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We study an oblique spacetime crystal realized by a monoatomic crystal in which a sound wave
propagates, and analyze its quasienergy band structure starting from a tight-binding Bloch band for the
static crystal. We investigate Floquet-Bloch oscillations under an external field, which show different
characteristics for different band topologies. We also discover intraband Zener tunneling beyond the
adiabatic limit, which effectively converts between different band topologies. Our results indicate the
possibility of energy conversion between the sound wave and a dc electric field.
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Introduction.—Periodically driven quantum systems
have a long history of study in physics, and have emerged
in recent years as a new playground for novel topological
properties [1–3] and quantum materials engineering [4].
There are also discussions on the tantalizing possibility of
the spontaneous formation of time crystals [5–8] and
spacetime crystals [9], adding new excitements to this
field. However, there is still much to be explored, and there
are challenges in understanding the electronic dynamics in
such systems [10,11].
According to a recently reported symmetry classification

[12], spacetime crystals fall into rectangular and oblique
categories, depending on whether the system has separate
translational symmetries in space and time. Here, we
present an example for the latter, a monoatomic crystal
in which a single mode of sound wave propagates. One can
still make a Floquet-Bloch analysis, but quasienergies and
momenta are now defined modulo an oblique Brillouin
zone, and the usual concepts of Bloch oscillations and
Zener tunneling for Bloch bands can be essentially modi-
fied. We find Floquet-Bloch oscillations unraveling
unusual types of band topologies. We then discuss intra-
band Zener tunneling, which cannot occur for a rectangular
spacetime crystal, and the adiabatic conditions for the
validation of realizing one particular band topology. Our
results indicate a novel mechanism for a quantum acousto-
electric generator that converts energy between the sound
wave and a dc electric field.
Floquet-Bloch analysis for an oblique spacetime

crystal.—The oblique spacetime crystal considered here
is a monoatomic crystal with sound waves propagating
through it:

Hðx; tÞ ¼ −ℏ2

2M
∇2

x þ
X
R

Vðx − R̃Þ; ð1Þ

with the atomic position being time-dependent R̃ ¼
R − A cosðκ · R − ΩtÞ. Here, the ðκ;ΩÞ is the momentum
and frequency of that sound wave, jAj is the oscillation
amplitude, and R ¼ n1a1 þ n2a2 þ n3a3 labels the lattice
sites. This Hamiltonian has the following translational
symmetries: Hðx;tþ2π=ΩÞ¼Hðx;tÞ¼HðxþR;tþκ·R=ΩÞ,
which defines an oblique spacetime lattice with nonor-
thogonal lattice vectors: ½0; ð2π=ΩÞ� and ½R; ðκ · R=ΩÞ�.
Those vectors determine the reciprocal lattice structure to
be also oblique, characterized by vectors: (κ, Ω) and (G; 0),
whereG is the reciprocal lattice vector of the corresponding
static crystal [13]. (When the sound wave vector κ is
rationally related to G, one may adopt a superlattice point
of view with a folded Brillouin zone, so that the system
may be taken as a rectangular spacetime superlattice, but
there will be seemingly “mysterious” band crossings due to
the band folding).
The Floquet-Bloch band theory of the oblique spacetime

crystal goes quite parallel to that for a rectangular space-
time crystal [14]. The eigenstates that respect periodicities
of the Hamiltonian satisfy the time-dependent Schrödinger
equation:

Hðx; tÞjΨðx; tÞi ¼ iℏ∂tjΨðx; tÞi: ð2Þ

We consider that jAj ≪ lattice constants and the effect of
lattice vibration to leading orders in the amplitude A:
Hðx; tÞ ¼ H0ðxÞ þ A ·H1ðx; tÞ þ � � �, where H0 is the
Hamiltonian of the corresponding static crystal. To simplify
matters, we assume that the electrons are all in the lowest
Bloch band of the static crystal, which is well separated
from all other bands energetically so that mixing with them
can be ignored when the lattice vibration is turned on.
Under these conditions, lattice vibrations can still mix a

Bloch state fjψkðxÞig of energy ωgðkÞ in the lowest band
with its phononic “sidebands,” which differ with each other
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by an integer multiple of the phonon energy and momen-
tum ðΩ; κÞ. In other words, we can choose the basis states
to be the phonon replica of a Bloch state:

fjΦn;kðx; tÞi≡ e−inΩtjψkþnκðxÞig; ð3Þ

where n is the replica index. This basis can be made
orthonormal under a new inner product defined as

hhϕðx; tÞjψðx; tÞii≡ 1

T

Z
T

0

dt
Z

dxϕ�ðx; tÞψðx; tÞ; ð4Þ

where T ¼ 2π=Ω is the Floquet time period.
Having the phonon replica basis, we can then expand the

eigenstate in Eq. (2) as

jΦω;kðx; tÞi ¼
X
n

e−iωtfnkjΦn;kðx; tÞi; ð5Þ

where ðω; kÞ are the quasienergy and quasimomentum,
respectively. Since those two quantities are conserved
modulo a Brillouin zone due to the periodicity in the
reciprocal space, we can use them as characterizations
for the eigenstates. Utilizing the orthonormal conditions
of the basis functions, we then find that the coefficients
fnk satisfy the following matrix eigenvalue equation:P

nHm;nðkÞfnk ¼ℏωfmk where the elements of the Kernel
matrix HðkÞ are given by

Hm;n ≡ hhΦm;kðx; tÞjHðx; tÞjΦn;kðx; tÞii − ℏnΩδmn: ð6Þ

In the static limit of A ¼ 0, the matrix H is diagonal with
eigenvalues ωnðkÞ ¼ ωgðkþ nκÞ − nΩ, meaning that the
quasienergy bands are just the original Bloch band ωgðkÞ
shifted by the reciprocal lattice vector (κ, Ω). When lattice
vibration is turned on, off-diagonal elements of the
Hamiltonian will appear, which can open gaps at places
where the Bloch band crosses with its phonon replicas.
From the calculation, we also find a general relation
between different quasienergy bands:

ωnþmðkÞ ¼ ωmðkþ nκÞ − nΩ; ð7Þ

which reflects the periodicity in the reciprocal space.
These general features of the Floquet-Bloch band struc-

ture are illustrated in Fig. 1 for the case of a (1þ 1) D
oblique crystal. The dashed curves are the unperturbed
bands with no oscillation, and we can see they are nothing
but replicas of the original cosine-shape Bloch band. The
solid curves are the band dispersion under time-dependent
perturbation. The red shaded area stands for the Brillouin
zone of the oblique spacetime crystal characterized by
two reciprocal lattice vectors: (G ¼ 2π=a; 0) and (κ, Ω).
Without loss of physics, we take the region containing the
(n ¼ 0) band ω0ðkÞ as our first Brillouin zone and all others
as replicas.

Floquet-Bloch oscillations and band topology.—Very
interesting phenomena such as Bloch oscillations and
Zener tunneling can occur for Bloch bands in the presence
of an external electric field E, and it is natural to ask what
can happen to the quasienergy bands in a spacetime crystal.
If we represent the field by a vector potential and treat its
time dependence adiabatically, i.e., as very slow compared
to all other timescales in the problem, we can still use the
quasienergy states as solutions provided that the quasimo-
mentum is replaced as k → k − eEt=ℏ. Then by using the
perturbation method, we can find an expression for the
group velocity _x. Together with the time-dependent qua-
simomentum, the electronic motion in a quasienergy band
can be summarized as

_k ¼ −
eE
ℏ

; _x ¼ ∂ωnðkÞ
∂k ; ð8Þ

which leads to a similar motion as Bloch oscillations that
we call Floquet-Bloch oscillations in the present context
[20]. Indeed, for the band structure in Fig. 1, the quasie-
nergy is periodic in momentum, ωnðkþ 2π=aÞ ¼ ωnðkÞ,
which implies, according to the equations of motion, that
the velocity of electrons is also periodic in time with period
ðℏ=eEÞG [21]. Similar discussion in the time-driven system
can be found in Ref. [22].
However, in the oblique spacetime crystal, quasienergy

bands can also, in principle, exhibit nontrivial periodicity
like ωnðkþ κÞ ¼ ωnðkÞ þΩ or even more exotically
ωnðkþ 2π=a� κÞ ¼ ωnðkÞ � Ω, which will lead to new
oscillation periods of ðℏ=eEÞκ and ðℏ=eEÞðG� κÞ, respec-
tively. Those unique behaviors suggest different unusual
band topologies [23].
To appreciate the possibilities of different topologies, we

project the Brillouin zone onto a torus by shearing it into a
rectangle and wrapping around to join the opposite edges.
A quasienergy dispersion is then characterized by a pair of
winding numbers Nω and Nk around the two topologically
distinct directions represented by the reciprocal lattice
vectors ω̃ ¼ ðκ;ΩÞ and k ¼ ðG; 0Þ. One can identify that

Nω ¼ i
2π

Z
BZ

TrðU†
ωdUωÞ ¼

T
2π

Z
BZ

dk
∂ωðkÞ
∂k ð9Þ

is the winding number for the Floquet operator Uω ¼
e−iωðkÞT [24]. Similarly, one can think of Nk as the winding
number for the evolution operator along the other space-
time periodic direction ½a; ðκa=ΩÞ�:

Nk ¼
−i
2π

Z
BZ

TrðU†
kdUkÞ¼

Z
BZ

�
a
2π

dk−
T
2π

κadω

�
; ð10Þ

with Uk ≡ ei½ka−ωðκa=ΩÞ� and an extra “-” for convention.
The examples are illustrated in Fig. 2, with Nω ¼ 0,Nk ¼ 1
for panel (a), Nω ¼ 1, Nk ¼ 0 in panel (b), and Nω ¼ −1,
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Nk ¼ 1 in panel (c), corresponding to the Floquet-Bloch
oscillations with periods ∝ NkGþ Nωκ.
Although we do not yet find the possibilities illustrated

in panels (b) and (c) within the model studied in this work,
we discover a system called oscillating Dirac comb that can
possess a gapless band structure for a specific oscillation
amplitude (with more details given in the Supplemental
Material [16]), as shown schematically in panel (d). We
have intentionally plotted the band in red and blue corres-
ponding to the topologies in panels (b) and (c), respectively.
Taking the band structure as two different topologies
requires that the electron cannot be in a superposition of
the two segments plotted in blue and red and must remain
consistently on one of them when passing through the
crossing point.
However, an exact gap closing in the oscillating Dirac

comb requires a fine-tuning of parameters [16], which is
not robust under any other perturbations and thus unreal-
istic in real experiments. So, we have to allow such a
system to have a tiny gap. In the next section, we will see
how the joint topology shown in panel (d) is possible even
with a tiny gap opened at the crossing point by discussing
the intraband Zener tunneling and the adiabatic conditions.
Intraband Zener tunneling and adiabatic condition.—

Zener tunneling refers to the breakdown of adiabaticity
when the rate of parameter change cannot be regarded
as small compared to the gap between the energy levels,
and there is also an analog of the phenomenon between
quasienergy levels in Floquet systems [26–28]. In crystals
under an electric field, the crystal momentum becomes a
time-dependent parameter, and interband Zener tunneling
has been well studied. Here, due to the fact that in oblique
spacetime crystals, the gaps can be opened between a
quasienergy band and its periodic replicas (as shown in
Fig. 1), we can actually anticipate an intraband Zener
tunneling happening through such gaps.
The analysis of the intraband Zener tunneling is quite

similar to that of normal Zener tunneling between different
Bloch bands. The key idea is that we consider tunneling
between two eigenstates jψ1ðkÞi and jψ2ðkÞi:

jψ1ðkÞi ¼
X
n

fnk jΦn;kðx; tÞi;

jψ2ðkÞi ¼
X
n

fnk−κjΦn−1;kðx; tÞi; ð11Þ

sitting on two adjacent bands (replicas) labeled by 1 and 2,
which have quasienergies ϵ1¼ωðkÞ and ϵ2¼ωðk−κÞþΩ,
respectively, with a direct gap Δ0. One can check that
jψ1ðkÞi and jψ2ðkÞi are orthonormal (hhψ iðkÞjψ jðkÞii¼δij).
The reason why such tunneling is indeed an intraband
process is that jψ2ðkÞi is equivalent to jψ1ðk − κÞi since they
differ by a reciprocal lattice vector. The transition between
jψ1ðkÞi and jψ1ðk − κÞi then involves a shift in momentum,
which is associated with absorption or emission of a
quantum of sound mode (Ω, κ).

To make the tunneling happen, we apply an electric field
E, so that, from the equations of motion in Eq. (8), electrons
will move adiabatically along the k axis. The real wave
function can be approximated as a linear combination of
two eigenstates: jΦðtÞi¼C1ðtÞjψ1½kðtÞ�iþC2ðtÞjψ2½kðtÞ�i.
In the context of oblique spacetime crystals, such
expansion is valid under a vertical (or irrational) basis
representation [16].
Now, plugging the wave function jΦðtÞi into the time-

dependent Schrödinger equation, we obtain the following
differential equation regarding C1;2:

iℏ
∂
∂t
�
C1

C2

�
−eE

�
A11 A12

A21 A22

��
C1

C2

�
¼
�
ϵ1 0

0 ϵ2

��
C1

C2

�
; ð12Þ

where Amn ≡ hhψm½kðtÞ�jði∂k þ xÞjψn½kðtÞ�ii is the multi-
band Floquet-type Berry connection. This result has the
same form as in Bloch crystals but with modified Berry
connections. For spacetime crystal, Amn generically has
two contributions:

Amn ¼ i
X
l

ðfnÞ�∂kfm þ
X
l

ðfnÞ�fmAkþlκ; ð13Þ

where f1 → flk and f2 → flþ1
k−κ. The first term is the Floquet

contribution, while the second term is the modified
Bloch contribution with Akþlκ being the usual Berry
connection. For the Floquet-Bloch system generated by
a single Bloch band well separated from all other bands,
this Bloch contribution is numerically small and negligible.
Then AmnðkÞ has only the Floquet contribution that comes

Brillouin Zone

FIG. 1. Floquet-Bloch band structure for the (1þ 1)D oblique
spacetime crystal modeled by Eq. (6), originating from the lowest
Bloch band (dashed curves repeated over the Brillouin zone) of
the unperturbed system. The quasienergy dispersion (solid
curves) is calculated when a single mode of the sound wave is
turned on to a finite amplitude [15]. The labels on the right
vertical axis are the indices of the replicas of the same single band
as defined within the Brillouin zone.
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solely from the time variations, which allows us to consider
only the kernel HðkÞ in Eq. (6).
We again use the oscillating Dirac comb but now with a

small gap as an example to show some numerical results.
Figure 3(a) shows the band structure of such a system,
which resembles a so-called Landau-Zener grid [22,29].
We then numerically solve Eq. (12) near the gap at point B
in Fig. 3(a), with the electron initially sitting on band ϵ1
(C1 ¼ 1, C2 ¼ 0). The squared moduli jC1j2 and jC2j2 as
functions of k under different external field strengths are
plotted in Fig. 3(b) using dashed and solid curves,

respectively. We can see that when jeEj ¼ 10−3 eV=Å
(blue curves), the evolutions of jC1;2j2 are close to step
functions indicating total tunneling through the gap, while
for larger jeEj, the electron is in a superposition of
two bands, violating the adiabaticity. Such violation comes
from a larger direct gap near the gap at point B, which
mixes two bands too early. This tells us that when jeEj is
small enough, we can just ignore the influences of that
larger gap and only consider the behavior of electron at
the vicinity of point B, allowing us to have an analytic
discussion.
The system near the point B can be asymptotically

approximated by a two-level system as

hðkÞ ¼
�
E2ðkÞ Δ0=2

Δ0=2 E1ðkÞ

�
; ð14Þ

where Δ0 is the gap at k ¼ kB, and E1;2ðkÞ ¼ μ1;2ðk − kBÞ
are the asymptotes of bands ϵ1 and ϵ2 near the gap. Thus,
we end up with Zener’s original tunneling model with a
transition rate [30]:

Γ ¼ exp
�
−

πΔ2
0

2eEjμ1 − μ2j
�
: ð15Þ

In Fig. 3(c), we compare the numerical results with
Eq. (15), which are in good agreement with each other
when jeEj ≤ 1.5 × 10−3 eV=Å. However, as jeEj is getting
bigger, the discrepancies occur due to the nonadiabaticity
of the states before reaching the gap at point B.
As discussed in last section, for band structure in

Fig. 3(a) [or Fig. 2(d) if Δ0 ¼ 0] to have separate
topologies, we need the adiabatic condition when elec-
trons are away from the gap (or the band crossing point)
and total tunneling when passing through the gap (or the

(a) (b)

(c) (d)

FIG. 2. The topology of band dispersions (blue curves) as seen
in the Brillouin zone and on the torus after shearing it and
wrapping around along the reciprocal lattice vectors: ω̃ ¼ ðκ;ΩÞ
and k ¼ ðG; 0Þ. (a) Corresponds to the class shown in Fig. 1.
(b) Is a class that has yet to be seen and is only possible in oblique
spacetime crystals [25]. (c) Corresponds to typical edge states of
topological Floquet insulator in a higher dimension [3]. (d) Shows
to a unique gapless band structure that combines the topologies in
both (b),(c).

(a) (b) (c)

FIG. 3. (a) Floquet-Bloch band structure with a very small gap of avoided crossing, calculated for the example of an oscillating Dirac
comb with oscillation amplitude A ¼ 0.15 [16], with A, B, and C labeling three typical points. The blue and red dotted curves represent
two paths with different topologies also illustrated in Fig. 2(d). (b) The numerical results of the tunneling process between two bands
near the point B in panel (a) by solving Eq. (12) with initial conditions C1 ¼ 1 and C2 ¼ 0 under different external field strengths.
(c) The numerical results (stars) and the theory from Eq. (15) (curve) of the tunneling rate of the electron from band 1 to 2. The green
shade highlights the area where the tunneling rate is approximately one.
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crossing point), which requires the tunneling rate to be one
at the point B and zero elsewhere. That can be realized
when jeEj is in the green shaded area in Fig. 3(c).
Discussion.—Assuming an ideal condition where the

tunneling rate is nearly one under a proper electric field E,
the electron can then move freely along the red or the blue
dotted paths shown in Fig. 3(a), depending on its initial
positions, which correspond to the Floquet-Bloch oscil-
lations with periods of ðℏ=eEÞκ and ðℏ=eEÞðG − κÞ,
respectively. Such behaviors show a possibility of energy
conversion between the sound and an external electric field.
The energy involved is actually the energy averaged over
one Floquet period T: ε̄≡ hhHii [16].
To see how the energy is converted, we now restrict our

consideration within the Brillouin zone, which is the energy
dispersion from point A to B and to C in Fig. 3(a). We must
keep in mind that this system only has one band and all
others are just replicas. Imaging one electron sitting
initially on the segment BC and driven adiabatically from
point B to C by jeEj. Then at point C, the electron will
tunnel through the gap to an adjacent state on the lower
band that is equivalent to the state at point B, since they
differ by a reciprocal lattice vector. In other words, this is
tunneling from point C to point B on a single band
associated with absorption of a quantum of sound mode,
which is the essence of the intraband Zener tunneling. After
a full oscillation period, the electron goes back to its
original electronic state (Floquet-Bloch state with the same
or equivalent k) but has a net position change:

ΔxjkCkB ¼
Z

tC

tB

_xdt¼
Z

kC

kB

∂ωðkÞ
∂k

dk
_k
¼−

ℏðωC−ωBÞ
eE

ð16Þ

indicating a gain in the electric potential energy of the
electron. That amount of energy must come from the sound
wave since there is no change in the electronic state [16].
When the electron is initially at AB, the process is similar
but reversed. We note that a similar process can happen in
other Floquet systems [19].
However, in the above analysis, we simplify our con-

siderations by assuming Γ ∼ 1 and excluding other possible
scattering channels of the electron. We should anticipate
that in a real physical system, the efficiency of the proposed
energy conversion could be significantly less than one. In
experiments, one can see if the energy conversion is
happening by detecting nontrivial Floquet-Bloch oscilla-
tion patterns through measuring the ac part of the electric
current j induced by the electric field.
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