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Critical magnetic fields and electron pairing in magic-angle twisted bilayer graphene
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The velocities of the quasiparticles that form Cooper pairs in a superconductor are revealed by the upper
critical magnetic field. Here we use this property to assess superconductivity in magic-angle twisted bilayer
graphene (MATBG), which has been observed over a range of moiré band-filling, twist angle, and screening
environment conditions. An average Fermi velocity can be defined as v∗

F ≡ kBTc�c/h̄, where Tc and �c are
the critical temperature and magnetic length, respectively. An advantage of this definition is that v∗

F can be
directly extracted from the existing experimental data. Mean-field theory calculations of upper critical fields in
model superconductors are consistent with the expectation that Fermi velocities defined in this way are nearly
independent of the strength of pairing interaction. Moreover, for fixed strength pairing interaction, minima in v∗

F

as a function of band filling are coincident with maxima in Tc, as expected from the McMillan formula. Since
no association between Tc maxima and v∗

F minima is present in MATBG experimental data, we argue that the
pairing interaction in MATBG is strongly filling-factor dependent. Any theory of MATBG superconductivity
must explain this dependence, which is apparently primarily responsible for the observed superconducting
domes.

DOI: 10.1103/PhysRevB.107.024509

I. INTRODUCTION

The observation of superconducting domes near corre-
lated insulating states in magic-angle twisted bilayer graphene
(MATBG) [1,2] has stimulated interest in achieving a full
microscopic understanding of this relatively simple elec-
tronic system [3–20]. The electronic properties of MATBG
devices are extremely sensitive to multiple tuning knobs, es-
pecially electrostatic doping and twist angle [1,2,9], but also
interlayer separation [3,21], vertical displacement field [3],
and three-dimensional screening environment [22–24]. The
tunability of MATBG makes it a particularly appealing ex-
perimental platform for the exploration of strong-correlation
superconductivity.

In MATBG, as in many other superconductors, observa-
tions that clearly distinguish between purely electronic pairing
mechanisms, possibly related to the correlated insulating
states [25–36], and conventional phonon-mediated electron
pairing [37–39] are sparse. A possible difference between
purely electronic and electron-phonon mechanism of super-
conductivity is that in the former case the effective pairing
interaction is likely to be flat-band-filling dependent [30–33].
For example, pseudospin paramagnon-mediated effective in-
teractions tend to be enhanced close to half band fillings [40].

Since the superconducting critical temperature Tc is deter-
mined by the product of the Fermi-level density of states and
the strength of pairing interaction, an accurate determination
of the electronic structure is extremely helpful for identifying
the microscopic pairing mechanisms. However, in contrast to
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conventional metals, the electronic structure of the flat bands
in MATBG is so sensitive to the details of model parameters
and also to dielectric screening environment that it is difficult
to draw conclusions. This is especially true when the ubiquity
of Fermi-surface reconstructions related to broken flavor sym-
metries is acknowledged [41–43]. Therefore, detailed band
structure properties are not easily predicted theoretically, and
are in all likelihood device dependent.

In this work, we show that the key Fermi-level band
structure properties can be determined experimentally by
combining measured Tc and critical perpendicular magnetic
field Hc2 to determine the average Fermi velocity v∗

F ≡
kBTc�c/h̄ of the quasiparticles that form Cooper pairs. Here
�c = √

�0/2πHc2 with the superconducting flux quantum
�0 = 2e/hc. Such a definition is motivated by the obser-
vation that superconductivity is suppressed at finite pairing
momentum q = 1/� because the electrons that form Cooper
pairs differ in energy by ∼(dεk/dk)/� ∼ h̄vF /�, and that it
is lost in mean-field theory when this difference is compa-
rable to kBTc. Microscopically, superconductivity is lost in a
magnetic field because Landau-level Cooper pair states are
formed from individual electron states that differ in energy
by ∼h̄vF /�c [44].

Both Tc and Hc2 can be calculated within mean-field the-
ory by realizing that the maximum pairing momentum qc =
1/�c (see Appendix B), enabling close comparisons between
experimental and theoretical results for v∗

F . For a pairing
interaction that is independent of band filling, e.g., optical-
phonon-mediated pairing, our calculations show that the Tc

exhibits a correlation with v∗
F that is opposite to that seen

in experiment. Specifically, a robust correlation between Tc

maxima and v∗
F minima occurs in theory when the Fermi level

is close to the van Hove singularity (VHS) of density of states.
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TABLE I. Experimental results for the superconducting critical
temperature Tc, critical perpendicular magnetic field Hc2, Pauli limit
HP, and the extracted average Fermi velocity v∗

F for MATBG in a
variety of experiments with different twist angles θ , band fillings ν,
and screening environments.

θ (◦) ν Tc (K) Hc2 (mT) HP (T) v∗
F (104m/s) Ref.

1.05 −2.02 1.7 3.15 [1]
1.16 −2.15 0.5 125 0.93 0.34

1.27 −2.33 3.1 210 5.74 1.54 [3]
1.27 −2.62 2 72 3.7 1.78

−2.31 3.1 180 5.74 1.67 [9]
1.1 −1 0.14 100 0.26 0.10

0.67 0.16 300 0.3 0.07
1.48 0.65 400 1.2 0.23

1.15 −1.6 0.92 220 1.7 0.46 [22]
1.8 0.42 26 0.78 0.56

1.04 −2.43 1.3 >50 2.41 <1.38 [23]
1.09 −2.79 2.5 45 4.63 2.78
1.18 −2.5 0.7 >60 1.3 <0.68
1.12 −2.47 4 >50 7.4 <4.24

These findings are also valid for Bistritzer-MacDonald (BM)
models that account for nonlocal interlayer tunneling and
Hartree-Fock self-energy corrections. In experiment, however,
it appears that moving closer to van Hove singularities is
actually associated with a suppression of superconducting
Tc’s [20,45–47], which argues against conventional phonon-
mediated pairing.

Table I summarizes experimental data and extracted v∗
F

for MATBG superconductors. We note that the experimen-
tal values of v∗

F in Table I are typically 100 or more times
smaller than the Dirac velocities of isolated graphene sheets,
demonstrating the crucial role of the dramatically flattened
moiré bands [48]. The main point we wish to make here,
however, is that experimental critical temperature maxima,
which always occur in a narrow range of filling factor near
ν = −2.3 [1,3,9,19,23], do not correlate with average Fermi
velocity minima as they would in any theory in which pairing
is mediated by phonons, or other bosons that are insensitive
to ν.

This paper is organized as follows. In Sec. II, we introduce
the band structure model, the Hartree-Fock self-energy correc-
tion, and the pairing interaction model employed in this study.
In Sec. III, we briefly describe microscopic mean-field calcu-
lations of critical temperatures and critical magnetic fields. In
Sec. IV, we present the main results of this work, contrasting
the experimental and theoretical correlations between critical
temperature and average Fermi velocity. In Sec. V we discuss
the implications of the experimental correlations between Tc

and v∗
F , and present our conclusions.

II. THEORETICAL MODEL

A. Band structure

In the BM model for MATBG [48], the interlayer tunnel-
ing strengths are approximated by their values at K and K ′

points of the graphene Brillouin zone (BZ). This amounts to
assuming the interlayer tunneling is local in the real space. To
capture the particle-hole asymmetry of the flat bands predicted
by ab initio calculations [49,50] and revealed in experimental
measurements [3,4,9,22,23], nonlocal interlayer tunneling has
to be taken into account in the BM model [49,51]. The result-
ing K-valley projected Hamiltonian is given by

H0 =
[−iνF σ−θ/2 · ∇r T (r, r′)

T †(r, r′) −iνF σθ/2 · ∇r′

]
, (1)

where σθ = ei(θ/2)σz (σx, σy)e−i(θ/2)σz , σx,y,z are Pauli matrices
acting on sublattice, and vF ∼ 106 m/s is the Fermi velocity
of Dirac electrons in monolayer graphene. As detailed in
Appendix A, the nonlocal interlayer tunneling

T (r, r′) =
2∑

n=0

∑
k

Tn(k)eiqn·reik·(r−r′ ), (2)

where the tunneling matrix Tn(k) is wave vector dependent
and can be expanded to linear order of k as

Tn(k) = Tn[1 + ξ (R̂2nπ/3ekD ) · (k − kD)/kθ ]. (3)

Here ξ = (kθ /tkD )∂tk/∂k|k=kD is a dimensionless coefficient
characterized by the slope of interlayer tunneling amplitude
tk at Dirac point kD, R̂φ denotes the two-dimensional (2D)
rotation matrix with angle φ, and ekD = kD/kD is unit vector
along �-K direction of the graphene BZ. In the above model,
the strength of nonlocal tunneling is controlled by ξ , which
in turn controls the degree of asymmetry of the electron and
hole flat bands [51]. The local interlayer tunneling matrix Tn

is defined as

Tn = w0σ0 + w1[cos(2nπ/3)σx + sin(2nπ/3)σy], (4)

where w0 and w1 are energies of interlayer hopping between
the same (AA) and different (AB) sublattices [48]. In the fol-
lowing calculations, we choose finite values of η = w0/w1 <

1 to account for the lattice relaxation effect that becomes
dramatic at small twisting angles [49].

B. Hartree-Fock self-energy

The long-range Coulomb interaction is demonstrated to
have a dramatic renormalization effect on the single-particle
band structure of MATBG [41–43,52–54]. In this work, we
mainly focus on the band renormalization of Coulomb interac-
tion within self-consistent Hartree-Fock (HF) approximation.
The Coulomb interaction is described by

Hee = 1

2

∑
αα′

∑
q

vαα′ (q)ρ̂α (q)ρ̂α′ (−q), (5)

where the lumped notation α = (lτ sσ ) with l , τ , s, and σ

specifying layer, valley, spin, and sublattice, ρ̂α (q) denotes
electron density operator, and Coulomb potential vll ′ (q) =
(2πe2/εqq)e−qd (1−δll′ ) with d the interlayer distance. The
metallic gate screening effect is incorporated into the q-
dependent dielectric constant εq (see details in Appendix C).
Within HF approximation, the band structure is calculated by
solving

H(k) = H0(k) + �HF(k), (6)
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FIG. 1. (a) Schematic diagram of a moiré Brillouin zone (MBZ)
and four shells of reciprocal lattice vectors. (b) Band structures of
MATBG for different values of flat-band filling ν after including the
HF self-energy corrections. These results are calculated by choosing
twist angle θ = 1.05◦, interlayer tunneling ratio η = w0/w1 = 0.7,
nonlocal tunneling coefficient ξ = 0.1, gate-sample distance ds =
30 nm, and dielectric constant ε = 25.

where H0(k) is the noninteracting single-particle moiré band
Hamiltonian given by Eq. (1) and �HF(k) is the self-consistent
HF self-energy correction (see Appendix C). The exchange
interaction plays a crucial role in flavor symmetry breaking at
integer flat-band fillings [41–43] and the cascade phase transi-
tions [14,15]. For simplicity, we restrict ourselves to consider
the effect of exchange interaction on band reshaping without
symmetry breaking, and assume the interaction effects have
a smooth dependence on the band filling. Therefore, the HF
self-energy at a given band filling (�HF

ν ) can be approximated
by a linear interpolation between the HF self-energies cal-
culated at the empty flat bands (�HF

ν=−4) and filled flat bands
(�HF

ν=4), namely,

�HF
ν = 1

2

[(
1 + ν

4

)
�HF

ν=4 +
(

1 − ν

4

)
�HF

ν=−4

]
, (7)

where ν denotes the flat-band filling.
As a concrete example, Fig. 1(b) shows the band structures

calculated by solving Eq. (6). The particle-hole asymmetric in
the band structures calculated at charge neutrality ν = 0 arises
mainly from the nonlocal interlayer tunneling. Upon electron
(hole) doping, the HF self-energy raises (lowers) the band
energy around the κ and κ ′ points relative to the band energy
around γ point of the MBZ [53]. As explained in details
in Appendix C, such a behavior is the combined effects of
Hartree and Fock interactions, which shift the flat bands along
opposite directions and have negligible influence on bands
around MBZ center where the corresponding wave-function
distributions are relatively homogeneous in the real space. As
illustrated in Fig. 1(b), the HF self-energy tends to flatten
the flat-band bottom (top), moving the VHS to larger hole
(electron) filling. All these features are consistent with earlier
studies [51,53].

C. Pairing interaction

For the convenience of carrying out mean-field calcula-
tions for finite-momentum pairing states, we choose in-plane
optical phonon-mediated interaction as a putative pairing
mechanism because their interactions with graphene π bands
are well understood [37,55,56]. Since the flat-band width

in MATBG is small compared to the optical phonon en-
ergy (h̄ωE2 ∼ 196 meV and h̄ωA1 ∼ 170 meV [55]), the
phonon-mediated interaction is essentially instantaneous and
competes with repulsive Coulomb interactions. The optical-
phonon-mediated effective interaction that pairs electrons
from opposite valleys is [37]

Hep = −2g�

∑
lτ sσ

∫
dr ψ

†
lτ sσ (r)ψ†

l τ̄ s̄σ (r)ψl τ̄ s̄σ̄ (r)ψlτ sσ̄ (r)

− 2gK

∑
lτ sσσ ′

∫
dr ψ

†
lτ sσ (r)ψ†

l τ̄ s̄σ ′ (r)ψlτ s̄σ̄ ′ (r)ψl τ̄ sσ̄ (r),

(8)

where τ̄ = −τ , s̄ = −s, σ̄ = −σ , g� and gK are estimated
to be 52 and 69 meV nm2, denoting the electron-electron
attractive strengths mediated, respectively, by optical phonons
from the center (E2) and corners (A1/B1) of graphene BZ.

In Sec. II B, we discussed the renormalization effect
of long-range Coulomb interaction on the flat bands. For
the optical-phonon-mediated electron pairing, the repulsive
Coulomb interaction also plays a depairing role. In this study,
we assume that the Coulomb scattering between valleys is
negligible and take advantage of the repulsive intravalley
Coulomb interaction as a tuning knob to control the strength
of pairing interactions. Based on the above considerations, the
electron-electron depairing interaction is modeled by

Hee = u

2

∑
ll ′

∑
τ sσσ ′

∫
dr ρlτ sσ (r)ρl ′ τ̄ s̄σ ′ (r), (9)

where the density operator ρlτ sσ (r) = ψ
†
lτ sσ (r)ψlτ sσ (r),

ψlτ sσ (r) is the real-space electron annihilation operator, and u
is a tunable parameter. Coulomb repulsion is further assumed
to have the same strength for electrons from the same and
opposite valleys. We note, however, that in order to obtain
superconductivity u must be reduced to values that are even
smaller than what can be justified on the basis of naive screen-
ing considerations.

III. MEAN-FIELD CALCULATION

The conclusions in this paper are based on calculations
of the pairing wave-vector dependence of the condensation
energy for MATBG superconductors. We assume that super-
conducting condensation energy can be calculated using a
mean-field approximation, and that the relevant Cooper pairs
involve two electrons from opposite valleys. Given these as-
sumptions, the theoretical system properties depend on the
MATBG band structure model and the interaction Hamilto-
nian. The former is not accurately known at present, mainly
because bands are renormalized by interactions [41–43], and
because these renormalizations are sensitive to the three-
dimensional screening environment [52–54]. For example, the
Coulomb interaction tends to reduce the value η [57]. To
explore the possible role of band structure renormalization,
we will compare results for various band structure model
parameters, and for models that account explicitly for HF
self-energy corrections.
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A. Self-consistent gap equation

The mean-field calculations of the finite-momentum pair-
ing state are standard and briefly summarized in the following
paragraph. The Bogoliubov–de Gennes (BdG) Hamiltonian
for pairing wave vector q is given by

HBdG(q, k) =
[H(k) − μq �q(k)

�†
q(k) −HT(q − k) + μq,

]
, (10)

where each block acts on four-component sublattice spinors,
�q(k) denotes pairing potential, and �HF is incorporated
in H(k) via Eq. (6). The self-consistent gap equation then
reads as

�q(k) =
∑

k′∈MBZ

V (k, k′)Fq(k′), (11)

where V (k, k′) is the total interaction matrix including both
optical-phonon-mediated attraction and Coulomb repulsion
[see Eqs. (8) and (9)], Fq(k′) is Gorkov’s anomalous Green’s
function [58], and the summation of k′ is over the MBZ.
The chemical potential μq is determined self-consistently by
particle-number conservation.

Given a self-consistent BdG solution, the free energy of
superconducting state

Fs(q) = Cq + An0μq + 1

2β
Tr

∑
k

ln f [−Eq(k)], (12)

where n0 is the carrier density measured from charge neutral-
ity, A is the sample area, f (ε) is the Fermi-Dirac distribution
function, Eq(k) are the eigenvalues of the BdG Hamiltonian,
and Cq = − 1

2 Tr(F†
qVFq) is a double-counting correction. The

superconducting condensation energy is defined as δF (q) =
Fs(q) − Fn, where Fn is the normal-state free energy calcu-
lated by Eq. (12) for zero pair potential. We use numerical
results for the condensation energy as a function of q, band
filling ν, and model parameters to connect with experimental
observables.

B. Critical magnetic field

The critical magnetic field can be extracted from mean-
field calculations of the critical pairing wave vector qc (see
details in Appendix B). In the phenomenological Ginzburg-
Landau theory of an isotropic superconductor, the supercon-
ducting condensation energy at finite pairing wave vector q is
given by

δF (q) = δF0[1 − (q/qc)2]2, (13)

where δF0 is the condensation energy at q = 0 and qc is de-
fined as the wave vector where �q vanishes. Our microscopic
calculations are in close agreement with this expression and
can be fit to determine δF0 and qc. As explained in Ap-
pendix B, the critical perpendicular magnetic field is related
to qc by

Hc2 = �0q2
c/2π, (14)

with �0 the magnetic quantum flux. In addition, the super-
current density as a function of pairing wave vector can be
calculated via j = (2e/h̄)[∂F (q)/∂q].

IV. RESULTS

A. Bare band structure models

We first discuss results calculated with bare band structure
models. Since the interaction is local, the real-space pair po-
tential is conveniently parametrized by performing a Fourier
expansion. The coefficients of reciprocal lattice vectors in this
expansion are plotted as a function of pairing wave vector
in the MBZ in Fig. 2(a), where the homogeneous pairing
potential (Q0) exhibits a largest magnitude. In the inset of
Fig. 2(a), the asymmetric behavior of �PQ1

is due to rotational
symmetry breaking at finite-wave-vector pairing. Figures 2(b)
and 2(c) delineate the pairing-wave-vector dependence of
δF (q), which possesses a minimum at q = 0, indicating that
the zero-q pairing state is the ground superconducting state.
Moreover, δF (q) is nearly isotropic and vanishes at a critical
pairing wave vector qc, which is small compared to the MBZ,
indicating that the superconducting coherence length is many
times of the moiré period.

Figures 3(a) and 3(b) show mean-field calculations of the
zero-q critical temperature Tc, and the critical perpendicular
magnetic field Hc2 extracted from finite-q calculations. As
expected, Tc decreases monotonously upon strengthening the
repulsive Coulomb interaction between electrons. Domelike
features are revealed in Tc as a function of band filling, which
are reminiscent with the superconducting domes seen exper-
imentally, but are associated here with maxima centered on
the flat-band VHSs. Hc2 possesses sharp peaks at the VHSs
consistent with the phenomenological argument that Hc2 is
proportional to the effective mass of the paired electrons (see
details in Appendix B). Away from the VHSs, Hc2 decreases
quickly and approaches zero when Tc becomes zero. Fig-
ure 2(c) shows the average Fermi velocity extracted from
the mean-field results of Tc and Hc2 via v∗

F = kBTc/h̄qc. The
average velocities are 100 or more times smaller than the
Dirac velocity of isolated graphene sheets vD ∼ 106 m/s, in
agreement with experiment. In particular, v∗

F exhibits two
prominent features: First, v∗

F is nearly independent of the
pairing interaction strength and is therefore almost perfectly a
pure band structure property. Second, v∗

F possesses a negative
correlation with Tc characterized by V-shaped minima near the
VHSs, where Tc exhibits maxima.

B. Band structure model with HF self-energy

As illustrated in Fig. 1(b), the HF self-energy correction
results in band-filling-dependent band structures. We next
examine the influence of HF self-energy corrections on v∗

F
by performing similar mean-field calculations using the band
structures given in Fig. 1(b). Figures 4(a)–4(c) show the
mean-field calculations of Tc, Hc2, and v∗

F , respectively. As
indicated in the density of states (DOS) in Fig. 4(c), the
particle-hole asymmetry induced by the nonlocal interlayer
tunneling is further enhanced by the interaction effect. On
the hole-doping side, the VHS moves to a larger hole filling
close to ν = −3. If we take account of the flavor symmetry
breaking near ν = −2 indicated experimentally, this result is
consistent with the observation [22,23] that the VHS usually
appears for ν ∈ (−4,−3). HF band renormalization leads to
multiple VHSs on the electron-doping side. The emergence
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FIG. 2. Finite-wave-vector superconductivity calculated within the bare band structure model of MATBG for twisting angle θ = 1.07◦.
(a) Fourier coefficients of the real-space pairing potential expanded up to four shells of the reciprocal lattice vectors, which are generated by
acting symmetry operations P̂ from point group C6 on Qi depicted in Fig. 1(a) with Q0 = 0. The inset shows �P̂Q1

for flat-band filling ν = −1
at small pairing wave vector qx , where the dashed curve corresponds to �Q1

. (b) Superconducting condensation energy normalized per moiré
supercell versus qx for different band fillings. The circles denote numerical results and solid curves are fits to Eq. (13). (c) Color scale plot
of −δF (q) within the MBZ (dashed hexagon) at ν = −1. These results are calculated by choosing η = 0.7, ξ = 0, and u = 40 meV nm2 that
yields Tc ∼ 1.7 K.

of a VHS around ν = 1 may explain the property that flavor
symmetry breaking appears around ν = 1, but is usually ab-
sent around ν = −1 [22,51]. The stronger VHS close to ν = 4
is mainly caused by the Hartree potential that flattens the
top of conduction band, as discussed in Sec. II B. Comparing
to the results for the bare band structure model, the richer
structure of the DOS for the HF model leads to richer structure
for Tc and Hc2 as functions of band fillings, as illustrated in
Figs. 4(a) and 4(b). Nevertheless, as shown in Fig. 4(c), we
find that the two prominent features of v∗

F revealed in the
bare band structure model remain valid: (i) v∗

F is nearly in-
dependent of the pairing interaction strength; (ii)v∗

F possesses
a V-shaped minimum near each VHS. Therefore, we conclude
that the correlation between Tc maxima and v∗

F minima is
robust.

C. Effect of Zeeman field

So far we have neglected both the possibility of flavor
symmetry breaking and the role of Zeeman coupling to
the electronic spin. Indeed, this assumption can be ques-
tioned since there is strong experimental evidence that the
strongest superconducting dome occurs in a region of band
filling where only two flavors are partially occupied and the
moiré flat bands have consequently reconstructed [1–15,41–
43,51]. If we were to assume that the superconducting state
near ν = −2.3 is spin polarized, with partially occupied va-
lence bands for two different valleys with the same spin, the
neglect of Zeeman coupling would be appropriate because
pairing breaking arises from the orbit effect of applied per-
pendicular magnetic field. The only difference between the
spin-polarized and spin-unpolarized calculations, then, would

FIG. 3. (a)–(c) Zero-q critical temperature Tc, perpendicular critical magnetic field Hc2, and average Fermi velocity v∗
F as functions of band

filling ν for several strengths of reduced Coulomb repulsion u in units of meV nm2. These results are calculated for a bare MATBG band
structure model with θ = 1.07◦, η = 0.7, and ξ = 0 (see main text). The dotted lines indicate the values of ν at which VHSs occur, as plotted
in (c). v∗

F in (c) exhibits a minimum where Tc in (a) is maximized.
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FIG. 4. (a)–(c) Zero-q critical temperature Tc, perpendicular critical magnetic field Hc2, and average Fermi velocity v∗
F as functions of band

filling ν for several strengths of Coulomb repulsion u in units of meV nm2. These results are calculated for a MATBG bands that take account
of HF self-energy corrections with θ = 1.05◦, η = 0.7, and ξ = 0.1. The corresponding band-filling-dependent band structures are depicted in
Fig. 1(b). No flavor symmetries are broken. The dotted lines indicate the values of ν at the dressed band VHSs occur. The dashed line in (c) is
the dressed band DOS. v∗

F in (c) exhibits minimum versus ν near each maximum in Tc versus ν.

be a change in how the intervalley electron-phonon inter-
actions enter the gap equation, leading simply to a change
in the effective pairing interaction strength which would not
alter our conclusions. On the other hand, if the superconduct-
ing state is spin singlet, the pair-breaking effect of Zeeman
coupling would need to be considered. In Table I, we have
listed Pauli critical fields extracted from experimental data
by using HP ≈ 1.85Tc (T). Since the Pauli limiting fields are
much larger than Hc2 for large Tc, experiments support the
conclusion that orbital coupling is the dominant pair-breaking
mechanism for perpendicular fields and justify our neglect of
Zeeman effect.

Since the inclusion of HF self-energy does not change the
correlation that peak values of Hc2 occur at VHSs, we take the
bare band structure model as an example to study the effect
of Zeeman field on Hc2. As shown in Fig. 5, we compare
the critical magnetic fields calculated by including only the
Zeeman effect (dashed line manifesting as Pauli limit), only
the orbital effect (solid line), and both effects (circles). Close
to the VHS, HP is comparable to Hc2 because the orbital effect
is suppressed due to the small Fermi velocities associated with
large effective mass of the paired electrons. Away from the
VHSs, however, HP is much larger than Hc2, consistent with
experimental observations summarized in Table I. The two
peaks in HP on the two sides of the VHS arise from Zee-
man splitting of the flat bands. The critical fields calculated
including both of Zeeman and orbital effects show that Hc2 is
nearly unchanged by Zeeman coupling except when the Fermi
level is very close to the VHS, where HP and Hc2 become
comparable.

D. Acoustic phonons

We have so far not explicitly included acoustic-phonon-
mediated interactions, which may compete more successfully
with Coulomb interactions because they are retarded. We con-
sider the in-plane longitudinal acoustic phonons and adopt
a Debye approximation for the phonon energy dispersion
ωq = vph|q|, where vph = 2 × 104 m/s is the phonon velocity

in an isolated graphene sheet. We further use the deformation
potential approximation and the electron-phonon coupling de-
scribed by Hamiltonian

Hep = −iD√
2Aρm

∑
l,q

√
h̄

ωq
(q · êq)ρl (q)[al (q) + a†

l (−q)],

(15)
where A is the area of sample, êq is the displacement unit
vector of the longitudinal phonon, ρl (q) denotes the layer re-
solved electron density operator, al (q) and a†

l (−q) are phonon

FIG. 5. Critical magnetic fields calculated at zero pairing wave
vector by only including Zeeman coupling (HP), and extracted
from the critical pairing wave vector qc with (w/t) and without
(w/o) Zeeman coupling. In the presence of Zeeman coupling, Hc2 =
(�s/2π )qx,cqy,c, where qx,c and qy,c are the critical pairing wave vec-
tors along x and y directions. These results are obtained by choosing
θ = 1.07◦, η = 0.7, ξ = 0, and u = 30 meV nm2 without including
the HF self-energy correction.
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FIG. 6. (a) Fermi-surface averaged electron-acoustic phonon
spectral function α2F (ω) at the valence band VHS. The dotted and
solid lines are results obtained without (w/o) umklapp processes and
with (w/t) umklapp processes up to the fourth shell characterized by
Q4 in Fig. 1(a). (b) Electron-acoustic phonon coupling strength λ and
the estimated Tc for MATBG with θ = 1.07◦ and η = 0.7. The dotted
vertical lines in (b) show the positions of the VHSs.

annihilation and creation operators. In the following calcula-
tions, we choose the deformation potential D = 25 eV and
the mass density of monolayer graphene ρm = 7.6 × 10−8

g/cm2 [59–62].
The dimensionless electron-acoustic-phonon coupling

constant

λ = 2
∫

dω α2F (ω)/ω, (16)

where the Fermi-surface averaged electron-phonon spectrum
function is defined as

α2F (ω) = 1

NεF

∑
nm

∑
Q

∑
kk′∈MBZ

|gnm(Q; k, k′)|2

× δ(εnk − εF )δ(εmk′ − εF )δ(ω − ωph). (17)

In Eq. (17), NεF denotes the Fermi-level DOS, εnk is
the electron band energy with flat-band index n. The flat
bands’ projected electron-phonon coupling matrix is given
by gnm(Q; k, k′), where the reciprocal moiré lattice vector
Q 
= 0 corresponds to umklapp electron-phonon scattering
processes with phonon energy ωph = vph|k − k′ − Q|. The
in-plane acoustic phonon modes in the two graphene layers
can be combined into symmetric and asymmetric modes. Ear-
lier study shows that the interlayer moiré potential breaks
the asymmetric phonon mode into moiré phonon minibands
with gap opening at MBZ boundaries, while does not affect
the linear dispersion of the symmetric phonon mode [63].
For simplification, we calculate gnm(Q; k, k′) in this study by
directly folding the in-plane acoustic phonon mode of isolated
graphene into the MBZ and ignoring the renormalization ef-
fect of moiré potential on the asymmetric phonon mode.

As illustrated in Fig. 6(a), the electron-acoustic
phonon coupling is dominated by umklapp scatterings
consistent with the earlier study [64]. Figure 6(b)
shows the band-filling dependence of electron-phonon
coupling constant λ and the superconducting critical
temperatures estimated by McMillan formula Tc =
h̄ωln
1.2kB

exp [− 1.04(1+λ)
λ−μ∗(1+0.62λ) ], where the averaged phonon

frequency ωln = exp [(2/λ)
∫

dω ln (ω)α2F (ω)/ω] [65],
and the reduced Coulomb coupling strength is chosen as

μ∗ = 0.3 [39]. In contrast to the optical-phonon-mediated
interaction, retardation does supply a formal justification
for reduced Coulomb coupling [66], but since the phonon
and flat-band electronic energy scales are comparable, it
still does not justify the large reduction needed to match
experimental Tc scales by including only the low-energy flat
band of MATBG. That aside, it is clear in Fig. 6(b) that the
association of Tc maxima with flat-band VHSs applies equally
well to acoustic-phonon-mediated superconductivity.

In the above calculations, we choose bare band structure
model as an example for the illustration of acoustic phonon-
mediated superconductivity. Although the HF self-energy
tends to renormalize the flat-band structures, the conclusion
that Tc maxima is associated with flat-band VHSs does not
change as long as the pairing is in the weak-coupling BCS
regime characterized by kBTc � εF .

It has been argued that the deformation potential is strongly
screened by Coulomb interaction in graphene systems be-
cause the corresponding phonon mode couples to charge [67].
In contrast, the interaction between electrons and chiral
combination of longitudinal and transverse acoustic phonon
modes, or gauge phonons, is unscreened because gauge
phonons act as pseudovector potential and couple to current
instead of charge [68]. Based on the symmetry analysis of
electron-acoustic phonon coupling [69], the gauge phonon-
mediated electron-electron attraction possesses identical form
as the electron-electron attraction [first line on the right-hand
side of Eq. (8)] mediated by optical phonons around the BZ
center. Since the electron-gauge phonon interaction is almost
independent of band fillings, it is unlikely to alter the cor-
relation between Tc and VHSs, and therefore the correlation
between Tc maxima and v∗

F minima.

V. SUMMARY AND DISCUSSION

For a given pairing glue, weak-coupling BCS theory
predicts that superconducting Tc’s are positively correlated
with the DOS at Fermi level, which is determined by the
Fermi-surface size and the typical quasiparticle velocity.
In experiment [1,2,20] these quantities are often extracted
from measurements of the frequency and temperature depen-
dence of weak-field magnetic oscillations, which respectively
measure Fermi-surface area and cyclotron effective masses.
Magnetic oscillation measurements have been of limited value
in MATBG because the quasiparticle masses are large and the
samples are somewhat disordered. In this study we have pro-
posed that it is possible to gain insight into superconductivity
in MATBG by extracting the average Fermi velocities of the
quasiparticles that participate in pairing from a combination
of measured Tc and Hc2 values.

An experimental approach to Fermi velocity estimation is
needed in MATBG because quasiparticle band structures are
not reliably predicted by theory. The theory problem is very
challenging because (i) the cancellation effects that lead to
very flat bands, also lead to extreme dependence on band
structure model details and on twist angle, (ii) interactions
lead to strong and filling-factor-dependent band dispersion
renormalization that is imperfectly understood, and (iii) quasi-
particle bands are qualitatively sensitive to flavor symmetry
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breaking, also imperfectly understood, in the states from
which superconductivity emerges.

In support of our proposal, we have performed mean-field
calculations of the superconducting critical temperatures Tc

and critical magnetic fields Hc2 using a variety of plausible
band structure and pairing models. We find that the aver-
aged Fermi velocity defined by h̄v∗

F ≡ kBTc
√

�0/2πHc2 is
nearly independent of the pairing interaction, verifying that
it is almost entirely a property of the quasiparticles present
at the Fermi level. For a fixed pairing glue model we find
that v∗

F is always negatively correlated with Tc and that it
has a V-shaped cusp when the Fermi level is placed at the
flat-band VHS. By varying different types of model param-
eters (Sec. IV and Appendix D), we find that such a Tc-v∗

F
correlation is independent of the details of band structure,
which is sensitive to electrostatic doping, twisting angle [48],
strain [21,49], substrate environment [17,22,23]. Since the
experimental values of v∗

F , summarized in Table I, do not
show any indication of a such correlation between v∗

F and
Tc as the band filling is varied, we conclude that it is the
pairing glue that is mainly responsible for the shape and
position of the superconducting domes. The dependence of the
pairing glue on band-filling factor is likely due to short-range
spin and/or valley order fluctuations that are optimized for
superconductivity near the peaks of the experimental super-
conducting domes [40]. A number of interesting possibilities
for these fluctuations have already been proposed theoreti-
cally, including ferromagnetic fluctuations in systems with
interaction-enhanced intervalley scattering [36,40,53,70,71]
and skyrmion-mediated pairing [18] in systems with enhanced
intervalley coherence.
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APPENDIX A: NONLOCAL INTERLAYER
TUNNELING MODEL

Here we rederive the BM model of MATBG by including
the momentum dependence of the interlayer tunneling matrix,
which takes the following form:

[Tpk]σ ′σ = 1

N

∑
RR′

tσ ′σ (R + τσ − R′ − τ ′
σ ′ )

× eik·(R+τσ )−ip·(R′+τ ′
σ ′ )

= 1

�

∑
g1g2

tσ ′σ (k − g1)δk−g1,p−g′
2
ei(g1·τσ −g2·τσ ′ ), (A1)

where σ = A, B are sublattice indices, k and p are wave
vectors measured from the center of the graphene BZ, R are
the real-space positions of the graphene unit cells, τσ denotes
the sublattice position within a unit cell, the area of which is

� = √
3a2

0/2 with graphene lattice constant a0 = 2.46 Å, and
g1,2 are graphene reciprocal lattice vectors. In Eq. (A1), labels
with (without) primes are defined in the top (bottom) graphene
layer in MATBG. By keeping the dominant contribution of the
Fourier coefficient of the interlayer tunneling, we have

[Tpk]σ ′σ = 1

�

2∑
j=0

tσ ′σ (R̂2 jπ/3kD + δk)

× δk,p+R̂2 jπ/3kθ
ei(kD−R̂2 jπ/3kD )·(τσ −τσ ′ ), (A2)

where kD is the wave vector of K point of the BZ of the
bottom layer graphene, δk is measured from K point, and the
2D rotational operator is defined as

R̂θ =
(

cos θ − sin θ

sin θ cos θ

)
. (A3)

In the original BM model, tσ ′σ (R̂2 jπ/3kD + δk) ≈
tσ ′σ (R̂2 jπ/3kD) = tσ ′σ (kD) due to C3 symmetry. By keeping
the momentum dependence of tσ ′σ up to linear term,

tσ ′σ (R̂2 jπ/3kD + δk) = tσ ′σ (kD) + (R̂2 jπ/3ekD ) · (k − kD)

× (∂tσ ′σ /∂k)|k=kD , (A4)

where ekD = kD/kD is a unit vector along �-K direction within
graphene BZ. For simplification, we define a dimension-
less parameter ξ = (kθ /tσ ′σ )(∂tσ ′σ /∂k)|k=kD . Therefore, the
interlayer tunneling can be organized as Eq. (3), where the
hopping energies are given by w0 = �−1tAA(kD) and w1 =
�−1tAB(kD).

APPENDIX B: GINZBURG-LANDAU THEORY
OF SUPERCONDUCTIVITY

The Ginzburg-Landau (GL) theory of superconductivity is
based on the expansion of free energy of a system in powers
of superconducting order parameter [72]. In the presence of
magnetic field, the free energy

Fs = Fn +
∫

dr

[
h̄2

2m∗

∣∣∣∣
(

∇ − i
2e

h̄c
A

)
ψ

∣∣∣∣
2

+ α(T )|ψ |2

+β(T )

2
|ψ |4 + B2

8π

]
, (B1)

where ψ = √
nseiφ is the complex order parameter, φ is the

phase of order parameter, ns, m∗, and 2e are the density,
effective mass, and total charge of electron pair. By varying
the GL free energy with respect to magnetic vector potential
A and order parameter ψ∗, the supercurrent density

j = 2h̄ens

m∗

(
∇φ − 2e

h̄c
A

)
, (B2)

and the GL equation

1

2m∗

(
−ih̄∇ − 2e

c
A

)2

ψ + α(T )ψ + β(T )|ψ |2ψ = 0.

(B3)
The GL coherence length or magnetic length �c is defined as

�c =
√

h̄2/2m∗|α|. (B4)

024509-8



CRITICAL MAGNETIC FIELDS AND ELECTRON PAIRING … PHYSICAL REVIEW B 107, 024509 (2023)

(a) (b) (c)

FIG. 7. The effects of (a) Hartree, (b) Fock, and (c) Hartree-Fock self-energies on the flat bands of MATBG with θ = 1.05◦ at band filling
ν = ±4. The dashed curves show the noninteracting flat bands, where the particle-hole asymmetry is attributed to the nonlocal interlayer
tunneling described by Eq. (3). These calculations are performed by choosing η = 0.7, ξ = 0.1, ds = 30 nm, and the effective dielectric
constant ε = 25.

The upper critical magnetic field Hc2 of type-II supercon-
ductor can be estimated from Eq. (B3). When the externally
applied magnetic field is close to Hc2, the superconducting
order parameter ψ becomes small, and Eq. (B3) can be lin-
earized into

1

2m∗

(
−ih̄∇ − 2e

c
A

)2

ψ + αψ = 0, (B5)

which resembles the Schrödinger equation for a particle with
mass m∗ and charge 2e subject to magnetic field B = ∇ × A.
The solution of Eq. (B5) is Landau levels with |α| = h̄ωc(n +
1/2), where n are positive integers and ωc = 2eB/m∗c is
the cyclotron frequency. Upper critical magnetic field Hc2

is defined as the maximum magnetic field that validates the
solution, thus,

Hc2 = m∗c|α|/h̄e = �0

2π�2
c

, (B6)

where �0 = π h̄c/e ≈ 2.067 × 10−15 T m2 is the magnetic
(superconducting) quantum flux.

We next show that �c and Hc2 can be extracted from the free
energy for finite-momentum pairing superconducting state.
For pairing wave vector q, the real-space order parameter
can be written as ψ = √

ns(q)eiq·r. In the absence of external
magnetic field, the superconducting condensation energy is
reduced to

δF (q) = h̄2q2

2m∗ ns(q) + αns(q) + 1

2
βn2

s (q), (B7)

and Eq. (B3) reduces to

h̄2q2

2m∗ + α + βns(q) = 0. (B8)

Therefore, we have

δF (q) = − 1

2β

(
|α| − h̄2q2

2m∗

)2

= δF (0)[1 − (q/qc)2]2,

(B9)
where qc =

√
2m∗|α|/h̄2 = 1/�c is the critical pairing wave

vector defined by δF (qc) = 0. Equations (B4) and (B6)
lead to

Hc2 = �0q2
c/2π. (B10)

The supercurrent density of Eq. (B2) is reduced to

j = 2h̄ens(q)q/m∗ = 2ens(q)v, (B11)

where v = h̄q/m∗ is the velocity of Cooper pair. In this work,
we calculate the free energy as a function of pairing wave
vector within mean-field theory. By employing the relation
given in Eq. (B7), we have the supercurrent density

j = (2e/h̄)∂F (q)/∂q. (B12)

In the above derivations, α and β are assumed to be indepen-
dent of pairing wave vector q. Such an assumption in MATBG
can be justified by Fig. 2(b), where our numerical calculations
of δF (q) can be well fitted by Eq. (B9).

APPENDIX C: SELF-CONSISTENT
HARTREE-FOCK CALCULATIONS

The effects of Coulomb interaction on superconductivity
comprise of two aspects, renormalizing single-particle band
structure and breaking Cooper pair. Since the energy scale
of band renormalization is much larger than that of super-
conducting order parameter, the two effects may be treated
independently. In this section, we focus the band renor-
malization within the self-consistent HF approximation. For
MATBG, the Coulomb interaction can be organized as

Hee = 1

2

∑
αβ

∑
nmn′m′

∑
kk′k1k′

1

vαβ (k′ − k + Gn′ − Gn)

× ψ
†
n′α (k′)ψ†

m′β (k′
1)ψmβ (k1)ψnα (k)

× δk′−k+Gn′−Gn,k1−k′
1+Gm−G′

m
, (C1)

where the summation of wave vectors are over MBZ, the
lumped notation α = (lτ sσ ) with l , τ , s, and σ specifying
layer, valley, spin, and sublattice, and n, m, n′, m′ label moiré
reciprocal lattice vectors. The Coulomb potential

vαβ (q) = 2πe2

ε0ε(q)q
e−qd (1−δll′ ), (C2)

which is assumed to be independent of valley, spin, and
sublattice. Here ε0 is the vacuum permittivity, d is the inter-
layer distance, and the dielectric function ε(q) captures the
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FIG. 8. (a)–(c) Tc, Hc2, and v∗
F as functions of chemical potential μ measured from charge neutrality for each value of η. In these

calculations, we choose θ = 1.07◦ and u = 30 meV nm2. (d)–(f) Tc, Hc2, and v∗
F as functions of μ for several different twist angles. In these

calculations, we choose η = 0.7 and u = 20 meV nm2. Vertical arrows in (c) and (f) highlight the positions of flat-band VHSs.

screening effects, including the external and internal screening
as detailed below.

For external environment screening, we consider the
MATBG sample sandwiched by hexagonal born nitride (h-
BN) with a typical thickness of ds terminated by dual metallic
gates. Therefore, the screened Coulomb potential in the
MATBG layer can be obtained by solving the following
Poisson’s equation:

∇ · [ε(r)∇�(r)] = −4πeδ(z), (C3)

where the permittivity ε(r) takes a general matrix form. In this
study, we approximate ε(r) = diag(ε‖, ε‖, ε⊥) with ε‖ ≈ 6.9
and ε⊥ ≈ 3.48 being the in-plane and perpendicular permit-
tivity of h-BN [73]. By solving Eq. (C3),

1

εen
= 1√

ε‖ε⊥
tanh (

√
ε‖/ε⊥qds), (C4)

where anisotropic permittivity of h-BN leads to a reduction on
the Coulomb potential in the sandwiched MATBG layer.

For the internal screening, random-phase calculations
show that the static dielectric function possesses a nontrivial
momentum structure and is strongly enhanced near magic
twisting angle [74,75], where the active bands become ex-
tremely flat. For simplification, in this study, we adopt a
constant dielectric function to mimic the effect of internal

screening. Therefore, the Coulomb potential takes the follow-
ing form:

vαβ (q) = 2πe2

ε0ε̃q
e−qd (1−δll′ ) tanh

(√
ε‖
ε⊥

qds

)
, (C5)

where the constant ε̃ contains contributions from
√

ε‖ε⊥ and
the internal static screening effect.

Based on the above screened interaction model, the Hartree
self-energy

�H
nα,mα (k) = 1

A

∑
n′α′,k′

vαα′ (Gn − Gm)[ρ(k′)]m′α′,n′α′ , (C6)

where ρ(k) is the density operator and m′ = n + n′ − m. The
Hartree self-energy �H

nα,mα is independent of the moiré wave
vector k, and is diagonal in the layer, valley, spin, and sublat-
tice subspaces. The Fock self-energy

�F
nα,mβ (k) = − 1

A

∑
n′k′

vαβ (k − k′ + Gn − Gn′ )

× [ρ(k′)]n′α,(n′+m−n)β, (C7)

where the minus sign stems from exchange of fermions. The
Hartree-type energy correction

EH
c = − 1

2 Tr[ρ�H ], (C8)
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where ρ = ∑
k ρ(k). The Fock-type energy correction

EF
c = −1

2

∑
k

Tr[ρ(k)�F (k)]. (C9)

The total mean-field energy correction

Ec = EH
c + EF

c = −1

2

∑
k

Tr[ρ(k)�(k)], (C10)

where �(k) = �H + �F (k) is the HF self-energy. In the nu-
merical calculations, we choose the isolated bilayer graphene
with a relative rotation angle equaling to that of MATBG
as a reference system, and replace the density operator ρ(k)
appeared in the above equations by

δρ(k) = ρ(k) − ρ0(k), (C11)

with ρ0(k) the density operator of the reference system.
Figure 7 shows the effects of HF self-energy on the single-

particle band structure of MATBG. The results for ν = ±4
are obtained by solving Eqs. (C6) and (C7) self-consistently
until convergences are reached. As illustrated in Fig. 7(a), the
Hartree self-energy tends to shift the flat bands near MBZ
corners to lower (higher) energies upon emptying (filling) the
flat bands. The bands around γ point are almost unchanged.
In contrast, the Fock self-energy tends to influence the band
structure in an opposite way as illustrated in Fig. 7(b). The
synergistic effects of Hartree and Fock self-energies on band
structure are shown in Fig. 7(c), where the band edges become

flatter comparing to the noninteracting single-particle bands.
The linear interpolations of the results shown in Fig. 7(c) are
given in Fig. 1(b).

APPENDIX D: OTHER MODEL PARAMETERS

To further explore the correlation between Tc and ν∗
F , we

perform similar mean-field calculations by varying twisting
angle (θ ) and interlayer tunneling ratio (η). In Sec. IV B, we
show that the inclusion of HF self-energy in the band structure
model does not alter the correlation between Tc and ν∗

F . In
order to facilitate the numerical calculations, here we calculate
Tc and v∗

F within the bare band structure model by varying η

and θ . We note that, in order to indicate the changes of the
flat-band width, Tc, Hc2, and v∗

F are plotted versus chemical
potential μ instead of band-filling factor. Over the illustrated
parameter range studied in Fig. 8, the flat-band width is larger
at smaller η and larger θ . Accordingly, decreasing η or in-
creasing θ tends to reduce Tc as shown in Figs. 8(a) and 8(d),
where domelike features in Tc are peaked around the shifting
VHSs. As illustrated in Figs. 8(b) and 8(e), sharp peaks of
Hc2 are also found at VHSs, and the magnitude of Hc2 is dra-
matically suppressed for models with larger flat-band width.
The extracted v∗

F are plotted in Figs. 8(c) and 8(f), and are
as expected larger for larger flat-band widths. For every band
structure model, v∗

F possesses a V-shaped minimum near each
VHS, which is always coincident with the maximum of Tc.
Overall, these results further demonstrate that the correlation
between Tc maxima and ν∗

F minima are robust.
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