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We obtain a set of general formulas for determining magnetizations, including the usual electromag-

netic magnetization as well as the gravitomagnetic energy magnetization. The magnetization corrections

to the thermal transport coefficients are explicitly demonstrated. Our theory provides a systematic

approach for properly evaluating the thermal transport coefficients of magnetic systems, eliminating

the unphysical divergence from the direct application of the Kubo formula. For a noninteracting

anomalous Hall system, the corrected thermal Hall conductivity obeys the Wiedemann-Franz law.
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The thermal Hall effect, or Righi-Leduc effect, is the
thermal analogue of the Hall effect [1]. It gives rise to a
transverse heat flowwhen a temperature gradient is applied.
Recently there has been surging experimental interest in
studying the thermal Hall effect in various systems, such as
the phonon Hall effect [2,3], magnon Hall effect [4], and so
on. There are also many theoretical efforts to study these
phenomena [5–8]. However, most of these theoretical stud-
ies face a fundamental issue: direct application of the Kubo
formula, when done correctly without questionable
‘‘tricks’’[9], always yields unphysical divergence at zero
temperature [10,11]. Such an issue is actually a major
obstacle in theoretical studies of the thermal Hall effect.

The underlying cause of this issue has previously been
identified [12,13]: in a system breaking the time-reversal
symmetry, either by applying an external magnetic field or
due to the spontaneous magnetization, the temperature
gradient not only drives the transport (heat) current but
also drives the circulating (heat) current that is not observ-
able in the transport experiment. Both contributions are
present in the microscopic current density calculated by the
standard linear response theory, and a proper subtraction of
the nonobservable circulating component is necessary.
For the electric transport, such subtraction involves the
electromagnetic orbital magnetization density, while the
subtraction of the energy current will involve the gravito-
magnetic energy magnetization density [14], which char-
acterizes the circulating energy flow. However, the
previous theoretical discussions do not clarify what the
transport current and the magnetizations are and how
the magnetizations can be evaluated for a general extended
system. The issue becomes more fundamental because
the magnetizations are gauge-dependent quantities [15],
and it is not a priori clear what the proper gauges of the
magnetizations should be when calculating the transport
coefficients.

In this Letter, we attempt to build the theory of thermal
transport of magnetic systems on a firmer basis. We obtain

a set of general formulas for determining the magne-
tizations, including the usual electromagnetic orbital
magnetization as well as the gravitomagnetic energy mag-
netization [Eqs. (7)–(10)]. We further show that these
magnetizations naturally emerge as corrections to the ther-
mal transport coefficients, recovering the Onsager relations
and Einstein relations [Eq. (20)], and eliminating the un-
physical divergence. The result is a complete set of general
formulas for calculating the transport thermal Hall con-
ductivity, as well as the other thermal-electric responses
such as Nernst effect and Ettingshausen effect [16]. The
formulas also clarify what the gravitomagnetic energy
magnetization is and how it can be calculated, and its
thermodynamics is determined. We test our theory by
calculating the thermal Hall coefficient of a noninteracting
anomalous Hall system and observe the emergence of the
Wiedemann-Franz law, consistent with the recent experi-
mental observation [17].
Preliminaries.—To make our discussion specific, we

consider a general electronic system. We should note that
the formulas we will develop are general, applicable to the
other systems such as the phonon and spin systems.
We assume that the total Hamiltonian of the unperturbed

system can be written as Ĥ ¼ R
drĥðrÞ, where r denotes

the spatial coordinate and ĥðrÞ is the local energy density
operator. To study the electric and thermal responses, we
introduce the external mechanic fields: the potential �ðrÞ
and the gravitational field c ðrÞ, where the gravitational
field is introduced as the mechanic counterpart of the
temperature gradient, following Luttinger [18]. In the pres-
ence of these fields, the local energy density operator of the
system is modified to [13]

ĥ �;c ðrÞ ¼ ½1þ c ðrÞ�½ĥðrÞ þ�ðrÞn̂ðrÞ�; (1)

where n̂ðrÞ is the local density operator, and the

Hamiltonian of the system is Ĥ�;c ¼ R
drĥ�;c ðrÞ.

The particle and energy current operators of the system
are defined by the conservation equations [13]:
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@n̂ðrÞ
@t

� 1

i@
½n̂ðrÞ; Ĥ�;c � ¼ �r � Ĵ�;c

N ðrÞ; (2)

@ĥ�;c ðrÞ
@t

� 1

i@
½ĥ�;c ðrÞ; Ĥ�;c � ¼ �r � Ĵ�;c

E ðrÞ; (3)

where Ĵ�;c
N and Ĵ�;c

E are particle and energy current
operators, respectively.

We further require that the current operators in the
presence of the external fields can be related to the zero-

field current operators ĴN and ĴE by [13]

Ĵ
�;c
N ðrÞ ¼ ½1þ c ðrÞ�ĴNðrÞ; (4)

Ĵ
�;c
E ðrÞ ¼ ½1þ c ðrÞ�2½ĴEðrÞ þ�ðrÞĴNðrÞ�: (5)

We note that the current operator is only defined up to
a curl by Eqs. (2) and (3). As we will show later [see
Eq. (22)], one may use this freedom to find appropriate
forms of current operators that do satisfy these scaling
relations [19].

When the system is in equilibrium and in the absence
of the external fields, we have r � Jeq

N ¼ r � Jeq
E ¼ 0,

where Jeq
NðEÞðrÞ ¼ hĴNðEÞðrÞi0 is the expectation value of

the particle (energy) current for the equilibrium density

matrix �̂0 ¼ ð1=Z0Þ exp½�K̂=kBT0�, where K̂ ¼ R
drK̂ðrÞ

and K̂ðrÞ � ĥðrÞ ��0n̂ðrÞ. As a result, we can introduce
the zero-field particle magnetization densityMNðrÞ and the
energy magnetization density MEðrÞ so that

J eq
NðEÞðrÞ ¼ r�MNðEÞðrÞ: (6)

The equation can also be considered as the (incomplete)
definition of the magnetizations. To make the so-defined
magnetizations physically meaningful, one needs to further
require that the magnetizations are the properties of mate-
rial; i.e., they should be well-behaved functions of r and
vanish outside of the sample. We also introduce the zero-
field heat magnetization: MQðrÞ � MEðrÞ ��0MNðrÞ.

Magnetizations.—We rigorously prove that, with the
appropriate current operators that follow the scaling laws
Eqs. (4) and (5), the total magnetizations can be calculated
from the following set of equations:

� @MN

@�0

¼ �0

2i
rq � hn̂�q; ĴN;qi0jq!0; (7)

M N � T0

@MN

@T0

¼ �0

2i
rq � hK̂�q; ĴN;qi0jq!0; (8)

� @MQ

@�0

¼ �0

2i
rq � hn̂�q; ĴQ;qi0jq!0; (9)

2MQ � T0

@MQ

@T0

¼ �0

2i
rq � hK̂�q; ĴQ;qi0jq!0; (10)

where hâ; b̂i0 � ð1=�0Þ
R�0

0 d�Tr½�̂0âð�i@�Þb̂� is the

Kubo canonical correlation function (�0 � 1=kBT0) [20],

MNðQÞ �
R
drMNðQÞðrÞ, ĴQðrÞ � ĴEðrÞ ��0ĴNðrÞ, and

n̂q, K̂q, ĴN;q, ĴQ;q are the Fourier transform of n̂ðrÞ, K̂ðrÞ,
ĴNðrÞ, ĴQðrÞ [âq �

R
drâðrÞe�iq�r], respectively.

Equations (7)–(10) are the central results of this Letter.
The total magnetizations can be obtained by integrating
over either the chemical potential �0 [Eqs. (7) and (9)] or
the temperature T0 [Eqs. (8) and (10)]. The corresponding
boundary conditions are that at�0 ! �1,MNðQÞ ! 0 and
at T0 ! 0, MN (2MQ) coincides with the right-hand side

(rhs) of Eq. (8) [(10)], respectively. For an electronic
system, the two approaches are equivalent. On the other
hand, for systems without the chemical potential, such as
the phonon and magnon systems, Eq. (10) is the only
option for calculating the heat (energy) magnetization.
In Ref. [21], a similar formula for the electromagnetic

orbital magnetization M � �eMN was derived from its
thermodynamic definitionM ¼ �ð@�=@BÞT0;�0

, where�

is the grand thermodynamic potential and B is the mag-
netic field. It is easy to identify that the rhs of Eq. (8) is just
�ð@K=@BÞ�0;T0

, where K � �þ T0S and S is the entropy

of the system. Similarly, Eq. (7) is just the Maxwell rela-
tion between @M=@� and @N=@B, where N is the total
particle number of the system.
One can develop a similar thermodynamic interpreta-

tion for the heat magnetization as well. For this pur-
pose, it is necessary to introduce a fictitious ‘‘magnetic
field’’ Bs which couples to Ms � MQ=T0 so that Ms ¼
�ð@�=@BsÞ�0;T0

. Bs can be related to the physical

gravitomagnetic field Bg [22] by Bs � �ðT0=c
2ÞBg.

In analogy to the particle magnetization, the right-hand
sides of Eqs. (9) and (10) are �T0ð@N=@BsÞT0;�0

and

�T0ð@K=@BsÞT0;�0
, respectively, and these equations are

just the thermodynamic relations. It is important to note
that the particular way to introduce the thermodynamic
quantities (e.g., Ms instead of MQ) is necessary for ac-

counting for the extra factor of 2 in front ofMQ in Eq. (10).

We sketch the proof of Eqs. (7)–(10) in the following
[23]. We introduce the static response functions:

� ijðr; r0Þ ¼ �0h�n̂jðr0Þ; �ĴiðrÞi0; i; j ¼ 1; 2; (11)

where n̂1ðrÞ � n̂ðrÞ, n̂2ðrÞ � K̂ðrÞ, Ĵ1ðrÞ � ĴNðrÞ, Ĵ2ðrÞ �
ĴQðrÞ, and �â � â� hâi0. Applying Eqs. (2) and (3), we

obtain r ��ijðr;r0Þ¼ ð1=i@Þh½n̂jðr0Þ; n̂iðrÞ�i0, which implies

r � �q
ijðrÞ þ iq � ½�q

ijðrÞ � r�MijðrÞ� ¼ 0; (12)

where �q
ijðrÞ �

R
dr0�ijðr; r0Þe�iq�ðr�r0Þ, M11ðrÞ ¼ 0,

M12ðrÞ ¼ MNðrÞ, M21ðrÞ ¼ MNðrÞ, M22ðrÞ ¼ 2MQðrÞ.
In deriving Eq. (12), we have utilized Eqs. (2) and (3)
and Eqs. (4) and (5), which imply the operator form of the
commutators ½n̂jðr0Þ; n̂iðrÞ�. Equation (6) is then used to
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determine the equilibrium expectation values of the result-
ing commutators.

Therefore, �q
ijðrÞ must have the decomposition

� q
ijðrÞ ¼ �iq�MijðrÞ þ e�iq�rr� �q

ijðrÞ: (13)

Because both MijðrÞ and �q
ijðrÞ are properties of

material, �q
ijðrÞ must also be well behaved; i.e., it should

be bounded and vanish outside of the sample. More-
over, the value of �q

ijðrÞ at the long wave limit (q ¼ 0)

can be related to the macroscopic thermodynamic quanti-
ties ½@MNðQÞðrÞ=@�0�T0

and ½@MNðQÞðrÞ=@T0��0
[23].

Applying ði=2Þrq� to both sides of Eq. (13), taking limit

q ! 0, substituting Mij and �q¼0
ij , and integrating over r,

we obtain Eqs. (7)–(10).
Thermal transport coefficients.—We can show that the

magnetizations determined by Eqs. (7)–(10) will emerge
naturally as corrections to the thermal transport coeffi-
cients. To see this, we calculate the full response of the
currents to small deviation from the global equilibrium.
In this case, the system can be approximately described by
the density matrix

�̂ � �̂leq þ �̂1; (14)

where �̂leq is the local equilibrium density matrix charac-

terized by the local chemical potential �ðrÞ and local
temperature TðrÞ:

�̂ leq ¼ 1

Z
exp

�
�
Z

dr
ĥðrÞ ��ðrÞn̂ðrÞ

kBTðrÞ
�
: (15)

�̂1 is the linear response correction to the local equili-
brium density matrix, determined by the Liouville equation

i@@�̂=@tþ½�̂;Ĥ�;c �¼0 [24]. We define �ðrÞ�½1þc ðrÞ�
½�ðrÞþ�ðrÞ�, �ðrÞ � 1=kB½1þ c ðrÞ�TðrÞ. It is easy to
see that when �ðrÞ and �ðrÞ are spatially uniform, �̂leq

becomes the exact global equilibrium density matrix

corresponding to the Hamiltonian Ĥ�;c , and �̂1 ¼ 0.

Therefore, the conditions of the global equilibrium are
r�ðrÞ ¼ 0 and r�ðrÞ ¼ 0 [18].

We define J�;c
1 ¼J�;c

N and J�;c
2 ¼ Ĵ�;c

Q �J�;c
E �

�ðrÞJ�;c
N . The forces conjugate to these currents are

X1 ¼ ��ðrÞr�ðrÞ and X2 ¼ r�ðrÞ, respectively, so

that the entropy generation is @s=@tþ r � ð�J�;c
Q Þ ¼P

iJ
�;c
i � Xi [1]. The expectation values of the currents

have two parts of contributions:

J �;c
i ¼ J

leq
i þ JKubo

i ; (16)

where JKubo
i � Tr�̂1Ĵ

�;c
i is just the usual linear response

contribution with the response coefficients determinable
by the Kubo formula [24]. Besides this, there is an extra

contribution Jleq
i ¼ Tr�̂leqĴ

�;c
i , which is due to the inho-

mogeneous local chemical potential and temperature field.
We assume that the deviation from the homogeneity is

small so that �ðrÞ � �0 þ ��ðrÞ, 1=TðrÞ � ð1=T0Þ þ
�½1=TðrÞ�. By applying the static response theory [20],
we obtain, to the linear order of x1ðrÞ � ��ðrÞ and x2ðrÞ �
�T0�½1=TðrÞ�,

J
leq
i ðrÞ � J

eq
i ðrÞ þ

X2
j¼1

Z
dr0�ijðr; r0Þxjðr0Þ; (17)

where �ijðr; r0Þ is the static response function defined in

Eq. (11) and Jeq
i ðrÞ � hĴ�;c

i ðrÞi0, which can be determined
by Eqs. (6), (4), and (5). Substituting Eq. (13) into Eq. (17),
and after some algebra, we obtain, to the linear order of �,
c , ��, and �ð1=TÞ [23],

J
leq
1 ðrÞ � r�M�;c

N ðrÞ � 1

�
MNðrÞ � X2; (18)

Jleq
2 ðrÞ � r�M�;c

E ðrÞ � �ðrÞr�M�;c
N ðrÞ

� 1

�
MNðrÞ �X1 � 2

�
MQðrÞ � X2; (19)

where M�;c
N ðrÞ� ½1þc ðrÞ�MNðrÞþ�MNðrÞ, M�;c

E ðrÞ�
½1þc ðrÞ�2½MEðrÞþ�ðrÞMNðrÞ�þ�MEðrÞ, and
�MNðEÞðrÞ is the correction to the particle (energy) mag-

netization due to the spatial gradients of the chemical
potential and temperature, determinable by �q

ijðrÞ.
Applying Eqs. (16), (18), and (19), we can obtain the

total currents responding to the nonequilibrium forces.

However, due to the presence of J
leq
i , such responses break

the fundamental nonequilibrium thermodynamic relations
[1]: (1) Onsager reciprocal relations, (2) Einstein relations;
i.e., the currents should only be proportional tor� andr�
and vanish when the system is in the global equilibrium.
The problem can be remedied by defining the transport

currents as J�;c ;tr
NðEÞ ¼ J�;c

NðEÞ � r�M�;c
NðEÞ, and the corre-

sponding transport responses then become

Jtr
1

Jtr
2

� �
¼ L

$ð11Þ
L
$ð12Þ � MN

�0V
�

L
$ð21Þ � MN

�0V
� L

$ð22Þ � 2MQ

�0V
�

2
64

3
75 X1

X2

� �
; (20)

where Jtr
i � ð1=VÞR drJ�;c ;tr

i ðrÞ and V is the total volume

of the system. L
$ðijÞ

is a tensor of rank two with the

component LðijÞ
�� ¼ R1

0 dte�sthĴj;�; Ĵi;�ðtÞi0 (�;�¼x;y;z),

which is the usual response coefficient determined by the
Kubo formula [24]. It is easy to verify that both the
Onsager relations and the Einstein relations are recovered.
The magnetizations determined in Eqs. (7)–(10) naturally
emerge as the corrections to the thermal transport
coefficients.
Application.—We can apply these general results to

study the thermal Hall coefficient of a noninteracting
anomalous Hall system [16,25] and show how the unphys-
ical divergence is eliminated and the Wiedemann-Franz
law emerges. The energy density of such a system, in the
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presence of the external fields �ðrÞ and c ðrÞ, can in
general be written as

ĥ�;c ðrÞ ¼ ½1þ c ðrÞ�
�
m

2
½v̂ ’̂ðrÞ�y � ½v̂ ’̂ðrÞ�

þ ’̂yðrÞ½VðrÞ þ�ðrÞ�’̂ðrÞ
�
; (21)

where ’̂ðrÞ [’̂yðrÞ] is the electron annihilation (crea-
tion) field operator with the two spin components, v̂ �
ð1=mÞ½�i@rþAsoðrÞ� is the velocity operator withAsoðrÞ
being the non-Abelian gauge potential characterizing
the spin-orbit coupling, and VðrÞ is the periodic potential.
The field operator ’̂ðrÞ satisfies the Schrödinger equation:
i@@’̂=@t ¼ Ĥ �;c ’̂with Ĥ �;c ¼ðm=2Þv̂ � ½1þc ðrÞ�v̂þ
½1þc ðrÞ�½VðrÞþ�ðrÞ�. An appropriate energy current
operator that does satisfy both Eq. (3) and the scaling
law Eq. (5) is

Ĵ�;c
E ðrÞ ¼ 1þ c

2
½ðv̂ ’̂ÞyðĤ �;c ’̂Þ þ ðĤ �;c ’̂Þyðv̂ ’̂Þ�

þ i@

8
r� ½ð1þ c Þ2ðv̂ ’̂Þy � ðv̂ ’̂Þ�: (22)

The presence of the last term is essential for satisfying the
scaling law Eq. (5).

With the appropriate energy current operator at hand, we
calculate the thermal Hall coefficient. The usual Kubo
formula yields

	Kubo
xy � Lð22Þ

xy

kBT
2
0

¼ 1

2T0@V

X
nk

�z
nkfnk; (23)

where �z
nk ¼ Imh@unk@kx

jðĤ k þ 
nk � 2�0Þ2j @unk@ky
i, unk is

the periodic part of the Bloch wave function for band n
and quasimomentum k, fnk � fð
nkÞ is the Fermi distri-

bution function, Ĥ k ¼ ð1=2mÞ½�i@rþAsoðrÞ þ @k�2 þ
VðrÞ, and 
nk is the electron dispersion [8]. It is easy to see
that the coefficient diverges at zero temperature.

We calculate ~Mz
Q � ð�0=2iÞrq � hK̂�q; ĴQ;qi0jz;q!0

and obtain

~Mz
Q ¼ � 1

4@

X
nk

f�z
nk½2fnk þ ð
nk ��0Þf0nk�

þ 2�z
nkð
nk ��0Þ3f0nkg; (24)

where�z
nk � �2Imh@unk=@kxj@unk=@kyi.Mz

Q is obtained

by integrating Eq. (10). After some algebra, we obtain
	tr
xy � 	Kubo

xy þ ð2Mz
Q=T0VÞ:

	tr
xy ¼ � 1

e2T0

Z
d
ð
��0Þ2�xyð
Þf0ð
Þ; (25)

where �xyð
Þ ¼ �ðe2=@ÞP
nk�
�
z
nk is the zero

temperature anomalous Hall coefficient for a system with
the chemical potential 
 [16,25]. It recovers the

Wiedemann-Franz law at low temperature kBT0 � �0

[12,26], and the unphysical divergence is eliminated.
In summary, we have developed a systematic approach

for calculating the particle and heat (energy) magnetiza-
tions. We also explicitly show that these magnetizations
naturally emerge as the corrections to the thermal transport
coefficients, recovering the Onsager and Einstein relations,
and eliminating the unphysical divergences. Our approach
makes no assumption on the nature of the system, so it is
equally applicable to fermionic (e.g., electron) or bosonic
(e.g., phonon, magnon) systems, either noninteracting or
interacting. The approach does not involve the ill-defined
spatially extended operators, so it is usable in practical
calculations.
This work is supported by NSFC of China (Grant

No. 07341110) and NBRP of China (Grant
No. 2009CB929101).
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