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Geometrodynamics of electrons in a crystal under position and time-dependent deformation
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The semiclassical dynamics of Bloch electrons in a crystal under slowly varying deformation is developed
in the geometric language of a lattice bundle. Berry curvatures and gradients of energy are introduced in terms
of lattice covariant derivatives, with the corresponding connections given by the gradient and rate of strain.
A number of physical effects are discussed: an effective post-Newtonian gravity at band bottom, polarization
induced by spatial gradient of strain, orbital magnetization induced by strain rate, and the electron energy-stress

tensor.
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I. INTRODUCTION

The semiclassical dynamics of Bloch electrons was devel-
oped in the early days of solid state physics to give an intuitive
picture of electron motion in the ionic background in a crystal.
Combined with the Boltzmann equation, many equilibrium
and transport phenomena are well described [1]. The theory
can also be quantized [2] to describe quantum energy levels,
such as the Wannier-Stark ladder in a constant electric field
and Landau levels in a constant magnetic field [1]. Much
later, Berry phases [3] were found to play an important role
in the semiclassical equations of motion in the form of Berry
curvatures [4]. They account for quite a few phenomena such
as the quantum Hall effect [5], the intrinsic anomalous Hall
effect [6], and charge pumping [7]. The description of electric
polarization [8] and orbital magnetization [9] in crystals is
also closely related to the notion of the Berry phase.

The wave-packet method developed by Sundaram and
Niu provides a systematic way to derive the semiclassical
dynamics in perturbed crystals [10] with various types of
Berry curvatures appearing in the equations of motion. In their
work, besides the effect of electromagnetic field, they studied
the crystal deformation. Some interesting results are found
such as the dragging effect due to lattice motion and the real
space Berry phase associated with a dislocation. Their theory
is based on the displacement field of ions, and the wave-
packet method can easily account for the effects of first-order
derivatives in space and time of the displacement field, i.e.,
the strain and lattice velocity. However, it is very difficult to
extend to the next order of derivatives, such as strain gradient,
lattice acceleration, and strain rate in this formalism, which
are related to phenomena such as flexoelectricity [11,12] and
viscosity [13].

In this paper, we advocate another picture by viewing the
whole crystal under deformation as a lattice bundle. For a
given time and about each spatial point, a locally periodic
lattice can be identified, which well describes the distribution
of ions in a region smaller than the length scale of the variation
of periodicity. The local lattice also moves rigidly at the aver-
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age velocity of ions around the position point. By identifying
the local lattice at each space and time point, we have a
bundle of locally periodic lattices on the spacetime manifold.
Each local lattice contains information to the arbitrary order
of strain (defined relative to some reference lattice). Strain
gradient, strain rate, and lattice acceleration are manifested in
the difference between local lattices. In this sense, a periodic
crystal can be viewed as a special case where all local lattices
are identical.

Based on the lattice bundle picture, we have two geo-
metrical structures, which are extended phase space and the
Hilbert bundle [14]. Noticing each local lattice gives rise to
a Brillouin zone, all the Brillouin zones together with the
spacetime make up the extended phase space (k; x, t), where
crystal momentum k denotes points in the Brillouin zone
of the local lattice at spacetime point (x, ¢). However, in a
crystal under deformation, the sizes of local Brillouin zones
are different in general. This is in contrast to an ideal crystal
where all local Brillouin zones are the same and can be viewed
as a single one. This special geometry brings up the question
of how to express the electron equations of motion in phase
space. Particularly, we are faced with the difficulty of defining
the change rate of crystal momentum k since at different time
slices crystal momentums belong to different Brillouin zones.

Moreover, the definition of Berry connections in terms of
the spacetime parameter is also problematic. The naive idea
from previous experience is to define, for example, A; =
i (u|0,u) using the eigenstates of the k-dependent Hamiltonian
Hk;x, 1) given by the local lattice. However, |9,u) involves
the difference between two Bloch functions of different pe-
riodicities which is not a periodic function in general and
gives rise to ill-defined results. In fact, this problem involves
the second geometrical structure we mentioned earlier, called
the lattice Hilbert bundle. Noticing that all the eigenstates
of Hamiltonian H (k;x, r) labeled by different band indexes
form a complete basis for periodic functions that thus gives
rise to a local Hilbert space defined at a particular extended
phase space point (k; x, t), the lattice Hilbert bundle appears
as the collection of all local Hilbert spaces together with
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the extended phase space. Local Hilbert spaces at different
spacetime points are distinct in periodicities inherited from
the corresponding local lattices. So the definition of the Berry
connection actually involves the comparison between states in
different Hilbert spaces.

To resolve the aforementioned problem, with the same
spirit in differential geometry [15], we introduce the concept
of lattice covariant derivatives to take the place of partial
derivatives in comparing local quantities such as crystal mo-
mentum, Bloch functions, and band energy. This gives math-
ematically and physically reasonable results as shown later in
this paper. With lattice covariant derivatives, we achieve our
main result in this paper: the equations of motion of electrons
accurate to the first order of strain gradient, strain rate, and
lattice acceleration. The results are expressed in terms of the
Bloch functions given by the local periodic lattice, which are
solvable numerically. A few interesting effects are discussed
based on our lattice covariant formalism. First neglecting the
Berry phase effects, we show the similarity of the electron
dynamics at band bottom to that of a test particle in post-
Newtonian gravity. An equivalent metric tensor is identified in
terms of the effective mass and lattice deformation. Then we
focus on the Berry phase related effects. For a band insulator
at zero temperature, we calculate the current induced by defor-
mation. Particularly, we identify the polarization contribution
and give an explicit expression for the proper piezoelectric
constant [16] in terms of Berry curvatures expressed with lat-
tice covariant derivatives. Then we discuss the Chern-Simons
part of the strain gradient induced polarization and strain rate
induced orbital magnetization. Finally, for the spatially homo-
geneous case, we discuss the electron energy-stress tensor and
its responses to ionic velocity gradient and acceleration.

This paper is organized as follows: Section II introduces
the basic idea of the lattice bundle picture and clears the math-
ematical notion. In Sec. III, we discuss the special geometry of
phase space. The equations of motion without the Berry phase
effect are discussed in comparison to the gravitational effect.
In Sec. IV, we discuss the lattice covariant Berry curvatures
and their related effects. Section IV C concludes the paper
with the aforementioned applications.

II. LATTICE BUNDLE PICTURE
A. Local lattice

In this paper, our main results are expressed in the labora-
tory frame (x, ¢), which is a Cartesian coordinate representing
Minkowski spacetime. x is the position coordinate which has
three components denoted by {i, j, k} running at 1,2,3. ¢ is
the time coordinate. A compound notion like x* "¢ is also
used in this paper where u, v, £ = 0, 1, 2, 3 to include the time
component represented by 0.

The description of an ideal crystal in the laboratory frame
is given by its Bravais lattice, which is a set of lattice points
periodically aligned in space. Each lattice point may represent
several ions and has an integer label {l}. Its displacement
vector from the laboratory frame origin is denoted as {R; =
1%cy + u}. Here we use {«, B, y} running at 1,2,3 to denote
crystalline directions. I is short for {{*} which has three
components. {c,} are the three primitive lattice vectors and
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FIG. 1. A schematic picture of how to identify the local lattices
in a deforming crystal. Blue circles represent the lattice points of
a deforming crystal. Dashed lines represent the crystalline lines
of the fictitious periodic local lattice. As can be seen, the local
distribution of lattice points is well described by the local lattice only
with deviation far away from the local point. The right panel is the
zooming-in picture. The lattice vector of a local lattice is given by
the relative displacement between lattice points and located in the
middle denoted by the black dots on the arrows. And a local lattice
moves rigidly at velocity W.

u is the position of the zeroth lattice point. The Einstein
summation rule is applied throughout this paper.

In the lattice bundle picture, local lattices are expressed
in the same way as ideal lattices only with {c,(x, 1), u(x, t)}
becoming position and time-dependent vector fields denoting
the property at a particular spacetime point (x, ¢). Reciprocal
lattice vector fields {b” (x, t)} are defined through the relation
b - cp = 85, where the “crystallographer’s definition™ is used
and &5 is the Kronecker delta function. We use the bold
symbol to denote tensors. The normal symbol with the same
letter denotes their components. For example, lattice vectors
are written as ¢, = (¢, ¢2, ¢) and reciprocal lattice vectors
as bY = (by, b§, b%). Vectors and covectors are indicated by
their upper and lower indices of their components, respec-
tively. Thus the orthogonal relation written in components
reads bf‘cfg = 8. If we only consider the three-dimensional
space, {c,(x, t)} provides a basis for real space vector fields,
e.g., electron velocity, and {b%(x, )} provides a basis for
covector fields, e.g., electron momentum. The completeness
relation for this basis reads b%c!, = 8;

On the other hand, we know a crystal under deformation is
described by the position of its lattice points { R;(¢)}. Thus we
need to establish the relation between {c,(x, ), u(x, t)} and
{R;(¢)}. This relation is schematically shown in Fig. 1 and is
given by the following formula:

(Rz + Ry,
Co| ————

, 1] =R — Ry, 1
> ) I+1, i (1

where 1, means one increment in the «cth crystalline direction.
To achieve the continuous lattice vector fields {c,(x, 1)}, an
interpolation procedure should be applied. A detailed dis-
cussion is given in Appendix A. We should note that once
the lattice vector fields are given, they can determine the
total crystal up to a rigid body displacement since given the
position of a particular lattice point, Eq. (1) can be applied
repeatedly to recover all the lattice points. The rigid body
center position is described by the field u(x,r); however
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it is insignificant due to the translational invariance of the
Minkowski spacetime. Thus u(x, t) will not be discussed.

However, due to the time dependence of the problem, it is
convenient to introduce a velocity field W(x, ¢) to describe
the motion of local lattices. It is determined by the property
that

W(R;, 1) = R(1), )

where again the interpolation procedure should be ap-
plied to achieve a continuous field. Then the four fields
{ca(x,1), W(x, 1)} with @ = 1,2, 3 define at each spacetime
point (x, t) a periodic lattice of periodicity {c,(x, t)} moving
rigidly at velocity W(x,?) as observed in the laboratory
frame. Thus we have a lattice bundle over the spacetime.

It is worth pointing out that the above argument is always
applicable to cases where the primitive unit cell only contains
one ion. For multi-ion cases, we need to check whether
there exists a one-to-one correspondence between the ionic
positions in a unit cell and the instantaneous positions of
Bravais lattice points, i.e., whether all degrees of freedom are
contained in lattice points. Examples where such correspon-
dence exists are deformation caused by a particular acoustic
phonon branch, the adiabatic case where ions are always
relaxed to their minimal energy position at each time slice,
or crystals satisfying the clamped-ion approximation where at
each time the distribution of ions within a unit cell follows
the instantaneous strain of the unit cell (although there can
be an internal strain contribution [17]). Exceptions are cases
where deformation is caused by optical phonons or there is an
internal strain.

Each local lattice automatically gives rise to a local “static”
Hamiltonian as

Hk;x,t) =

19 g .
(l—a—r +k) +V({l ca(x,t)—r}).
3)

r is the real space representation. k is the crystal momentum.
Both r and k should be viewed as local quantities as well.
The domain of r is chosen to be the first Wigner-Seitz cell
of the local lattice. And the domain of k is chosen to be the
first Brillouin zone. The detailed derivation to achieve this
Hamiltonian is given in Appendices A through D and the
relation between r and (x, t) is given by Eq. (D9).

The above Hamiltonian has translational symmetry and is
solvable in principle. Its eigenstates are the periodic part of the
Bloch functions denoted by u, (r, k; x, t), where n is the band
index. We will call u,, (r, k; x, t) Bloch functions in this paper
just for simplicity. The corresponding eigenvalue is band
energy denoted by ¢&,(k;x,t). In the following discussion,
we assume those eigensolutions are given by first-principles
calculations and all our results will be given based on them.

Here are a few comments about this local Hamiltonian.
In the crystal potential term, information about the center
position of a local lattice is discarded as the zeroth ion is
always located at r = 0. As pointed out earlier, this will not
cause trouble since the lattice vector fields contain structural
information of the whole crystal up to a rigid body displace-
ment. Also, the local lattice velocity W(x, t) is absent. As
can be seen later, the effects of velocity field are to shift the

2m,

crystal momentum by —m, W (x, t) and the electron energy by
a centrifugal potential —%me W? while not changing electron
Bloch functions. The shifted crystal momentum and energy
have the physical meaning of electron momentum and energy
in the reference frame comoving with ions. Rather than being
discussed in the Hamiltonian level, we will introduce the
effect of velocity directly in the semiclassical equations of
motion in Sec. III B. Again, this procedure can be rigorously
proved in Appendix D.

To make sure the above local Hamiltonian gives a good ap-
proximation to the real lattice Hamiltonian, we must assume
the crystal potential at a given position is mainly determined
by ions within some finite spatial length scale &, and § is
much smaller than the variation length scale of lattice vectors
A, 1.e., € < A. Also, because we have applied the adiabatic
approximation where the instantaneous Bloch function and
band energy are used, the variation timescale of lattice vectors
denoted by 7 should satisfy % < A, where A is the minimal
direct band gap of the adiabatic Hamiltonian. However, for
polar materials, there does exist a nonlocal contribution to
the crystal potential due to polarization. Although this part
of the contribution is not the focus of this paper, we expect
that the polarization contribution to the crystal potential can
be accounted for by combining the static Poisson equation
self-consistently with our formula of polarization given in
Sec. IV C. Then our theory takes care of the local potential
part within this complete approach.

B. Lattice connection as strain rate and gradient

The major motivation of this work is to study the ef-
fects of inhomogeneity, i.e., lattice acceleration, strain gra-
dient, and strain rate, on electron semiclassical dynamics,
which are described by the spacetime derivative of the fields
{ca(x,1), W(x,t)}. In formulating the theory, we find it is
more convenient to define a quantity that is directly related
to inhomogeneity called lattice connection.

Consider the lattice vectors change 8¢, = 9,¢4(x, t)dx"
given by a small increment in position and time dx"; we can
define the lattice connection to encode this variation as

Sco(x, 1) =T, (x, 1) co(x, t)dx", “)

where I',(x, t) is the lattice connection and can be viewed
as a second-rank tensor with its element denoted by {F; u}'

In components, the above equation reads da’, = I Maédx". If
we define the infinitesimal strain as 8s = dx"I',, it simply
reads ¢, = 85 - ¢, which is the strain induced lattice vector
change. Thus the physical meaning of lattice connection T,
is just the gradient u = 1, 2, 3 and rate ; = 0 of the unsym-
metrized strain tensor. The antisymmetric part between the
upper and first lower index is the relative rotation between lo-
cal lattices and the symmetric part is the relative symmetrized
strain. Particularly, the unit-cell volume change is described
by Ff w Since we choose the local lattice as the reference,
strain is no longer present in our theory; instead the strain
gradient denoted by the lattice connection gives the leading
order correction. Multiplying the reciprocal lattice vector b*
on both sides of Eq. (4) and summing over «, we can have an
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(a) (b)

FIG. 2. (a) Elastic condition of lattice vectors. The dots on the
four corners represent lattice points, which determine the local lattice
vectors denoted by the four edges of the quadrilateral. The dot in
the middle of each edge denotes where these lattice vectors reside.
According to Eq. (1), it is straightforward to derive the condition for
the four lattice vectors to form a closed quadrilateral. (b) Schematics
of dislocation in a square lattice. Along the closed trajectory denoted
by the bold line, if we count the change of lattice label, we always
find a unit mismatch in the crystalline direction. (c) Schematics of a
disclination in a square lattice. Along the closed trajectory denoted
by the bold line, we find that the lattice vector continuously changes
from c to € as shown in the picture. (d) A special case of disclination
in a rectangular lattice, which is characterized by the 2 rotation of
lattice vectors along the defect center. In the region far enough from
the center, locally we have a rectangular lattice, whose two lattice
vectors ¢; = ¢10, ¢; = c,r are along the angle direction and radius
direction, respectively, in a polar coordinate. The disclination located
at the origin is characterized by the rotation of lattice vectors by 2w
along the complete circle.

explicit expression of the lattice connection as
I, =b50uc,. 5)

The lattice connection represents how local lattices are
connected together to form the total lattice structure. If in
a local region the deformation is elastic, i.e., can be con-
tinuously deformed to a periodic crystal, the gradient of the
fields {cy(x, 1), W(x, t)} is not independent, which is directly
manifested in the property of lattice connection. As seen from
Fig. 2, the four adjacent local lattice vectors forming a closed
quadrilateral lead to the conclusion that

(o - d)ep — (cp - 9)ea =0, Q)

where the second-order derivatives of {c,(x, t)} are ignored.
On the other hand, if we consider the relative velocity between
two adjacent lattice points, it can be expressed either as the
total time derivative of the lattice vector fields from Eq. (1)
or as the gradient of the velocity field from Eq. (2). Equating
both expressions leads to the relation that

Olxca +(W-3)ey = (¢q - )W, @)
where again second-order derivatives of W(x,t) are ne-
glected. Both Egs. (6) and (7) can be reformulated in terms
of the lattice connection as

k ko _
Iy =T} =0, ®)

Tl + TH W/ = o We. )

The first relation is the torsion-free condition for a connection
form in a coordinate basis, which tells us that the two lower
indexes of lattice connection are symmetric. Equation (9)
shows that the strain rate experienced by ions on the left-hand
side equals the gradient of the velocity field on the right-hand
side, where the first term on the left-hand side is the strain rate
observed at a fixed position. From the above expression, we
see that the angular velocity field given by @ = @ x W is also
related to the lattice connection as w* = e/K(I'} + I}, W')
with g¥¥ the Levi-Civita symbol. Thus angular velocity is just
the antisymmetric part of the strain rate experienced by ions.
However, we should notice that the lattice acceleration field a
is not directly related to the lattice connection, which is given
bya= (W 9)W 4o, W.

Besides its geometrical meaning, the lattice connection
also gives rise to an important gradient correction to lo-
cal Hamiltonian (3). This gradient correction term is for
the electron wave packet, which is localized in real space
with center position x and expressed as the superposi-
tion of the local Bloch states of local Hamiltonian (3)
[10]. For such a wave-packet state, the gradient correction
reads

AH(rix,t) =m0 + [ (r —r.Y Dl +cc.], (10)

where r. is the expectation value of operator r under the
wave-packet state. The derivation is given in Appendix B and
Appendix C. The first term comes from the difference between
local lattice and real lattice away from the particular point
where the local lattice resides. The second term comes from
the difference between local lattices. Because wave-packet
states have finite sizes usually as large as several unit cells,
electrons can feel the influence from adjacent local lattices
as well. Both terms are proportional to the spatial part of the
lattice connection._

on = >, %(E —r)"(R; —r) is a periodic op-
1

erator with respect to r, where {Rf(x, t) = l"‘cfx(x, t)} are
the local lattice points. The second term breaks the transla-
tional symmetry due to the factor {r — r.}. However, it still
has a well-defined expectation value under the wave-packet

foatd : An _ yn 1 1 93
state due to localization in real space. D), =V, — G T

kn)(L-2 4+ k,) is the deformation potential operator [18]

iort

with V) =, W(;’ — R)™. V" has the same form
as assumed in the rigid ion model [19] and automatically
vanishes in the deformable ion model. Actually, following
the argument in Sec. IV B, we believe this form of V)" is
rather general as long as there is a one-to-one correspondence
between all lattice points and the crystal potential. The defor-
mation potential operator is a second-rank symmetric tensor
operator with respect to lattice symmetries. Its expression in
momentum space is discussed in Appendix G, which might be
more useful in first-principles calculations.

Local Hamiltonian (3) together with gradient correction
(10) gives the total Hamiltonian of the electron wave packet
in the first-order of strain gradient or lattice connection.
Although in principle the gradient correction also modifies
local Bloch states, the eigenstates of local Hamiltonian (3)
are enough to achieve the equations of motion up to first
order.
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C. Characterizing line defects in the lattice bundle picture

In this subsection, we discuss how to describe line defects
within the lattice bundle picture. Although our theory is
limited in regions where locally deformation is slowly varying
and elastic, the topology of line defects can still be described
by the loops enclosing the defect line [20]. Here we consider
the cases of dislocation and disinclination.

These two kinds of defects correspond to the redundant
freedom to describe a Bravais lattice. For an ideal crystal
described by {c,, u}, we can change the lattice labels by some
integer Z = {Z“} with u fixed, which gives the same lattice.
This is associated with dislocation. If we travel along the
loop enclosing the dislocation line, after going back to the
initial point, we find the lattice labels are changed by some
integer. Also, we may choose other crystalline directions ¢, =
U(fc,g, such that {¢,, u} gives the same lattice. This degree
of freedom is related to disclination. In the lattice bundle
picture, if we keep track of the local lattice vectors’ change
along the loop enclosing the disclination, after returning to the
starting point, we end up with another set of equivalent local
lattice vectors. Dislocation and disclination are topological
in the sense that Z is an integer vector and U is an integer
matrix.

The above argument is schematically shown in Figs. 2(b)
and 2(c). Here, we show how they can be described mathemat-
ically. First, for dislocation, Eq. (6) tells us that the primitive
lattice vector equals the position change of lattice points per
integer label increment. This can be written in a discrete form
as

; ; ox
ox! =c’a(x+7,t>81"‘. an
The above expression relates the change in x space and [/
space. With it, we can calculate the change of x or [ along
some trajectory. If the trajectory is a loop in / space, the
displacement in x space gives the Burgers vector. On the other
hand, if the trajectory forms a loop in x space, the total change
of I gives the mismatch of lattice label Z mentioned before.
Here we adopt the latter perspective. Considering a loop in
x space far away from and enclosing the dislocation line, the
change of lattice label can be written as an integral as

f b (x)dx' = Z°, 12)
C

where the integer on the right-hand side describes the topo-
logical “charge” of the dislocation. According to whether
the crystalline direction Z is perpendicular or parallel to the
plane of the loop, we can characterize the dislocation as
either a screw dislocation, edge dislocation, or mixed type.
For example, in Fig. 2(b), we have an edge dislocation in a
square lattice with Z = (1, 0, 0) denoting one associated with
the dislocation line.

Next we discuss disclination. Equation (4) gives a formal
description of how local lattice vectors change in position and
time. Given lattice connection and the initial value of lattice
vectors {c,}, this equation determines the final value {¢,}
along some trajectory. For a loop enclosing the disclination
line, in general, the initial and final values of the lattice vectors
are different. They are related to each otheras é, = U - ¢, and

the matrix U can be formally expressed as

U =T exp (fdx"r,), (13)

where 7T is the path ordering operator which is necessary
when the matrices T';(x, ¢) at different points along the loop
do not commute. Given the lattice connection expressed in the
laboratory frame basis {I'};}, U will have the form of {U,"}.
However, to see its topological property, we express it in the
lattice vector basis as U? = " U,j"bff,. Then the final and ini-
tial values of lattice vectors are related as &, = Ufc4. Because
{¢,} and {c,} represent the same local lattice, the matrix U and
its inverse are both integer matrices with determinant 1.

It is important to realize that in the presence of disinclina-
tion, lattice vector fields are not globally well defined. This
restricts our previous discussion only to a local region. To
study the global effect of disinclination, at least two sets of
lattice vector fields are needed. However, lattice connection
is still a good quantity globally. As seen from its expression
(5), the summation over all crystalline directions makes lattice
connection single-valued even in the presence of disclination.
It is also worth pointing out that because of elastic the condi-
tion (8), (9), locally the lattice connection is trivial in the sense
it can be made zero by a particular coordinate transformation.
However, in the presence of a topological defect, the lattice
connection is no longer trivial globally.

Here, we give a demonstration calculation for disclination
shown by Fig. 2(d). In polar coordinates ¢; = c0, ¢; = c,r,
where ¢y, ¢, are constant representing the magnitude of the
lattice vector. Then according to Eq. (4), we have I'y, =
F;fg =0 and '), = ~I% = %, where R is the radius of
the circle we are considering enclosing the disclination. The
lattice connection can be treated as a matrix

o -1
Iy = R, (14)
=i )

which is just the generator of the SO(2) group multiplied by
%. Because the lattice connection is constant along the path,
the ordering operator can be omitted and we have

0 -2 cos(2mr) —sin(2mw)
U = exp =\ . . (15)
21 0 sin(2) cos(2m)
which is the expected 27 rotation of the lattice vectors.

III. LATTICE COVARIANT PHASE SPACE

A. Phase space geometry

At a given time t, the electron wave-packet state with
center position x and center wave vector k locates at the point
(k;x) in phase space. Phase space is the base manifold for
the semiclassical electron motion. However, for the case of
deforming crystals, it takes an unusual geometry comparing
to periodic lattices as shown in Fig. 3, which is the one-
dimensional case. In the lattice bundle picture, for given
time ¢, at each position x the local lattice gives rise to a
local Brillouin zone according to its own periodicity. All the
Brillouin zones together with the position space x constitute
the phase space. However, the shapes of local Brillouin zones
are different. Noticing the topology of the Brillouin zone, we
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I
T =]
Y ;

FIG. 3. The phase space of electrons in the one-dimensional
case. The straight line at the bottom denotes the position space x.
Local Brillouin zones are denoted by circles at each position. The
intersection between each circle and the straight line is the k =0
point. The phase space is a “tube” with a varying radius. To compare
two points in phase space, we show two alternatives. One is along
the path denoted by 9, where the value of k is fixed, which then goes
along the circle by the total change of wave vector dk. Another path
is to go along the correspondence line formed by parallel transport
denoted by V,, then go along the circle by the mechanical change of
wave vector Dk.

have a bundle of smoothly varying toruses as the phase space.
As shown in the one-dimensional case, the phase space is an
irregular tube.

Mathematically, each point in a local Brillouin zone
is labeled by k and we choose the domain of k as
[—w, #], with —”Tb and ”7” denoting the same point
and forming a torus. The position and time dependence
of b(x,t) shows how the local Brillouin zones vary along
spacetime. Due to this geometry, unlike periodic crystals, the
meaning of wave vector k is incomplete without pointing
out which local Brillouin zone it belongs to. This property
brings up the question about how to compare wave vectors
in different local Brillouin zones. To answer this question, a
correspondence between local Brillouin zones is needed. Thus
we introduce the concept of correspondence curves in phase
space. Given a wave vector k at some initial position point
x, we move the wave vector in real space while at the same
time deforming the wave vector with local Brillouin zones.
This is essentially the same concept of parallel transport in
differential geometry. The trajectory of parallel transport in
phase space is the line of correspondence as shown in Fig. 3.
Particularly, the infinitesimal change of wave vector by a small
shift in position is given by 8k, = —I'" .k,dx".

Wave vectors on the same correspondence line are treated
equivalently. Thus it is useful to introduce a derivative op-
eration V,. to encode this equivalence, which we call the
lattice covariant derivative. The lattice covariant derivative
is crucial for the semiclassical dynamics. For example, the
band energy e(k, x, t) given by Hamiltonian (3) is a time-
dependent phase space function and its derivative in position
gives the “force” term responsible for the acceleration of
electrons. An important property of ¢ is that it is periodic in
k which makes it compatible with the torus topology of the
Brillouin zone. Thus it is natural to require that their lattice
covariant derivatives are also periodic:

Vx"f'(k+2rrb,x,z) = fo‘f|(k;x,t)v (16)

where f is an arbitrary periodic function, V,. is the lat-
tice covariant derivative, and u = 0 accounts for the time
derivative. It is easy to see that the partial derivative with
k fixed does not satisfy the above relation. To find the right
derivative operation, we consider the total differential change
of f(k,x,1):

df (esx, 1) =[dx"V o + Dkidy, | £, (a7

with
Vx"f = (ax“ - klréuakj)f’ (18)
Dk; =dk; + k;T}, dx", (19)

where instead of using partial derivatives to express the total
differential, we rearrange the terms to write it in a lattice
covariant form. dx*V . f is the differential change along the
correspondence line and Dk; 9y, is the change along k, which
is schematically shown in Fig. 3.

Equation (18) gives the desired lattice covariant deriva-
tive operation. It is easy to check that the lattice covariant
derivative of f is still periodic. As a bonus, we get another
quantity Dk. Noticing that —I',kdx" is the geometrical
change of wave vector due to deformation, Dk is the total
change subtracting the geometrical change. So we call Dk the
mechanical change of wave vectors. It is worth pointing out
that the mechanical change of wave vector defined this way is
also periodic in k.

When f(k,x,t) = e(k, x, t), its lattice covariant deriva-
tive is related to the deformation potential as

Vuelk;x,t) = D, (k;x, )l (20)
where D, = (c;,dcn — k0, )e is the deformation potential
defined in the entire Brillouin zone [21]. Here a trick has
been used that when the position and time dependence is
through the lattice vectors, partial derivatives can be written
as O = F;"Mcgacmk. Usually, the deformation potential is
defined relative to a particular reference crystal. Here we have
a deformation potential tensor field from all local lattices.

B. Electron equations of motion

Next, we show how the equations of motion of electrons
can be written in a covariant form with the help of lattice
covariant derivatives. In this subsection, we neglect the Berry
phase effect first. Without the Berry phase, the electron posi-
tion x and wave vector k are a pair of canonical variables. Un-
der single-band approximation, for a static deformed crystal,
it is straightforward to write down the equations of motion:

X = e, 1)
k=—0.e, (22)

where ¢ and k are the eigenenergy and eigenstate of the
local Hamiltonian (3). Although this form is mathematically
correct, the equations of motion are not compatible with the
phase space geometry mentioned before since d,& is not
a periodic function in k and breaks the torus topology of
Brillouin zones. We can then rewrite the above equations with
lattice covariant derivatives as

¥ = e, (23)
Dk =—V, e, 24
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where not only every term in the above equations can be
interpreted as a quantity in phase space but also Eq. (24)
acquires the new geometrical meaning that the mechanical
change of wave vector is induced by the deformation potential
force noticing Eq. (20).

For the time-dependent case, the above equations of motion
need to be further modified. We pointed out earlier that the
Hamiltonian is written in the co-moving frame of ions; thus
¢ and k denote the energy and crystal momentum relative
to ions, respectively. Keeping this in mind, the equations of
motion need to be revised in two aspects. First, the energy
dispersion represents the relative velocity of electrons to ions;
thus the left-hand side of (23) should be replaced by x — W
instead. Second, due to the noninertial motion of ions, inertial
force should also contribute to the change of the relative
crystal momentum k in Eq. (24).

By adding those corrections, we achieve the equations of
motion in the most general case as

D,x = de, (25)
Dk=—-V,.e+m,Dx x 2w —m.a, (26)

where D;x = x — W is the relative velocity to ions. m,D;x X
2w, —m.a are the inertial forces due to lattice rotation and
acceleration, respectively, where @ = %3 x W is the angular
velocity field and a = (W - 9)W + 9, W is the acceleration
field. The mechanical change rate of the wave vector is defined
as Dk = 3—;‘ and in components, it reads

Dik; = (ki + T}k, + 27T} k). (27)

The geometrical meaning of the above equations of motion
becomes explicit with the help of lattice covariant derivatives.
In fact, if we compare the equations of motion to those of a
test particle moving in the real gravitational field [22], we can
see they share a lot of similarities. Equation (25) is just the
expression of the covariant velocity with W resembling the
effect of the spatiotemporal component of the metric tensor.
However, the free particle energy dispersion on the right-hand
side replaced by the band energy dispersion. D,k has the form
of the covariant derivative of the crystal momentum along the
electron trajectory in spacetime, which is the same as the test
particle case. However, in real gravity the right-hand side of
Eq. (26) vanishes for spinless particles. One of the reasons
for this distinction is that our lattice connection is only for
the spatial part of the tangent space of the spacetime manifold
while the Levi-Civita connection in general relativity is for
the total tangent space including the time component. We
expect a more complete analogy to gravity can be made by
considering the deformation of a Bloch-Floquet crystal [23].
Another reason is that the deformation effect is not completely
geometrical in the sense that different crystals have different
forms of deformation potential. It is also worth pointing out
that the equations of motion have the covariant property un-
der Newtonian coordinate transformation. Particularly, each
term in Eq. (25) transforms like a vector and each term in
Eq. (26) transforms as a covector. This property allows us to
get the equations of motion in other coordinates related by
Newtonian coordinate transformation with time universal in
all coordinate choices.

Chronologically, we derived the above equations of motion
from the following zeroth-order Lagrangian:

LY = —[etk;x, 1)+ W -k + im W2 + (k + m W) - x,
(28)

where the first-order terms such as Berry connections and

gradient energy are discarded. This Lagrangian can be under-

stood in terms of its free electron limit, where & = % and by
defining the laboratory frame canonical momentum p = k +

m,W, we have the expected free electron Lagrangian L) =

. 2 . . . . .
px — 52— Direct variation of the Lagrangian (28) gives the
following equations of motion expressed in terms of partial
derivatives:

x =0e+ W, (29)
k=—0,6—0,W-k+m,(x—W)x20—ma. (30)

However, as mentioned earlier the geometrical meaning of
this form is less obvious and cannot be interpreted as the equa-
tions of motion in phase space. By using the lattice covariant
derivative and the local elastic relation I f‘o + 7T ]?i Wi = 9, Wk,
they can be rewritten in the covariant form (25) and (26).

C. Post-Newtonian gravity at band bottom

Motivated by the similarity to the gravitational effect, we
study the low-energy dynamics around band extrema and find
that the electron dynamics is described by an effective post-
Newtonian gravity. Since we only consider the deformation
of crystals with spatial periodicity and adopt the Newtonian
point of view about time passing uniformly regardless of
the deformation, we are unlikely to get a full analogy to
the four-dimensional gravity. However, it is reasonable to
compare to post-Newtonian gravity, which is the low energy
and speed limit of the complete gravitational theory. At band
minimum, expanding local energy to the second order of k
and expressing the electron wave vector k in terms of x, we
have the Lagrangian (28) as

L, =35mf(x, )x' %7 — (m]; — m8i))W/ (x, )i’

+ 3 (mj; = m S )W W — ®(x, 1), 31

where m; is the effective mass, and ®(x, t) is the energy at
band extrema. It reduces to the Lagrangian of the Newtonian
free particle when electron and lattice are decoupled. We com-
pare it with the Lagrangian of an electron in post-Newtonian
gravity. By assuming both the velocities of the massive object
generating gravity and the test particle are small compared
to the velocity of light and keeping to the second-order of
velocity, the test particle’s Lagrangian reads

Lg ~ %megijxixj + megOixi + med)v (32)

where gog = —c? + 2¢ and ¢ is Newton’s gravitational po-
tential. The rest energy of the electron is discarded. Direct
comparison of both Lagrangians leads to the equivalent metric
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tensor in lattice as

m;ki m;"i ;
=~ &, = — =& |W ~ g,
m

me e

1(m; ) PP
- —51',' WWJ——’V¢ (33)
2\ m, ’ M,

We emphasize that this effective metric is expressed in the lab-
oratory frame. The motion of electrons follows the geodesic
equation given by the above equivalent metric. The first rela-
tion between the effective mass tensor and the spatial part of
the metric tensor is well known in general solid state physics
[24]. The energy at band bottom as a static potential that
serves as Newton’s gravitational potential is also expected.
The new discovery here is the contribution from ionic motion.
Particularly the go; component comes directly from the ionic
velocity. It acts as the vector potential of the gravitational
electromagnetic field thus can be coupled to the energy mag-
netization [25] in the system (energy magnetization is analo-
gous to charge magnetization, which is the circular motion of
energy current and couples to gravitomagnetic field similarly
to Zeeman coupling). It also gives a dynamical contribution

i

to the gravitational potential. The factor ’Zl—’ — &;; which is
proportional to the difference between effective mass and
bare mass is a manifestation of the dragging effect. For free
electrons whose effective mass is just the bare mass this effect
vanishes. For effective mass larger and smaller than the bare
mass, go; just have opposite effects. It is also interesting to
study the effective gravitational effect for Dirac semimetals or
Weyl semimetals.

IV. LATTICE COVARIANT FORMULATION
OF BERRY PHASE EFFECTS

In this section, we focus on the Berry phase effects. From
the previous discussion, we know that evolution of an electron
is described by its trajectory in phase space with a special ge-
ometry. Under the adiabatic approximation, the electron Bloch
functions will change adiabatically along the trajectory. If the
trajectory forms a loop, the initial and final states of the Bloch
functions only differ by a phase term called the Berry phase.
The corresponding Berry connection and Berry curvature will
modify the previous equations of motion (25), (26).

A. Lattice covariant Berry connections and Berry curvatures

The mathematical expressions of the Berry connections
involve derivatives of the local Bloch states u(r, k; x, t) with
respect to the extended phase space parameters (k;x,1?).
However, this is nontrivial in the deforming crystal system.
On top of the special geometry of extended phase space
mentioned before, there is another difficulty due to Bloch
states at different positions and times having different
periodicities in r. A complete understanding of this problem
calls for the concept of the Hilbert bundle [14]. Noticing
that all the eigenstates of the local Hamiltonian (3) form a
complete basis for the Hilbert space of complex periodic
functions with the same periodicity as the local lattice, we can
assign such a local Hilbert space to each position x, time ¢, and
wave vector k. Then we have a Hilbert bundle with its fiber

the local Hilbert space denoted by F(k;x,t) and the base
manifold the extended phase space. F(k; x, t) is characterized
by the local periodicity given by {c,(x,?)}. The local
Hamiltonian H (k;x,t) and local Bloch states u(r, k;x, 1)
are operator and states in F(k; x, ¢). Thus the problem arises
from comparing states in different Hilbert spaces.

Next, we discuss how to resolve this problem. Since Bloch
functions of all bands form a complete basis, for convenience
we use them to discuss the properties of states in the Hilbert
bundle. Under a particular choice of smooth gauge, the Bloch
functions satisfy the following boundary conditions:

u(r +co(x,t), k;x,t)=u(lr, k;x,t), (34)
u(r, k +2mb%(x, 1) x, 1) = D278y ke x 1),
(35)

The first condition identifies the periodicity of the local
Hilbert space F(k;x,t), to which the Bloch function be-
longs. The second condition shows that Bloch functions are
quasiperiodic functions in k where “quasi” is due to the
Berry phase term ¢!# %) The factor ¢/>""*" is completely
artificial because we denote the Brillouin zone torus with a
single domain k € [-7wb(x,t), tb(x, t)]. The Berry phase
term cannot be eliminated by single-valued and continuous
gauge transformation. For example, in the two-dimensional
case, the Berry phase accumulated along the Brillouin zone
boundary equals the Chern number.

We view (34), (35) as the boundary conditions characteriz-
ing a Hilbert bundle state. Then it is natural to require that the
correct derivative operation of Bloch states is still a quantity
in this Hilbert bundle and satisfies the above boundary condi-
tions. Along the k direction, it can be verified easily that the
gauge invariant derivative dy + i A satisfies this requirement,
where Ay is defined with 0y as Ay = (u|idu). However, the
gauge invariant partial derivative of position x and time ¢ does
not satisfy our requirement. Thus we introduce the lattice co-
variant derivative in the Hilbert bundle denoted by V .., whose
property is given in Table I. The corresponding gauge invari-
ant derivative V,« 4+ i A« satisfies the boundary conditions.

Our discussion in the last section is the case where the
lattice covariant derivative acts on phase space functions and
is given in the first row. The last row in Table I shows
how the lattice covariant derivative acts on Bloch functions.
Comparing the first row and the last row, we see that when the
lattice covariant derivative acts on Bloch functions, in addition
to the first two terms which treat Bloch functions in the same
way as phase space functions, the third term resolves the issue
of the periodicity difference of Bloch functions at different
position and time in the same manner.

With the lattice covariant derivative, the definition of the
Berry connection is straightforward:

Ak x, t) =i{u(k;x, )|V ulk;x, 1)), (36)
Ack;x,t) =i{u(k;x, t)|ogu(k; x, 1)), 37

where the Bloch functions are normalized with the inner
product:
@2n)?

d3ruT(r,k;x,t)uz(r,k;x,t), (38)
v(xat) v

(urluz) =
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TABLE I. Lattice covariant derivatives of different phase space subjects. The definition comes naturally once we identify (r, k) as local
quantities and introduce lattice connections to compare them. For example, 8 and d>k are also local quantities inherited from k, whose lattice
covariant derivatives are responsible for the second term and third term in the vector density case, respectively.

Phase space quantities Examples Lattice covariant derivatives

Scalar functions elk;x,t) Ve = 0me =T k,, FT

Vectors Ak(k;x, t) V. Ak,. = Oyn Ak; — muk" Bkm Aki — F_ijuAkj
Vector density P=[55A VP =08uP =T P/ +T], P

Bloch functions u(r, k;x,t) Vol = utt — F,’;,Mkn;;{—‘; + T

arm

where u (r, k;x,t) and u>(r,k;x,t) are two local Bloch
functions of different bands. Here because V ..u(r, k;x,t) is
periodic in r, the integral in a unit cell becomes reasonable.

The factor 5%;’);) in Eq. (38) can be viewed as the volume

measure and is position and time dependent, which is another
indication that laboratory frame is “curved” for electrons. This
factor is also necessary for the lattice covariant derivative to
satisfy the Leibniz rule: V . (u'|u) = (V. utd'|u) + (/| V),
where the total inner product on the left-hand side is treated
as a phase space function.

The corresponding Berry curvature is defined with the
lattice covariant derivative as

Qi = i[<8kiu|8kju) -
Qpyn = i[(ak,u|quu) -

(ool 39
(Vuue| O, )] (40)

Qyx and Q,; are second-order quantities, which will not
be discussed here. However, from the above definition the
relation between Berry curvatures 2, and Berry connections
is not so trivial. It turns out that the relation Qy,» = 0, Axn —
V.« Ay, 1s valid only if the lattice covariant derivative of Berry
connection Ay is defined as

VA, = 0 Ay, — T kade, A, — T A (41)

where the first two terms treat the Berry connection as a
normal phase space scalar function. However, we have an
additional term. If looking back at the form of Eq. (27) which
is the covariant derivative of a covector form k, we can see
that the last term in Eq. (41) is a manifestation of the vector
property of Berry connection A. We summarize this property
in the second row of Table I. It can be easily checked that
indeed Ay transforms in the same way as the coefficient
of a three-dimensional vector under Newtonian coordinate
transformation. Mathematically, this additional term is due
to the commutation relation [V ., - e “lu=T ,’n u 3k ——1u, where
u is the local Bloch function. It is necessary for the gauge
invariance of Berry curvatures. And Berry curvatures €2,
€, v; can be viewed as second-rank tensors.

B. Energy correction and complete equations of motion

We have discussed the lattice covariant derivative of
Bloch functions and the corresponding Berry connections. A
complete discussion should also include the property of lattice
covariant derivatives acting on quantum operators such as
the local Hamiltonian. This can be achieved by imposing the

Leibniz rule such that

VolSulk;x, 1) = (Vo Suk;x, 1) + Stk x, 1)V guu,
(42)

where S’(k;x, t) is some operator in Hilbert bundle which
keeps the periodicity of Bloch functions. With the above
requirement, we can directly define the deformation potential
operator ﬁ;}, in arbitrary crystal system as

VauHk;x, 1) =T (x,)D). (43)

We find that for a generic lattice Hamiltonian as shown
in Eq. 3), D, =V, — ,-(& Br + ki )(l 5,7+ kn), which is
exactly the one appearing in Eq. (10). Historically, the de-
formation potential operator is first derived using Lagrangian
coordinates [18]. Here we show that it is simply the lattice
covariant derivative of the local Hamiltonian. This conclusion
only relies on the existence of one-to-one correspondence
between ionic distribution and the local Bravais lattice.

With the lattice covariant derivative, most well-known
results have the same analytical form only with partial deriva-
tives replaced by lattice covariant derivatives. For example the
Hellmann-Feynman theorem in the deformation crystal case
can be written as

Ve(k;x, t) = (u(k;x, t)| D™ u(k; x, 1))T"

mp’

(44)

where the left-hand side is to treat the local band energy as
a phase space function and the right-hand side comes from
the lattice covariant derivative of the expectation values of
local Hamiltonian in Bloch states. Comparing to Eq. (20), it is
obvious that deformation potential D) is just the expectation
value of the deformation potential operator.

Next, we discuss the first-order correction to energy. It con-
tains a static part and dynamical part. The static contribution
comes from the expectation value of the gradient correction
Eq. (10) in the wave—packet states, which has two terms:
the potential correction I' k(x t)(u|0’ |u) and the gradient

correction Il Im[(u|D,,, — mnlak,.u)]. The dynamical part
comes from the coupling between lattice rotation and self-
rotation of the wave packet: 2w - J, which is a Zeeman type
coupling with J = meﬁ(8ku| x (¢ — H)|dgu) the angular
momentum of the wave packet. This can be understood from
the similarity between the form of the Coriolis force in
Eq. (26) to the Lorentz force. The detailed derivation of these
correction terms is given in Appendix D. In summary, the total
energy up to first order reads

gt = & + T Im(u|D — D|du) + T(0) + 20 - J. (45)
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TABLE II. Covariant strain derivatives of different phase space subjects.
Phase space quantities Examples Lattice covariant derivatives
Phase space functions e(k;x, 1) Vie=cl ;’f, o ﬁ{fﬂ
IAL, :

Phase space vectors Ai(k;x, 1) VA, =c 302' — k, 0k, Ay, — 6, Ay,

. 37 . o pi . .
Vector density P=[55A Vi Pl =y g — 8P 4 8 P
Bloch functions u(r,k;x,t) V' =" ,ff“ , dk +

Up till now, we have all the ingredients to write down the
equations of motion up to first order. They are achieved by
adding Berry curvatures to Egs. (25), (26) and using the total
energy instead of local band energy. The results are

Dik x Qy — Qur, (46)

(47)

D;x = Opéor —

D,k = —V, g + m.Dix X 20 — m.a,
which have a similar analytical form as the result in [10].
However, partial derivatives are replaced by lattice covariant
derivatives and the geometrical meaning of each term is
more transparent. Equation (46) is the relative velocity of an
electron to ions and each term can be viewed as a spatial
vector while Eq. (47) is the mechanical change of crystal
momentum and each term can be viewed as a spatial covector.
This geometrical property guarantees the covariant form of the
equations of motion and allows us to directly write down the
equations of motion in other coordinates related by Newtonian
coordinate transformation. €2 is the pseudovector constructed
from Qux. Qrr = Qpx - X + Qg will give rise to the adiabatic
current induced by strain rate and strain gradient. Although
Qyx and 4, are not included in the equations of motion as
second-order quantities, they play the same role as a magnetic
field and electric field, respectively, as discussed in [10].
And the above equations of motion can be derived from the
complete first-order Lagrangian:

Le=— (e + W -k—imW?*) + (k + m.W) - x

+ (A +x - Ay) + Dik - Ag. (48)

C. Applications

In the following discussion, we study the response of
electrons to deformation, i.e., the four fields describing the
lattice bundle {c, (x, t), W(x, t)}. This is related to quite a few
phenomena such as piezoelectricity, flexoelectricity, strain
rate induced orbital magnetization, and electron stress tensors
as well as their responses to deformation. Frequently, we need
to extract a factor which is related to deformation, e.g., strain,
strain gradient, and velocity gradient, to get the corresponding
response coefficient. This is achieved by defining the covari-
ant strain derivative V', which has the physical meaning as
the differentiation to the unsymmetrized strain tensor and is
related to the lattice covariant derivative as V. = I'} VI
However, we should notice that this is true only when the
position and time dependence of the system comes from the
lattice vectors {c,(x, t)} such that 9, = F%Ca ¢ . Similarly,
we summarize the derivative’s action on various phase space
quantities in Table II.

1. Charge density

The first point to notice is that in general a deformed band
insulator is not locally charged neutral due to lattice rotation
and strain gradient. Particularly, the electron charge density
is given by the integration of the modified density of states
[9] in phase space: D = ﬁ[l + tr(Qpy) — m2w - R]. The
form of D comes from the fact that due to the Berry phase
effect, electron coordinate x and crystal momentum k are
not canonical to each other. While the density of states is
(2n w for a pair of canonical variables, the Berry phase gives
rise to a correction to the density of states as denoted by the
Berry curvature terms tr(Qy ) — m.2w - . Then the electron
charge density in real space is given by —e Y f (27;)3
where f(k,x,t) is the distribution function which can be
achieved for example by solving the Bolzmann equation and
the summation ) _ is over all bands.

For insulators at zero temperature, f is a step function and
itis just the integration of D in k space and summation over all
occupied bands. Then the electron density in real space reads

— +em 20 - YA (2;1)3 —ey [ A (2;1)3 tr(Qux ) [9]. 1, is
the number of itinerate electrons per unit cell. The exact
meaning of n, depends on the first-principles method used.
In the “all electron” calculation, n, includes all the electrons
outside the nuclei while in the pseudopotential method, the
core electrons are excluded. Under the clamped-ion approxi-
mation, the first term is canceled by the ionic charge density.
The second term is analogous to the effect of Fermi sea
volume change due to the magnetic field in a Chern insulator,
where = [ %Qk is quantized. The third term comes
from inhomogeneous piezoelectricity. The physical meaning
becomes more transparent if we chose the periodic gauge
for A, in k. Then the third term reads —9; P!, where P =
—# > f d?k Ay, is the Vanderbilt polarization [8].

2. Deformation induced adiabatic charge current

For simplicity, in the discussion of deformation induced
adiabatic charge current, we only consider band insulators at
zero temperature such that the distribution function is simply a
step function. First, we study the total current of both ions and
electrons under the clamped-ion approximation. This approx-
imation states that at each time the distribution of ions within
a unit cell follows the instantaneous strain of the unit cell
(although there can be an internal strain contribution [17]).

Next, we show that for band insulators at zero temperature,
the total current is adiabatic and can be categorized as either
electric polarization current or electric magnetization current
besides the anomalous current. Particularly, the magnetization
due to the motion of the polarization dipole modifies the
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charge pumping picture and leads to the concept of proper
piezoelectricity [16,26].

Using the equations of motion, it is straightforward to write
down the total current density up to first order (Appendix E):

Jot=—€emax X+ xM+9P+03x(PxW), (49

where e is the absolute value of electron charge and the
integral is in local k space. And the periodic gauge for the real
space Berry connections, A, (k) = A,(k + b), is used. The
first term is the well-known anomalous current density [27],
with @ = ﬁ [ d*kS2. The anomalous current density here
is driven by the inertial force due to ionic acceleration. The
second term is the magnetization current density, where M =
—(#é >, [ i{Okun] X (84 + H — 2p)|3ku,) is the orbital
magnetization at zero temperature [28]. The third term is
the polarization current density. Attention should be paid to
the last term. It is the curl of P x W, which indicates that
P x W should be interpreted as the magnetization density.
This term comes from the motion of a polarized material,
which is actually a well-known phenomenon in classical
electromagnetism. As magnetization and polarization form a
(34+1)-dimensional antisymmetric tensor, they transform into
each other under material motion. The picture is as follows:
consider an initially stationary dipole moment P composed
by a pair of spatially separated positive and negative charges;
if it begins to move at velocity W, the two charges give rise
to currents of opposite directions and thus an effective current
circuit is formed which gives rise to the orbital magnetization
density P x W. This effect shows the consistency between
the classical electromagnetism and the modern quantum the-
ory of polarization and magnetization in solids.

We then consider the case where the lattice vectors are
constant in space and only change slowly with time, and
we further assume that at each fixed time ¢, the lattice has
time-reversal symmetry. Then the first term and the second
term in Eq. (49) vanish and using the elastic condition (8), (9)
the remaining terms can be written in an intriguing form as

Jjee =8P =T P™ +T" P (50)

The first term is the absolute change of polarization density
under deformation. The second term is the directional change
due to the deformation of crystalline directions. The last term
is the magnitude change due to the deformation of unit-cell
volume. Equation (50) shows that the last two geometrical
changes of polarization density should be subtracted to give
the experimentally observed current density. This confirms
the argument by Nelson and Vanderbilt [16,29] that only the
proper change of polarization can be observed experimentally.
Substituting P = — 555 [ d*k Ay and 9, = T clden, within
our lattice covariant formula, Eq. (50) can be conveniently
written as

4’k m m
m0 m[vn Aki - 8kiAn ]’ (51)

-1 n

ji=—ell

where the periodic gauge condition for A, =I", A" is used

again to retain this gauge invariant form and A" = i(u|V}'u).

Noticing I'g denotes the strain rate and by defining the proper
o)

piezoelectric constant as €™ = we have an explicit

expression for e as

. d’k
e = —e _—
" 2m)3

which is nothing but the integral of Berry curvature involving
k and strain. And the lattice covariant strain derivative gives
an explicit meaning for the strain derivative. Its expression
in terms of the deformation potential operator is discussed in
Appendix G.

Another consequence of Eq. (50) is that the charge pump-
ing picture should be revised in the deforming crystal case.
The usual picture states that when the system varies slowly
and periodically in time, the charge pumped through a fixed
plane in the laboratory frame during one cycle is quantized
[7]. However, due to the last two terms in Eq. (50), this picture
is changed due to that the right-hand side is not a total time
derivative. To see this, by multiplying a factor vh“ on both
sides, Eq. (50) reads

Jiy b = — 0, (b P'), (53)

[i (00| V™ u) — i(VIuldgu)],  (52)

where v(¢) is the unit-cell volume and b* (¢) is the reciprocal
lattice vectors. Now the right-hand side becomes a total time
derivative and the left-hand side is the current passing through
a lattice plane unit cell, where b” is the normal direction. After
integration in time, the left-hand side gives the total charge
pumped through a lattice plane unit cell and the right-hand
side is the difference of vb} P! between initial and final state.
Suppose the initial and final states are the same; from the
uncertainty of P!, the charge pumped is quantized to some
integer. However, noticing that the lattice plane unit cell is
constantly changing during the time cycle, the pumped charge
through a fixed surface plane in the laboratory frame is not
necessarily quantized.

3. Strain gradient induced polarization and strain
rate induced magnetization

The first-order current density comes from the variation
of the zeroth-order polarization/magnetization. To study the
polarization/magnetization induced by strain gradient/rate,
current density accurate to second order is needed. As pointed
out in the work [30], polarization/magnetization due to in-
homogeneity can be divided into two parts: (1) the zeroth-
order polarization/magnetization formula expressed with in-
homogeneity modified Bloch functions; (2) the Chern-Simons
contribution expressed with the zeroth-order local Bloch func-
tion. The former will be deferred to future study. Here we
concentrate on the Chern-Simons contribution to polariza-
tion/magnetization from electrons.

Two results are discussed here: the polarization induced by
the strain gradient denoted by lattice connection and orbital
magnetization induced by strain rate denoted by the gradient
of the velocity field. The former phenomenon is well known
as flexoelectricity [12] while the latter phenomenon we call
dynamical magnetization. We find that the Chern-Simons
contributions to both effects share the same response tensor
coefficient given by

it = [ [AVIAL + AL AT + ATA A (5
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where f o )z is just the k-space integral of a Chern-Simons
form involving one strain parameter and two k parameters.
A" is the Berry connection in terms of strain.

The tensor coefficient 1, is antisymmetric with respect
to the indices ij and symmetric to mn. The former property
is inherited from the Chern-Simons form and the latter is due
to the vanishing of the lattice covariant derivative of Bloch
functions under local rotation. In terms of this coefficient,
the Chern-Simons polarization and magnetization induced by
strain gradient and strain rate, respectively, can be written as

P = el ul, (55)

MY = —ed,, W' + (PLW/ — PIW').  (56)

Equation (55) is the Chern-Simons contribution to flexo-
electricity, where the strain gradient is denoted by lattice
connection {I"} -}. The well-known picture to understand flex-
oelectricity is introduced by Taganstsev, where flexoelectricity
is described by the ionic effective Born charge multiplied
by the displacement induced by strain gradient [17]. The
major challenge is the calculation of the effective charge.
The longitudinal polarization can be calculated from the local
charge density response to ionic position [26,31]. However,
the transverse part involves the current response to strain
gradient [31]. As can be seen from Appendix E, indeed we
achieve the above formula by considering the response of
current to strain gradient and strain rate. The key point is to
calculate the Abelian Chern-Simons form (54), which is a
tractable problem.

Equation (56) is the dynamical magnetization as clearly
indicated by the appearance of the velocity field. The first term
is induced by the gradient of the velocity field, which is the
strain rate experienced by ions. It couples to the same tensor
coefficient of Chern-Simons flexoelectricity. This indicates
that materials with large bulk flexoelectricity effect may also
demonstrate observable dynamical magnetization. The second
term is the transformation from polarization to magnetization
due to ionic motion as discussed before.

We conclude by summarizing the different parts of polar-
ization/magnetization in Table III, which includes the zeroth-
order contributions intrinsic to local lattices and the Chern-
Simons contribution due to inhomogeneity.

4. Stress tensor and its responses

The electron stress tensor response to a geometrical back-
ground is a very interesting problem. Particularly, the response
to the velocity gradient is known as the viscosity term and is a
manifestation of the rigidity of the electron system. Electron
viscosity has been studied in different cases such as the
integer Hall system [32,33], the fractional quantum Hall state
[34-36], topological insulators [37], superfluids [38], and in

the time-dependent density functional theory [39]. Here we
give a general formula of the electron energy-stress tensor in
a spatially homogeneous band insulator at zero temperature
including its response to lattice deformation:

T =D, +20- VT + i +a-V'P,,

+ TeWin —[Wiji +i< . (57)
where the left-hand side is the stress-energy tensor. The
derivation is given in Appendix F. First we would like to
point out that the indices i and j are symmetric on both
sides of the equation. This is because the energy-stress tensor
can be viewed as the unsymmetrized strain derivative of
electron energy. And this covariant strain derivative vanishes
when strain is antisymmetric, i.e., a crystal under rigid body
rotation.

The above expression is for a particular filled band while
the total energy-stress tensor is the sum of all occupied bands.
Dj. = 5;’; Di]. is the contribution from the deformation po-
tential. It gives the leading order contribution to the stress
tensor. The second term is the response of the stress tensor
to the rotation of lattices in time, which is the antisymmetric
part of the ionic velocity gradient. 7 is the orbital angular
momentum for a filled band:

Vg = 57 — 8T =8 T 8] T™, (58)
a,
where J™" = f (271); Im (0, u | (¢ + H) | Ok, u). The first

three terms in Eq (C6) are the strain derivative of a second-
rank tensor in retrospect to the first-rank vector case exempli-
fied by the Berry connection term in Table II. The last term
comes from the strain derivative of the volume element in k
space, which reads V' (d*k) = —8"d’k. If we are to put the
strain derivative outside the integral | d’k, this term always
appears. Equivalently, we can view a phase space quantity
after integration in k space as a real space density quantity.
The last term is a manifestation of this density property.

The third term in Eq. (57) is the response to strain rate,
which is often referred to as the viscosity term. The viscosity
tensor has the following explicit form:

ng?;‘=/d%[i(Vj;'uij.u)—i(V;u|V;’u)], (59)

which is simply the integral of the Berry curvature in terms
of the strain parameter in k space. Again the meaning
of the strain derivative is only clear within our theory as
given in Table II. This term is automatically antisymmetric
between the two groups of indices mn and ij, and thus is
dissipationless. And both mn and ij are symmetric within
their own groups. This symmetric property is inherited from
the fact that |V)'u) = 0 when m, n are antisymmetric, i.e.,

TABLE III. Electric polarization and orbital magnetization.

Polarization Orbital magnetization
Intrinsic contribution P, = ef Ag M, =M+PxW
Chern-Simons contribution Pl = el um MY = —ed,, Wi + (PLW7 — PIWY)
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rigid body rotation. Its expression in terms of the deformation
potential operator is given in Appendix G.
The fourth term in Eq. (57) is the response to acceleration.
Py, =m, f d*k Ay is the mass polarization of the electron and
. .oP" . .
4 P, =aéﬁ =8P + 8] P, (60)
o
Comparing to Eq. (58), it is easily to see this is the strain
derivative of a vector density. Noticing the periodic gauge
condition for A™, actually V/ P, = "%e;" is just the proper
piezoelectric constant multiplied by a factor “<.

The last two terms in Eq. (57) have the signature of a
perfect fluid with energy density and energy current density
(%, —Jjm,) in coordinates relative to ions. After transform-
ing back to laboratory frame with relative velocity —W,
we have those terms as part of the energy-stress tensor.
And j,, is the mass current density with expression ],’n =
Belem + ’”TW' —m2(ax Q) + (@ x J)" in the spatially
homogeneous case.

Here we only discussed the spatially homogeneous case
for band insulators. The physical meaning of the above stress-
energy tensor is to provide a force effect on the dynamics of
ions as shown in the derivation of Appendix F. And we did
not include the strain gradient contribution to the energy-stress
tensor, which will be referred to in future study.

Also, we want to point out the direction to extend the
current formalism to study the deformation effect in met-
als. The equations of motion (46), (47) hold regardless of
whether the system is metallic or insulating. The difference
between metallic and insulating systems lies in the distri-
bution function which can be calculated, for example, from
the Boltzmann equation. Near equilibrium, the distribution
function can be divided into a local equilibrium part which
is responsible for the intrinsic property and a nonequilibrium
part. The nonequilibrium correction can be calculated in the
simplest case with relaxation time approximation or more
accurately by considering the scattering process introduced
by impurities, phonons, or electron-electron interaction. In
the hydrodynamic limit, we expect the lattice deformation
provides a platform to study the curved space hydrodynamics.
It is also interesting to study the electron energy-stress tensor
from the hydrodynamic point of view.

V. CONCLUSION

In summary, we have developed a theory describing the
semiclassical dynamics of electrons in deforming crystals up
to the first order of strain gradient, strain rate, and lattice
acceleration. Our theory is based on the lattice bundle picture,
where local lattices are introduced to account for the local
property of deforming crystals. To compare quantities associ-
ated with local lattices with different periodicities, a derivative
operation called the lattice covariant derivative is introduced.
It takes the place of the partial derivative in expressing the
equations of motion including the Berry phase effect. In
general, the lattice covariant derivative allows our results to be
expressed in a familiar and covariant form under Newtonian
coordinate transformation. The geometrical effect of lattice
deformation is made explicit in terms of our lattice covariant

formalism. Many deformation effects resemble the effects
in a curved spacetime even if expressed in the Euclidean
laboratory frame coordinates.

Our formula considers the deformation of an original pe-
riodic Hamiltonian and makes no other particular assumption
about the property of the Hamiltonian. Thus we expect the
results can be easily applied to other periodic systems such
as the photonic crystal or cold atom systems. Moreover, our
approach provides a way to generate nontrivial geometry for
particles coupled to a deformed background. In other systems
of different order parameters (in our case the lattice vectors),
we expect other types of geometry can be achieved. As the
focus of this paper is to set up the framework of our lattice
covariant formula, many discussions in the application part
are not complete. The most obvious direction to pursue is to
include the strain gradient contribution to Bloch functions and
the electron energy-stress tensor.
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APPENDIX A: LATTICE FRAME

In the main text, the results are expressed in the laboratory
frame. This has the advantage that the physical picture is
more transparent. However, it is more convenient to derive
the results in another curvilinear frame called the lattice
frame. This is similar to the relation between Euclidean and
Lagrangian description in fluid dynamics. This coordinate
transformation method in dealing with the deforming crystal
problem is introduced by Whitfield [18].

Here we introduce the lattice frame and discuss its relation
with the lattice bundle picture. Lattice frame coordinates
are denoted as {x’®, ¢}, with « = 1, 2, 3 representing three
crystalline directions. Given the positions of all lattice points
in the laboratory frame {R;(¢)}, we define a smooth lattice
field R(x’,t') in terms of lattice frame coordinates, which
satisfies

Ri(t) =R, )] i=r. (AD)
Then the laboratory frame coordinates are related to lattice
frame coordinates as
x =R(x'.1"),
r=t.

(A2)
(A3)

From (A1), we see that lattice frame coordinates can be
viewed as the continuity of the lattice points label. Any
deforming crystal is mapped to a unit cubic lattice in the lattice
frame. We require that in a local region deformation is elastic
which means the relation (A2) is reversible and x’ is also a

115162-13



LIANG DONG AND QIAN NIU

PHYSICAL REVIEW B 98, 115162 (2018)

function of x and ¢. In later discussion, we will frequently use
this reversibility and change the independent variables of the
same fields from (x’, t') to (x, 1) or vice versa.

To connect to the lattice bundle picture introduced in the
main body of this paper, we can define the lattice vector fields
and velocity field as

co(x', ) =0 R(X', 1),

W', t')=0,R(x',t).

(A4)
(A5)

The physical property of the lattice vector fields and velocity
field comes naturally from (A1) that

(l+(l+1°‘)
Co| ———=

5 (A6)

, t’) =Ry1«(t") — Ri(1),

W, 1) =Ri(). (A7)

However, from the definition (A1), Eq. (A6) does not nec-
essarily hold exactly. Here we impose the second requirement
for the lattice field such that the left-hand and right-hand sides
of Eq. (A6) equal. This is to keep our theory accurate in
the first-order gradient of lattice fields at least in the case of
constant strain gradient. In the constant strain gradient case,
we have the following form of lattice field R(x’, t'):

R(x'. 1) =N,("x" + INg(t)x“x” + N°(t"),  (A8)

[

where N i describes a constant strain gradient in space. After
substituting Eq. (A8) into Eq. (A6), we can see that Eq. (A6)
holds exactly.

From the above definition of lattice vector fields and veloc-
ity fields, it is straightforward to show that

(cq - 0)cp — (cp-d)c, =0,
(cq - W — (W -3)cy =0;¢q,

(A9)
(A10)

which is the elastic relation addressed by Eq. (67). This shows
the consistency between the definition here and the discussion
in the main body of this paper. Actually, the elastic condition
is the necessary condition for the existence of local lattice
fields R(x’, t).

Next, we discuss the metrics in the lattice frame. In the
lattice frame, lattice points always have unit cubic lattice
coordinates and the deformation is described by the metric
tensor in this curvilinear coordinate system. This is in contrast
to the laboratory frame description where coordinates of
lattice points are crucial. The four-dimensional metric tensor
in lattice frame is

Ixt dx’ P

B = 32 3P = CyC, (A11)
ax’ axt i

o = o e = Wic,, (A12)

where we choose (—1,1,1,1) for the Minkowski metric
signature. We see that from the above expression the spatial
part of the metric is just the contraction between two lattice
vectors and the time-space component of the metric is just the
velocity field projected to lattice frame coordinate directions.
This is consistent with the geometric method of describing
the deformation effect [40,41] where the metric tensor is
introduced to account for strain effect. Next, we discuss how

the metric fields couple to the first-principles Hamiltonian of
electrons written in the lattice frame.

APPENDIX B: GRADIENT EXPANSION
TO CRYSTAL POTENTIAL

Viewed in laboratory frame, the total crystal potential
which depends on deformed lattice points is responsible for
all the deformation effects. However, this potential is not easy
to deal with since it has no periodicity. So it is crucial to
write the potential in a tractable form. In the case of slowly
varying deformation, this is done by expanding the total
potential in the first order of strain gradient. Here we show
how this process can be conducted with the help of lattice
frame defined previously.

In general, the crystal potential is a function of the relative
position between electrons and all ions:

V({Rie —x)), (B1)
where x is the position of electrons expressed in the laboratory
frame. [ is the lattice point label and 7 is the label of ions
inside a unit cell. Here we assume that the position of ions
inside a unit cell is completely determined by the lattice points
positions while there are exceptions as mentioned earlier in
this paper. Thus R;;({Ry}) can be written as a function of
all the lattice points. Due to translational invariance of the
whole crystal, when we displace all lattice points by the
same amount, all ions in a unit cell will be translated by
the same value as well. This property is described by the
formula R;;({Ry}) — C = R;;({R;y — C}) with C some con-
stant displacement. Thus we can absorb the overall constant
translation of R;, into its {R;} dependence. Thus when C =
x, the total crystal potential can be written as a function of the
position difference between electron and lattice points:

V{Ri: —x}) = V{Ri:({Ry — xH}) = V({R; — x}), (B2)

where by defining the crystal potential as V({R; — x}) we
eliminate the label of ions within a unit cell.

The distribution of {R;} is not periodic in general for a
deforming crystal. However, for slowly varying deformation,
we can apply a local approximation to transform it into a
more tractable form. It is based on the assumption that only
ions within some length scale that is much smaller than the
length scale of strain variation contribute to the above crystal
potential. This is true for metals and nonpolar insulators.
For polar materials, the macroscopic electric field caused by
polarization needs to be attended to the potential and the
argument here applies to the local part. With the lattice field
defined in (A1), we have R;(t) = R(l, t). Expanding I with
respect to the electron position in lattice frame x’, we have

Ri(t)—x = R, t) — R(x', 1)
~ (I —x)ecu(x,1)

+ 23U —x)* (1 = x"Y(ep - d)ea(x, 1), (B3)

where the last term is a first-order small quantity proportional
to the spatial gradient of lattice vector fields. Substituting

back into (B2) and utilizing the property of lattice connection
Eq. (5), the Taylor expansion of the potential with respect to
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the second term in Eq. (B3) gives the potential as

VAR, — x}) ~ V(" = x)eq(x, D)) + 1750/, (B4)

where {T';} is the lattice connection introduced in Eq. (4). We
call the above procedure the gradient expansion to the crystal
potential.

The first term is the potential given by the local lattice at
the electron x. It is still not periodic due to the position depen-
dence of ¢, (x, ). This can be expected in the lattice bundle
picture; as the electron moves it experiences different local
lattices with potentials of different periodicities. However, the
advantage here is that if we transform to the lattice frame and
apply the local approximation, the first term becomes periodic
and tractable. Actually, due to the invariance of the crystal
potential under rigid body rotation of all ions and electrons at
the same time, we can rotate three lattice vectors freely with-
out changing the crystal potential, i.e., V({(I* —x'%)c.}) =
V{{* - ’“)O’C }) with 0’ Ok = 8 ;. This property means
that the first term actually only depends on the lattice frame
metric {Gp = clcl).

The second term is the gradient correction to the

AVURI—x""¢s)) / pk ke pJ
=2 g (R = xR —

x’“cé) with R;(x, 1) = [®cq(x, t). It can be understood as the
response of the crystal potentlal operator to the strain gradient
denoted by {I';}, and O’ is the response coefficient.

potential, where O/*

APPENDIX C: SCHRODINGER EQUATION
IN LATTICE FRAME

Given the expression of total crystal potential (B4) up to
first order of the strain gradient, the Schrodinger equation in
the laboratory frame reads

iy = [— - X'“)Ca})] v, (ChH
2m,
where A = 8)% is the Laplace operator in the laboratory frame

and
Vi = V({I* = x"*}Jeq) + 4T, 07 (&)

comes from Eq. (B4). It is very tempting to express the
Schrodinger equation lattice frame (x/, ¢') due to the fact that
the potential only depends on {{* — x"*} and the lattice frame
metric.

During the transformation to the lattice frame, if we require
that the wave function be invariant under the coordinate
transformation, then the Schrodinger equation in the lattice
frame simply reads

1
Y = {—%A’ — W a, + Vtol({(la_x/a)ca})}ws (C3)

where A’ = %a’“(\/ﬁa;) is the Laplacian in the lat-

tice frame with 0 = G*#9}, 3) = 725, and G’ = det(Gop).
{G*#} is the inverse matrix of {Gup} and satisfies G Gg, =

8y, with repeated indices summed. It has the explicit expres-
sion as

(C4

where {b*} is the reciprocal lattice vector. In order to be more
transparent about the meaning of Gg,, we use the symbol
W, = Goq to denote this component of the metric tensor.
Then we only have spatial indices and the spatial part of
metric tensor {G"*, G;ﬂ} can be used to raise and lower
indices. For example, we have

W =GPWy =bi W' (C5)

However, there is a problem with the Schrodinger equa-
tion (C3) that the Hamiltonian on the right-hand side is not
Hermitian with respect to the inner product [ dx'~/G. This
inner product is inherited from the definition in the laboratory
frame. Since during the transformation the wave function is
kept invariant, to ensure that the probability of finding an
electron in a given volume is the same expressed in both
coordinates, i.e., Ap = | |2d’x = | |2/ Gd>x’, we have to
define the inner product in the lattice frame as [ dx'/G. To
resolve the non-Hermiticity problem, instead of keeping the
wave function invariant, we require that the wave function in
lattice frame v’ satisfies the following relation:

[y *dx = Y/ Pd’x, (C6)

as a result of which the physical meaning of the wave
function is still kept while the inner product in the lattice
frame becomes [ dx’. Then we can choose the transformation
of the wave function and define the inner product in the lattice
frame as

v = (G)iy, (C7)

Wy = / o, (C8)

As can be seen later, this choice restores the Hermiticity of
the Hamiltonian in the lattice frame.

To complete the argument, the transformation relation for
operators should also be specified. This can be done by requir-
ing that physical observables have the same value calculated
in both frames:

/¢*§¢d3x =/¢/*S/w/d3x/’ (C9)

where S and § are operators in the laboratory frame and lat-
tice frame, respectively. Thus we see that operators transform
as

§ =Gi8G 5. (C10)

Equipped with this transformation relation, after some long
but tedious algebra, we finally have the Schrodinger equation
for v/ in the lattice frame as

i0,y' = [_me o = imeWo)IG™P () — im W)
+ Vi ({1 = x")ea(x', 1)})
1
- Emewg,w/“ + Vg} v, (C11)
where V, = —8 0”InG + =— 32 G"‘ﬁ(a lnG)(aﬂlnG) is a

pure geometrlcal quantity. It is second order in strain gradient
and thus will be discarded in our first-order theory. It can
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be checked that the Hamiltonian in the above Schrédinger
equation is Hermitian with respect to the inner product (C8).
From Eq. (C3) to Eq. (C11), the derivation is exact and
the geometrical potential V, is the only remembrance of
this process. The probability balance equation can be easily
deduced from Eq. (C11), which reads

dp' +0.j =0, (C12)

with ,0/ — |w/|2 and j/a — z;meG/a,B{I/f/*%allgw/ _ w/llaéw/* _
2m,Wyp'}. Noticing that p'dx" denotes the probability to find
the particle in the volume denoted by d3x’, which has the
same form as the one in a Cartesian coordinate, it is easy to
understand that the probability balance equation (C12) also
has the same form expressed with partial derivatives. The first
two terms of the current density can be interpreted as the
current density of laboratory frame projected to lattice frame
basis directions and the third term comes from the relative
motion between the lattice frame and laboratory frame.

APPENDIX D: LAGRANGIAN OF WAVE PACKET

The Schrodinger equation in the lattice frame is still
hard to solve. The Hamiltonian in Eq. (C11) is neither
periodic nor static. However, it is easily seen that both
the aperiodicity and time dependence come from the fields
(We(x', 1), G*(x’, t")}. So if deformation varies slowly in
position and time, local approximation and adiabatic approx-
imation can be applied to solve this problem. This can be
done systematically with the wave-packet method. We refer
to the paper by Sundaram and Niu [10] for a more complete
discussion of this method. The basic idea is that if we have
a wave-packet state of an electron that is localized both in
real space and reciprocal space, with its center position in
the lattice frame as x/. and ¢/, respectively, the effective
Hamiltonian is given by the Taylor expansion of the position
operator in metric fields relative to the center position of the
wave packet. The zeroth-order and first-order Hamiltonians
for the wave-packet state thus read

A=— LG —imw )@, W)
c m € (4 IMmeW o B lme cp
+ V{I* = x")eca)) — EmeWLaWQ“, (D1)
| 9H' 0H/
A 7 — _ o _ o C C o _ o
‘ 2[(" 5 e ¥ e T )}
1 i jk o ra
+ = F st N0 A" — X')ew ), (D2)

where {G’Caﬂ , W} are fields evaluated at position (x/, 7).

The Hamiltonian (D1) seems complicated but is actually
easy to solve since it is periodic and the metric tensor and
velocity field are just parameters. To solve this eigenproblem,
first we define the gauge invariant wave vector k., as

kK.=q. —mW. (D3)

Then the eigenstate and eigenvalue of Hamiltonian (D1) read

u (x; k., th,
meW""Wm,

(D4)
(D5)

V(x' gl xl, 1) = el
&g, x,, 1) = ek, x, 1) —

where u'(x";k, x/.,t") and ¢, (k ,1') are eigenstates and
eigenenergies of the Hamlltoman Wlthout velocity field:

3 / I 1 % / .7/ / c7/
H(K.,x/,t')=— %Gcﬂ(aa + ikl (9 + iklg)
+ VI = x")eca))- (D6)

As a first-order theory in inhomogeneity, we do not need
to consider the correction to the wave function from the first-
order Hamiltonian (D2). But we do need to consider its cor-
rection to energy. To calculate this gradient correction, we first
superpose the eigenstates (D4) to construct an electron wave-
packet state. Then we calculate the expectation value of the
first-order Hamiltonian (D2) in this wave-packet state. Again
this process is quite standard in the wave-packet method [10];
we just list the result here:
w'| - (e — I:Ié)‘aq(»“/y

AE(q,, x,1") =—1Im (0,

+ 3T <u’|0,f"|u’>’,

3l D7)

where the first and second terms come from the two terms
in (D2), respectively. After expressing (9,:, dy) in terms of
(Ox:, Ox;), the first term gives rise to two terms: 2w/, - J' and
Im(0y |gu' | (e, — H)) | 9 u'). @, defined as ], = 30y, x
W/, is the angular velocity of lattice and J" = 5= Im(dy u' | x
(e, — PAIC’_) | O u’)’ is the angular momentum of electron.

Then the Lagrangian for the wave packet in the lattice
frame reads

L, =— (e — smWEW.) + (K, + m W) - X,
+ (@ |idg @) - %, + (' |idgu’) - k.
+ ('idpu’)’, (D8)
where &l =&, — imWEW,, +2w, - J + 3T (0) +

Im(dy u’ | (e, — I:IC/) | o u’)’ is the energy depending on the
Bloch functions. ‘

The Lagrangian of the wave packet in the lattice frame
(D8) is very useful in deriving results but its physical meaning
is usually less clear since we are more accustomed to under-
standing a physical problem in the laboratory frame. Also, we
are left with the question of how to calculate the eigenproblem
of Hamiltonian (D6) with ab initio calculations. Furthermore,
the lattice frame is not globally well defined in the presence
of defects so we are unable to consider the topological effect
associated with defects in the lattice frame. Based on the
above reasons, it is more desirable to express the results in
the laboratory frame.

First, we rewrite the Hamiltonian (D6) in orthonormal
coordinates defined as

(D9)
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Then the Hamiltonian written in these orthonormal coordi-
nates denoted by H, reads

. 1 (13 :
Hc(kc;xc’ t) = -+t kc + V({lacca(xc’ t) - r}),

2m, \ i or
(D10)

which is exactly the Hamiltonian (3) evaluated at x, with
ke = k,,b%.. Thus we automatically get the transformation

rule for the wave vector from the lattice frame to laboratory
frame,

kci =k, bq(xu t)»

cal

(D11)

which denotes points in the Brillouin zone of the local lattice
at (x¢, ).

Then the eigensolution of (D6) is related to the eigensolu-
tion of (D10) as

W5kl xl, 1) = u(x'“Cea; kL b x(x0, 1), 1), (D12)
Lk, X 1) = eo (KL b%, xo(xL. ). 1), (D13)

where u(r; k., x.,t) and e.(k., x., t) are the eigenstates and
eigenenergies of Hamiltonian (D10). Then the Berry connec-
tion in the Lagrangian (DS) takes the form

ax' [ @n)
8X¢/M vc(xw t)

where v.(x, t) is the unit-cell volume at point (x., t) and the
lattice covariant derivative Vv arises naturally. Thus through
this line of derivation, we have proved the validity of the
lattice covariant derivative.

If we define the Berry connection in the laboratory frame
as

(u'|idmu’) = d%u*iVx:u], (D14)

2 3
Ay = |V lu) = ﬂ/d%u*vxgu, (D15)

c

2 3
Ax, = il Juy = 2 /d3ru*8k“.u,

c

(D16)

then the relation between Berry connections in the lattice
e
frame and laboratory frame reads A » = —¢ A and A}, =
Xe ax, ¢ ca
ax)

ax]

Ay,

The next step is to transform the Lagrangian back to the
laboratory frame. Since time is the same for both coordinates,
their Lagrangians can also be chosen to be equal for a par-
ticular gauge. Then we can write down the Lagrangian in the
laboratory frame as

Le=— (oo + We ke + imeW?) + (ke + mW,) - .
+ (A +xc - Ax) + Dike - Ay, (D17)
where
ot = &c + Lo Im(u|D — D|ogu) + T (0) + 2w, - J. (D18)

The first term is the eigenenergy of local Hamiltonian (3) eval-
uated at x.. The second and third term come from the gradient
correction to local Hamiltonian Eq. (10). The last term is due
to lattice rotation and J is the angular momentum of electrons.
After omitting the indices ¢ we have the Lagrangian appearing
in the main text (48).

APPENDIX E: ORBITAL MAGNETIZATION
AND POLARIZATION

Here, we deduce the result in Eq. (49). For an insulator,
the total current density up to first order is given by two
contributions:

jt :/fod3k, (E1)

. dk u nk ou nk
Iy =9 | momzIml{—— ) (E2)
2m) ok; ok;

where D = 1 + tr(Qpy ) — m.2w - Q2 is the density of states.
J, comes from the dipole moments of velocity operator [4].
We can combine Eq. (46) and (47) to solve for x.

Especially the last two terms in Eq. (49) come from the
following terms in j

H—¢

Ji =€/d3k[—9k,xf W/ 4+ + Wi(Q)l. (E3)

To get the same form in Eq. (49), we will frequently use the
following identity:

BXM/dkf(k,x,t) = —FfM/dkf—F/dexuf, (E4)

where f is any phase space function. Choosing the peri-
odic gauge A,u(k +2mb;x,t) = Ay (k;);, t) and noticing
that V,j Ay, = 8,7 A, — T ikadi, Ax, — T, Ay, we have

f—szk,xjwf =W/(3;P' —Tj,P'+T|;P"),  (E5)
f Q. =08, P — Tiy P! + T}, P, (E6)
[Witr(Qkx):— W'(a; P/ — T/, P'+T],PT),  (ET)

where P = — 555 [ Ak. Substituting back to Eq. (E3) and
utilizing the elastic condition I'f) + F']‘-in = 9;W*, we have
the last two terms in Eq. (49): '

9P — 3 x (W x P). (ES)

Next, we deduce the Chern-Simons contribution to flex-
oelectricity and dynamical magnetization. We start from the
expressions in the lattice frame then transform back to the
laboratory frame. Because the lattice connection vanishes in
the lattice frame, the results in [30] can be applied directly
in the lattice frame. We can directly write down the Chern-
Simons contribution to current density as

S / / / / / / /
Jes = e/dk[ e L+ Qs ey + Lo |
"y f A By Aly ALy + 0 ALy Al + g A A

ey / ARy, A, A+ 0 ALAL + AL AL, (E9)
where the periodic gauge condition for real space Berry
connections has been used:
AL (k') — Al (k' +27b") = 0,
A (k') — A (k' +27b') =0,
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where b’ is the reciprocal lattice vector in the lattice frame.
From (E9), we can easily identify the polarization and mag-
netization term as

P’ =e/dk/Aklf 3xrjA1<;. + Ak;. ak,fo’f + Ayi ak}Ak{v (E10)
M =—¢ f dk' 9y A A + O Av Ay + 9 Ay Ay, (BT

Then using the transformation rule of the polarization-
magnetization tensor under coordinate transformation, which
we have verified in zeroth order, we can get the results given
by Egs. (55) and (56).

APPENDIX F: ENERGY-STRESS TENSOR OF ELECTRON

Here we will demonstrate how the concept of the energy-
stress tensor appears naturally by considering the role elec-
trons play in the dynamics of ions. From Appendix A, we
can see that the fundamental field describing the ionic degrees
of freedom is contained in the lattice field R(x’, t’) given by
Eq. (A1). If we are to consider the dynamics of ions in the least
action principle, we need to vary the total action including
both the electronic part and ionic part with respect to the
lattice field.

Here, we focus on the electron part. The electron La-
grangian written in the lattice frame depends on the lattice
frame metric field, which is related to the lattice field as

Gop =0, R'9pR" = clyc}, (F1)
Goy =, R'3 R = c.W'. (F2)

The variation in the lattice field can be expressed in terms
of the variation in the lattice frame metric, which is just the
formal definition of the stress-energy tensor. The action of
electrons is given by the Lagrangian of the wave packet as
discussed before, which has the following form:

A= / dx'di'8(x' — y (DLLW' (Y, ), (Gl (¥, 1))
Vo

k(') 31, K (1)), (F3)

where L/ is given by Eq. (D8). Here we use variables
(k/(t/), y'(@), y'(t"), ') to denote the degrees of freedom of
the electron as a point particle, all of which are functions
of time #'. And we add a factor §(x’ — y'(t')) to express
the action in a field form so that we can apply the variation
principle in field theories directly.

Then we vary the above action with respect to the lattice
field R(x’,t'). After some long and tedious calculation, we
have

F' = M’f (x', 1) = ﬁ[ams(x/ — )9 R +a < Bl
SR 3Gop Y !
aLe l i
T 500, Gy 1P = YR K e < B

[ 9L, 4
15— |9,sR8,u8(x — y'
o sy for oo =y +e )

+ [ aLe’ » / / Ri
3Goy °
—8(x' — y’)ét( oL dya R )}
3G oy
aL,

+ ——3y[0,e8(x' — ¥ R
53, Gon) [0y«8(x" — y)dy R']

— 3y {L w[8(x — y)d ,O,Rf]} (F4)

83, Goa) " M
where the derivative operator 3, only acts the explicit time de-
pendence while not on the time dependence of those variables
(k/(t’), ¥'(@), y'(t")). Here we have not used the expressions
of (k/, y') which can be glven by the equatlons of motion in
the lattice frame. 5 R,
exerted on ions. We see from the delta function §(x’ — y’)
that the effective interaction between electron and ion is local,
which is inherited from the local approximation and adiabatic
approximation we used.

Equation (F4) is the contribution from a single electron.
However, we have multiple electrons filling in the band
structure. Then we need to sum over all electrons in a filled
band with the integration of density of states and substitute
the expression for (k/, y') given by the equations of motion.
For simplicity, here we only consider a particular band in an
insulator at zero temperature. Then the total force from all
electron contributions reads

Fix', 1) = / d

( ) y 5 R

where we adopt the convention to use the script form of the
symbol to denote all electron contributions, such as F as the
total contribution from the F' of each individual electron.

Then substituting Eq. (F4) into the above expression, we
have a very simple form that

x', 1), (F5)

F(x' 1) =~G[a; T +8,T"], (F6)
where
. axt ox/ s
T = o +TOW +WITY, (FT)
. ax!
= T F8
T° 7 (F8)

and 7%, T are the four-dimensional energy-stress tensors
of electrons in the lattice frame defined as

Taﬂ(x t)y=— /de—{ oL oL,
\/— aG(xﬂ 5(30601/3)
-3 e , F9
3(0,G ys)} ~ )
T, 1) = _fdk/D/f{aG — s 5(8(:-LGgm)}’
(F10)

3 9 9 d d
3Gap’ 0(0sGup)’ 0(3:Gys)’ 3Goy’ (36 Gou)
metric dependence of k', y') whose expression is given by the
equations of motion and D’ = [1 + tr(2},,,) — 2m.e - Q']

where do not act on the
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while 0, acts on all the position dependence including that
in the expression of K, ).

Here we come up with the expressions (F9), (F10) to
ensure the physical meaning of energy-stress tensor, i.e., the
form of Eq. (F6). Equivalently, we can define the energy-stress
tensor directly in the lattice frame following the variation to
the metric as

T = — 2L 24 , (F11)
VG 8Gaﬂ

700 — _ Lﬁ (F12)
A/ G SGOa

where the definitions of 7% and T% differ by a factor of
two besides their variations to different components of the
metric, which is a feature of nonrelativistic theory [42]. Then
following the same procedure in calculating F* from F’, we
can achieve the expressions (F9), (F10).

To calculate the specific form of energy-stress tensor,
we need to substitute the expression of electron Lagrangian
Eq. (D8) into Egs. (F9), (F10). The calculation is very tedious
but straightforward; thus we only list the result here:

7] 2 ' 58/ 1 Oc ~08 1y
T = ﬁ dk D SG + EmeG G"D
af

+ med, Goy Im 3, (O u'| (6" — H")| O u')

i A

Gop aﬂGWQG‘“G‘”}

—2/ aw d "+ ! GG
= — g+ -—m
JG Gap 27¢

+ m,0, G()y Im 5Guﬁ(8k(/7u/}(8/ + I:I/)|8k/yu’>/
+mea, 3 W', Ay, — 8 Gay Q6,46 }

where from the second line to the third line, we sub-

stitute the expression of k' and use the periodic gauge

condition for (u'|idg,,u’). Qc,46,, = ilds,, (u'|dg,,u") —

9G,, (u'|dg,,u")'] is the Berry curvature with respect to lattice

metric. On the other hand,

T% = _ dk/D’L ije
\/6 8G()ot

/ dk/ D/( W/ol + '/C{)
= — me meXx .
vG

Then following Eqs. (F7), (F8) and using the identity 2% =
pP o

i dal’
frame as

we have the energy-stress tensor in the laboratory

. i . . m il
T =D, -20-V.T+ VP, -a— F,O/dm{m
+—=W'W —[W/j, +i<j] (F13)

v ¢

We illustrate the physical meaning of each term in the main
body of this paper.

APPENDIX G: EXPRESSIONS IN MOMENTUM
REPRESENTATION

Although we introduce the concept of the lattice covariant
in the position representation in order to contrast with the
normal partial derivatives, often it is more convenient to
calculate in momentum space. So it is worthwhile to discuss
the expression in momentum space. Since the local Hamilto-
nians and Bloch states all have the same periodicity as local
lattices, their expression in momentum space only involves
discrete momentum basis |I) = exp[2mil,b*(x, t) - r], where
1 is some integer and b(x, t) the reciprocal lattice vector at
(x, t). If we calculate the lattice covariant derivative of Bloch
states expressed on the momentum basis, we have

Vou(r, k;x, t) = Z [8xutts + Tlh ke, 1] exp(iled® - 1),
)
(GD

where u;(k;x,t) = fdru(r, k;x, t)exp[—2mil,b*(x,t) - r]
is the Fourier component of Bloch functions. An important
property is that the basis |I) vanishes under the lattice covari-
ant derivative while not under the partial derivative. Thus in
the momentum representation the lattice covariant derivative
takes a simpler form as

qu == axu + Fn

Kl G2)

which acts on the Fourier components. Then the real space
Berry connection can be conveniently expressed as

A =00 "y (alf 8y + knd, ), (G3)
1

where the relation 9. = I', a,' 9, is used. The normaliza-
tion condition for the Bloch function is ), uju; = 1 from
Eq. (38).

For the local Hamiltonian, its matrix element expressed in
momentum representation is

(G + k)*
Hyy=-—""2
m

Sy + V(Gy(x, 1)), (G4)
where G; = 27l,b%, G;_y =27 (l —1'),b"%, and V(G) =
%fdrV({Rl —r})exp(iG - r) is the Fourier component of
the local crystal potential. Directly applying (G2), we have
the lattice covariant derivative of the local Hamiltonian as
V. Hyy =D, T (G5)

mu?

where {ﬁ,’l”;l’,,} is the deformation potential operator in the
momentum representation, which reads

Am (Gl + k)m(Gl + k)n
Dn;l.l’ = _[

2m
ViIV(G) = limsg,—0 WQ’; is the derivative of
the crystal potential to strainmexpressed in reciprocal space.
V(G + §G) and V (G) correspond to two crystals with differ-
ent periodicities. This has also been touched on in the paper
[21]. However, this discussion here is valid in the general case
not limited to the rigid ion model.

The energy effect of deformation operator has been dis-
cussed thoroughly [43], which is the diagonal part in the Bloch
basis. Its off-diagonal part also plays an important role in
electron dynamics through Berry curvatures. This can be seen

S+ V;TV(GI—I’)] (G6)

115162-19



LIANG DONG AND QIAN NIU

PHYSICAL REVIEW B 98, 115162 (2018)

through the expression of Berry curvatures as a sum over all
band contributions. For example, QZ’kl can be written as

’

mo_ Z (uo| Dy [uay) (g |03 |ug) — (uolDi|ur) (us| D [uo)

nk; - _ 2
oy (g0 — &1)

(G7)

where O is the band we are interested in and / labels all
other bands. The role of the deformation potential operator

is explicit in this expression. Integration in the Brillouin

317 (01O I1)(118:10) = (01811} {11 Oin0) & ;
zone —e.fd ki 2.1750 e T Just gives the
proper piezoelectric constant.
The viscosity term comes from the Berry curvature g

involving strain and can be written as

o — Z (o) D2 |ug) (ug| D luo) — (ol DG |uy) (uy| D) [uo)
" (g0 — &1)*

I£0 .
(G8)
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