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We develop a formalism for treating coherent wave-packet dynamics of charge and spin carriers in degen-
erate and nearly degenerate bands. We consider the two-band case carefully in view of spintronics applications,
where transitions between spin-split bands often occur even for relatively weak electromagnetic fields. We
demonstrate that much of the semiclassical formalism developed for the single-band case can be generalized to
multiple bands, and examine the nontrivial non-Abelian corrections arising from the additional degree of
freedom. Along with the center of mass motion in crystal momentum and real space, one must also take into
account the probability amplitudes to characterize the dynamics between the bands. We derive the wave packet
energy up to the first order gradient correction and obtain the equations of motion for the real- and k-space
center of the wave packet, as well as for the probability amplitudes. These equations include the non-Abelian
Berry curvature terms and a non-Abelian correction to the group velocity. As an example, we apply our
formalism to describe coherent wave packet evolution under the action of an electric field, demonstrating that
it leads to electrical separation of spins. A sizable separation will be observed, with a large degree of tunability,
making this mechanism a practical method of generating a spin polarization. We then turn our attention to a
magnetic field, where we recover Larmor precession, which cannot be obtained from a single-band point of
view. In this case, the gradient energy correction can be regarded as due to a magnetic moment from the
self-rotation of the wave packet, and we calculate its value for the light holes in the spherical four-band

Luttinger model.
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I. INTRODUCTION

It often happens, in transport phenomena, that one has to
consider carrier dynamics in bands which are coupled to-
gether. This coupling arises either through strong interband
scattering or as a result of the bands being degenerate, or
both. The nearly degenerate case is particularly relevant in
transport theory as transitions often occur between bands
even at relatively weak electromagnetic fields. Such situa-
tions include two-dimensional systems described by the
Rashba Hamiltonian' with strong scattering, the doubly de-
generate heavy and light hole bands in the Luttinger model,”
which is frequently used to model the valence bands of bulk
zinc blende semiconductors, and the conduction bands of
wurtzite structures.® The case of nearly degenerate bands has
not, to date, received the attention it deserves,*=° despite the
important role played by such bands in semiconductor spin-
tronics systems,”® whether in dealing with spin currents,’
spin generation,'® and relaxation,!! or spin injection across a
semiconductor interface.!?!3

Spintronics systems lend themselves to a semiclassical
treatment, as the external electromagnetic fields vary on
scales that are considerably larger than atomic size. The
semiclassical formalism has had much success in describing
carrier dynamics and transport phenomena in condensed
matter physics. In the nondegenerate case, the carrier dynam-
ics can be obtained semiclassically then combined with the
Boltzmann equation to produce accurate descriptions of the
transport properties of many materials. This approximation is
used in the descriptions of cyclotron orbits, conduction in
solids, the Hall effect and magnetoresistance.'* An essential
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application of the semiclassical model, which is specifically
relevant to our discussion, is in treating external fields that
are not represented by bounded operators, so that a perturba-
tive expansion will not converge.'> The most common ex-
ample is provided by uniform electric and magnetic fields,
where the potential is linear in position.

We therefore develop, in this paper, a semiclassical de-
scription of transport in degenerate and nearly degenerate
bands. One of our main purposes is to extend the semiclas-
sical approach, as developed by Sundaram and Niu,® to the
case of coupled Bloch bands, in order to take into account
the spin degree of freedom. We illustrate the underlying
physics by treating two bands, without loss of generality.
Two-band models are frequently an adequate description of
the conduction bands of many semiconductors.!” In experi-
ments on spin transport in semiconductors the carriers have
traditionally been electrons,'® as the strong spin-orbit cou-
pling in the valence band causes holes to lose spin informa-
tion much faster.? However, in recent years research has also
focused on spin currents in the valence bands of
semiconductors,” with a degeneracy which is usually greater
than 2, and the formalism we outline is straightforwardly
extended to multiple bands.

To formulate a description of coherent transport in
coupled bands we may no longer work with each band indi-
vidually but must instead treat the coupled-band manifold as
a whole. The condition for our theory to be valid, which in
the one-band case states that there must be no transitions out
of that band,'# translates into the requirement that there be no
transitions out of the manifold under consideration. We will
consider a wave packet made up of two bands, which is a
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suitable description of coherent transport, when the density
matrix has off-diagonal terms and the relative phase of the
two wave functions plays a crucial role. This approach al-
lows us to retain the notion of the real-space center of the
wave packet, r., which remains well defined. Moreover, in
extending the formalism to two bands we are able, in the
presence of a magnetic field, to recover Larmor precession,
which is not possible from a one band picture. The additional
degree of freedom of the two-band system can be taken into
account by defining a wave function with the Bloch period-
icity in such a way as to incorporate both bands, which al-
lows us to derive the dynamics from a single-band point of
view. The coefficients of the bands can then be grouped into
a vector, the structure and dynamics of which makes clear
the gauge structure of the problem. An interesting fact which
will emerge from our analysis is that the effect of the exter-
nal perturbations can be incorporated entirely into the Berry
curvatures,'® which in turn are generated by a set of connec-
tions in real and reciprocal space as well as in time. The
Berry curvatures acquire additional terms needed to ensure
gauge covariance, and in the framework we present they take
the form of field strength tensors associated with the connec-
tions.

The organization of this paper is as follows: In Sec. I we
develop the semiclassical formalism for coherent transport in
the presence of electromagnetic fields, deriving the Lagrang-
ian, based on a time-dependent variational principle, and the
equations of motion. In Sec. III we use our formalism to
show how coherent wave-packet evolution under the action
of an electric field leads to the separation of up and down
spins. This idea is similar in principle to the spin transistor
proposed by Datta and Das.!” We demonstrate that a large
degree of tunability can be achieved by varying the gate field
and number density. Finally, in Sec. IV we examine the case
of a magnetic field. We show that the gradient correction to
the energy can be interpreted as an intrinsic angular momen-
tum of the wave packet,16 and we calculate this angular mo-
mentum correction for the light holes in the spherical four-
band model of the Luttinger Hamiltonian.

II. DEVELOPMENT OF THE FORMALISM

The semiclassical model describes the dynamics of wave
packets. The wave packet we consider is well localized in
reciprocal space, and it is assumed it sees only a small part of
the lattice at any one time. It is chosen in such a way that its
spread in wave vector is much smaller than the size of the
Brillouin zone, so that its motion at any moment is depen-
dent only on the local properties of the band structure. In
order for this to happen, the uncertainty principle dictates
that the spread in real space must be greater than the size of
the lattice constant.

We consider a systems whose Hamiltonian is a function of
slowly varying parameters, such as the potentials of weak
external electromagnetic fields, which vary on larger length
scales than that of the wave packet, and are treated classi-
cally. The periodic potential of the ions on the other hand,
changing over dimensions small compared to the wave-
packet spread, must be treated quantum mechanically.'
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Given these conditions, we define the local Hamiltonian

H.(r,,?) as the Hamiltonian with the slowly varying poten-
tials evaluated at the center of the wave packet, which we
denote by r. and time 7. The Hamiltonian may be
expanded'® about r,. and if the external fields vary on spatial
scales much larger than that of the wave packet we may
truncate the expansion after the gradient term, which we de-

fine by AH,

L1 JH,
AH=—|(f-r) - — +cc.|. 1
ZL ) ] (M
The gradient term gives rise to a correction to the energy,
which will play an important role in our discussion below.

The energy spectrum of the local Hamiltonian I:IC con-
sists, as usual, of a series of bands, of which several are close
together in energy and are separated from the others by
larger gaps. It is the subset spanned by these bands that con-
stitutes the focus of our attention. We regard the fields in this
problem as small enough that Zener tunneling to the remote
bands is negligible, but they may still be strong enough to
induce transitions within the subset. For an energy spectrum
with such a structure we may further decompose the local

Hamiltonian into a degenerate part, I:Id, which, when re-
stricted to the subset of bands closely spaced in energy, is
proportional to the identity matrix, and a nondegenerate part,

I:In, which is assumed small and treated perturbatively. The
local Hamiltonian of (1) is then

H.=H,+H,. (2)

The gradient correction to I:IC can also be expressed in terms
of the degenerate and nondegenerate contributions,

AH=AH,+ AH,. (3)

Since I:In is treated as a perturbation, the gradient correction

to it, AI:I” will be second order in smallness. We will there-
fore neglect this correction henceforth.

When the external fields are smoothly varying the states
move within the subset of bands which are close in energy
and which henceforth, for simplicity and without loss of gen-
erality, we take to be two-dimensional. The subset is spanned

by two basis functions, which are eigenstates of I:Id, the de-
generate part of the local Hamiltonian, evaluated at r,, which
has the periodicity of the unperturbed crystal,

H [V (r..q,0) = e|¥,(r.q.0), (4)

where ¢ is independent of the band index i within the degen-
erate subset. For a given r,, therefore, these eigenstates have
the Bloch form, with the functions |u;) representing the lat-
tice periodic parts of the wave functions,

|\P1(rc’q’t)>=eiq.f|ul(rc7qat)>’ (5)

|\I,2(rc’q’t)> = eiq‘f|u2(rc’q’t)>~ (6)

The wave functions |u,(r,,q,?)) are spinors with the full pe-
riodicity of the lattice. Despite the fact that the two bands are
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spin split, it cannot be assumed that their local spin quanti-
zation axes are antiparallel, as the interactions with neighbor-
ing bands may affect the direction of quantization. Therefore,
in principle, a finite overlap exists between the spinors cor-
responding to the two bands and it is not revealing to make a
further decomposition of the eigenfunctions into an orbital
and a spin part. Additionally, the Hamiltonian contains terms
describing the spin-orbit interaction, which may depend on
wave vector and position.

Employing the crystal momentum representation, the
wave packet is therefore expanded in the basis of Bloch
eigenstates,

|W>=fd3q{a(q,f)[771(q,t)|‘1’1>+ (@0l (7)

As the wave packet depends only on the local properties of
the band structure, the basis
tions of the position of the wave-packet center, r., wave
vector and time, although implicit in the ket notation is
dependence  on  position. The  function a(q,?)
=|a(q,1)|e" @2 which incorporates the overall phase term,
is a narrow distribution function describing the extent of the
wave packet in reciprocal space and is sharply peaked at the
center of the wave packet, denoted by q., as discussed by
Sundaram and Niu.'® The functions 7, and 7, describe the
composition of the wave packet in terms of the two bands.
The wave packet satisfies the normalization conditions,

[ gz =1, il i1 ®

The wave packet can be rewritten by grouping together the
coefficients in an overall wave function |u), which retains the
Bloch periodicity,

|w>=fd3q|a|e_irlzeiq'f|u). 9)

Note that |u) is not an eigenstate of the local Hamiltonian

H Hd+H,1, but an expansion in eigenstates of Hd, a crucial
difference from the one-band situation. In addition, the wave
vector and time dependence of |u) come both from the wave
vector and time dependence of the Bloch states and that of
the coefficients.

We require the real-space center of the wave packet to be
given by

1dl,
+R,. (10)
2 aq,

r. = (w|tjw) =

The subscript ¢ signifies that the quantity is evaluated at the
center of the wave packet in reciprocal space, that is q=q_.
The vector R, representing a connection in reciprocal space,
is defined as follows:

R=(u|i£|u>. (11)

The energy of the wave packet is given by the expectation
value
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(wlHIW) = (w|Hy|w) + (w|H | w) + (w]AH |w)
=c+A,+A,=€E.

Both A, and A, are expressible entirely in terms of the Bloch
wave function |u). A, is given by

An:<u|i§n|u>= ﬁjA:lﬂ/p AZ=<M[|I‘7”|M/>,

while A, is
i ( &I:Vd du ) e
A== — - |7—/)-cc.]-—-R
2 or. |dq, or,
ou ~ ou
<; (Ay=2) £> gkl

In the above, the operator fln=e‘iq‘fl:lnei‘1‘f, while I-Id
=¢ T[] 19 The energy correction A, is identical to the
expression obtained by Sundaram and Niu.'® It takes on an
additional significance when a magnetic field is present, as
will be seen in the last section.

The Lagrangian £ is obtained semiclassically by means of
a variational principle

£=<w|<iﬁ%—l:l)|w>. (12)

Its use is justified by the fact that the Euler-Lagrange equa-
tion of motion for |w) derived from it is the time-dependent
Schrodinger equation. Following the method used by
Sundaram and Niu,'¢ the following expression is found for
the Lagrangian:

d
E=<u iﬁ—u>+ﬁqc~i‘c—€
dt

=iﬁ7’id_7] +ﬁ775<“i iil>7]j+ﬁqc-rc—s
— 7, (A% + A 7. (13)

In the above, d/dt represents the total time derivative, in-
cluding both the explicit time dependence and the implicit,
which is due to dependence on q,. and r,.. The Lagrangian
depends only on the values of 7; and d#,/dt along the tra-
jectory q=q.(). Since q, is a function of time only, we may
regard 7, in the Lagrangian as an independent variable, 7;(z).
The equations of motion derived from the Lagrangian are

. o€ . .
hq.=- ; + (errc + quqc) - Qtr’

c

. . ‘
hr, = E = (Qgrt .+ Qgeq.) + O

c

1q>
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L dm; du;
lh;:(HU—h<ui lz‘l>)nj

The curvature tensor Q%7 is defined by
du | d u | d
Qggz,( ul o [ ou)ow ) (14)
dre | drg drg| dry
ou
— /. 15
N e

and the vector £, by
ﬁ> <ﬂ
9q o 9q o

o« [ Ou
qu=’<<5

The others can be deduced analogously. These quantities
have exactly the same form as the curvatures defined in the
paper by Sundaram and Niu.!®

We specialize in the case of an external electromagnetic
field. The effect of such an external field is discussed thor-
oughly by Sundaram and Niu.'® The wave vector q must be
replaced by k=q+(e/#)A(r,), which is the gauge invariant
crystal momentum (for electrons with charge —e), and there-

fore the Hamiltonian will have the form H (K)+eV(r,t). Pro-
vided the magnetic or exchange field is constant and uni-
form, so that the Zeeman term has no time or space
dependence, the basis states {|u;)} will depend only on k. The
reason for this is that all the spatial and time dependence of
the wave functions will only come from the spatial and time
dependence of the vector potential A(r, 7). We will therefore
restrict our attention to constant uniform magnetic fields,
while the electric fields may be space- and time-dependent.
As the electromagnetic fields vary on a spatial scale which is
large compared to that of the wave packet, the local Hamil-
tonian will have the form I:I[q+(e/ f)A(r,,t)]+eV(r,,1). The
band eigenstates {|V,)} take the form |¢,)=e4u,)
=/(k=(eAM) x|y, 5 The time dependence of |u) comes both
from the Bloch wave functions {|u;)}, which depend only on
k, and from the coefficients, which depend only on time.
Therefore, the Lagrangian in the presence of electromagnetic
fields can be written as

£=ﬁ<u

—eV(r.1). (16)

d
i;5>+[Mg—eAﬁwﬂltf—s—An—Ad

The equations of motion now take the following form:

tk.=—e(E+¥,XB),

aE .
ﬁi‘czx—ﬁkc X Q+Qy,

ou;
—L ; 17
lﬁkc>)7]]’ (17)

where Q=i(du/JK|X |du/ k). Note that the position-vector
equation of motion is very similar to the one band case'¢
excepting the presence of the vector ), which is nonzero
due to the time dependence of |u) through the coefficients.
The equation of motion for |u), if a magnetic field is present,
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leads to the formula for Larmor precession. The equations
may be solved to any desired order in the external fields and
are not limited to the linear response regime (the fields are
weak enough that they do not induce transitions to remote
bands).

III. THE PROBABILITY AMPLITUDES

The treatment we have presented so far is an exact anal-
ogy with the single-band dynamics. The equations of motion
(17) are complete. Nevertheless, the equations of motion can
be made more explicit in terms of the coefficients #;, and the
non-Abelian quantities emerging in the process illustrate the
gauge structure of the Hilbert space.

The coefficients 7, 7, give the composition of the wave
packet in terms of the two bands, and it is natural to think of

them as a vector, (m), which will be called 7. The connec-

7
tion R can be expanzded in terms of #:
Y
94 o
(18)

J
RY= 'R+ inTa—n

a’

where R} = <ui

and we will also introduce the time connection 7;;

=(u;|i(du;/ dr)). The Lagrangian in this picture takes the
form,

D
C:iﬁnTF:]+ﬁqc-i'c— 7' Hy, (19)

where H;;=(u|H|u;) and the covariant derivative with re-
spect to time, defined as D/Di=(d/dt)-i(7+q,.-R), has
been introduced. Specializing in electromagnetic fields, we
end up with the following Lagrangian:

D
L= 77T<iﬁ5t) n+ [k, —eA(r, 0] -F.— p'Hp—eV(r.1).

(20)

The equations of motion derived from the electromagnetic
Lagrangian are as follows:

hk.=—e(E+¥.XB),

D .
ﬁi‘c= 77T|:E7H:|77_ﬁkcx 7IT-7:77,
Dn
h— = . 21
th Hn (21)

The covariant derivative with respect to the wave vector,
which has the form (D/Dk,)=(d/dk,)—iR*, has been intro-
duced. The non-Abelian Berry curvature matrix, ]—'3, is ex-
pressed in terms of the field strength tensor corresponding to
the covariant wave vector derivatives:

Fli= 5P FP, (22)

where the tensor fﬁﬁ is
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D D JRE IR}
f?B=Z|:_,_:| =_]—_]—i[Ra,R'B]iJ’.
Dk, Dkgl;j k., kg

(23)

This form, which includes the non-Abelian correction from
the commutator of the connection matrices, makes evident its
gauge covariance with respect to unitary transformations of
7. The curvature tensor is antisymmetric under interchange
of @ and B, while the indices i and j satisfy ]—'fj’ﬁ =(fjfﬁ)x

It is seen from the equations of motion that working in the
coupled-band manifold entails the presence of non-Abelian
quantities such as the modified Berry curvature and gauge
covariant group velocity (1/%)[D/Dk,H], which are correc-
tions to the one band equations of motion needed to ensure
gauge covariance. The matrix H is not necessarily diagonal,
as it may include energy gradient corrections.

We note that equivalent results can be derived using an
argument based on the Ehrenfest theorem, as was done in the
extensive work of Shindou and Imura.?

IV. CONSTANT ELECTRIC FIELD

We will examine first the case of a constant uniform elec-
tric field acting on two degenerate bands. We choose a gauge
such that the scalar electric potential need not be included in
the Hamiltonian, and the electric field is represented purely
by the vector potential A. With experiment in mind, we take
E=(0,0,E), modeling a gate field, and study its effect on
transport in the xy-plane.

A. Electrical spin separation

We choose as an example the spherical four-band model:

. K2 5 .
Hpyp= 3 [(')’1 +_'}’2)k2_2')’2(k‘J)2]» (24)
m 2

where J is the total angular momentum operator, m is the
bare electron mass and 7y, and 7, are material-specific pa-
rameters. The wave-functions are eigenstates of the helicity
operator k-J and have the form |u,,y=¢""*'2~1%"|m) where
|m) are eigenstates of the orbital angular momentum operator
J, while 0 and ¢ are the polar and azimuthal angles of the
wave-vector, respectively. We shall treat the twofold degen-
erate heavy and light hole manifolds separately and we shall
denote the probability amplitudes in the heavy hole subspace
by 7/ and those in the light hole subspace by 7.

In these subspaces, the equations of motion for the prob-
ability amplitudes take the form

d H
i = (H" - eERM)pH,
dt
d L
iﬁ% = (H" - eER™)7", (25)

where the superscripts H and L represent restrictions to the
heavy and light hole subspaces, respectively. The reciprocal-
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space connection matrix R is given by the following expres-
sion:
= ¢~7_0Jy + (?—d)(JZ cos 0—J"sin ). (26)
dk dk

In the heavy hole sector R*=0 and the bands decouple,
therefore no spin separation can be achieved electrically in
the heavy hole manifold. Henceforth we shall concentrate
only on the light hole manifold, where the connection matrix
Ri=—(k,/k*)a” has off-diagonal elements only, with k
=(k,,k,) and ¢’ a Pauli spin matrix. We shall suppress the
index L in what follows.

The equations of motion for the position and wave vector
are (suppressing the ¢ index):

. p)
hk=cE, fif= % _¢E X 7' F7, (27)

in which K, is the initial value of k, &,=%%k*/2m; is the light
hole energy, m; is the light hole effective mass, and the cur-
vature F= %(k/ k3)o%. The wave vector equation of motion is
readily integrated to give k=Ky+(eEt/#). Since the Berry
curvature is parallel to k, there are two limiting cases to
consider: the case ky//E is trivial because the curvature cor-
rection vanishes and the bands decouple, so we will focus on
the more interesting case ky L E.
The equations of motion can be solved exactly. 7 is given
by
O cos a+ 7 sin
= ( T Uyl ) ’ (28)

9 cos - 79

sin
with the angle a(7)=arctan((7+cos 6,)/sin 6y)—((7/2)— 6,),
where we have introduced the dimensionless time 7
=eEt/fiky and 6, is the polar angle of k,, and where 7]50) are
the values of 7 at 7=0.

In this system, the contraction (6)=7'G'n (with i
=1,2,3) is the expectation value of the components of the
pseudo-spin. Its components evolve in time as

(61 =(6") o cos 2a— (7)o sin 2a,
(6) =(67) o

(6%)=(67) o cos 2a + (G'),_, sin 2a. (29)

The electric field therefore only rotates the 1 and 3 compo-
nents of the pseudo-spin into combinations of each other,
while the 2 component remains unaffected. To understand
the significance of these results we will examine a concrete
example, taking initially a positive helicity eigenstate so that

(10)= 1, 77(0)=0, and fixing the initial wave vector along the
x-axis such that ko=kyX, which means that 6,=/2. The full
time evolution of the pseudo-spin components are

1-72 .3 27
1+7'2_<0 >7:01+7'2’

(61 =(") 0

(62)=(67) 0,
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2
-7 . 27
+<0-1>7':0

(6% = (6o

1472 1472

As 7—©, o reaches the limiting value of 7/2 and the com-
ponents of the pseudo-spin become

<6-1>=_<0A-1>7=05 <OA-2>=<6-2>7=0’

(63 ==(6% . (30)

Thus the 1 and 3 components of the pseudo-spin are reversed
while the 2 component is conserved.

The time evolution of the wave vector is described en-
tirely by means of the time evolution of the angle 6, which is
most conveniently expressed as

ki
k. h T
cos f=—= = s
k \/k2+(e_Et>2 VI + 72
"\ 4
k k 1
sin = —= = 0
k

=7 .
Vi) e

Therefore, initially we have cos #=0 and sin =1 while as
T7— 00, cos #— 1 and sin 6— 0.

The expectation value of a spin component operator § in
the wave packet |w) is given by (w|§*|w)=7"s», where s;
=(u,|$*u;). The time evolution of the spin of one electron
can thus be found by knowing the time evolution of its
pseudo-spin. Since our goal is to separate spins of opposite
orientations, it is sufficient to know only the value of the
pseudo-spin. The bands being spin-split, holes with pseudo-
spin up also have spin up and holes with pseudo-spin down
have spin down. However, it is instructive to follow the mo-
tion of the spin as time progresses, as well as the time evo-
lution of the helicity. The expectation values of §*, §*, and §°
are

<§X> = %(% sin € cos ¢<6’3> + cos 6 cos ¢<0A_1>_ sin ¢<0A_2>>,
I |
(©=2( % i sin 45 +cos 5 40) o5 .
<AZ>‘ﬁ<l K3 7) = sin 9(@)) 31)
$)=3\5 cos KG7)—sin K57) |.

We assume the carriers have been polarized (by optical
means, for example as done in the experiments of Malajov-
ich et al.,'>2! although those utilized electrons) so that 7 is

either ((1)) or (?) Therefore, the initial expectation values of
{6} are

<(AT]>T=<0A'1>1=07 (5'2>T=<62>¢=0,

(== (6 =1,

and the initial spin expectation values are given by
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m)

-6

Separation (10

Dimensionless time

FIG. 1. Separation along the y-direction between light holes of
opposite helicities as a function of 7, the dimensionless time. The
maximum separation occurs for 7=1.

h

(==, (§=()=0.

It can then be easily seen that the y component of the spin is
zero at all times. Substituting for 6 and {6'} in Eq. (30), we
obtain the time evolution of the other two spin components

ho 1-577 hor(5-17)

s 973

)= 3201+ 7

As 7— 0, the expectation values of the spin components are

(§)=(=0, )

* —.

6

The spin in this case is not conserved. However, a closer
look at (30) reveals that (§*), (§*), and (%) cannot be obtained
from (6'), (62), and (6 3) by a rotation, as the matrix de-
scribing the transformation is not unitary. The reason for this
is evident from (30), where it is seen that the spin cannot be
obtained by a rotation of the pseudo-spin. Therefore, one
should not think of the projection of the spin onto the light-
hole subspace as a vector.
Finally, the helicity is given by
N k-(8) k(5 +k(5 R

k k =5(0)=

fil-72
+ -
61+72

. (32)

The helicity is proportional to the expectation value of the
third component of the pseudo-spin. It is therefore not con-
served for the light holes in an electric field. This conclusion
has also been reached by Jiang et al.?

The r equation of motion can be integrated to give the
trajectories of the carriers:

ﬁzkﬁ( A 72A> 13+ 72 - 175"P)
r= TR+ —17| - TR
2 2Uo(1+ 77)

33
eEm, (33)

We have omitted a term proportional to 77(10) ng’) since in our

setup either one of them will be zero. The second term in Eq.
(32) will have opposite signs for the carriers with # initially
up and those with 7 initially down. Therefore, these carriers
will be separated in the y-direction. From the above and Fig.
1 it can be seen that the maximum separation in the
y-direction occurs at 7=1 while as 7—o this separation
tends to 1/k.
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B. Experimental observation

We discuss an experimental setup in which the effect we
have described can be measured. We propose using a three-
dimensional semiconductor slab containing a nondegenerate
hole gas. The sample must be clean in order for the hole spin
relaxation time to be long, specifically of the order of pico-
seconds. Carriers are excited optically from the conduction
band into the valence bands by using a laser beam. Provided
the laser beam is sharp, only a narrow range of k-space will
be excited around k=0. The optically excited holes will have
wave vectors lying in a narrow spot about the origin. We
assume they have been excited into a state of definite spin.
Both light and heavy holes are excited but, as shown in the
previous section, the heavy holes do not separate according
to spin under the action of an electric field. A source and a
drain will be positioned along the x-direction on the two
faces of the sample while a gate terminal will be present on
top. After the optical excitation, the magnitude of the holes’
wave vector can be increased by applying a source-drain
field E, in the form of a picosecond pulse, which will accel-
erate the carriers along the x-axis, its magnitude tuned to
ensure k has the desired value. This source-drain field pro-
vides an additional advantage. In the process of optical ex-
citation electrons as well as holes will be excited in the
sample and the field which drives the holes one way will
drive the electrons the other way, ensuring that the effect
observed is indeed due to holes. By adjusting the magnitude
of the source-drain electric field pulse the initial wave vector
kq of the holes incident upon the interface is tunable over
several orders of magnitude. We will choose a source-drain
electric field in such a way that the wave-vector k, will have
an x-component which overwhelms the y- and z-com-
ponents. We will also choose the magnitude of k, to be ap-
proximately 1/b, where b is the real-space thickness of the
laser beam. The reason for this is that in the limit of large 7
the spins are separated by a distance of approximately 1/k,
therefore the separation of the spins will be approximately
the same as the width of the laser beam. Once excited the
carriers will be subjected to the action of the gate field E
along z, which will lead to the separation of spins as de-
scribed above. The spin accumulation at the other end of the
sample can be measured by Faraday or Kerr rotation. It will
be position dependent along the y-direction, that is, as one
moves along y the spin-z polarization will change sign.

We take the dimensions of the slab to be 50 nm X5 um
X5 pum and the width of the laser beam is taken as 1 um.
The optically excited holes will be accelerated until their
wave vector reaches the value of ky=10° m~'. For a source-
drain field E, of 500 Vm~' and a light hole mass of 0.1m,,
where my, is the bare electron mass, the distance traveled by
the light holes along the x-axis will be #2kj/2m ek,
=7.2 nm. This will happen after a time of 1.25 ps, which can
be achieved in samples in which the holes have longer spin
lifetimes. Therefore, the source-drain field must be a 1.25 ps
pulse of amplitude 500 V m~".

We will take the gate electric field E=25000 V m™'. If
one waits for the value of 7to reach 50, then the magnitude
of the spin polarization along the z-direction will be approxi-
mately 7/6 while along the x-direction it will be negligible.
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The separation between the carriers with spin-z up and spin-
z down will be approximately 1 wm, which is the same as
the real-space width of the laser beam and thus observable.
The waiting time will be approximately 1.3 ps. Finally, the
distances traveled in the x- and z-directions under the action
of the gate electric field are 35 nm and 850 nm, respectively.

This phenomenon is similar to effects such as the spin
Hall effect since the carriers with different helicities are
separated in the xy-plane by the electric field normal to the
plane.

V. CONSTANT MAGNETIC FIELD

When a constant uniform magnetic field is present, the
gradient correction to the degenerate part of the Hamiltonian
gives rise to an energy correction which takes the form

Ad=—M‘B. (34)

M, which is identified with the intrinsic magnetic moment of
the wave packet,'®?32* is given by the expression

where the sign is negative for electrons and positive for holes
and R stands for the real part. The operator v=(1/#)

X(&I:Id/ Jk) is the velocity operator corresponding to the de-
generate part of the Hamiltonian. The form of A, shows that
it can be regarded as a correction to the Zeeman term. Writ-
ten explicitly in component form and restricting our attention
to holes, the magnetic moment is

o e a * N . d
M == € '8777i<ui|{vﬁ’(l£y_R7>}|Mj>77j' (36)

€“P? represents the antisymmetric tensor. It is straightforward
to prove that

1 de
* o = _ =
7 wl¥luymy = n'vy= P (37)

in which v;;=(u;|¥|u;). Therefore the second term in M is

M2=£77TV77>< R=_i£XR (38)
2 2h dk
The first term is
o de ¢ in out .
T R- Em% ; 7:Va X Ry, (39)

where “out” means the sum runs over all bands outside the
degenerate subspace, that is /#1i,j. The first term exactly
cancels M, so the final result is
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in out

e *
M=- 5%2 > 7V X Ry (40)
ij I

Thus the magnetic moment can be expressed purely in terms
of matrix elements connecting the degenerate subspace to
bands outside the subspace.

We take as an example once again the light-hole manifold
of the four-band Luttinger model in the spherical approxima-
tion in the presence of a constant uniform magnetic field.
The Hamiltonian in this case is

ge

I?:I:ILu,,—ZS-B, (41)

where H,,, has been defined in (24). The first part of the

Hamiltonian is I:Id while the Zeeman term is I:In. The Zeeman
interaction between the spin and the magnetic field does not
contribute to the velocity operator and therefore the magnetic
moment. The light-hole intrinsic magnetic moment in the

PHYSICAL REVIEW B 72, 085110 (2005)

spherical four-band model is given by the following expres-
sion:

e y.k
Mo b vk

. (6%). (42)

The magnetic moment is proportional to the expectation
value of the third component of the pseudo-spin and there-
fore to the helicity, as shown in (31). Depending on the
weight of each band in the wave packet the intrinsic mag-
netic moment can be positive or negative and if the bands are
equally represented it will be zero.
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