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LETTER TO THE EDITOR 

Linear momentum in ferromagnets 

G E Volovik 
L D Landau Institute for Theoretical Physics, USSR Academy of Sciences, 117334 Moscow, 
USSR 

Received 2 December 1986 

Abstract. The paradox of linear momentum in ferromagnets is explained in terms of the 
exchange of the momentum between coherent and incoherent degrees of freedom in con- 
densed matter. 

In some continual field theories, both in condensed matter and in particle physics, there 
is the energy-momentum-tensor problem: the linear momentum is either not well 
defined, or is not conserved. A typical example is general relativity where it is impossible 
to construct the energy-momentum tensor which is co-variant under general coordinate 
transformations (Einstein 1916, Faddeev 1982). The analogous phenomenon takes place 
in ferromagnets where the canonical momentum of the magnetisation motion is not 
invariant under spin rotations (Haldane 1986) and in superfluid 3He-A. The linear 
momentum of the coherent superfluid motion at T = 0 in 3He-A does not coincide with 
canonical momentum and is not conserved, while the angular momentum is not well 
defined. 

The reason for the anomalous behaviour of the linear momentum in 3He-A is 
now understood: both linear and angular momenta of coherent motion transfer to the 
incoherent degrees of freedom in the subsystem of fermionic excitations (Volovik 
1986a, b) producing a strong analogy with chiral anomaly in quantum electrodynamics. 
The source of the fermionic excitation momentum corresponds to the source of the chiral 
current in QED and is described by the same Schwinger term (on the chiral anomaly in 
QED see e.g. Huang 1982). 

Here with the simple ferromagnetism model of de-localised electrons (see e.g. Ziman 
1972) we consider how the canonical momentum in ferromagnets becomes well defined 
due to a fermionic background. As in 3He-A the anomaly in the linear momentum of 
coherent motion is related with momentum transfer to the fermionic excitations and 
may be described in terms of the Wess-Zumino type action. This scenario seems to be 
the general case for those condensed media where the energy-momentum tensor for 
soft (hydrodynamical) modes is not well defined. Possibly the explanation in terms of 
the energy-momentum transfer to the incoherent background may be applied to the 
energy-momentum problem in general relativity, especially if one takes into account 
that the analogue of gravitation appears in condensed matter. In particular among the 
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variables describing the coherent motion of superfluid vacuum in 3He-A there are 
components of the metric tensor of the medium which define the dynamics of fermions 
in curved space (Volovik 1986~). 

The simple model of ferromagnetism in the system of de-localised fermions with spin 
4 is described by: 

1 
S = d3xd t  - iY2 dtY, + -diYuf diY, - Ig(Y:o,@Y,)2) (1) 

where Y J r ,  t )  is the fermionic field and uare the Pauli matrices. If the coupling constant 
g is large enough (Si?$ > 1, where NF is the density of states on the Fermi surface, see 
Ziman 1972) the ferromagnetic transition occurs at which the ‘quasi-average’ appears, 
the density of magnetic moment 

I (  2m 

M ( r ,  t )  = 4hy(Y + uY) (2) 
where y is the gyromagnetic ratio. 

We are interested in the dynamics of the soft variable, the unit vector m(r, t )  = 
M/IMI. If m(r, t )  changes slowly in space and time the fermionic ground state may be 
considered as two local unequally populated Fermi spheres of fermions with spins 
oriented along the local direction of m(r, t). The difference in the population is n+ - n- = 
2lMl/yh, where the modulus of the magnetisation may be considered as constant in this 
approximation. The spin structure of the fermionic wavefunction in such a state is defined 
by a spin rotation matrix U(r,  t )  which couples the local direction m(r, t)  with some fixed 
direction: 

Y&, t> = V * ( r ,  t)U,@(‘, t h @ ,  q +  = (3 11- = (9 (3) 

where Y+ and Y- are the local wavefunctions for the fermions in two local Fermi 
spheres. Inserting equation (3) in equation (1) and discarding the last term in equation 
(1) which defines the magnitude of (MI one obtains the action which describes the 
dynamics of two species of particles with opposite ‘charges’ e = 2 in the ‘electromagnetic’ 
field A ,  Ao: 

1 1 
S = ~ l d 3 x d r Y ~  e (-idl +eAo)+-(- idi  2m -eAi)’ + - ( d i m ) ’ ) Y e .  8m (4) 

There is the surplus of the positive ‘charge’ due to the different population of the Fermi 
spheres: 

The electromagnetic potentials A and A .  are expressed in terms of the spin-rotation 
solid angles 8, (a = 1,2,3) 

A .  = - 4moatOo Ai  = 4m,ai8,. (6 )  
Among these three angles only two are physical, those which define the orientation of 
the m field. The third angle of the rotation about vector m may be chosen arbitrarily. 
The arbitrariness of this angle is equivalent to the choice of the gauge: the rotation of 
angle fabout m corresponds to the gauge transformation in this ‘electrodynamics’: 

A i  + A i  + f d i f  A .  + A o  - $d,f Ye + Ye exp(4ief). (7) 
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The ‘magnetic’ and ‘electric’ fields do not depend on the gauge and are expressed in 
terms of the gradients of the m field: 

Thus we obtained the action (equation (4)) for the bosonic field m(r, t )  which defines 
the coherent motion in ferromagnets and for the rest incoherent fermionic fields. The 
dynamics of the coherent motion are obtained by the variation of S by m. Taking into 
account that 

SA i -- - -4m x a,m -- - t m  x a im SA 0 

Sm Sm 

one obtains the Landau-Lifshitz equation for m 

aF 
- ( a , m  M + uiaim> + m x (2 - a i - )  = o  
Y am a(a,m) 

F = n(a im)2 /8m 

(9) 

Here n(r,  t )  = n ,  + n- and u(r,  t )  are the local density and the local mean velocity of the 
fermions respectively: 

n ZWLve) mnui = x(Y:(- ia,  - eAi )Ye) .  
e e 

Usually equation (10) is written with U = 0 since the electronic liquid is at rest with 
respect to the crystal lattice due to the viscosity. At U = 0 and n = constant the Landau- 
Lifshitz equation for m becomes closed. However the linear momentum density of this 
coherent subsystem is not well defined. For example the canonical definition of the 
momentum 

M M aiea = - m a a i e ,  = 2-A,  
aL p y h e r e n t  = 

a ( a , e a )  Y Y 

though it satisfies the momentum conservation law is not invariant under a gauge 
transformation. This known paradox in the Landau-Lifshitz theory (see e.g. Haldane 
1986) is a result of the separation of the coherent motion from the other degrees of 
freedom. The correct definition of the linear momentum is obtained if one takes the 
incoherent motion into account. 

The canonical momentum of the fermionic subsystem 

is also badly defined, as is well known, for the charged particles in an electromagnetic 
field; it is not gauge invariant. However the mass current of fermions, mnu, is a well 
defined linear momentum of the total system being the sum of the canonical momenta 
of the subsystems: 

(14) mnu = pcoherent + pincoherent 

This momentum obeys the following equation (neglecting dissipation, quadratic terms 
in U and compressibility of the fermionic liquid) 

a,(”) = (n, - n - ) ( E  + U x H) (15) 
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describing the motion of the ‘charged’ particles in ‘electric’ and ‘magnetic’ fields. Accord- 
ing to Landau-Lifshitz equation (10) the right-hand side of (15) is a pure derivative: 

therefore the momentum (14) is conserved. 
Thus for restoration of the correctly defined linear momentum density of the ferro- 

magnets, additional hydrodynamical variables, describing the background ( fermionic 
vacuum), were introduced: the density n and the normal velocity U of the fermionic 
liquid. Analogous variables, related to the normal motion of fermions, are introduced 
in 3He-A at T = 0. Such hydrodynamical variables may be used only at small enough 
frequency, w ,  ascompared with the inverse relaxation time r-’. In the opposite limit case 
(ut * 1) the Landau-Lifshitzequation should be supplemented by a kineticequation for 
the fermionic excitations. 

Such incompleteness of the dynamical equations for coherent subsystem in con- 
densed matter (the system of equations may be closed but according to the symmetry 
limitations is not self-consistent in the sense that the energy-momentum tensor is not 
well defined) leads to the unusual form of the action S, if it is expressed in terms of 
coherent variables only, i.e. after integration over the incoherent background. In the 
case of the ferromagnets the integration over the fermionic variables Ye, YJ gives the 
following action: 

S,,[m] = d3x d t  F[m] + Swz. 

Here Swz is the Wess-Zumino type action (for the Wess-Zumino term, see Wess and 
Zumino 1971, Witten 1983, Balachandran et a1 1983 and in 3He-A Volovik 1986b) 
defined in the five-dimensional space with the boundary being in the four-dimensional 
space-time continuum. The variation of the Wess-Zumino action is however defined in 
physical space-time: 

SSwz = j d 3 x d r - - ( a , m x m ) . 6 m  M 
Y 

and this leads to the Landau-Lifshitz equation. The precise form of the Wess-Zumino 
term, which provides the variation (18) is: 

swz = j d 3 x d t d x 5 - m . ( a , m x  M asm). 
Y 

This action depends on the choice of the five-dimensional manifold and the requirement 
of the independence of exp(iSwz/h) on the choice gives the quantisation of the factor in 
Swz. In the case of (19) this results in the ordinary quantisation of spin: .I’ d 3 x M / y  = ikh 
with an integer k (see Volovik 1986b). 

Note also an interesting behaviour of the fermionic subsystem in the presence of the 
hedgehog in the ferromagnet with the integer topological charge N of the homotopy 
group n2: 

N = dSieiklm. (akm x d,m)/8n. (20) i, 
Here the integral is over the closed surface S around the hedgehog. According to (8) the 
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hedgehog plays the part of the Dirac magnetic monopole (Dirac 1931) with the magnetic 
charge g = $lV producing the vector potential A with the singularity on string. 

In conclusion, the correct linear momentum in ferromagnets is restored after the 
introduction of the ‘hidden’ variables of the fermionic background. The fermions of the 
background interact with the coherent magnetisation motion via the Abelian gauge 
field. The separation of the coherent motion from the incoherent background violates 
the gauge invariance and gives rise to the anomalous behaviour of linear momentum 
and to the Wess-Zumino term in action. 
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