation [where all the Fourier com-
ponents are zero except B(+1, 0)=B( 0+1)%0], the
bandwidth is zero when 2&nvr=(a+ 4()n,. an—d reaches
maximum when 2&nm. =(a. ,')m —T—her.efore the widths
of the energy bands in Eq. (6) oscillate with the Landau
index. Physically, it is clearer to write these two condi-
tions as 2R, =()r+—,')a, where the radius of cyclotron
motion R, =&2n when n is large, and a =&2m. These
are the same as the resonant conditions for a 1DMM.
The energy bands will be further split into p subbands
when there are a rational number (say p/q) of flux quanta
in a unit cell. A proper unperturbed wave function for
such a system is

—i(I+j/p)k qa2
k g dj g Ink& —((+j/p)2nla~

j =1 I = —oo

where T, and T2 are the usual translation operators. An
unperturbed eigenstate that satisfies

ik&a&
T)%'„k k =e

'k2a2
2+kk e +kk

is found to be

—ilk2a2
+nk&k& g e 4n, k&

—2 l/ ~na
I = —oo

Equation (4) defines the quasimomenta k, and k2, which
are good quantum numbers. We assumed there is only
one flux quantum No=h/e per unit cell in getting Eq.
(5). That is, we used a)a2 =2m in the new unit system.
Then, a state in a Landau level is only coupled to states in
the other Landau levels with the same (k(, kz), relieving
the necessity to consider degenerate perturbation. The
case with arbitrary magnetic flux per unit cell is more
complicated, and we will comment on it later.

The first-order energy perturbation can be found by
calculating the diagonal matrix elements of the Hamil-
tonian on the unperturbed basis:

The coefficients d are to be determined from a Harper-
like equation after we turn on the perturbation more
details can be found in Ref. 7.

B. Triangular lattice

An easy way to realize a two-dimensional periodic
magnetic modulation would be using a superconductor
vortex array with the symmetry of a triangular lattice.
We choose Ao(x, y) = —yi to make our Hamiltonian ex-

plicitly translationally invariant in x. The magnetic
translation operators that commute with the Hamiltonian
of this system are

Tl g1 T1

i )/3ax /2 T2=e 2

where g, =exp( im)and —g2=. exp(

iver/2)

are —gauge
factors for shifting the center of a hexagonal unit in

C„(k),kz) to the origin. This will become clearer in a
later discussion. Instead of putting g& and g2 in the mag-
netic translation operators, we can put them on the
right-hand side of Eq. (4). This amounts to a redefinition
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of the quasimomenta.
An unperturbed eigenstate with triangular symmetry is

given by

nkl k2 I

1.5

C)

(a)

(10)

again we assumed one fiux quantum per unit cell
(~3a /2=2m). The case of one-half flux quantum per
unit cell will be discussed at the end of this section.

The first-order energy perturbation is

( („"(k„k2)=— g B(r,s)[L„'(w )+L„',(w„)]
2

PqS =
—w i2 rs is(k)a+sr)

—ir(k&a+n)
Xe

w = (s sr+r—).=2~ 2 — 2

3

0.5
H

3
1.5-

0
~ ~

B(r,s) are the Fourier components of B(x,y),

i(xi+»j) (rb(+sb&)

P, S

(12)

0.5

0

where b) =(2n./a)(i —j/+3) and bz=(2n. /a)(2j/')/3) are
unit vectors of the reciprocal lattice.

We let all of the Fourier components be zero except six
of them (we will call this a six-point approximation):
B(+1,0),B(0,%1), and B(+1,&1), which are all
equivalent to each other. Then we have

B(xy)=2B(1,0) 2cos x cos ya 3a

FIG. 1. (a) Plot of the magnetic field B(x,y) with triangular
lattice symmetry in the six-point approximation. (b) Ground-
state energy of an electron in a homogeneous magnetic field

modulated by the magnetic field in (a).

+cos 2~
2g (13)

The corresponding energy perturbation is

C„(k),k2)= —e B(1,0)(L„'+L„',)

X [cos(ak, )+cos(ak2)

+cos[a(k) —k2)]] . (14)

Notice that k) and kz are along the nonorthogonal direc-
tions T& and T2,' we need to make a transformation

(15)

to put (a„on an orthogonal basis k„and k . See Fig. 1

for plots of B(x,y) and (ao(k„,k ), where B(1,0)=0.05.
Notice that the magnitude of variation of B(x,y) is
9B(1,0) [from —3B(1,0) to 6B(1,0)], while that of
(ao(k„,k») is 4.5e ~ B(1,0), which is a much smaller
variation. It appears that the electrons sense the average
magnetic field more than they sense the fiuctuation. The
plot of (ao(k„,k» ) will be shifted to the right by m if both
factors g, and gz in Eq. (9) are unity.

In a real physical situation, the triangular array is
formed by a superconductor vortex state, where the mag-
netic flux per plaquette is 4o/2 instead of (Z)o. In this
case the magnetic translation operators defined in Eq. (3)
do not commute ( T, Tz = —Tz T, ), and the quasimomen-
ta in Eq. (4) are no longer good quantum numbers. We
have to choose a unit cell that consists of two magnetic
plaquettes to have a mutually commuting set of H, T„
and Tz. Assume a is the lattice constant of the magnetic
plaquette; then there is one flux quantum 4o within the
area (&3/2)a)az of the unit cell, where a, =2a, a2=a.
The energy perturbation for this system is similar to Eq.
(11),but with two difFerences. First, ( —1)"' is replaced by
(
—1),and thus can be dropped. Second, k) a in the ex-

ponent is replaced by k&a&, and k2a by 2k2a2. Hence
there are two identical regions in the first Brillouin zone.
This is related to the following fact. Instead of choosing
a, =2a, we can choose az=2a, and a& =a. The overlap-
ping region of these two difFerent Brillouin zones has the
same energy spectrum because we are free to enlarge our
unit cell either way. The dispersion surfaces in the other
half regions of either Brillouin zone just replicate the en-
ergy spectrum in the overlapping region. The existence
of two identical regions in the Brillouin zone is related to
the twofold degeneracy of such a system.
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III. EXACT KENERGY SPECTRUM

The exact ener sgy spectrum for an ele
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this section we will take a simple model of vortex struc-
ture as our starting point, and demonstrate how the
bandwidth of the 2DEG may help us determine the
coherence length of the superconductor.

A convenient choice for the structure of a vortex was
proposed by Clem. ' The magnetic field distribution of a
single vortex in the Clem model is

E {(p +g„)' /A, )
b(p)=

4m'A, g„Ei(g„/A, )
(20)

0 r
Quasimomentum

FIG. 4. Exact energy spectrum for a 2DEG in a homogene-
ous magnetic field modulated by a triangular magnetic lattice in
the six-point approximation, B(1,0)=1. Many of the curves at
the upper left and right are actually separated with higher reso-
lution.

gion of the unit cell the total magnetic field reverses the
direction. Notice that these levels in general do not
touch. This conforms to a theorem by Von Neumann
and signer, which states that at least three parameters
need to vary for a generic Hamiltonian to have an ac-
cidental degeneracy. "

Aharonov and Casher once showed that the ground-
state energy of a spin- —,

' particle in a nonuniform magnet-

ic field is zero. ' This result is checked numerically in
this periodic case by adding a spin-interaction term
(o, /2)B (x,y) to the Hamiltonian (1). Since (10) is not a
very good basis for this new Hamiltonian, it is necessary
to diagonalize a larger Hamiltonian matrix to get a
correct result. The lowest dispersion curve we get for
this Hamiltonian with a spin term is found to be flat and
zero with negligible deviation, which agrees very well
with Aharonov and Casher's result.

IV. ENERGY SPECTRUM AND VORTEX STRUCTURE

It is not hard to see that, when the energy perturbation
is small, we can determine 8 (x,y) with the help of Eqs.
(11)and (12}if the energy spectrum 8„(k„kz)over the en
tire first Brillouin zone can be mapped out precisely
Therefore, in principle, the 2DEG beneath the supercon-
ductor film can be a probe for measuring the vortex
structure. However, this is a difficult experimental task
compared to other methods like neutron difFraction,
scanning tunneling microscopy,

' and electron-wave
holography. ' Angle-resolved photoemission spectrosco-
py (ARPES) can be a tool for measuring the band struc-
ture, but it can barely probe beyond 10 A below the sur-
face, while our 2DEG is buried down in the heterojunc-
tion. Besides, the electron density of a conventional
2DEG (=10"cm } is too low for ARPES to have the
precision we need. In spite of these difficulties, at least
the bandwidth can be measured with confidence, and this
can give us some information about the vortex state. In

40 1 E, (Qg„)
A„„2li, Q E, (g„/A, )

' (21)

where A„&& is the area of a unit cell, q=rb, +sz, and

Q
—

(
~ q ~

2+ }(
—2

)
1/2

The magnitude of oscillation of the magnetic field

B,(x,y) at the surface of the superconductor is attenuated
through the distance d between the superconductor film

and the 2DEG. The Fourier component of wave vector q
is damped out by a factor exp( —~q~d).

' Therefore the
Fourier components of the magnitude field that appear in

Eq. (11)are actually 8(r,s) =8,(r, s)e ~q~d, where

~q~ =4~/(~3a )+r rs +s-
For example, if a =1500 A (for Bo =0. 1 T), and d =400
A, then 8(1,0)=0.168,(1,0), 8(1,—1)=0.048, (1,—1).
The modulation on the 2DEG is small unless 80 is much
less than 0.1 T, or d is much less than 400 A. Therefore
in most cases the perturbation formu1a works well.

Assuming that the vortex array is dense enough so that
the six-point approximation is valid, then the width of
the nth band is

5@„=4.5e B(1,0)[L„'(Zm/+3)

+L„' i (2m &/3)] . (22)

One way of measuring the bandwidth is by measuring the
difFerential Hall conductivity of the 2DEG, which in the
collisionless limit is

AH�(E)= D (E)f (E),
0

(23)

where D(E)=g„ f d k/4&5(E —8„(k)}is the density
of states, and f (E) is the Fermi distribution. Notice that
we have put back the real units in the above formula.
This expression can be derived from the Kubo formula,
under the assumption that the modulation is small com-
pared to the average field. The efFect of modulation ap-
pears through the C(k}'s in the density of states and in

where Ko and E, are the modified Bessel functions, p is a
radial coordinate, A, is the penetration depth, and g„ is a
variation parameter that is of the same order as the
coherence length. g, and }i, are the only two parameters
in this model. The magnetic field of a vortex array is

B,(r)=g Rb(r —R), where the summation is over all

sites of the vortices. Therefore the Fourier components

B,(r, s) = fB,(r)e'q'dr1
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the Fermi distribution. Equation (23) is the same as the
classical formula o.H =p, e/Bo, where p, is the density of
mobile electrons.

In the presence of disorder, D (E) has to be replaced by
the density of extended states D, (E), or, more precisely,
the density of Chem numbers. ' For a homogeneous
magnetic field, it has been shown that D, (E) is a 5 func-
tion for each Landau level. When the magnetic field is
modulated, we expect that the width of D, (E) will be ap-
proximately equal to the bandwidth in the weak-disorder
limit. A tricky point in measuring the bandwidth is that
we need a large B to have a good resolution in a quantum
Hall system, but that tends to pack the vortex array
tightly and shrink the bandwidths. Therefore it is neces-
sary to find a compromise between these two constraints.
A theoretical calculation of the Hall conductivity accord-
ing to (23) at zero temperature is shown in Fig. 5. It
varies continuously when the Fermi energy is inside the
band, and takes quantized values when the Fermi energy
is in the gaps. The slopes are discontinuous at the band
edges since the densities of states are discontinuous for a
2D system. How a finite disorder will change the extend-
ed density of states remains an open question.

From the bandwidths we can get one Fourier com-
ponent B(1,0) and hence an algebraic relation between g„
and A, through Eqs. (21) and (22). This is useful because
the coherence length of a type-II superconductor with
large ~ is usually more difBcult to measure than the
penetration depth. Therefore, if A, is known beforehand,
measurement of the bandwidth can give us the coherence
length. The measured values of B(1,0) from different
bands can be used as a consistency check of this ap-
proach. In principle it is also possible to determine the
temperature dependence of g„since the bandwidth will be
different when g„ is changed by temperature.

The Hall conductivity gives more information about
the band structure than just the bandwidths. One may
compare the density of states measured according to Eq.
(23) and that calculated from the theoretical model. If
the sample is clean enough, such a comparison should
yield information about the higher Fourier components
of the magnetic field, and therefore more information

V. CORRESPONDENCE BETWEEN GENERAL
MAGNETIC AND ELECTRIC MODULATIONS

A. One-dimensional modulation

It is well known that the equation of motion of a 2D
electron in a constant magnetic field can be reduced to
that of a 1D electron in a parabolic electric potential.
This analogy can be generalized when the magnetic field
is modulated along one direction, where the correspond-
ing electric potential V(x) is determined by

d&2V(x)
dx

(24)

For a weak 1DMM with B (x)=1+Bcos(2n/ax), the
corresponding electric potential is

V(x)= +B(x —c) sin x .(x —c) — a . 2m.

2 277 a
(25)

Besides the "all-magnetic" and "all-electric" systems, it is
also possible to transform the term (x —c)2/2 in Eq. (25)
back to a homogeneous magnetic field, and keep the
second term intact. This is equivalent to a mixed system
with a magnetic field plus a modulating electric field.
Following Beenakker's analysis on the drift of the guid-
ing center of an electron in a 1DEM, the mean square
drift velocity in the classical limit R, »a is found to be

about the magnetic Aux lattice.
When the strength of the modulation is large, neigh-

boring bands are mixed due to strong oscillations (see
Fig. 4); also Eq. (23) for the Hall conductivity is no longer
valid. However, each filled band still contributes an in-
teger number of e /)'I to the Hall conductivity as long as
it is not in touch with the other bands (usually adjacent
bands are separated by avoided crossings). These avoided
crossings (or local gaps) can be closed by tuning B to a
particular value B'. It does not violate the Von
Neumann —Wigner theorem since three parameters
(k„,ky, B) are used to induce an accidental degeneracy.
When a local gap collapses, the Hall plateau that corre-
sponds to that gap disappears. A new plateau emerges
when the gap is reopened by increasing B away from B'.
This plateau may or may not stick to its original value.
In case it does not, oH will jump up or down by an in-

teger multiple of e /h. ' This dramatic effect can also be
achieved by using an electric modulation to control the
band crossings.

(vd2) = B
2m

Rc 2
27TRc

COS
a a

31T

4

I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4

Fermi Energy (hw, )

FIG. 5. Hall conductivity at zero temperature. Due to the
broadened Landau levels, the transition from one plateau to
another is gradual. B(1,0) here is 0.2.

which is the same as the one in the paper by Xue and
Xiao. It has maxima under the resonant condition
2R, =(~—

—,')a.

B. Two-dimensional periodic modulation

There is no simple mapping as in Eq. (24) when the
modulation is bidirectional. However, a connection still
exists when the perturbation is small. Consider a 2DEG
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in a rectangular 2DEM. The first-order energy perturba-
tion is similar to that in Eq. (6}. The only difference is
that

B(l,m)[L„'(zI~ )+L„',(zI~ )]

is replaced by 2V, (l, m)L„(z& ). Therefore, as far as the
energy spectrum goes, a magnetic modulation can be
simulated using an electric potential whose Fourier com-
ponents satisfy

2V&(l, m)L„(zI~ ) =B(l,m)[L„'(zI )+L„'
& (z& )] . (27)

C. General bvo-dimensional field distribution

It is possible to extend the above connection to a ran-
dom magnetic field. The only restriction is that the ran-
dom component be weak compared to the homogeneous
component. Consider the matrix elements of the Hamil-
tonian in the unperturbed basis (2) (no requirement of one
fiux quantum per unit cell). Express the magnetic field in
a Fourier integral instead of Fourier series since there is
no discrete translational symmetry here; then we have

& &,q q'lH~ (x,y)ln, q
—

&
= fdk2B(q—', k&)(L„'+L„'

&
)

Xe
—(1/4)(q' +k )2

It can be readily reduced to a one-dimensional relation if
all the components with /%0 are zero. Unlike the
effective potential in Eq. (25), this one is valid only in the
one-band approximation, and is different for different
bands.

A curious feature of this formula is that if a z& hap-
pens to coincide with a zero of the Laguerre polynomial,
the (l, m)th Fourier component of the effective potential
does not exist, simply because there is no way a V&(l, m)
can contribute to the broadening of the nth level, no
matter how large it is. Therefore, for a given Landau lev-
el with n%0, an electric modulation can only mimic a
magnetic modulation whose Fourier components B(l,m)
vanish when zI are at zeros of L„. Conversely, a mag-
netic modulation can only mimic an electric modulation
whose Fourier components V, (l, m) vanish when zI are
at zeros ofL +L

VL„exp[ —(q' +k& ) l4]exp(iq'k2/'2) .

After dividing out the common exponential part, it fol-
lows that H, =H f if and only if

2L„V(k(,kz)=(L„'+L„' ) )B(k),kz), Vk), k2, (30)

which is a continuous version of Eq. (27). The discussion
in the preceding subsection about the singularities in the
Fourier components applies to this case as well. This re-
lation might be helpful to researchers working on prob-
lems of random magnetic field.

VI. CONCLUSION

We have calculated the energy spectra of 2D electrons
in two-dimensional periodic magnetic fields. The spectra
are expressed in quasimomenta that are good quantum
numbers of the system. It is found that the Landau levels
are broadened in an osillatory manner with respect to the
band index. When the modulation of the magnetic field
is strong, dispersion curves are mixed but show avoided
crossings. The magnetic lattice with triangular symmetry
can be realized by using a superconductor film in a vortex
state. A connection between the electric properties of the
2DEG and the magnetic properties of the vortex arrays is
studied. It shows a possible way of getting information
about the vortices through measurements of the band-
width of the 2DEG. Finally, the connection between
electric field modulation and magnetic field modulation is
discussed. We find the effective electric potentials for
weak 2D magnetic modulations. The effective potentials
differ from band to band, and do not always exist.

(n, q
—q'~H f(x,y)~n, q )

—(1/4)(q' +k&) (i/2)q'k2 ik2q
z e e

(29)

Since the basis ~n, q ) form a complete set for the nth lev-
el, it follows that the two operators H& and H& are
equivalent in the one-band approximation if (28} and (29}
are equivalent for any q and q'. Assuming the
equivalence of these two matrices, we can take inverse
Fourier transforms of the integrals with respect to q to
get an identity between the integrands

B(L„'+L„',}exp[ (q' —+k 2 ) l4]exp(iq'k2 i2)

and

(i/2)q'k2 ik2qXe e (28)
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