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We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation

and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of

electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force.

These rotational motions are caused by the Berry phase in momentum space from the magnon band

structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the

magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength

magnetostatic spin waves having macroscopic coherence length.
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Introduction.—A spin-wave (magnon) in an insulating
magnet is a low-energy collective excitation [1,2]. It has
recently been focused on as a tool for spintronic applica-
tions because it can have a good coherence, compared with
the spin current in metals. The motions of the magnons are
now measurable in a time- and space-resolved way with
reasonable accuracy. It can be experimentally generated
and detected via the spin Hall effect [3], and for spintronic
applications, a precise spatial and temporal control of the
spin wave is desired.

In the present Letter, we theoretically find that the
motion of magnon wave packets in insulating magnets
undergoes a self-rotational motion and a rotational motion
along the edge of the sample [Fig. 1(a)]. The latter motion
gives rise to the thermal Hall effect of magnons [4–6]. This
phenomenon is due to the Berry curvature in momentum
space, representing the topological structure in the magnon
bands. We theoretically predict that if a magnon wave
packet is excited in the vicinity of the edge of a sample,
it will move along the edge. It is expected to be visible in
some magnets having a macroscopic coherence length
(� 10 mm) [7], and it should be a powerful tool for
exploring the effects of the Berry phase in momentum
space.

We calculate the transverse thermal transport coefficients
for a magnon system by two methods: the semiclassical
theory and the linear response theory, by analogy with an
electron system. We show that both theories give the same
result and the thermal Hall conductivity �xy can be written
in terms of the Berry curvature. Our theory includes the
contribution of magnon rotational motion, which has been
overlooked in the previous theory of the magnon thermal
Hall effect [4,5]. From this we show that the thermal Hall
effect of the magnon arises from the edge current of the
magnon. We apply our theory to various magnons, includ-
ing both the exchange spin wave (quantum-mechanical
magnon), e.g., in a ferromagnet Lu2V2O7, and the magne-
tostatic spin wave in yttrium-iron-garnet (YIG) films.

The results for thermal Hall conductivity in Lu2V2O7

roughly reproduces the experiment [5]. Throughout this
Letter we consider localized spin systems on a two-
dimensional lattice, and assume that there is no interaction
between magnons.
Semiclassical theory.—The dynamics of a wave packet

of electrons in a periodic system can be described by the
semiclassical equation, including the topological Berry
phase effect [8]. When a force is exerted onto the electron,
there occur various intrinsic Hall effects due to the Berry
phase. In analogy with this, we construct the semiclassical
equation of motion of magnons. We consider a wave
packet of a magnon which is localized both in real and
momentum space. If there exists a slowly varying potential
UðrÞ for the magnons, they feel a force. Following [8,9],
we derive the semiclassical equations of motion for the
magnon wave packet as
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FIG. 1 (color online). (a) Self-rotation of a magnon wave
packet and a magnon edge current. (b) The magnon near the
boundary proceeds along the boundary, irrespective of the edge
shape. (c) Magnon edge current in equilibrium. (d) Under the
temperature gradient, the amount of the transverse heat current
are not balanced between the two edges, and a finite thermal Hall
current will appear.
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where �nðkÞ is the Berry curvature: �nðkÞ ¼ ih@un@k j �
j @un@k i with junðkÞi being the periodic part of the Bloch

waves in the nth band, and "nk is the nth band energy of
magnon. For the potential UðrÞ we cannot use the electric
field because the magnons have no charge. Instead, we
focus on the boundary of the system, which can be re-
garded as a confining potentialUðrÞ. On the edge along the
y direction, for example, the gradient of the confining

potential @xUðrÞ produces an anomalous velocity _k�
�n ¼ �@

�1@xUðrÞ�n;zðkÞŷ in Eq. (1). By summing it

over all the occupied states, we get an edge current Iy¼
�R
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d"�ð"Þ�n;zðkÞ;where x ¼ a and x ¼ b represent the

inside and the outside of the system, respectively, such that
UðaÞ ¼ 0 and UðbÞ ¼ 1, �ð"Þ is the Bose distribution

function �ð"Þ ¼ ðeð"��Þ=kBT � 1Þ�1, kB is the Boltzmann
constant, � is the chemical potential, and T is the tem-
perature. Since the magnon edge current is independent of
the edge direction, we simply write this as I. This magnon
edge current I is independent of the form of the confining
potential. Therefore, the edge current circulates along the
whole edge [Fig. 1(b)]. Strictly speaking, this approach is
applied only when U is slowly varying. Nevertheless, as I
does not depend on the form of UðrÞ, this remains valid
even when UðrÞ is representing a hard wall and rapidly
varying. This kind of approach has been successful in
quantum Hall systems [10]. We can therefore expect that
a similar approach will be successful also for magnons; we
can use the slowly varying confining potential which is
much easier for theory in order to predict physical phe-
nomena occurring irrespective of the details of the poten-
tial. We note that if the coherence length is short, the
effective system size is given by the coherence length of
the magnon, and the edge current is also confined within
this length scale.

If either � or T varies spatially, this otherwise circulat-
ing current will no longer cancel in the interior of the
system. This causes the thermal Hall effect as we show
in the following. The magnon current and energy current
due to the edge current can then be written, respectively, as
j ¼ r� 1
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"�ð"Þ�nðkÞd". Various thermal coefficients are de-

rived from these equations. If the chemical potential � or
the temperature T spatially varies, the magnon current and
heat current is induced via the Bose distribution function.
For instance, in the presence of a temperature gradient
in the y direction, the magnon current in the x direction

is written as ðjÞrT
x ¼ T@yð1TÞ 1
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ðd�d"Þ�n;zðkÞd". Other thermal transport coefficients can

be obtained in the same way. Now we write the linear
response of the magnon current and the heat current as

j ¼ L11½�rU�r�� þ L12

�
Tr

�
1

T

��
; (2)

jQ ¼ L12½�rU�r�� þ L22
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T

��
; (3)

where the heat current jQ is defined as jQ � jE ��j.
We take � ¼ 0 here, because the magnon number is not
conserved. The transport coefficients can be written as

Lxy
ij ¼ �ðkBTÞq
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where V is the area of the system, �n � �ð"nðkÞÞ, cqð�Þ ¼R�
0 ð logð1þ t�1ÞÞqdt, q ¼ iþ j� 2 with i, j ¼ 1, 2.

For example, c0ð�Þ ¼ �, c1ð�Þ¼ ð1þ�Þlogð1þ�Þ�
�log�, and c2ð�Þ¼ð1þ�Þðlog1þ�

� Þ2�ðlog�Þ2�2Li2ð��Þ,
where Li2ðzÞ is the polylogarithm function. Thus, the
thermal Hall conductivity �xy ¼ Lxy

22=T can be obtained as

�xy ¼ � k2BT

@V

X
n;k

c2ð�nÞ�n;zðkÞ: (5)

From Eq. (5) we can see that �xy comes from the Berry
curvature �nðkÞ in momentum space. Therefore, if the
energy bands are close to each other, i.e., near the band
crossing, this gives a large contribution to �xy.
Thus, the thermal Hall conductivity solely comes from

the edge magnon current. In equilibrium [Fig. 1(c)], there
exists the edge current of the magnon due to the confining
potential gradient. This magnon edge current circulates
along the boundary, giving no net thermal current across
the magnet. If the temperature gradient is applied [Fig. 1(d)],
the balance of the contributions to the heat current from the
two opposite edges will be broken, and the finite thermal
Hall current will appear. Because the temperature gradient is
a statistical force, it neither exerts a force to the magnons nor
deflects thewave packet in the bulk. The edge current should
be observed experimentally by using the time- and space-
resolved Brillouin light scattering technique [2].
Linear response theory.—There is a discrepancy be-

tween Eq. (5) and the formula obtained in [4,5] using the
Kubo formula. In [4,5], the term from the magnon rota-
tional motion is missing, as we discuss in the following.
Because the temperature gradient is not a dynamical

force directly acting on the particle, but a statistical force,
its theoretical treatment requires some care. In the linear
response theory for electronic systems including heat cur-
rent and temperature gradient, it is convenient to introduce
a fictitious gravitational field c [11], which exerts a force
to the wave packet, proportional to its energy. Such formal-
ism can be applied to the magnon system, taking into
consideration several differences that the magnon has no
charge and is not a fermion but a boson. As a result, the
transport coefficients for magnons consist of two terms:
one term from a deviation of a particle density operator
from an equilibrium calculated by the Kubo formula, and
the other term arising from the deviations of current
operators which are linear in applied fields. The latter
term is expressed in terms of the reduced orbital angular
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momentum of magnons �hr� vi, but was missing in
[4,5]. This latter term has been discussed in the context
of orbital magnetization in electron systems [12–17]. The
calculation is in parallel with that for electrons [12,13], and
its details will be presented elsewhere. As a result, the
thermal Hall conductivity from the linear response theory
is identical with that from the semiclassical theory in
Eq. (5).

The new term to the linear response theory corresponds
to the reduced orbital angular momentum of magnon. It
consists of two parts: the edge current and the self-rotation
of the wave packet. The reduced angular momentum for
the edge current per unit volume is

l
edge
z ¼ � 2

@V

X
n;k

Z 1

"nk

d"�ð"Þ�n;zðkÞ; (6)

and that for the self-rotation is calculated in analogy with
the electron system [18] as,

lselfz ¼ � 2

@V
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@un
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��������
@un
@ky

�
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Namely, in addition to this edge current, we find that the
magnon wave packet rotates around itself and induces
orbital angular momentum, because of the Berry phase in
momentum space. Thus the magnon in equilibrium has in
general a nonvanishing orbital angular momentum due to
the Berry curvature. This magnon orbital motion can be
regarded as a generalized cyclotron motion, whereas the
magnon feels no Lorentz force and cannot have a cyclotron
motion in the same sense as that of electrons. In this
respect, this motion is purely due to the magnon band
structure. This effect is common in various wave phe-
nomena like electrons [9], photons [19], and so forth.

Orbital motion of electrons gives rise to a magnetic
moment due to the electron charge. On the other hand,
magnons have no charge, but have a magnetic moment.
Because the magnon carries magnetic dipole, the rotating
magnon wave packet can be regarded as a circulating spin
current. Hence, similar to the spin Hall effect, and its
insulator counterpart, i.e., the magnetoelectric effect in
noncollinear spin structure [20], the rotating magnon
wave packet should accompany a polarization charge. It
requires the spin-orbit interaction, i.e., the Dzyaloshinskii-
Moriya (DM) interaction. This effect is dual to the rotation
of electric charge, producing a magnetic dipole.

Thermal Hall effect of Lu2V2O7—Now we apply our
results to the ferromagnetic Mott-insulator Lu2V2O7 with
a pyrochlore structure. This material has spin-1=2 V4þ ions
with the DM interaction. The collinear ferromagnetic
ground state is stable because the total DM vectors of the
bond sharing the same site is zero [5], and the effective spin-
wave Hamiltonian is written as Heff ¼ P

hi;ji � JSi � Sj þ
Dij � ðSi � SjÞ � g�BH �PiSi, where hi; ji denotes the

nearest neighbor pairs, J is the exchange interaction, D is
the DM vector, g is the g factor, �B is the Bohr magneton,

andH is the magnetic field in the z direction. We focus on
the temperature regime much lower than the Curie temp-
erature TC ¼ 70½K�, for existence of well-defined Bloch
waves of magnons. We can then assume that the contribu-
tion from the lowest band is dominant, whose Berry curva-

ture is �1;z ’ � A4

8
ffiffi
2

p D
J

Hz

H ðk2x þ k2y þ 2k2zÞ as calculated in

[5], withA being a quarter of the lattice constant. Using this,
we can estimate the orbital angular momentum of the
magnon from both the self-rotation motion Lself

z and the

edge current Ledge
z . Near k ¼ 0, the lowest-band dispersion

is quadratic and we can introduce the effective mass of the
magnon of the lowest band m�

1, defined as m�
n �

@
2ð@2"nk=@k2Þ�1. The orbital angular momentum from
the self-rotation motion of the magnon per unit volume is
calculated analytically,

Lself
z ¼ � JSm�

1

@A

D

J

1

32�3=2

�
kBT

JS

�
5=2

Li5=2

�
e�ðkBT=g�BHÞ

�
:

(8)

We obtain Lself
z ’ �0:009@ and Ledge

z ’ þ0:008@ per unit
cell. We can also calculate the thermal Hall conductivity
�xy, assuming that the contribution of the lowest band is
dominant. The resulting �xy is shown in Fig. 2(a), which
roughly agrees with the experimental results [5].
Magnetostatic spin waves.—Our theory is also applied

to the magnetostatic spin waves in a ferromagnet. In the
magnetostatic spin waves, the wavelength is sufficiently
long and magnetic anisotropy is mostly determined by the
demagnetizing field which is dependent on the sample
shape. The exchange coupling is negligible because of the
long wavelength. This anisotropy due to the demagnetiz-
ing field plays a similar role as the spin-orbit coupling,
and gives rise to the Berry curvature contributing to the
Hall effect of spin waves. As an example, we consider
YIG films, magnetized to the saturation in an arbitrary
direction by an external magnetic field. YIG is a ferri-
magnetic insulator, and the spin wave in YIG can propa-
gate over centimeters. The spin-wave mode is expressed
as a plane wave: mðr; tÞ ¼ mðzÞ expðiðk � rk �!tÞÞ,
where m is a two-dimensional vector perpendicular
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FIG. 2 (color online). Numerical results. (a) thermal Hall
conductivity of the magnon in Lu2V2O7 in the magnetic field
at T ¼ 20½K�. (b) Berry curvature �z

nðkÞ with n ¼ 0, 1, 2 for the
magnetostatic spin waves in YIG. Eigenmode dispersions are
shown in the inset.
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to the saturation magnetization M0, z is a coordinate
perpendicular to the film, rk is the coordinate within the

film, and ! is a frequency of the spin wave. The line-
arized Landau-Lifshitz equation, coupled with the
Maxwell equation with boundary conditions for the

film, is cast into the integral equation [21]: !HmðzÞ �
!M

RL=2
�L=2 dz

0Ĝðz; z0Þmðz0Þ ¼ !�ymðzÞ. Here, !H ¼
�H0, !M ¼ �M0, L is the film thickness, Ĝðz; z0Þ is
the 2� 2 complex matrix of the Green’s function defined
in [21], �y is the Pauli matrix, � is the gyromagnetic

ratio, H0 is a static magnetic field.
This integral equation is a generalized eigenvalue prob-

lem due to the presence of �y. The calculation of the Berry

curvature then requires some modifications. Following the
prescription of the wave packet dynamics [22], we intro-
duce the Berry curvature of the magnetostatic spin wave

��
n ðkÞ ¼ ���	� Imh@mn;k

@k�
j�yj @mn;k

@k	
i, where ��	� is the to-

tally antisymmetric tensor, n is a band index of the spin
wave, and the bra-ket product refers to a usual inner
product of vectors and an integral over z. In some cases,
this Berry curvature vanishes because of symmetry. This
occurs whenM0 lies in the plane. In this case the system is
invariant under product of the time-reversal operation and
the� rotation within the film, and this symmetry forces the
Berry curvature�nðkÞ to be zero. On the other hand, when
M0 is not in the plane, the Berry curvature is expected to be
nonzero for any modes, leading to the rotational motion of
the wave packets and the Hall effect. Actually, if M0 is
perpendicular to the plane, i.e., for the magnetostatic for-
ward volume wave (MSFVW) mode, we can calculate the
Berry curvature. From Ref. [23], the frequency! ¼ !n for

nth eigenmode is determined by
ffiffiffiffi
p

p
tanð

ffiffiffi
p

p
kL

2 þ n�
2 Þ ¼ 1

where p ¼ !M!H

!2�!2
H

� 1 and n ¼ 0; 1; 2; � � � , and is shown

in the inset of Fig. 2(b) for n ¼ 0, 1, 2. The modes are

m nkðzÞ ¼
!M cosð ffiffiffiffi

p
p

kzþ n�
2 Þffiffiffiffi

N
p ð!2

H �!2
nÞ

ði!Hk�!ðẑ� kÞÞ; (9)

where N is the normalization constant determined by
hmn;kj�yjmn;ki ¼ 1. We then obtain for nth mode;

�z
nðkÞ ¼ 1

2!H

1

k

@!n

@k

�
1�!2

H

!2
n

�
: (10)

�z
n is evaluated numerically, and the results are shown in

Fig. 2(b). We have thus confirmed that the Berry curvature
is nonzero for the MSFVW mode, and the rotations of
magnon wave packet are predicted to occur.

Conclusions.—To summarize, we found that the magnon
wave packet undergoes rotational motions in two ways:
self-rotation and motion along the edge. The latter is
responsible for the magnon thermal Hall effect. These
rotational motions are due to the Berry phase, and is similar
to the electron cyclotron motion, but without a Lorentz
force. The present theory is applied both to the exchange

spin wave (quantum-mechanical magnon), e.g., in
Lu2V2O7, and to the classical magnetostatic waves, e.g.,
in YIG. This effect is expected to be observed via space-
and time-resolved observation of the magnon wave packet
with macroscopic coherence length.
Similarly to anomalous Hall or spin Hall effect, the

Berry curvature in the magnon systems is enhanced near
band crossings, where the magnon frequency in a focused
band is close to that of other bands. One can design the
magnonic crystals [24] so that the magnon bands have a
band crossing. One can then expect to have a prominent
rotational motions of magnon wave packets, if its wave
number is close to the band crossing.
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[10] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[11] L.M. Luttinger, Phys. Rev. 135, A1505 (1964).
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