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II118y= —2 v (0'p/D) $+2 (st 11+st 22) (to+ rt12)

+ pl(to —v rt12 rt22 )$ ~ (A12)

APPENDIX B

Substitution of ol from Eq. (A2) into Eq. (12a) and the and
equating of coeKcients of expiJ t gives

trv/ tidal(to '912)+'Oil ti'2+ zv tP2j
(A4)

v +2( 19111 tt22)v+to

where

From Eq. (A4) we obtain

(A5) The average power I' absorbed by the TLS from the
6eld is given by (g d), , where Q is the field vector.
Since

ReA~= (o p/D) pp21(to —
2712) (to"—v')

+ q 2(rt22v'+stllto") j, (A6)
and

Q = —(trt/2tt) f,
we have, from Eq. (1),

(A13)

(A14)

where

Setting

with

D = (~"—V')'+ V'(911+j22)'.

evtt+ Ji e tvt—
(AS)

(A9)

IiilA y = 2 (02/D) vI 'ti'1(stll+ t722) (to 'f12)

+ to2((o V r/12 ttll )j t (A7)

2I't(—

flail+

fsa2)sv
27'tv—(tttl ImA~+ q 2 ImB+) .

Utilizing Eqs. (A7) and (A12), we obtain

(A15)

which is Eq. (13) of the text. In 6rst order, os is con-
stant, and we therefore have, for a weak 6eld.

we obtain, in an entirely analogous manner

(A10) &= —&&(gll+g22) (aP/D)L~(q 1'+ q 2')

+rtl2(tp2 stol )+ ttsltt22(rtll 2722)$ t (A16)

«&+= («/D)L9 2(~+8») (~"—")—pl(rttlv'+rt22&o") j, (A11)
which —with the notational definitions of Eqs. (7), and
in dyadic notation —is identical to Eq. (15).
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A simple proof of the usual correlation-function expressions for the thermal transport coeKcients in a re-
sistive medium is given. This proof only requires the assumption that the phenomenological equations in the
usual form exist. It is a "mechanical" derivation in the same sense that Kubo's derivation of the expression
for the electrical conductivity is. That is, a purely Hamiltonian formalism with external 6elds is used, and
one never has to make any statements about the nature or existence of a local equilibrium distribution func-
tion, or how fluctuations regress. For completeness the analogous formulas for the viscosity coeKcients and
the heat conductivity of a simple Quid are given.

I. INTRODUCTION

'N recent years there has been considerable interest in
- - certain general formulas for transport coeKcients.
These formulas express the transport coefficients in
terms of certain correlation functions and are in
principle more general than the use of any transport
equation. Such general expressions seem to have been
first given by Green' for transport in Quids. For the
electrical transport coeKcients the analogous formulas
seem first to have been published by Kubo. ' Since the

*Work supported in part by the U. S. OfBce of Naval Research.' M. S. Green, J. Chem. Phys. 20, 1281 (1952};22, 398 (1954).
From a quite diGerent point of vie~, equivalent formulas were
obtained by H. Mori, Phys. Rev. 112, 1829 (1958);' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957};R. Kubo, M.
Yokota, and S. Nakajima, ibid. , p. 1203.

latter's formula for the electrical conductivity tensor is
perhaps the most widely used of these formulas, they
are often known as "Kubo" formulas.

In obtaining such formulas, two diferent approaches
have been used. For the electrical conductivity problem
one can simply study the linear response of the system
to an external electrical field and calculate the currents
that Bow. This leads unambiguously to Kubo's formula
for the electrical conductivity tensor and seems very
hard to object to. Such derivations we will call
"mechanical" because they arise from studying a
problem with a well-defined Hamiltonian (that of
system plus interaction with external field). On the
other hand, to obtain, say, the thermal conductivity,
there exists no mechanical formulation, since there is no
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Hamiltonian which describes a thermal gradient. (The
temperature is a statistical property of the system. ) In
this case, the derivations have been carried out using
local variables (variables describing macroscopic but
small portions of the system) and some assumptions
about how these variables develop in time. In Green's
derivation, the assumption is essentially that such
variables are controlled by a Markoff process; in
Mori's derivation the form of the "local equilibrium
distribution" is assumed. Although these derivations
are not as rigorous as Kubo's mechanical one, they are
quite plausible, and there has been little doubt that the
resulting formulas are correct. Recently, however, such
formulas have been questioned by Prigogine, ' Cohen, 4

and their co-workers on the basis of a model of an
imperfect gas at low densities. Since the Green-Kubo-
Mori (GEM) formulas are being applied widely
(especially in solid-state physics), we attempt in this
paper to put them on a more solid basis. That is, we
show that it. is possible to give them an essentially
mechanical derivation, analogous to the Kubo formula
for the electrical conductivity.

To understand what is involved in such a derivation
we first consider the problem of the self-diffusion coefB-
cient. This is quite difficult to obtain by a direct
mechanical argument. However, we may proceed as
follows. First calculate the electrical conductivity
tensor similarly to Kubo, then use the Einstein relation-
ship' between the diffusion coefIicient and the electrical
conductivity tensor. The Einstein relationship is quite
general, depending only on the existence of the phe-
nomenological equations relating current, electrical
field, and concentration gradient, and may hardly be
doubted. Similarly, to study the thermal-transport
phenomena we may introduce a field (essentially an
inhomogeneous gravitational field) which causes energy
or heat currents to Qow. After the coefficients which
relate this field to the currents are obtained, an argu-
ment analogous to the Einstein argument relating elec-
trical conductivity to diffusion is again used, and in this
way the thermal coefficients are obtained.

In Sec. II we shall carry out the process in more detail
for the diffusion coefficient, and in Sec. III the deriva-
tion of the GKM formulas for the thermal-transport
coefFicients will be given. In Appendix A, some necessary
formulas from equilibrium statistical mechanics are
derived, while in Appendix 8 the "mechanical" deriva-
tions of the viscosity and heat-conductivity coefficients
for a simple Quid are given.

II. RESPONSE TO AN ELECTRIC FIELD

For simplicity we shall restrict ourselves to a one-
component system of particles of charge e. Let an

' I. Prigogine and G. Severne, Phys. Letters 6, 177 (1963).
4 E. G. D. Cohen, Phys. Letters 5, 192 (1963).Professor Cohen

has kindly informed me that since the publication of his Letter a
computational error has been found in his work, and now he
obtains agreement with the Kubo type formula.

s A. Einstein, Ann. Physik 17, 549 (1905).

where
Hz H+F——e", (1.2)

F= p(r) p(r)dr, (1 3)

and P(r) is the charge-density operator for the system,
&.e.,

p(r) = ee(r),

where rt(r} is the number-density operator.
The density matrix (Pz) at any instant of time is

given by (5=1)
i (Bpr/Bt) =(Hr, pr]. (1.5)

Since we are interested in the linear response to the
field, we may write

Pr= P+f&

where p is the equilibrium density matrix for the system
(corresponding to its condition when the field is turned
on at t= —~) and f is linea, r in the external field.
Substituting (1.6) in (1.5) and retaining only linear
terms, we obtain

where
fH, fj isf=C, —

C=LP,Fj.
(1.7)

As may easily be verified by going to the representa-
tion where H is diagonal, the solution of (1.7) is given by

f=i dte "C( t), —(1 9)

where for a general operator A, A (t) is defined by

A (t) —ei rr iA s iHi—
Similarly, we verify at once that

P

C= iP dP'P'( zP'), —

I'=i/H, F]= drp(r) q (r), - (1.12)

P= 1/kT, where T is the original equilibrium tempera-
ture at t= —~. This is true when p is represented by a
grand canonical distribution, which we shall assume
from now on. Therefore,

oo P

dte " dp'F( t ip'). ——(1.13)

The charge-density operator is given by

p (r) = e P, 8 (r—r ), (1.14)

external electrostatic potential q be gradually turned
on, so that the electrostatic potential at a point r is

q=q (r)e",

where s is a small positive quantity. If the Hamiltonian
of the system is without field is II, then the total
Hamiltonian IIz is given by
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where r; is the position of the jth particle. From this,
the equation of continuity follows at once:

where

(1.24)

where j(r) is the curren. t-density operator

j(r) = (e/2)P (v 5(r—r)+8(r —r,)v;). (1.16)

Here v; is the velocity operator for the jth particle. If
we assume velocity-independent interactions among the
particles and no external magnetic field, for example,

We are interested in the limit of (1.23) as q and s
approach zero, if we want to derive the phenomeno-
logical transport coeRicients.

Now depending on how this limit is performed, we
get very different results. This may be seen at and from
the phenomenological equations. These are

&j (r)&= & (r) —D V (p(r)& (125)

then

v;= p;/m,

drL —& j(r) j~(r)

(1.17) the first term being the current induced by the electric
field, the second being the diffusion current caused by
concentration gradients. Substituting (1.25) in the
equation of continuity we obtain for (p,&, the qth
Fourier component of the induced charge density,

d '() V ()=— d () E() (11g) (ps&= —LU -~q-q~/(~+D-~q. q~)]v (1.26)

U-(r) &=+
tO P

dte " dp' dr'
0

where E(r) is the electric Geld at r.
Since the average current density at r is given by

(apart from a factor e";we shall not write such factors
explicitly from now on)

(j(r))=TrLf j(r)j, (1.19)
we have

(p.&-q'/ =0, (1.28)

(j .-)= U(~-. D-.L~- —q- q'/(~+D- 'q- q') 3)&-.
(1.27)

V is the volume of the system.
We now consider two limits: (a) the "rapid" case,

where q, s approaches zero, but q approaches zero first;
(b) the "slow" case, in which s approaches zero, then q
does. To be more speciGc, in (a), s))D rq q~; in (b),
s~4Dayg ag y.

In the "rapid" case we see that

where
X(j,(r', —t—P')j.(r) &,Z, (r'), (1.20) (1.29)

v(r)=V,e" . (1.21)

For a homogeneous system the response must have this
same spacial dependence.

Writing

j, = dre '&'j (r)

= -' Q (e e
—"&'+e-"&'~e ) (1 22)

we obtain, for the only non-negligible Fourier compo-
nent of the current density,

(Js-&=
00 P

dt e " dp'(j s, r(—t—ip') js &pEvs, (1.23)

(~&s—=Tr (p~)

and p is summed on x, y, s.
This general formula (1.20) gives the current density

which Qows in response to the turning on of an arbitrary
spacially varying electric field. Now what interests us
for the phenomenological theory is the response to a field
which is slowly varying, i.e., whose variation is negligible
over a distance containing many particles. Since every-
thing is linear in the field, we may confine ourselves to
a single Fourier component of the potential

In the rapid case, the system stays homogeneous
(doesn't have time to adjust to the spa, cially varying
potential). The electrical conductivity tensor is ob-
tained, using (1.29) from (1.23) by letting q go to zero,
then s. That is,

p

o. ~=lim — dt e " dp'(jsr( —t—ip')je &p (1.30)
4f—+P

0 0

which is just the usual Kubo formula. 8

On the other hand, in the slow case, no current can
Row since it corresponds to a perfectly well-de6ned
static periodic potential applied to the system. For such
a case we will have a situation of thermal equilibrium in
which, of course, no bulk currents Qow. Therefore, from
(1.26) and (1.27) with (js &=0, we get

~-7=D-7(~- 7 q- qv /'D-" q- qv ) (1»)
(ps&= —(Uo .~.q q~/D. , q q, )vi, (1.32).

'In the case of Coulomb interactions between the particles,
some care is necessary in going to the q= 0 limit. This well-known
diKculty /see, for example, V. Ambegaokar and W. Kohn, Phys.
Rev. 117, 423 (1960)j is related to the fact that a longitudinal
external field is screened by the charged particles while a trans-
verse one is not, so they have diferent g =0 limits. The simplest
correct procedure is than to consider a transverse field (as in
Appendix 8) and proceed to the g=0 limit for it.
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a 7=gD ~,

Equation (1.31) may only be satisfied if for arbitrary &if The entire analysis of Sec. II is still valid, leading to
(1.13), where F is now given by

where a is some constant independent. of q. p(r) q (r)dr+ J't(r)tp(r)dr (2.2)

h(r)p(r, f)dr,

where h(r) is the Hamiltonian density of the unper-
turbed system. Clearly a varying f will give rise to a
varying energy density, which, in turn, will correspond
to a varying temperature. We shall see this in more
detail below.

Turning on simultaneously a &p and a f, which vary
as e", we again obtain a total Hamiltonian of the form
(1.2), except that now F is given by

F= p(r) q (r)dr+ h(r)P(r)dr. (2.1)

7 These eGects are actually extremely small, far too small to be
observed in any ordinary experiment. They were Grst considered
by A. Einstein, Ann. Physiit 38, 443 (1912).See also R. C. Tolman,
Phys. Rev. 35, 904 (1930) and R. C. Tolman and P. Ehrenfest,
ibid 36, 1/91 (1930.). (I am indebted to Professor G. Uhlenbeck for
calling these interesting references to my attention. ) Although the
e6'ect is very small, in practice we are only interested in questions
of principle, and an arbitrarily small e8ect is just as good as a
large one. In fact, if the gravitational Geld didn't exist, one could
invent one for the purposes of this paper.

~«'v'c/«'0v'/D»' v'9«'r/v' ~

(ps)= —«s s (1.34)

Now since (ps) is the charge density for a system in
equilibrium in a static external potential with Fourier
coefficient p~, it may be calcu1ated by equilibrium
statistical mechanics. Therefore, u is an equilibrium
property of the system. A straightforward calculation,
which is given in Appendix A, yields

a= e'/(BP/Bn)r,

where p, is the chemical potential regarded as a function
of the temperature and equilibrium particle density n.

Combining (1.35) and (1.33) we get the usual Einstein
relationship, which, combined with (1.30), gives the
"Kubo" formula for the self-diffusion tensor D ~.

Although none of the results of this section are new,
the method used to derive them may be taken over with

only minor modifications to obtain the thermal trans-
port coefFicients.

III. CALCULATION OF THE THERMAL
TRANSPORT COEFFICIENTS

Just as the space- and time-varying external electric
potential produced electric currents a,nd density varia-
tions, so a varying gravitational field will produce, in

principle, ~ energy Qows and temperature fluctuations.
The reason for this is that an energy density h(r) be-
haves as if it had a mass density h(r)/c', as far as its
interaction with a gravitation field goes. Calling the
gravitational potential —cQ(r, t), we have an inter-
action term in the Hamiltonian of the form

Again, as in (1.15) we may write

A(r)+V j~(r) =0, (2 3)

where je(r) is the energy-current-density operator for
the unperturbed system. For a simple system of inter-
acting particles we may take

where

h(r) = -,'Q;(/s;8/+ 8;l's,),

3;=S(r—r,),
/s;= (p, /2rN)+ V,+-,' P I;;.,

(2.4)

V; being the interaction energy between the jth
particle and an external fixed field, I;; the velocity-
independent interaction between the jth and j'th
particles. In this case j e(r) may be written

j. (r) =-,'Z(I/j;. (r)yg;. (r)h, )

+(1/8m)p' $(p;.+p; .)x;; &F;; &8;
7 tl

+b,x;; &F;; (p; +p;.)],
j;.(r) = (1/2m) (p;.8;+8;p/. ),

F&pr = r)$/p/B'x/

(2.5)

(These expressions make an error of the order qa, where

u is the range of the interparticle potential and g the
propagation vector of the disturbance in the system. ')

Now j (r) and js(r) are not the total current densities,
the expressions for the current densities being modified

by the interaction with the external fields. Call the time-

dependent average charge density (p(r; t));

(.(', f»=T (."()),
a(p(r; f))/af=TrUapr/af) p(r) j

=Trpri[Hz, p(r) j (2. .6)

Since the total charge is conserved, we may write

iLI~r, p(r)3= —& j'(r) (2 7)

The (j r(r; f)) computed from this equation will

satisfy the equation of continuity. Similarly, if hz(r) is

the total energy density, we have

(hr (r; t')) =Tr(prhr),

8(hr(r; t))/Bt=Tr(pr(i/8r, hr(r) j+(Bhr/'Bf))). (2.8)

Again, by energy conservation, we may write

i[Hr, hr(r)5= —~ jar(r) . (2.9)

This terin represents the energy Qux in the system,

' See H. Mori, Ref. 1, pp. 1838-1839.
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(2.22)

(1/T), =0,
(t /T) q=0.

we must haveTh for this case, wus) w

(2) y(&)q +L, qz= —
Zgy ~y q

q-'= —iq (L-v")«+L-v &qJqa &(y ay q

Comparison with (2.12) yields

dP'(j o.( h ip')j o-)o,
-—I-„")=lim— e " t

tt—+0 p'
0

L ()y V, (2.14)I (s)
i

J
V(T)„

00

I. (') = lim-
s—+0 v

P
~ 1 ~ / ~

e CP'(j o."( t ip )so-)o——

(2.23)
le . . ', Theory of Metals (Cam-
ress, Cambridge, 1953), Chap.

l
'

al equations whic y
shi between the con uc

'

ave added a general term prop
l d iving force must be propor ioe the ravitationa rivi e ro o
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1Vs= (1/V)p fqe q'"'= (1/U)p f«)«q. (A11)

If we now take /=0 in (2.13) and use (2.18) and
(2.19), we have the usual phenomenological equations,
with the transport coefficients I. given by (2.23). These
are the usual GEM results obtained previously by
assumptions about the form of the local equilibrium
distribution function or the regression of fluctuations. (Es')p= (1/V') g f» f»(eq N«)p

No such assumptions were necessary here. q q

APPENDIX A

We consider a system in equilibrium at temperature
7 having a Hamiltonian H+F, when F is given by
(2.1).Then the distribution function is

= (1/V')2 f f(-)—o

= (1/V') Q f «fq(e»m»)p+(1/V')fo«N'. (A12)
q+Q

However,

p
—e

—P (H pN+E)/—Tre P(lr pN—+F—) (A1) (A13)

(A2)

To the first order in F, if (F)p ——0, this is well known

P

p&= p p dP F( «P )

so that

(%so)o—(Xs)oo= (1/VP) P f qfq(tt —q+q)o (A14)
q+P

Now f» approaches zero when q))1/Ls. Therefore, if
where p is the equilibrium distribution for a system with (e»e«)p has a limit as g approaches zero, we can choose
Hamiltonian II. Taking external fields with only a p L,& such that
component (qAO), we obtain at once

(Es)p' —(Xs)p'=((1/V')P f qf, ) lim(rs qm»)p. (A15)

(p-«) =—

(h, )=—

dP E(p—«( &P )pq)o«'«+(& —q( &P )hq)p4'q]

(A3)

dP'E(.—,(—'P')h, ).~,+(h, (—P')h, ).a,]

q/Q q—+Q

drf'(r) = drf(r) = Vs=—g f,f, , (A16)
V q

lim(e»)«»)o ——VE((les')o —(Es)o')/Us] (A17)

On the other hand, the particle Ructuation in a macro-
scopic but small subsystem of a macroscopic system may
be calculated by using the grand partition function for
a system of the same density.

Therefore,

c-»(—«P') =p-»[1+O(v)]
h, (—iP') =h, [1+O(q')],

(A4)

as q approaches zero. Therefore for very small q we

have

Now when tI is zero, pq and hq become simply the total we have

number of particles and the Hamiltonian, respectively.
Since both of these commute with the Hamiltonian we

have

()p )= PE()o—«p«) ««+ (&—«"»)p&q]

(h.)= —PE(~-»h«) oq.+(h-qhq) o&q].
(A5) »m(N-»~») o= UE((1V')o —(Ã)o')/V]. (A18)

To calculate these quantities, consider first

() -«p«) o= e'(&-«~») o,

where eq is the Fourier component of the particle-
density operator. Let us introduce a volume V& ——I.&'

centered around the origin, where Vq(&V. Call lVq the
operator giving the number of particles in Vg.

e—Pa(Pn) Tr(e ,PH+aN)—
where n= pP, we have

(1V')o
—(X)o'= 8'(QP)/B—n',

(A19)

Using well-known results from the theory of the
grand partition function,

&s=Z~ f(&~) (A7)
lim()«qm«) o

———o)'(PQ)/Bn'.
q-+Q

(A20)

where

Write

f(r)=1 r in Vs,
=0 otherwise.

f(r) =(1/V)Z fe "

Similarly,

(A8) lim(e h )p= (HX)o—(H)o(1V)p= 8 (PQ)/Bn8P, (A21)
q~Q

(A9) lim(h «e«)p= (HX)p —(H)o(X)p= 8'(PQ)/BnBP, (A22)
q—+Q

f,= drf(r)e+'«'. (A10) lim(h «h«) p
——(H') p

—(H) p' = —8'(PQ)/BP'.
q~Q

(A23)
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Using
g = —(BQ/Bp) v ——B—(pQ)/Ba,

U= B(pft)/Bp, (A24)

and calling the particle and energy density e and m,

respectively, we obtain

lim(n ~n~)0 ——V(Be(P,n)/Bnj, (A25)
q-+p

lim(e h )o=lim(h n )0= VLBu(Pn)/Bn)
q~p q-+p

VP—e(Pn)/BP], (A26)

would have infinite static electrical conductivity, for
example, and therefore the procedure given in the text
does not apply. )

The procedure is nonetheless essentially the same as
before. We assume that the phenomenological equations
in the usual form exist. Then by studying the response
to external fields we obtain expressions for the coeS.-
cients appearing in these equations. The phenomenologi-
cal equations for a simple Quid are, of course, the
standard equations of hydrodynamics. These are"

Bp„/Bt+Vp(p vp)=0,

and

e, — h~

lim(h, h, )o
—— Vt—Bu(Pn)/BP].

q—+p

Further, we have

B(t /T) B( /T)
(n~)+ (h~)kT, Be „' Bu

(A27)

(A28)

(A29)

p„[(B/Bt)+vpV p]v.=F. V.p+—Vpo.p', (82)

p-TDB/Bt)+vpVpjS-= ~-p'V pv-+V p(KVpT) (83)

In these equations p is the mass density, v the local
velocity, F the external force per unit volume, p the
local pressure, 5 the local intropy per unit mass, T
the local temperature. Further,

~.p'= ~(Vpv. +V.vp)+ (l-,'~) B.pV, v, {8.4)

The quantities g and i are known as the shear and
bulk viscosity, respectively, and E; is the thermal
conductivity,

In the linear approximation these equations become

1
t B&~ 1 pB&~

T), T EBnir eT&Bniv
(A32)

Using (A25) —(A29) and (AS) in (A.28) and (A27),
we obtain at once

(tJ/T), = —(V/T) ep„ (A30)

(1/T) ~= (V/T) 4. (A31)

which are (2.16) and (2.17).
These relationships are also quite easily obtained by

considering the probability of a Quctuation of energy
and density, and making use of the Boltzmann relation-
ship between the probability of such a Quctuation and
the entropy of the system when it has the corresponding
number and energy densities.

If /~=0, (1/T)~=0, the temperature is uniform in

equilibrium. Then

(Bp„/Bt)+p 'Vpvp=0, (BS)

p 0(Bv /Bt)=F V' P+Vpa —p', (86)

(B/Bt) (u —zoon) =KV2T, (87)

where p, zvp are the equilibrium density and enthalpy
per particle, respectively; I and e are the local energy
and number densities.

Imagine that the external force is given by an external
electric field, and that the particles have unit charge.
Then

Ii =mpE
=mph~ e''i'"e", (88)

Seq+zgpeovqp= 0, (89)

if the field has one Fourier component, which we turn
on slowly. Fourier analyzing (BS)—(87) and dropping
the factor e", we obtain (where m is the mass of the
particles)

Using (A30), we have for this case

(p )= —V 'q' /(Bu/B )

1

(A33) $v~, = VF., iq p, —
Sp

which is just (1.3S).

APPENDIX B

1 (—nV"~-+ I l+ V-(Ce.p-), (810)
n, 5 3

In this appendix we consider the transport coeKcients
(viscosity, heat conductivity) for a simple Quid. In the
main text we considered the situation appropriate to
solid-state physics where impurities, phonons, or some
other mechanism gives rise to a resistive behavior. Here
we investigate a simple monatomic liquid where the
Hamiltonian conserves momentum. (Such a system

$(ug 'lgpnq) =Kg Tq. (811)

Again we shall consider the "rapid" case, where q
—+ 0

and s —+0, but q
—+0 first. Then clearly the leading

'0 See, for example, L. D. Landau and E. M. Lifshitz, Fluid
3feche+i cs (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1959), pp. 2, 48, 185.
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~ o in the linear aPProx imation, jshjch js )ust P~ ~&cc

P

dte "-

terms are gjven b

0= PEq]n» )

o=(—rtp p/ )
I 0——Kpnq-o— rc—o(r r/prro8 /s) '

1(
o„,.=—

l
N(812) S 'E

+CICC

xu. —~—( q t jp )p (q))o 9«) (821)

the average with the(The first term ar»es
h n e in the momen-erturbed densjty

f the vector potent ial.turn density due to t p resence o
h respect to t, we,at,„g (821) by Parts

obtain at once

(813)

Further,

(~ /~„) o„,+(ap/& )-'"
so that

p=c n o.t-(&p/g ) o+reo(/ip/ )"3

Substitu ing
10 e obtain

tin (812) a"
portional to ~'in @10,we o

p

dt st d—P'
00

——&7&
~s 0

. (,,
—t- p')~-(q»o ". (822)X(7.

f the system is conserved,Since the total momentum of t e sys
we have

=0 823

ms

( ) transverse case o qor JE;r two cases: a ra
llE. w h(b) longitudinal case, q

)7-(r)+~«P- (r)

Q f momentum den
'

y.nsit . For a
t is would be given by

& r is the ux o
simp le system system t is wou

P ()=(1/4 )Z(p-;p„~;+~,p: „CL

—Vrt, m (q'/s)E, .sp„oo„=NE, (Vrt, —

(816)(transverse case ,

=NE . (~,C—,V/m) (q'/s' E,.sp pv, =S, —
p

VD-+(4 /3) j ~'

s

81/)(longitudinal ca,se) .

'x" «F,y 6;. (824)+p«~~~p-~)+~a 2 x/, «,y;
ce 823) becomesIn momentum space

Pe (0)= -og P "(q)

1f we insert (825) in (822), we obtainto the results we
xternal electric Geld app ie0

n d erturbation theory andp
we must o

the system, using
btain expressionx anding to order q-,
4 3.ef5cients rt and i+

dh' "'"""""'""'"'
d "l.n'ud-l

eral electric held we repre-held. To consider a more genera e ec
a vector potential

E = —(1/c)(BA /Bt), A = —c s Eo e' '
e

total HamiltonianThis gives a to a

P

dte" dp'sp pv,.=rZ,.—
sss

P *(-q, -t-'p')P-'(q))A',x(,
se let us ta e ink E in the x direction,F the transverse case,

we obtainpint ey ih d'rection. Then w

P

dte " dp'
0

npCp~
q (gpEop)SPm &cj~

mS2

E +I i.+- lv-(«Ep) (815)rig p& ( 3j

where

Hr H+Fe", ——

Sec. II, this gives atie method as in ec.U g
once that the average value o e

—q) . (819)F=(1/ms)E, p (—q .

cient of the un-th Fourier coe cien
en 't perbed mome tu - y

s the unperturbe numthe mass times t e u

p-(c) =-, 'LQof j e 'cQ ~ Ij

X I'" —q, ——P*"(—q, —t—op') P-"(q))P.o —q, ——' ' ~ & .. (827)

Comparison of (827) and (816) gives at once

g= —ljm hm
p g~p g~p

P

dte " dp'
0

X I'.& —q, ——P-"(-&, t r'P')P. "(q))-o—

=—lim
g-+0

dte " dp'

(82S)X P:(0, —t—rP')P o(0))„
6.7).~ See H. Mori, Ref. 1, Eq. ( .



longitudinal caseyowever, » e

e
' ' —t—ip') (Ciri«+Cph«))oE«,dk e-" dp'(j „(—h

—i

., (839)= /0 .(C +-Ch,)}&.
t of the motion as gg is a collstaIl 0since once agaill J—qz

goes to zero. Therefore

= s(ci(n«}+Co(h«})/E„= —hp~p p

from (812). Finally,

X= &noco/s.(830)

also be obtained rather tedious y yalsobeo taine . usl(This result may a,iso be o taine
vera es directly. )(831) ca,lculating the aver g .

Thus (830) becomes

(841)
Now consider

A (q) —=P,*(q)—Cin, —Cph„
where

(832)C = 8 /Bn) ' C =(Bp/Bhh)„'
q2VePC0

E
$2

2 oct

tM
Then we have

e '(P (—q —t—iP')P:(q)}odhe " dp' P~
0 0

SPh9t Pqx EEqx dte" dp'

~(A(—q, ——p)A(q)&o ',*pE . (842)

o erator A we writewhere for any opera
'

e

(»9) c,(,&+c,(i,)X=A —(A), .

it . Ford result for the shear viscosity.
l' Ie

'
one must procee a i

in the 0

y

817 Th d' th t '
b the existence o

h ih-ha d idlongitudinal case
f (826) must have a contri

which must e su
f «+4g/3.

In (826) let us take q, in
2 00 P

dte " dp'Sp 0e =ÃE„—--—

X I'. —q, ——P.*(—q —t- iP )P*'(q)) o

d '(A( —q, —t—ip')A(q))p+X.dte" d'A —q, —— ' X. his is of the correct
'

h (817) shows that this isComparison wit
form and therefore that

P4g 1—=—lim lim
3 P' s~0 ~0

X(A(—q,
—t—iP')A(q)}p

1
=—lim

P s~0
dhe " dP'

X(A (0, —t—iP')A (0))p. 843

or the bulk viscosity coeKcient doesThis expression fo
he results foun in o '

12

not agree with the
with his recent result.(see Ref. 1), bu t it does agree wi

b an expression forIt is also quite yeas to o tain a
a metho ana ogoous to that used""' '"y y

introduce a e
~ ~ ~

S III. W~ g
electric field to be zero.

p, T q=

m s to the phenomenological equa-must add terms to e
e uilibrium no curren st ns such that in. equiiio

in the heat curren,
'

87T TV/) Th fowe must have K(V'pT o p—so that (834) becomes
Qf

X 2~
~

C, ,

=2(P/s)(im/q)(j „(C,n C,«h«p — nhp p . 8

become

= EVp 7'pT+TpVpg)(8/Bt)(N —«epn)=E p p

oto) 28, 763 (1962).Theoret. Phys, (Kyoto"H. Mori, Progr. e

ma be written t+The remainder X may

)((P**(—) (C +C h )}o

(834)Cph «) (Cin«+Cph«)&p},—((Cin-«

e e motion up to termse constants of the m
dillo, u we are intereste on

the)
'

obtainedatonceusingclast termof (834 iso ai
results of Appendix A

Cph «) (Cin, +C2h, ))p
'+C (Bhh/Bn) p fci

=ItLC, (aP/a )p' —C, (ap/ p)„oj= Vn,

since, as one easily sees,

( .'= — /P. (836)a /ap) '= —no«eo,

e of (834) is equal to the first by t eThe second term of y
l ar uments useg

Onsager relatio

P * —q) = (—nh/q') (d'n «/dho,
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urrent gq.

(849)~OJqz )Jqx qx

p

dhe" dP'

'(—
h
—'p')j, * o „ (850)X y—q~

d 6ne the "thermal" cegging If wetaking the qth Fourier c p e decorn onent an e

VE~ ). (8s(s —'RpÃ») = —
g

Qo

the p qg o ' g

seen by ~ q

0

b perturbation eo 1 a
example,

(~») = '(—
h
—iP')ri») (—i'd')dhe " dP' j»»

ives something which goes tosince e
f lo i di 1o. This is because, orzero as q goes to zero. is

electric field only,

'(—h
—iP') j»p)&»»v-= —9~17

0 0

(~»)- (V'/s') 6

0

~ IP—
h
—iP') j„')pZ».= g»e "dh dP'j„——

0

= i g)(h» —wpri»)= (s/g)((h») —wp n»

= —q'ETq =0, when q
==0.

e '
t —h

—iP') (hI»
—wpri»))P»dhe ' dP(A

P
e —

h
—ip)dhe dp(J»g

—oj*))& . (848)

S Qq —KhoSq

n neral formula we hav,veOn the other an,h nd from our genera o
the x direction,taking q in

(Il»—Wp'8»)

Comparing (845) with (A16) we see that

E= lim lim
~—+0 q~0 VT

= lim' 'VTp

P

dhe" dP'
0

&&(j- '(—
h
—ip)j ~ oX j,. —— ' ', (85&)

P

dhe " dP'
0

&«jo-'(-h-'p) j"jp ——' ' ' ~ p. (852)

h heat conductivity1 result for t e eThis is the usua r e
of a liquid.


