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We provide a unified semiclassical theory for thermoelectric responses of any observable represented by
an operator θ̂ that is well defined in periodic crystals. The Einstein and Mott relations are established

generally in the presence of Berry phase effects for various physical realizations of θ̂ in electronic systems,
including the familiar case of the electric current as well as the currently controversial cases of the spin
polarization and spin current. The magnetization current, which has been proven indispensable in the

thermoelectric response of electric current, is generalized to the cases of various θ̂. In our theory the dipole
density of a physical quantity emerges and plays a vital role, which contains not only the statistical sum of

the dipole moment of θ̂ but also a Berry phase correction.
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The Mott relation [1,2] was originally proposed as a
fundamental link between the measurable electric current
responses to the electric field and to the temperature
gradient in independent-electron systems with elastic scat-
tering off static disorder. Since the rapid extension of the
fields of spintronics and spin caloritronics [3], the question
whether the Mott relation still holds for thermoelectric
responses related to the electronic spin degree of freedom in
spin-orbit coupled systems has attracted intensive debates
[4–6]. In particular, despite the recent experimental obser-
vation of the spin Nernst effect [7–10] the thermal
counterpart of the spin Hall effect [11,12], the puzzle
whether the Mott relation exists between these two effects
has not been settled theoretically [13–18]. Besides, whether
the Edelstein effects (nonequilibrium spin polarization)
induced by the electric field [11,19] and by the temper-
ature-gradient [20] are linked by the Mott relation is also a
controversial issue [21,22].
In the presence of band structure spin-orbit coupling,

various Berry phase effects on thermoelectric responses
appear [11,12,23–25]. In particular, the identification of the
orbital magnetization including a Berry phase correction
has been proven vital in validating the Mott relation
between the anomalous Nernst and anomalous Hall effects
in ferromagnets [4]. In this Letter we provide a unified
semiclassical theory for thermoelectric responses of any
observable represented by an operator θ̂ that is well defined
in periodic crystals. We establish the Einstein and Mott
relations in the presence of Berry phase effects for various
physical realizations of θ̂, including the known case of the
electric current [4], as well as the intensively debated cases
of the conventional spin current (defined as the anticom-
mutator of the spin and velocity operators) [13–18] and the
spin polarization [21,22]. The magnetization current, which
has been proven indispensable in the thermoelectric

response of electric current [4], is generalized to various
θ̂. As a generalization of the orbital magnetization in the
case of the electric current, in our theory the dipole density
of a physical quantity (θ̂) emerges and plays a vital role. It
contains not only the statistical sum of the dipole moment
of θ̂ [26] but also a Berry phase correction.
In the strategy of the semiclassical theory [27], one

considers a grand canonical ensemble of dynamically
independent semiclassical Bloch electrons, each of which
is physically identified as a wave packet jΦðqc; rc; tÞi that
is constructed from the Bloch states in a particular non-
degenerate band and is localized around a central position
rc and a mean crystal momentum qc. Within the validity of
the uncertainty principle, the phase-space occupation
function ftotðqc; rc; tÞ can be defined, and the density of
states Dðqc; rcÞ has to be introduced [28]. The number of
states within a small phase space volume is hence given by
Dftotdrcdqc=ð2πÞ3. ftot ¼ f þ δf, where f is the local
equilibrium Fermi distribution, and δf is a small deviation
originating from scattering processes.
In this Letter, we consider Bloch electrons in a crystal

under a small electric field with a spatially inhomogeneous
chemical potential and temperature. We keep our result to
the first order of the gradients of the electrostatic potential
and chemical potential μ as well as temperature T. The
electron wave packet in such a system is described by the
following Hamiltonian:

Ĥ ¼ Ĥ0½p̂þ qc; r̂;wðrcÞ� − eϕðrcÞ; ð1Þ

where the electrostatic potential ϕðrcÞ ¼ −E · rc is explic-
itly shown with E the electric field, and wðrcÞ represent
other possible mechanical perturbation fields [29]. We
focus on the static case such that wðrcÞ does not depend
on time. All these fields vary slowly on the scale of the
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wave packet. Thus their original r̂ dependence is replaced
by the rc dependence under the local approximation. The
eigenstate of Ĥ is the same as that of Ĥ0 while the
eigenenergy is shifted by −eϕðrcÞ. We denote εðqc; rcÞ
and juðqc; rcÞi as the eigenenergy and eigenstate (periodic
part of Bloch function) of Ĥ0. Then the phase-space density
of states reads: Dðqc; rcÞ ¼ 1þΩqciric [28], where Ωλiλj ¼
2Imh∂λjuj∂λiui are the Berry curvatures, λi ¼ ric or qc;i, i
and j are Cartesian indices. Summation over repeated
indices is implied henceforth.
The local density of a physical observable θ̂ (generally a

tensor operator) is defined as [26]

ρθtotðrÞ≡
Z

½dqc�drcDftothΦjθ̂δðr̂ − rÞjΦi: ð2Þ

We further divide it into two parts: ρθtot ¼ ρθloc þ δρθloc,
where ρθloc is the contribution from f and δρθloc is from
δf. In the following, we focus on ρθloc while the discussion
of δρθloc is postponed to the end of the Letter. Hereafter
the symmetrization between operators that do not commu-
tate to each other is implied. ½dqc� is shorthand forP

n dqc=ð2πÞd with d as the spatial dimensionality (we
use the convention ℏ ¼ 1). First-order Taylor expansion of
r̂ with respect to rc in the Dirac delta function yields [23]

ρθlocðrÞ ¼
Z

½dqc�DfhΦjθ̂jΦi
���
rc¼r

−∇ ·
Z

½dqc�fhΦjθ̂ðr̂ − rÞjΦi
���
rc¼r

; ð3Þ

which is the basis of the following discussion. Henceforthwe
will omit the center position label c, and the notation

R
without integral variable is shorthand for

R ½dqc�, unless
otherwise noted.We considerρθlocðrÞ up to the first order, thus
it is sufficient to setD ¼ 1 in the second term of ρθlocðrÞ. This
term is related to the dipole moment of θ̂ [23,26]:

miθ ¼ hΦjθ̂ðr̂ − rÞijΦi; ð4Þ
whose physical meaning is shown in Fig. 1. Whereas the
first term of ρθlocðrÞ is just the conventional semiclassical
expression [1].
Given the complexity of the present subject, we first look

into the special case when θ̂ ¼ −ev̂ and the electric current
is calculated. Here we stress that, as will be discussed later,
the following derivation is not a repetition of what has been
done in Ref. [4], but is a novel approach and provides a
different perspective which eventually inspires a general
method applicable to observables other than the electric
current. The case of electric current is special because the
first term in Eq. (3) is now simply −ehΦjv̂jΦi ¼ −e_r,
where _r is the velocity of the wave packet and is given by
the equations of motion [29]

_r ¼ ∂qεtot −ΩqT ;

_q ¼ −∂rεtot − eEþ ΩrT : ð5Þ

εtot is the total wave packet energy from Ĥ0: εtot ¼ εþ Δε
with Δε ¼ Imh∂qciujε − Ĥj∂wui∂ricw being the contribu-
tion from the gradient of wðrcÞ [29]. The Berry curvature
term reads ΩλT ¼ Ωλr_rþ Ωλq _qþΩλt with T denoting the
total time (t) derivative. Ωλt vanishes in the static case
studied here.
Therefore, the local electric current density jloc reads

jloc ¼ −e
Z

Dfð∂qεtot −ΩqT Þ þ∇ ×
Z

fm: ð6Þ

Here m ¼ eImh∂quj × ðε − ĤÞj∂qui is the vector form of
the antisymmetric tensor mij with the index j coming from
the three components of θ̂ ¼ −ev̂, and is known as the
orbital magnetic moment of the wave packet [29].
Substituting the equations of motion into the ΩqT term,
after some algebra [30] we find that jloc can be divided into
two parts:

jloc ¼ jeq þ jneq: ð7Þ
The equilibrium part jeq exists irrespective of the electric
field and statistical force (temperature gradient and chemi-
cal potential gradient), while the nonequilibrium part jneq is
induced by them. The two parts read:

jeq ¼ ∇ ×M; jneq ¼ σiðEi þ ∂iμ=eÞ − αi∂iT; ð8Þ

where the Hall and Nernst conductivities are given by σi ¼
e2

R
fΩqiq and αi ¼ −ðe=TÞ R Ωqiq½ðε − μÞf − g�, respec-

tively. For jneq, the Einstein relation is evident, which states
that the electric field and the gradient of chemical potential
∇μ=e are equivalent in inducing the electric current.
The Mott relation is also easy to obtain, which reads αi ¼
ðπ2=3Þðk2BT=eÞ½∂σiðεÞ=∂ε�jε¼μ at low temperature [4],
where σiðεÞ is the Hall conductivity at zero temperature
with ε the Fermi energy. As for jeq, we obtain

FIG. 1. A schematic picture ofmiθ, which is proportional to the
difference between the θ center rθ and the usual probability center
rc (the red arrow), where the θ center is defined as rθ≡
ðhΦjr̂ θ̂ jΦi=hΦjθ̂jΦiÞ. By definition (3), miθ¼hΦjθ̂jΦiðrθ−rcÞi.
For “conserved” θ̂ that commutes with the Hamiltonian Ĥ0, the θ
center coincides with the probability center such that the θ dipole
moment vanishes.
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M ¼
Z

ðfm − eΩgÞ; ð9Þ

where ðΩÞk ¼ 1
2
Ωqiqjϵijk is the vector form of the anti-

symmetric tensor Ωqq, and g ¼ −ð1=βÞ ln½1þ e−ðε−μÞ� is
the grand potential density for a particular state. A key
observation is that M coincides with the orbital magneti-
zation [4,31,32], namely the dipole density of the electric
current, hence jeq is just the magnetization current.
It is important to note that, in the previous semiclassical

transport approach [4] M is obtained separately from its
thermodynamic definition M ¼ −∂Gtot=∂B with Gtot the
grand potential density and B the magnetic field, whereas
the form of the magnetization current∇ ×M is known from
the electrodynamics. Thereby, to generalize this approach
to other physical quantities θ, e.g., spin and spin current, is
difficult because the generalizations of the magnetization
current in these cases are not known. In fact, this is a main
theoretical difficulty in the study of the thermoelectric
responses of spin and spin current. Moreover, inhomoge-
neities from mechanical perturbation fields w, which are
usually present in practical materials, cannot be incorpo-
rated into the previous theory [4]. On the other hand, in the
present approach both the dipole density and its contribu-
tion to the electric current emerge automatically just
through the manipulation of jloc itself, in the presence
of w. Thus, if one can generalize this approach to the
thermoelectric responses of physical quantities other than
the electric current, the generalization of the magnetization
current can be obtained.
Applying the above new approach in these cases is not

straightforward because the perturbed wave packet (by
gradients of w and ϕ) is needed to calculate the hΦjθ̂jΦi
term of Eq. (3) [33] (the electric current is special since
hΦjv̂jΦi ¼ _r is already given by the equations of motion).
Trying to overcome this difficulty, we note that one may
introduce an auxiliary coupling term ev̂ · A (A is the vector
potential) in the wave packet Lagrangian, so that hΦjv̂jΦi
and jloc can also be obtained by the variation of the action
with respect to the field A. Then we are faced with a field-
variational problem.
This observation stimulates the generic idea that, to

obtain ρθlocðrÞ we consider the Hamiltonian:

Ĥ ¼ Ĥ0 þ θ̂ · hðrc; tÞ − eϕðrcÞ; ð10Þ

where h is the slowly varying field that couples to the
considered physical observable θ̂, and thus has an unam-
biguous physical meaning determined by that of θ̂. For
instance, when θ̂ are the spin and electric current, h are the
Zeeman field and vector potential, respectively. In some
realizations of θ̂, the explicit form of hmay not be familiar,
e.g., when θ̂ is the conventional spin current h is the so-
called spin-dependent vector potential [17,34]. This does

not matter since knowing the explicit form of h is not
necessary in our method. This is because the auxiliary term
θ̂ · h is introduced to acquire the thermoelectric response of
θ̂ and is set to zero (h ¼ 0) at the last of the calculation. In
general, both θ̂ and h are tensors and the product denotes
the contraction between them.
Next we consider the dynamics of wave packet jΦi

constructed from Hamiltonian Ĥ. The action for the wave
packet state is [23]:

S ¼
Z

dtL; L ¼ hΦji∂t − ĤjΦi; ð11Þ

where L is the wave packet Lagrangian [30]. It can be easily
verified that the variation of S with respect to hΦj gives the
Schrodinger equation satisfied by the wave packet. The
variation with respect to h instead gives

δS
δh

����
onshell

¼ −
Z

dthΦj δĤ
δh

jΦijonshell ð12Þ

for on-shell wave packet states (states that satisfy the
Schrödinger equation). By the definition of the field
variation [30], the right hand side of Eq. (12) is simply
−hΦjθ̂δðr̂ − rÞjΦi. Notice that jΦi becomes the wave
packet from the original Hamiltonian Ĥ (1) in the limit
h → 0. Combining Eqs. (2) and (12) we get the following
vital relation after summing over all wave packets:

ρθloc ¼ −
Z

½dq�drDf
δS
δh

����
h→0

onshell
: ð13Þ

In the following, we omit the label h → 0 for simplicity, but
all results are evaluated in this limit.
Starting from Eq. (13), a straightforward derivation [30]

yields the important result

ρθloc ¼
Z

Dfð∂hεtot −ΩhT Þ − ∂ri

Z
fmiθ: ð14Þ

We note that this equation indicates hΦjθ̂jΦi¼∂hεtot−ΩhT
with ΩhT ¼ Ωhr_rþΩhq _qþΩht. Notwithstanding the sim-
ilar form to Eq. (6), there is a basic difference: the q
derivative in Eq. (6) is replaced by the derivative with
respect to the field h that couples to the considered
observable θ. In fact, Eq. (6) can be reinterpreted from
the view point of the field variation as the special case of
Eq. (14) when θ̂ ¼ −ev̂ and h ¼ −A: since the vector
potential is always minimally coupled into the Hamiltonian
in the combined form qþ eA, the h derivative is propor-
tional to the q derivative with a factor −e.
The dipole moment of θ takes the form of miθ ¼

Imh∂qiujε − Ĥj∂hui. It is related to the gradient correc-
tion of the wave-packet energy in the way that
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Δε ¼ Imh∂qiujε − Ĥj∂wui∂riwþmiθ · ∂rih. Thus the gra-
dient correction can be generally interpreted as the potential
energy of the dipole moment in an external field.
Starting from Eq. (14) and taking some technical steps

similar to those from Eq. (6) to Eq. (7) [30], we obtain

ρθeq ¼ ∂hGtot − ∂iMiθ; ð15Þ

ρθneq ¼ σiθðEi þ ∂iμ=eÞ − αiθ∂iT: ð16Þ

Here ρθeq is the equilibrium part. In the case of the electric
current, its first term vanishes since the q variable has
already been integrated out, and its second term gives the
magnetization current. Gtot¼

R
DgðεtotÞ¼GþΔG, where

G ¼ R
gðεÞ is the local part and ΔG ¼ R ½fΔεþ Ωqirig� is

induced by inhomogeneity.

Miθ ¼
Z

ðfmiθ þ gΩqihÞ ð17Þ

is recognized as the dipole density of θ since

Miθ ¼ ∂Gtot

∂ð∂rihÞ
; ð18Þ

which is the thermodynamical definition of the dipole
density of a physical quantity. This definition reduces to the
orbital magnetization [4,32] and the spin dipole density
(whose antisymmetric part is called spin toroidization)
[22,35] when θ is the electric current (h ¼ −A) and the spin
(h is the Zeeman field), respectively. The fact that the
divergence of Miθ contributes to the θ density also verifies
its physical meaning.
Equation (16) describes the general linear response to the

electric field and statistical force, with the coefficients

σiθ ¼ −e
Z

fΩqih;

αiθ ¼ 1

T

Z
Ωqih½ðε − μÞfðεÞ − gðεÞ�: ð19Þ

The Einstein relation is apparent in Eq. (16). The gener-
alized Mott relation can be also proved [30]:

αiθ ¼ 1

e

Z
dε

∂f
∂ε

ε − μ

T
σiθðεÞ; ð20Þ

where σiθðεÞ is the zero-temperature value of σiθ with Fermi
energy ε. At low temperatures much less than the distances
between the chemical potential and band edges, the
Sommerfeld expansion is legitimate [36], yielding the stan-
dard Mott relation αiθ ¼ −ðπ2k2BT=3eÞ½∂σiθðεÞ=∂ε�jε¼μ,
which relates αiθ to the energy derivative of σiθ around the
chemical potential.

For the convenience of calculation, one can express the
dipole moment and Berry curvatures involving h deriva-
tives in a more explicit form:

miθ ¼ Im
X
m≠n

hunjv̂ijumihumjθ̂juni
εn − εm

;

Ωqih ¼ −2Im
X
m≠n

hunjv̂ijumihumjθ̂juni
ðεn − εmÞ2

; ð21Þ

where n is the index of the band we are considering. In
obtaining these two expressions the h derivatives have been
done, followed by setting h ¼ 0, thus both terms exist only
if θ̂ does not commute with the genuine Hamiltonian Ĥ0.
Therefore, the dipole density and the linear response
coefficients we discussed before is a property pertaining
to such “nonconserved” quantities. It is also worthwhile to
mention that our results apply to any operator θ̂ that is well
defined in the Bloch representation. For the conventional
spin current operator, Ωqih is just the quantity sometimes
referred to as the “spin Berry curvature” in first-principles
literatures [37,38].
Having identified the generalization of the magnetization

current −∂iMiθ, we can now understand the thermoelectric
response of θ in a direct way when inhomogeneities come
only from temperature and chemical potential [4]. In this
simple case the local density (3) reduces to

ρθloc ¼
Z

fhujθ̂jui þ σiθEi − ∂ri

Z
fmiθ; ð22Þ

where the σiθEi term arises from the interband mixing of
Bloch states induced by the electric field [26,39], whereas

−∂iMiθ ¼ −∂ri

Z
fmiθ − σiθ∂iμ=eþ αiθ∂iT: ð23Þ

Hence the nonequilibrium part of ρθloc − ð−∂iMiθÞ, which
corresponds to the subtraction of the magnetization current
from the local electric current density in [4], just gives the
thermoelectric response satisfying the Einstein and Mott
relations. In this picture, contributions from the dipole
moment miθ cancel out in the linear response, while the
Berry phase correction to the dipole density plays the vital
role in validating both relations.
σiθ contains a Streda term σiθ;II [11,24,40] whose zero

temperature value is related to the dipole density as:

Miθ ¼ 1

e

Z
dεfðεÞσiθ;IIðεÞ: ð24Þ

This relation can be derived from Eq. (17) by the same
procedure in [41]. σiθ;IIðεÞ has the following form [40]:
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σiθ;IIðεÞ¼Re
Z

ε

−∞

dϵ
2π

Tr

�
θ̂ĜR|̂ie

dĜR

dϵ
− θ̂

dĜR

dϵ
|̂ieĜ

R

�
: ð25Þ

Here ĜR is the bare retarded Green’s function. This
connection is useful in model calculations. For instance,
in the two-dimensional Rashba model with both Rashba
subbands partially occupied [11], the zero-temperature
Streda term of the conventional spin Hall conductivity is
σxy;IIs ðεÞ ¼ −e

8π f½kR=k0ðεÞ� − ½k0ðεÞ=kR�gΘð−εÞ, where Θ is

the step function, k0ðεÞ ¼ α−1R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2R þ 2εRε

p
with αR the

Rashba coefficient, kR ¼ mαR=ℏ2 (m is the effective mass)
the Rashba wave vector and εR ¼ αRkR the Rashba energy.
Thus the zero-temperature dipole density of the conven-
tional spin current is obtained as Mxy

s ¼ −ðϵR=12πÞ.
Finally, for completeness, we demonstrate that the

Einstein and Mott relations still hold in the presence of
elastic scattering on weak static disorder. As mentioned
before, the total local density has a term δρθloc ¼R
δfhΦjθ̂jΦi:δf in steady states is determined by the

linearized Boltzmann equation [1] (Pkq is the scattering
rate in the Born approximation)

_r · ∂rf þ _k · ∂kf ¼
Z

Pkq½ftotðqÞ − ftotðkÞ�: ð26Þ

The left-hand side is simply F · ∂kf, where F ¼ −eE −
∂rμ − ðε0 − μ=TÞ∂rT [1]. Thus δf ∝ F · ∂kf in the linear
response [42], validating the Einstein and Mott relations
[27]. In systems with Berry phase corrections, it is
well known that two extrinsic effects called skew scattering
and coordinate shift need also be incorporated into the
Boltzmann equation [43,44]. We show in the Supplemental
Material [30] that these two effects do not break the Einstein
and Mott relations. Besides modifying the occupation
function, disorder also alters hΦjθ̂jΦi by inducing interband
mixing of Bloch states [39]. This contribution, known as
side-jump velocity for θ̂ ¼ v̂ [39,45], is averaged by
δf ∝ F · ∂kf, hence does not go against the Einstein or
Mott relation.
The proposed approach provides a unified description

for the anomalous and spin Nernst effects, the thermally
induced spin and spin-orbit torque [25]. It also applies to or
can be extended in several directions of current great
interest. First, it can be further generalized to a framework
of linear thermoelectric responses of dipole densities. In the
present Letter we are limited to linear responses of operator
θ̂ that is well defined in periodic crystals, and only the
equilibrium dipole density of θ̂ is needed. We extend [46]
the variational approach to nonlinear responses of θ̂ and
then obtain the linear response of θ̂ dipole. This extension
enables to, for example, analyze the temperature gradient
induced orbital magnetization, thus paving the way for
thermal generation and control of magnetization via the

orbital degree of freedom, which is especially important in
low-symmetry valley systems. Second, by allowing for the
second order spatial derivative of the h field, the variational
approach yields a general theory for various quadrupole
densities (rirjθl), such as the orbital magnetic quadrupole
[47], which serves as a order parameter of systems with
combined time reversal and inversion symmetry. Third,
the generalization into the case of degenerate bands, i.e., a
non-Abelian formalism [48], can also be pursued. Fourth,
the field-variational approach applies to bosonic systems
as well. Indeed the idea of our work has been shown
recently to work in the thermal spin generation and spin
Nernst effect of magnons in noncollinear antiferromagnetic
insulators [49].
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