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We construct a theory for the semiclassical dynamics of superconducting quasiparticles by following
their wave packet motion and reveal rich contents of Berry curvature effects in the phase space spanned by
position and momentum. These Berry curvatures are traced back to the characteristics of superconductivity,
including the nontrivial momentum-space geometry of superconducting pairing, the real-space super-
current, and the charge dipole of quasiparticles. The Berry-curvature effects strongly influence the
spectroscopic and transport properties of superconductors, such as the local density of states and the
thermal Hall conductivity. As a model illustration, we apply the theory to study the twisted bilayer graphene
with a dx2þy2 þ idxy superconducting gap function and demonstrate Berry-curvature induced effects.
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Introduction.—The Chern number of Bogoliubov–
de Gennes band structure has commonly been used to
characterize the topology of exotic superconductors [1–5],
while much less attention has been given to the physical
effect of the momentum-space Berry curvature that makes
up the Chern number [6,7]. In the presence of inhomoge-
neity due to external fields or a supercurrent, we may also
expect to find other components of the Berry curvature in
the phase space, such as those in the real space, as well as in
the cross planes of position and momentum [8]. Phase-
space Berry curvatures are known to be important on the
dynamics of Bloch electrons, ubiquitously affecting
equilibrium and transport properties of solids [9–16]. It
is therefore highly desirable to construct a semiclassical
theory for quasiparticle dynamics in superconductors,
which systematically takes into account these Berry
curvatures, in order to provide an intuitive and effective
basis for analyzing various response properties of
superconductors.
In this Letter, we introduce the semiclassical quasipar-

ticle as a wave packet in the background of slowly varying
gauge potentials and the superconducting order parameter.
Apart from Berry curvatures inherited from the parent
Bloch states, we identify new contributions due to the phase
space structure of the order parameter, which is nontrivial
in all but the conventional s-wave superconductors. The
quasiparticle also naturally possesses a charge dipole
moment, which can couple to a magnetic field through
the Lorentz force and induce field-dependent Berry
curvatures.
To demonstrate the utility of the developed theory, we

discuss how these Berry curvatures modify the phase-space
density of states of the quasiparticles and the impact on
tunneling spectroscopic measurements. We also present
a semiclassical approach to the intrinsic thermal Hall

conductivity due to quasiparticles without requiring
nontrivial calculations of energy magnetization [17–20]
and reveal its relationship with the topological contribution
from condensate [21,22]. We illustrate our results in
several model systems, including a twisted-bilayer gra-
phene model [23] with a dþ id superconducting order
parameter.
Quasiparticle wave packet in second quantization

formalism.—In order for a semiclassical theory of super-
conducting quasiparticles to be feasible, we assume that
all the possible inhomogeneities in the considered
system are smooth in the spread (much larger than the
coherence length [24]) of a quasiparticle wave packet,
whose center position is marked as rc. For example, in
the mixed states of type-II superconductors, we focus
only on the region far away from the vortex core,
where the pairing potential can be perceived as slowly
varying. A local Hamiltonian description of the wave
packet hence emerges, namely Hc ¼

R
drc†σrðĥc − μÞcσr−R

drdr0gðrc; r − r0Þc†↑rc†↓r0c↓r0c↑r, where c†σr is the creation
operator for an electron with spin σð¼ ↑;↓Þ at position r,
ĥc ≡ h0ðr;−i∇r − eAðrc; tÞ; fβiðrcÞgÞ is the spin degen-
erate single-electron Hamiltonian in the local approxi-
mation (set ℏ ¼ 1), μ is the chemical potential, and g is
the effective attractive interaction between electrons. We
only consider spin-singlet superconductors with intra-
band pairing and without spin-orbit coupling for sim-
plicity. The slowly varying perturbation fields fβig
(i ¼ 1; 2;…) and the electromagnetic vector potential
A are represented by their values at rc. ĥc possesses local
eigenfunctions eieAðrc;tÞ·rψnσk;rcðrÞ, where ψnσk;rcðrÞ are the
local Bloch functions of h0ðr;−i∇r; fβiðrcÞgÞ, with local
Bloch bands ξnk;rc . Here n and k are the indices for band
(with twofold spin degeneracy) and wave vector,

PHYSICAL REVIEW LETTERS 126, 187001 (2021)

0031-9007=21=126(18)=187001(6) 187001-1 © 2021 American Physical Society

https://orcid.org/0000-0003-4788-6737
https://orcid.org/0000-0002-7631-233X
https://orcid.org/0000-0002-4843-070X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.187001&domain=pdf&date_stamp=2021-05-06
https://doi.org/10.1103/PhysRevLett.126.187001
https://doi.org/10.1103/PhysRevLett.126.187001
https://doi.org/10.1103/PhysRevLett.126.187001
https://doi.org/10.1103/PhysRevLett.126.187001


respectively, and rc enters in the eigenstates parametri-
cally as a character of the local description.
The interaction term can be treated within a mean-field

approach, ending with [25]

Hc ¼
X
nσk

Enk;rcγ
†
nσk;rc

γnσk;rc ; ð1Þ

where the creation and annihilation operators for the
local eigenstate are introduced by the Bogoliubov trans-
formation, e.g., γ†n↑k;rc ¼ μ�nk;rcc

†
n↑k;rc

− ν�nk;rccn↓−k;rc .
Here c†nσk;rc ¼

R
dreieAðrc;tÞ·rψnσk;rcðrÞc†σr creates the local

Bloch eigenstates of ĥc, whereas ðμnk;rc ; νnk;rcÞT and

Enk;rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2nk;rc þ jΔnk;rc j2

q
are the Bogoliubov wave func-

tion in this local Bloch representation and the eigenenergy,
respectively, and Δnk;rc is the local momentum-space
superconducting pairing function. The quasiparticle oper-
ators not only define the excitations of the local
Hamiltonian, but also determine the ground state of the
local Hamiltonian with annihilation operators
jGi ¼ N

Q
nσk γnσk;rc j0i. Here N is the normalization

factor and j0i is the vacuum for electrons.
Now we construct a quasiparticle wave packet centered

around (rc, kc), with the local creation operators acting on
the superconducting ground state [24],

jΨn↑ðrc; kc; tÞi ¼
Z

½dk�αðk; tÞγ†n↑k;rc jGi; ð2Þ

where
R ½dk� is shorthand for

R
dmk=ð2πÞm with m the

dimension of the system. The envelope function αðk; tÞ is
sharply distributed in reciprocal space so that it makes
sense to speak of the wave vector kc ¼

R ½dk�jαðk; tÞj2k of
the wave packet. With the SU(2) spin rotation symmetry,
the equations of motion for quasiparticles of up and down
spins take the same form. Thus we only demonstrate the
spin-up wave packet. Before proceeding we also note that,
while the momentum-space Berry curvature can be recon-
structed from the Bogoliubov–de Gennes formalism in the
Nambu form [7,21], the superconductivity induced phase-
space Berry phase effects related to the charge dipole,
gauge field, and supercurrent addressed below have not
been presented previously.
Spin center and charge dipole of the wave packet.—For

Bloch electrons, the wave packet center is simply the
charge center. However, for superconducting quasipar-
ticles, the charge center is elusive, as the mean-field (bare)
quasiparticles are momentum-dependent mixture of elec-
trons and holes, with vanishing effective charge at the
excitation gap. Moreover, if the Coulomb interaction is
considered, it was shown that the renormalized quasipar-
ticles are charge neutral [24,26]. On the other hand, spin is a
conserved quantity in the absence of spin-orbit coupling,
hence the spin center serves physically as the center of a

wave packet. For this purpose, we consider the spin density
operator ŜðrÞ ¼ c†↑;rc↑;r − c†↓;rc↓;r and calculate its wave
packet averaging SðrÞ ¼ hΨjŜðrÞjΨi − hGjŜðrÞjGi. This
gives the distribution of spin on the wave packet, and its
center, the spin center, is given by [25]

rc ≡
Z

drSðrÞr ¼ ∂γc
∂kc þ hϕji∇kcϕi − ρc∇kcθc; ð3Þ

where θc ¼ 1
2
argΔnkc;rc is related to the phase of the

superconducting order parameter, ρc ¼ ξnkc;rc=Enkc;rc
measures the charge of mean-field quasiparticles, jϕi is
the periodic part of the Bloch state jψnσkc;rci, and
γc ¼ − arg αðkc; tÞ is the phase of the envelope function.
The Berry connections contain not only the Bloch part
Ab

kc
¼ hϕji∇kcϕi from the single-electron band structure,

but also the superconducting part Asc
kc
¼ −ρc∇kcθc from

the momentum dependence of the superconducting order
parameter. Note that a similar but different construction
involving the momentum-space gradient of the phase of the
order parameter was studied in [27].
The spin center is not sufficient to describe the

coupling of quasiparticles with electromagnetic fields,
which would inevitably involve information on the charge
distribution upon the spread of a wave packet. Since
the charge distribution is not centered at rc, there should
be a charge dipole moment associated with a wave packet.
Indeed one can consider the charge density operator
Q̂ðrÞ ¼ eðc†↑rc↑r þ c†↓rc↓rÞ, and its wave packet averaging

QðrÞ ¼ hΨjQ̂ðrÞjΨi − hGjQ̂ðrÞjGi provides a proper def-
inition for the charge dipole moment [25]

d≡
Z

drQðrÞðr − rcÞ ¼ eðρ2c − 1Þ ∂θc∂kc : ð4Þ

It is nonzero only in the case of a momentum-dependent
phase of superconducting order parameter. Furthermore, if
the external-field-free system has either time-reversal
(space-inversion) symmetry, d is an even (odd) function
in momentum space, as can be inspected from the semi-
classical equations of motion proposed later.
Berry curvatures and semiclassical dynamics.—The

distinctive properties of the wave packet are anticipated to
strongly affect its semiclassical dynamics determined by the
Lagrangian L¼hΨjiðd=dtÞ−ĤcjΨi−hGjiðd=dtÞ−ĤcjGi
[9] and should be embodied in various Berry curvatures
characterizing the dynamical structure. Adopting the circular
gauge AðrcÞ ¼ 1

2
B × rc, which is suitable for the approx-

imately uniform magnetic field in regions far away from
vortex lines, after some algebra we get [25] (hereafter the
wave packet center label c is omitted for simplicity)
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L¼−Eþk · _rþðAb
r −ρvsþB× d̃Þ · _rþðAb

k−ρ∇kθÞ · _k:
ð5Þ

Here the coupling of the wave packet to the magnetic field
involves the charge dipole and gives B × d̃, with d̃ ¼ d=2.
Additionally, vs ¼ ∇rθ − eA is half of the gauge invariant
supercurrent velocity, and Ab

r ¼ hϕji∇rϕi is the real-space
Berry connection of the single-electron wave function.
The structure of the Lagrangian implies that the total

Berry connections in the momentum and real space take the
forms of Ak ¼ Ab

k − ρ∇kθ and Ar ¼ Ab
r − ρvs þ B × d̃,

respectively. Various Berry curvatures are then formed as
Ωλαλβ ¼ ∂λαAλβ − ∂λβAλα , where λ ¼ r, k, and α and β are
Cartesian indices. In particular, Ωkαkβ and Ωrαrβ are anti-
symmetric tensors, whose vector forms read, respectively,

Ωk ¼ ih∇kϕj × j∇kϕi −∇kρ ×∇kθ ð6Þ

and

Ωr ¼ ih∇rϕj × j∇rϕi þ eρB −∇rρ × vs þ∇r × ðB × d̃Þ:
ð7Þ

The first terms in these two equations are the familiar Berry
curvatures from the single-electron band structure [9],
while other terms involve superconductivity. One can
readily verify that the superconductivity induced Ωk
coincides with that obtained from the Bogoliubov–de

Gennes equation [7]. Moreover, the charge dipole and
supercurrent are embedded in the superconductivity
induced Ωr.
Regarding the phase-space Berry curvatureΩkr, there are

remarkable qualitative differences from that for Bloch
electrons, namely Ωkr ¼ 0 and Ωkr ≠ 0, respectively, in
normal and superconducting states subjected to scalar
perturbations. The physics can be easily understood by
thinking with the Nambu space, in which the scalar
perturbation in the electronic Hamiltonian is endowed with
a spin structure. Thus, the usual scalar field felt by electrons
is no longer scalar for superconducting quasiparticles.
Nonzero Ωkr will play a vital role in a number of
experimental measurables [9]. For example, in the presence
of pure magnetic perturbations, its trace reads

Tr½Ωkr� ¼ −∇kρ · vs − eρB · ð∇kρ × ∇kθÞ: ð8Þ

As will be shown later, this trace of the Berry-curvature
tensor plays an important role in the geometric modulations
to the quasiparticle density of states [9].
With the above Berry curvatures, the Euler-Lagrange

equations of motion for superconducting quasiparticles
possess the same noncanonical structure as for Bloch
electrons [9]. Having realized this, we neglect the Berry
curvatures from Bloch band structures for simplicity and
focus on those originated from superconductivity. Thus, the
equations of motion read

_r ¼ ∇kEþ _k × ð∇kρ ×∇kθÞ þ∇kðρvs − B × d̃Þ · _r − _r ·∇rðρ∇kθÞ;
_k ¼ −∇rEþ _r × ðeρB −∇rρ × vs þ∇r × ðB × d̃ÞÞ −∇rðρ∇kθÞ · _kþ _k ·∇kðρvs − B × d̃Þ: ð9Þ

In the absence of superconductivity, ρ ¼ 1, d̃ ¼ 0, and θ ¼
0 are all constants, and all the derivatives with respect to
these quantities in Eq. (9) vanishes. Hence the equations of
motion reduce to the usual ones for electrons [8]. For trivial
superconducting pairing, the momentum-space Berry con-
nection vanishes but the real-space one may still survive due
to the supercurrent velocity:Ar ¼ −ρvs. The resulting Berry
curvature in real space is given by Ωr ¼ eρBþ∇rρ × vs.
The equations of motion describe the quasiparticle dynamics
subjected to background superflow and take a similar form
to those for bosonic Bogoliubov quasiparticles in a Bose-
Einstein condensate with a vortex [28].
Equation (9) is the central result of this Letter. It provides

a framework to understand quasiparticle dynamics in
superconductors subjected to various perturbations. In
the following, we apply this semiclassical theory to
calculate several properties of superconductors.
Density of states.—A most direct consequence of the

Berry curvatures appearing in the equations of motion is the

breakdown of the phase-space volume conservation. As a
result, the phase-space measure Dðr; kÞ is modified by
Berry curvatures [11], which to the first order of the spatial
inhomogeneity can be expressed as

Dðr; kÞ ¼ 1þ TrΩkr −Ωr ·Ωk: ð10Þ

The modification may originate from various perturbations,
such as the supercurrent and magnetic field. We note that
∂D=∂B ¼ 0, since the relevant terms in TrΩkr and Ωr ·Ωk
cancel each other, in sharp contrast to the case of Bloch
electrons [11]
D would influence the local density of states, which is the

momentum integration of the quasiparticle spectra function

nðr;ωÞ ¼
Z

½dk�Dðr; kÞ½jμj2δðω − EÞ þ jνj2δðωþ EÞ�:

ð11Þ
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This local density of states is proportional to the differential
conductance, which can be directly measured by scanning
tunneling microscopy [29]. D would also influence the
momentum-space density of states

nðkÞ ¼
ZZ

dωdrDðr; kÞ½jμj2δðω − EÞ þ jνj2δðωþ EÞ�

ð12Þ

given by the real-space and frequency integrations
of the spectra function, which can be measured by the
momentum and energy resolved tunneling spectroscopy
[30]. In particular, in the case of a small supercurrent,
we have D ¼ 1 −∇kρ · vs according to Eq. (8). This
deviation of D from unity leads to the following
modifications to the aforementioned densities of states:
δnðr;ωÞ¼−

R ½dk�vs ·∇kρ½jμj2δðω−Er;kÞþjνj2δðωþEr;kÞ�
and δnðkÞ ¼ −

R ½dr�vs ·∇kρ. These modifications depend
on the direction of the supercurrent and hence could be
experimentally verified by injecting supercurrent on different
directions.
Thermal Hall transport.—The semiclassical theory can

also be employed to study transport properties in super-
conductors such as the intrinsic thermal Hall effect.
Compared to the edge-state analysis [21,22], our theory
not only yields the quantized thermal Hall conductivity
contributed by topological edge states but also renders
information on bulk quasiparticles in intrinsic thermal
transport. Compared to Green’s function method [18–20],
the semiclassical theory has a remarkable advantage of
obtaining the transport component of the current [17,31]
without requiring exact but involved determination of the
energy magnetization of superconducting quasiparticles.
Here we sketch the key steps from the semiclassical

equations toward the thermal Hall transport. We start from
the semiclassical expression for the local energy current
density jQ ¼ R ½dk�DðkÞfðEk; TÞEk_r [32] where fðEk; TÞ is
the Fermi-Dirac distribution at temperature T. Then we
substitute the equation of motion for _r in the absence of
magnetic field and find jQ ¼ −∇T × ð∂=∂TÞ R ½dk�hΩkþ
∇ ×

R ½dk�hΩk, where we introduce the auxiliary function
hðEk; TÞ ¼ −

R
∞
Ek

dηfðη; TÞη. Now the second term is a
circulating current that should be discounted, leaving the
transport current jQtr ¼ R ½dk�ð∂h=∂TÞΩk ×∇T. The Hall
response of this current is given by

κqxy ¼ 2

T

Z
½dk�ðΩkÞz

Z
∞

Ek

dηη2f0ðη; TÞ; ð13Þ

where the factor 2 denotes the spin degeneracy.
The above formula accounts for the contribution from

quasiparticles beyond the superconducting condensate. It is
physically reasonable to make the connection κ0þκqxy¼ κBdGxy
between this “quasiparticle plus condensate” description and

the Bogoliubov–de Gennes (BdG) one [20]. Here κ0 is the
thermal Hall conductivity contributed by the condensate and
κBdGxy ¼ ð1=TÞ R ½dk�ðΩkÞzð

R∞
Ek

−
R∞
−Ek

Þdηη2f0ðη; TÞ is the
conductivity obtained using the particle-hole symmetric
BdG bands. In κBdGxy the spin degeneracy and the particle-
hole redundancy cancel out, and −Ek means the BdG
“valence band” whose Berry curvature is −ðΩkÞz. The above
connection enables us to obtain the condensate contribution
κ0 ¼ −ð1=TÞ R ½dk�ðΩkÞz

R
∞
−∞ dηη2f0ðη; TÞ ¼ πC1k2BT=6ℏ,

with the Chern number C1.
Model illustration: Twisted-bilayer graphene with dþ

id superconductivity.—To illustrate the application of the
semiclassical theory, we consider the twisted-bilayer gra-
phene system that has been proposed to support a topo-
logical chiral d-wave superconducting state [33–36]. We
take the following effective four-band tight-binding
Hamiltonian [23]:

H ¼ −μ
X
i

c̃†i c̃i þ t1
X
hi;ji

c̃†i c̃j þ
X
½i;j�

c̃†i ½ðt2σ0 þ it3σyÞ

⊗ σ0�c̃j þ H:c:; ð14Þ

where c̃†i ≡ ðc†i;x;↑; c†i;y;↑; c†i;x;↓; c†i;y;↓Þ is the electron crea-
tion operator with two distinct orbitals α ¼ ðpx; pyÞ, σ0;y
are the Pauli matrices, ti (i ¼ 1, 2, 3) are hopping
parameters, and hi; ji and ½i; j� represent the summations
over the nearest and next-nearest neighbors within the same
sublattice, respectively. We diagonalize this Hamiltonian
and find two bands that intersect with the chemical
potential [25]. Superconductivity in twisted-bilayer gra-
phene with dx2−y2 þ idxy pairing symmetry can be
described by the superconducting gap function in the form
of [2,37,38] ΔðkÞ ¼ P

3
i¼1Δi cosðk · Ri − φkÞ, with Δi, φk

and Ri detailed in the Supplemental Material [25].
First we calculate the momentum-space Berry curvature

by Eq. (6) for this tight-binding model. In Fig. 1(a), we
demonstrate the Berry curvature for one band with typical
band parameters given in Ref. [23] and symmetric dx2−y2
and dxy gaps. The band structure of the tight-binding model
has trivial topology, and the Berry curvatures are entirely
contributed by the superconducting gap function. Because
of the particle-hole symmetry in superconductors, the Berry
curvatures concentrate around the Fermi surface. The
distribution has symmetric peaks reflecting the D3 sym-
metry of the lattice structure and the gap function.
The temperature dependence of the quasiparticle thermal

Hall conductivity is shown in Fig. 1(b). It has a near
exponential dependence on the temperature at the low
temperature regime and becomes an approximated linear
function at higher temperatures. We also show the modu-
lation to the momentum-space density of states due to a
uniform supercurrent in Fig. 1(c), which concentrates
around the Fermi surface. This modulation depends on
both the amplitude and direction of the supercurrent (details

PHYSICAL REVIEW LETTERS 126, 187001 (2021)

187001-4



in the Supplemental Material [25]). These features would
be helpful for identifying the dþ id pairing in twisted-
bilayer graphene systems.
Finally, we consider the local density of states modu-

lations from a supercurrent. In Fig. 1(d), only the con-
tribution from one of the two bands at the Fermi surface is
shown, and the contributions by the two bands cancel out
for this toy model. Given that these two bands originate
from chiral p orbitals with opposite chirality [23], by
constructing a junction between a two-dimensional system
with asymmetric valleys and the twisted-bilayer graphene,
it is possible to achieve a chirality-sensitive tunneling
measurement to observe the modulation by one band.
On the other hand, we also show in detail in the
Supplemental Material [25] that there are other model
systems with nonzero local density of states modulations.
Conclusion.—In summary, we derived the semiclassical

equations of motion for superconducting quasiparticle
wave packets and identified various Berry curvature con-
tributions in momentum space, real space, and phase space.
We demonstrated the power of the theory with examples
such as the density of states modulation and the thermal
Hall transport and applied the theory to several model
systems. Our theory opens up a new route to study rich
Berry-phase effects on equilibrium and transport properties
of superconducting quasiparticles. A subject of particular

interest is the charge current [39,40]. As the charge current
carried by bare mean-field quasiparticles is nonconserved
[39], to make a conserved current entails an elaborate
account of the condensate backflow [24]. Indeed, the idea
and ingredients of our theory, such as the charge dipole and
Berry curvature, have been shown recently to play a role in
discussing a conserved charge current at equilibrium [41].
Besides, it is interesting to study effects due to higher
moments of a quasiparticle wave packet, which may
depend on its shape [42].
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