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Attractive interaction between electrons (or neutral fermions)
is responsible for superconductivity (or superfluidity). In
condensed matter systems, attractive interaction is usu-
ally induced by the boson-exchange mechanism [1]. In-
deed, in the celebrated Bardeen-Cooper-Schreiffer (BCS)
theory, electrons develop attractive interaction by exchanging
phonons [2]. Subsequent studies show that other collective
excitations such as charge density waves [3] and spin fluctu-
ations [4] can also induce attractive interaction. The boson-
exchange mechanism, together with the concept of Cooper-
pair, is considered to be the cornerstone of the modern theory
of superconductivity.

In this Letter, we show a new possibility for the occurrence
of attractive electron-electron (e-e) interaction in ferromag-
netic metals with spin-orbit coupling. We take the ferromag-
netic state as given, and focus on the effect of the Berry cur-
vature field which exists ubiquitously in such materials [5,6].
Our question is relevant because superconductivity has been
found within ferromagnetic phase, such as in UGe2 [7] and
URhGe [8]. The Berry curvature effect on electron motion is
analogous to a magnetic field in the reciprocal space [9, 10],
and has been invoked to successfully explain the anomalous
Hall effect in ferromagnets [11-13]. On the other hand, un-
like a magnetic field in real space, monopole sources for the
Berry curvature field can occur in the reciprocal space at band
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degeneracy points. In the vicinity of the monopoles, the
Berry curvature becomes very strong.

Our theory is formulated within an effective one band
model, where ferromagnetism and spin-orbit coupling has
already been taken into account, such as one calcu-
lated self-consistently from a spin-density functional theory.
Figure 1(a) shows the origin of the Berry curvature field: an
electron evolving adiabatically in the reciprocal space will
accumulate a geometric (Berry) phase ϕB =

∫
γ
⟨uk|i∂kuk⟩ · dk

associating with the adiabatic change of the quasi-momentum
k [14], in analogy to the Aharanov-Bohm phase acquired by
electron moving in the real space in the presence of a mag-
netic field. It suggests a fictitious “magnetic field” in the re-
ciprocal space with the “vector potential” A(k) = ⟨uk|i∂kuk⟩
and the corresponding “physical field” (Berry curvature field)
Ω(k) = ∇k ×A(k), where uk is the periodic part of the Bloch
wave function for the electron band concerned.

The central result of this work is that attractive interac-
tions in the p-wave channel may be produced with the help
of the Berry curvature field. We show that the presence of
a sufficiently strong Berry curvature field on the Fermi sur-
face can transform a repulsive e-e interaction into an attrac-
tive one in the p-wave channel. There is also a topological
effect analogous to the Aharanov-Bohm phase. This is for a
situation where the Berry curvature field vanishes or is neg-
ligible on the Fermi surface but not so inside of it. A Berry
phase around the Fermi surface can still result from the flux
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Figure 1 (a) Electron moving adiabatically in the reciprocal space acquires
a Berry phase; (b) Berry curvature field in the vicinity of a band degeneracy
split by magnetization and spin-orbit coupling can be modeled as a “mag-
netic field” in the reciprocal space generated by a “monopole” out of the 2D
Brillouin manifold.

within. We show that an originally attractive interaction in the
s-wave channel can be turned into one in the p-wave channel.

To be specific, we investigate the following effective one-
band many-body Hamiltonian:

Ĥ =
∑

i

ϵ(k̂i) +
∑
i< j

V(r̂i − r̂ j) , (1)

where ϵ(k̂) is the quasi-particle dispersion operator, and
V(r̂i − r̂ j) is the two-body e-e interaction. k̂ (r̂) is the quasi-
momentum (position) operator, and the indexes i, j denote
the particle number.

Our study is motivated by the understanding that in the
presence of the Berry curvature field, the different compo-
nents of the position operator r̂ do not commute [12, 15, 16]:

[r̂µ, r̂ν] = iϵµνγΩγ, (2)

where µ, ν = x, y, z denote the different components of the
position operator. It is then interesting to see how the change
of the electron dynamics dictated by the non-commutative
position operator affects the electron correlations in our
system (1).

To proceed, we introduce the canonical coordinates R̂
which satisfy the usual commutation relations [R̂µ, R̂ν] = 0
and [R̂µ, k̂ν] = iδµν, which can be realized if we define

R̂ = r̂ −A(k̂), (3)

where A(k) = ⟨uk|i∂kuk⟩ is the “vector potential” corre-
sponding to the Berry curvature fieldΩ. We can then second-
quantize the many-body Hamiltonian eq. (1). We first re-
express the interaction potential in terms of the canonical
coordinates R̂. This can be done by making use of the
Fourier expansion V(r̂i − r̂ j) = (2π)−d

∫
dqυ(q)eiq·r̂i e−iq·r̂ j

and the relation eiq·r̂ = eiχ(q,k̂)eiq·R̂e−iχ(q,k̂), where χ is de-
fined by the equation q · ∇kχ(q, k) = q ·A(k). The interac-
tion potential can then be expressed in the plane wave basis
ψk(R) = 1/

√
V exp(ik ·R), from which its second-quantized

form can be easily read out, yielding finally

Ĥ =
∑

k

ϵ(k)c†kck

+
1

2V
∑
kk′K

u(k,k′; K)c†K
2 +k′

c†K
2 −k′

c K
2 −kc K

2 +k, (4)

whereV is the total volume of the system, c† (c) is the quasi-
particle creation (annihilation) operator, and

u(k,k′; K) = υ(k′ − k)eiϕB( K
2 +k′, K

2 +k)+iϕB( K
2 −k′, K

2 −k), (5)

i.e., the interaction is modified by a geometric phase de-
fined as ϕB(k, k′) =

∫ k′

k A(k) · dk with the integral along
the straight line connecting k and k′ in the reciprocal space.
ϕB is exactly the Berry phase acquired by an electron scat-
tered from k to k′. In eq. (4), we omit the spin index, and
focus on ferromagnetic systems in which the spin degrees of
freedom are fully quenched due to the strong magnetization
and spin-orbit coupling.

In the following, we investigate how the geometric phase
modifies the e-e interaction. We notice that the distribution
of the Berry curvature field in a Brillouin zone is governed
by the k-points of band degeneracies, which in mathemat-
ics are equivalent to “magnetic monopoles” in the reciprocal
space [12,14,17]. We thus focus on one of such “monopoles”
and see how the geometric phase in its vicinity modifies e-e
interaction. To identify the essential physics without being
obscured by complexities in mathematics, we limit our study
on a two dimensional (2D) ferromagnetic system. In such a
system, there is usually no band degeneracy [14]. However,
one can usually find band near-degeneracies at high symme-
try points of the Brillouin zone which are only split by the
presence of magnetization and spin-orbit coupling. In the
vicinity of these points, the Berry curvature field can be mod-
eled as a “magnetic field” in the reciprocal space generated by
a “monopole” out of the 2D Brillouin manifold, as shown in
Figure 1(b). We thus have: Ω(k) = (QM/2)κB/(k2 + κ2

B)3/2k̂z

and

A(k) =
QM

2k2

1 − κB√
k2 + κ2

B

 k × k̂z, (6)

where we assume that the “monopole” is located at (0, 0, κB).
QM = ±1 is the charge of the “monopole”. κB measures how
close the 2D system is to the band degeneracy. It is related
to the magnitude of the band gap induced by the magnetiza-
tion and spin-orbit coupling: the larger band gap, the larger
κB (for instance, see ref. [18]).

Attractive e-e interaction induced by the Berry curva-
ture field: First, we demonstrate that the strong Berry cur-
vature field in the vicinity of a reciprocal space “magnetic
monopole” could transform a repulsive e-e interaction to an
attractive one in p-wave channel. The e-e interaction in a typ-
ical metal can be modeled as V(r) = V0 exp[−κT F(

√
r2 + a2−

a)]/
√

(r/a)2 + 1, which is screened at large distances for
r ≫ 1/κTF and saturates at small distances for r ≪ a, where
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κTF is the Thomas-Fermi screening wave vector [19]. Its
Fourier transformation reads,

υ(q) = υ0

exp
[
−a

(√
q2 + κ2

TF − κTF

)]
√

(q/κTF)2 + 1
, (7)

with υ0 = 2πV0a/κTF. Eq. (7) should be considered as the
renormalized interaction between “dressed” electrons result-
ing from a complete treatment of a bare many-body Hamilto-
nian [20].

For the isotropic model considered here, the effective in-
teraction between a pair of electrons with the opposite mo-
mentum (K = 0) can be classified by their relative angular
momentum Lz = m~. For channel m, the effective potential
is [20]

um(k, k′) =
1

2π

∫ 2π

0
dθυ(k′ − k)e2iϕB(k′,k)eimθ, (8)

where θ is the angle from k to k′ and we have made use of
the relation ϕB(−k′,−k) = ϕB(k′,k).

Figure 2(a) shows the the effective interaction for different
channels for a given set of parameters. Attractive interaction
(i.e., um(k, k) < 0) is evident for channel m = 1 (p-wave)
and m = 3 (f-wave). Unlike the conventional attractive in-
teraction due to boson exchange which is always present in a
thin shell near the Fermi surface [1], the effective interaction
due to the geometric phase is attractive only in the vicinity of
the “monopole” (i.e., k = 0). Figure 2(b) and (c) show the
dependence of the effective interaction (k-position where the
effective interaction is the most attractive, and its magnitude,
respectively) on the parameters (κB, κTF, a) for the p-wave
channel (m = 1). We note that the attractive interaction only

u
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Figure 2 (Color online) Effective e-e interaction um. (a) Typical behavior
of um(k, k) for different m. Parameters: κBa = 0.2 and κTF/κB = 2.6; (b)
k-position of the um=1(k, k) minimum as a function of κTF/κB for different
values of κBa from 1 to 10; (c) The minimum (most attractive) value of the
effective potential for p-wave channel (m = 1) as a function of κTF/κB for
different values of κBa. The different curves are offset vertically for clarity,
with red dashed lines indicating respective baselines. The dotted line shows
the boundary determined from eq. (11) for the onset of attractive interaction.
QM = 1.

occurs in a certain regime of the parameter space.
The condition for the onset of attractive effective in-

teraction can be determined by examining the limit of
k, k′ ≪ κB, κTF, where υ(q) ≈ υ0 exp

[
−q2/2κ2

u

]
with κu ≡

κTF/
√

1 + κTFa and the Berry curvature field can be consid-
ered as a constant Ωz(k) ≈ Ω0 ≡ QM/2κ2

B, with the corre-
sponding geometric phase:

ϕB(k, k′) =
1
2
Ω0kk′ sin θ. (9)

Then it follows that

um(k, k′) ≈υ0

∣∣∣∣∣1 − ϕΩ1 + ϕΩ

∣∣∣∣∣m/2 exp
[
−k2 + k′2

2κ2
u

]

×


Im

(
kk′

κ2
u

√
1 − ϕ2

Ω

)
, |ϕΩ| ≤ 1,

(−1)mJm

(
kk′

κ2
u

sgn(ϕΩ)
√
ϕ2
Ω
− 1

)
, |ϕΩ| > 1,

(10)

where ϕΩ ≡ Ω0κ
2
u. Jm (Im) is the (modified) Bessel function

of the first kind. The attractive interaction (i.e., um(k, k) < 0)
arises in the channels with odd positive (negative) m for
Ω0 > 0 (Ω0 < 0) if

|Ω0|κ2
u > 1 . (11)

The boundary determined from the condition is shown as
the dotted line in Figure 2(c), which coincides well with the
boundary directly determined from the numerical result.

We apply the BCS gap equation in ref. [20] to investigate
the superconducting phase induced by the attractive interac-
tion. The result is summarized in Figure 3. The supercon-
ducting state has p-wave symmetry with ∆(k) = ∆(k)(k̂x±ik̂y)
(for QM = ±1). The magnitude of the superconducting gap
strongly depends on the position of the Fermi surface, which
is a direct result of the strong k-dependence of the effective
potential.

The superconductivity we predict is closely associated
with ferromagnetism, which breaks the time-reversal sym-
metry, and together with spin-orbit coupling, gives rise to
the Berry curvature field in the vicinity of the high sym-
metry k-points. In this picture, the superconducting phase
naturally coexists with ferromagnetism and disappears when
the ferromagnetism is suppressed. This behavior makes it a
plausible alternative theory for the recently discovered ferro-
magnetic superconductors UGe2 [7] and URhGe [8]. In the
traditional picture, enhanced spin fluctuations near a quan-
tum critical point are responsible for the pairing of elec-
trons. It predicts the superconducting phase on both sides of
the ferromagnetic-paramagnetic transition point [21], which
contradicts the experimental finding that the superconduct-
ing phase only exists in the ferromagnetic side. On the other
hand, we note that the conditions for the onset of supercon-
ductivity with the mechanism (i.e., eq. (11) and the Fermi
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Figure 3 (Color online) Phase diagram in ϵF (Fermi energy)-T (Temper-
ature) plane. ϵB ≡ ϵ(κB). Filled dots indicate the region occupied by the
superconducting phase. Solid line shows the superconducting gap ∆F(0) at
the Fermi surface and at the zero temperature, scaled by a factor 1/1.76. The
good correspondence between the phase boundary and the solid line sug-
gests the usual BCS relation ∆F(0)/kTc ≈ 1.76. The dashed line shows an
empirical fitting ∆F(0) ≈ aϵB exp[−1/ρF |um(kF, kF)|], where ρF is the den-
sity of states at Fermi surface and a ≈ 5. The reasonably good fitting sug-
gests the correlation between the magnitude of the superconducting gap and
the strength of the attractive interaction at the Fermi surface. Parameters:
κBa = 0.2, κTF/κB = 2.6, and ρFυ0 = 2. The electron dispersion is assumed
to be the simple parabolic form. QM = 1.

surface must reside in the vicinity of the “monopole”) are
rather stringent . Further investigations is required for estab-
lishing the definite connection between the theory and real
systems.

Unconventional pairing symmetry of the topological ori-
gin: Second, we consider the case that the Fermi-surface (-
circle) is far from the “monopole”, i.e., kF ≫ κB. While there
is no strong presence of the Berry curvature field on Fermi-
circle in this case, the “monopole” still presents a reciprocal
space “magnetic flux” threading through the Fermi-disc with
a total flux ΦB = πQM. The corresponding geometric phase
in the vicinity of the Fermi-circle reads:

ϕB(k, k′) ≈ QM

2
θ. (12)

Using eq. (8), the effective e-e interaction in channel m is

um(k, k′) ≈ υm+QM (k, k′) , (13)

where υm is the Fourier component of the bare e-e interac-
tion at channel m. For an originally attractive interaction in
s-wave channel (i.e., υm=0 < 0), the effective interaction um

is attractive in channel m = −QM = ∓1, giving rise the p-
wave pairing symmetry. The unconventional pairing symme-
try has a topological origin, i.e., the “monopole” (band degen-
eracy) buried deep inside the Fermi-sea. Were the “magnetic
monopole” not present, the bare interaction would favor the
s-wave pairing symmetry.

So far, our discussion is built upon the Berry curva-
ture field associating with the adiabatic evolution of quasi-

electrons in reciprocal space. It is valid only when the in-
teraction potential varies slowly over the atomic length scale.
When the potential is not slowly varying, we have to work
with the matrix elements between the Bloch states, ψk(r) =
eik·r|uk(r)⟩. In this case, the effective interaction matrix ele-
ment has the form (for K = 0)

u(k,k′; K = 0) = υ(k′ − k)⟨uk′ |uk⟩⟨u−k′ |u−k⟩. (14)

The extra phases are now the Pancharatnam geometric
phases [22]. For smooth potentials, only forward scattering
with small k′ − k is important, the Pancharatnam phases re-
duce to the Berry phases [23].

Notes added: The paper was originally posted as
arXiv:cond-mat/0601531 in 2006. We are grateful that it
finds applications in later developments [24-26]. Thanks to
Prof. Zhenyu Zhang’s recommendation, we submit it for pub-
lication after minor revisions.
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