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Abstract

Motivated by a recent proposal on the possibility of observing a monopole in the band structure,
and by an increasing interest in the role of Berry phase in spintronics, we studied the adiabatic motion
of a wave packet of Bloch functions, under a perturbation varying slowly and incommensurately to
the lattice structure. We show, using only the fundamental principles of quantum mechanics, that the
effective wave-packet dynamics is conveniently described by a set of equations of motion (EOM)
for a semiclassical particle coupled tman-Abeliangauge field associated with a geometric Berry
phase.

Our EOM can be viewed as a generalization of the standard Ehrenfest’s theorem, and their deriva-
tion was asymptotically exact in the framework of linear response theory. Our analysis is entirely
based on the concept tdcal Bloch bands, a good starting point for describing the adiabatic mo-
tion of a wave packet. One of the advantages of our approach is that the various types of gauge
fields were classified into two categories by their different physical origin: (i) projection onto spe-
cific bands, (ii) time-dependeidcal Bloch basis. Using those gauge fields, we write our EOM in
a covariant form, whereas the gauge-invariant field strength stems fromotteommutativityof
covariant derivatives along different axes of the reciprocal parameter space. On the other hand, the
degeneracy of Bloch bands makes the gauge fieddisAbelian

For the purpose of applying our wave-packet dynamics to the analyses on transport phenomena
in the context of Berry phase engineering, we focused on the Hall-type and polarization currents.
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Our formulation turned out to be useful for investigating and classifying various types of topological

current on the same footing. We highlighted their symmetries, in particular, their behavior under
time reversal T) and space inversion). The result of these analyses was summarized as a set of

cancellation rules. We also introduced the conceplaoity polarization current, which may embody

the physics of orbital current. Together with charge/spin Hall/polarization currents, this type of orbital
current is expected to be a potential probe for detecting and controlling Berry phase.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

The search for a quantized magnetic monopole has a long higtdy Recently a
group of condensed-matter physicif2s4] embodied the idea of detecting a monopole in
the band structurgs]. In crystal momentum space, monopoles appear as a source or a
sink of the reciprocal magnetic fie[@,7] associated with the geometric phase of Bloch
electrons. The geometric phase of a Bloch electron, i.e., its Berry phase, has also attracted
much attention on the technological side, in particular, in the contesgtiafronics A spin
Hall effect has been of much theoretical concgR12], since it may provide a possible
efficient way to induce spin current in a semiconductor sample on which spintronic devices
[13] will be constructed.

The subject studied in this paper stands at the interface between the forefront of the
search for a monopole and the latest technology of spintronics. We study the wave-packet
dynamics of a Bloch electron under perturbations slowly varying in space and in time.
We derive and analyze a set of equations of motion (EOM) which describes the center-
of-mass motion of such a wave packet together with its internal motion associated with
its (pseudo)spin. A reciprocal gauge field of geometric origin (Berry connection) appears
naturally in such EOM7]. Then we combine our formalism with the Boltzmann transport
theory to describe such phenomena as spin and orbital transport. Its relevance to quantum
charge/spin pumpinf4,15]will be also briefly discussed.

Before plunging into the detailed description of our project, let us briefly remind you
what the Berry phase is, and how it has become to be widely recognized in the com-
munity. In his landmark papgf.6], Berry introduced it as a quantal phase acquired by
a wave function whose Hamiltonian is subject to an adiabatic perturbation. The Berry
connection, i.e., a gauge field appears as a phase of the overlap of two wave functions
infinitesimally separated in the adiabatic parameter space. Before being formulated in
such a systematic manner, the Berry phase, however, had already been recognized and
discussed, for somewhat restricted cases though, in several independent contexts. The
molecular Aharonov—Bohm effect discussed in R&f] is nothing but a manifestation
of Berry phase. Its relevance to band structure had also been recognized in limited situa-
tions, such as anomalous Hall effect (AHEB,20] as well as in the study of quantized
Hall conductancg?1]. The role of Berry phase in piezo- and ferro-electrics has also been
of much theoretical interef22]. Recently, the Berry phase in AHE has attracted a renewed
attention, revealing its rich topological structuf@gt,6,7,23—26]The Berry phase has also
been generalized to a non-Abelian c§&d.
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The equations of motion (EOM) for a wave packet of Bloch functldasnstrumental
in all the analyses done in the paper. In order to illustrate our program, we begin with some
details of the description of such EOM. A wave packet of Bloch functions is localized in
the phase space arourkl, X) (wherek is a crystal momentum characterizing the Bloch
function). The wave packet is also composed of a specific Bloch hamthose energy
dispersion relation is given bgéo)(li). The center of mass coordinatés X) obey a set of
classical EOM, as the Ehrenfest’'s theorem says. In the presence of electro-magnetic field
(E, B), its motion is subject to an electric and Lorentz forces,

dk dx

== —e(E(X) X B(x)>, (1)
< O /i,

C:TX _ e (k) @
t ok

These EOM, together with the Boltzmann transport theory, describe the electro-magnetic
response of the system. To see this point, let us express the charge current in terms of the
momentum distribution functionf (k) as

Je = 3
c (271) —— f(k ) 3)
where D is the dimension of coordinate space. The net current vanishes in the thermal
equilibrium. A finite net current appears when either

(1) f(k) is deviated from its equilibrium value, or
(2) dx/dt acquires an anomalous term, i.e., an anomalous velocity.

Case (1) corresponds obviously to the usual ohmic transport, in which the current is in-
duced by a small deformation of a Fermi sphere from its thermally equilibrated distribution.

In this case the current is, therefore, carried only by the electrons in the vicinity of the Fermi
surface.

The Berry phase contribution to E(R) corresponds to Case (2), and involves, in con-
trast to Case (1), all the electrons below the Fermi surface. This type of geometric current
might be alsalissipationles$10,28,29] When Berry connection is taken into account, the
classical EOM, in particular, E2) is subject to a modification. In terms ofreciprocal
magnetic field3, the EOM forx now readg7],

dx _ deer(k, X, n .,

dr ok dt x B(k), “)

whereeeft(k, X, 1) is an effective energy, which will be defined in more precise terms in
Eq. (37). The nature of reciprocal magnetic field will be clarified in Secto©ne can
observe in Eq4) thatB(k) acts quite similarly to the Lorentz force in the real spdgg)

1 A Bloch function is an eigenstate of a periodic Hamiltonian such a§&awhose energy spectrum forms a
band structure, O)(k) defined as in Eq(10).
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encodes information on the topological nature of band structure, in particular, that of band
crossingg7]. Indeed, a degeneracy point corresponds to a monopdiiof[5], which
has played a crucial role in the understanding of anomalous Hall effect (fgE3—-25]

In this paper we study the wave-packet dynamics of Bloch electrons subject to a pertur-
bationg(x, r) varying slowly in space and time. Even though our treatmept(®f¢) is in
completely general terms, we can give some concrete exampg.af) as in Ref[7],

H(p,x; B, 1)) = Ho(p+ Br(X, ), X + B2(X, 1)) + B3(X, 1). (5)

H(p,x; B = 0) is an unperturbed Hamiltonian. The first two categoriégx, r) and
B2(X, t), are in a vectorial form, where#g (X, t) is a scalar. In the case of electro-magnetic
perturbationspz(x, t) = 0. A finite 82(x, t) could be relevant, e.g., for the study of defor-
mational perturbations in a crystal].

Following the quantum mechanical motion of a wave packet localized aréuig, we
study its EOM focusing on the topological nature of band structure, and interpret them in
terms of the reciprocal vector potentid), defined in thg2D 4 1)-dimensional parameter
space{q} = (k, X, 7). This set of parametersg} plays in our case the role of adiabatic
parameters in the original formulation of Berry ph§@&]. Our approach is entirely based
on the fundamental relations of Schrédinger quantum mechanics, and makes no reference
to (i) time-dependent variational princip€], or (ii) path-integral method using Wannier
basis[30]. Although our approach is conceptually much simpler than those mentioned
above, this type of analysis can be found, to our knowledge, only in the classical literature
[19,20] We have in mind a linear response theory with the help of Boltzmann equation.
We, therefore, restricted our analysis to the first order of external perturtgiion). We
emphasize here that all our analyses asgmptotically exacin the framework of linear
response theory.

This paper is organized as follows: in Sectidnwe first discuss the nature of non-
Abelian gauge field, appearing in our EOM, which will be derived later in Seetidn
Section3, we state and formulate unambiguously our problem, as well as listing all the
assumptions we will make. The EOM is derived in Secdpmwhose possible application
to Berry phase engineering is discussed in Sedidrefore coming to the conclusions in
Section6. Some technical details are left fAppendices A-D

2. Origin of the gaugefield

The nature of a reciprocal magnetic fidddk) appeared in Eq4) lies, as will be further
discussed in Sectiofy in the noncommutativity of the center of mass coordinates¥)
[10]. In more mathematical term#(k) is a curvature associated with a geometric Berry
connection, i.e., a gauge field. The relation between such noncommutative coordinates as
seen in Eqg(24), (27)and the MM in momentum space has been of much theoretical inter-
est[3,4,10,31] From a more general point of view, physics in noncommutative space—time
coordinates has been of great theoretical interest, rather in high-energy physics commu-
nity, in particular, in the context of string and theories[32,33] In the following we
consider, instead, the physical origins from which our gauge fields stem, and the mecha-
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nism how they are generated, focusing on the case of Bloch electrons under slowly varying
perturbation8(x, t).

2.1. Non-Abelian gauge field, or Berry phase, encoding information on the band structure

Let us consider the motion of a wave packet composed of a limited numbely s&y,
degenerate bands over the whole Brillouin zone. When neither the time reversal symmetry
nor the spatial inversion symmetry is broken, there always appears a two-fold degeneracy
at everyk-point (Kramers doublet). If there is no further degeneracy in the system, then
N = 2 in our language. In the following chapters, we will derive, using only the most
fundamental relations of Schrédinger quantum mechanics, effective equations of motion
(EOM) for this wave packet. These EOM are most conveniently interpreted in terms of non-
Abelian gauge fields in the reciprocal space. When we derived these effective equations of
motion, we restricted our available Hilbert space to these degenerated bands. In the course
of this procedure of projection onto thé bands, all the relevant information, about the
bands integrated away, was encoded in the form of a gauge field, and appears in the EOM
for the wave packet as a Berry phase.

In order to illustrate this point, let us investigate how those gauge fields are expressed
explicitly in terms of Bloch functions. We will see in later sections that the concept of Bloch
bands is susceptible of perturbations varying incommensurately to the lattice structure. As
a result Bloch electrons become subject to a (non-Abelian) gauge field2® & 1)-
dimensional parameter spage X, r), which we will call below theeciprocalspace, from
the view point that it is a generalization of the space spanndd bye mean crystal mo-
mentum of the wave packet. The reciprocal vector potential takes the formvokav
matrix, whose elements are given by
dun (K, X, 1)

dq >

(A mn = i<um<li, X, 1) : (6)

whereq should be understood as a general coordiq&eléu,i,,,t andu,v=1...,D.

k, x are center of mass coordinates defined in more precise terms, respectively,(b&gs.
and (15) lun (K, X, 1)) = exp(—ik-X)|¢n (K, X, 1)) is the periodic part of bcal® Bloch state,

(X + alu, (K, X)) = (X|u, (K, X)). Inner products involving the periodic pdtt, (k, X, 1)),
mean an integration over the unit-cell, with a normalizatiop(k, X, )|u, (K, X, 1)) = 1.

In the Abelian cas&v = 1, this vector potential is indeed related to the reciprocal magnetic
field B(k) introduced in Eq(4) as

_ )

In the non-Abelian case, the gauge invariant reciprocal field strength should be defined as

Fargo = 3(11-’4(12 - 8(12"4(11 +i ['Aq17 -qu]9 (7)

2 The concept ofocal Bloch function will be briefly introduced in Sectioh2 before being formulated in
more precise terms in Secti@n



404 R. Shindou, K.-I. Imura / Nuclear Physics B 720 [FS] (2005) 399-435

whereqs, g2 =k, X, t. Using a trivial relatlon(a”m lu,) + (um|8”’l) 0, the last term of

Eq. (7) can be rewritten as
up \uj )
9q2

(e ) e

dq2 991 aq1
3L>_<3”_m 3L>> ®)
0g2 9g2 | 0q1

whereas,
O
9 Ay — 075 A =il{—
(091 Agz g2 Ag1)mn = l<< a1
Comparing those two equations, one can immediately see t@fﬁfl lug)(ug| were 1,
e., if{lu;); 1 =1,..., N} spanned a complete basis, thEj,, would vanish identically.
This indicates the fact that the nature of our gauge field lies indeed in the projection of an
available Hilbert space onto the relevavitbands. If|u;) spanned a complete basis, and
no band were projected away, there would be no information which should be encoded in
the gauge fields. Note also that E8) takes the familiar form of the Berry curvature in the
study of magnetic Bloch bands,21].

2.2. Gauge field of two different origins
The gauge field introduced in E¢) has two different physical origins:

(1) Projection onto a subspace spannedbBloch bands;
(2) Bloch basis moving in time.

The first point has been already discussed in Se@igénwhereas the second point may
need some explanation. In the following sections, we will study the wave-packet dynamics
in the phase space in the presence of space and time dependent external perturbation, which
variesincommensuratelto the lattice structure. In order to define a crystal momentum in
such a situation, we replace the spatial coordinatethe perturbatior8(x, r), introduced

asin Eq(5), by the center-of-mass coordinatef a wave packet under consideration. This
recovers the original lattice periodicity of the Hamiltonian, leading us to the concégpt of

cal Hamiltonian (Eq(11)) and itslocal Bloch eigenstates (E€L2)). The above procedure

is justified, whenever the external perturbation varies sufficiently smoothly compared with
the width of the wave packet. We then expand the wave packet in terms lotHidloch
eigenstateggp, (k, X(¢), 1)), which evolve as a function of time, both explicitly (through

and implicitly (throughx(z)). This is why ourlocal Bloch function, or rather its periodic

part, which has appeared in E§), depended not only dabut alsox andt. Because of the
nature of outocal Bloch basis, such nontrivial gauge field structure as was introduced in
the previous section emerges. To be precise, we had better distinguish between two differ-
ent types of gauge field (strength) appearing in E§)s.(7): (i) Fi iy (i) Fi i and]—',;w.
Although the reciprocal field strength introduced in Eg). has various components, i.e.,

not only (a)]-‘,;u,;u, ]-",;m and}',;ul (@ = (i) + (ii)), but also (b)Fx,z, andF%,;, the latter
components (b) do not appear in our EOM for the wave packet, showing a clear contrast
with Ref.[7]. However, we will be working in the framework of a linear response theory,
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and within that framework our EOM turn out to be consistent, wNes 1, with those of
Ref. [7]. This point will be further clarified in Sectioh.4 by performing a simple power
counting analysis.

We will see in detail in Sectiod that the two types of gauge field

@ Fi i,
2) .7:/;#)2” and]-',;“,,

have actually slightly different origins, as well as their different physical consequences
which we will discuss in Sectiob. The former,7; ; , is indeed related to the projection

of available Hilbert space onto the relevant degenevabands. It yields a finite anomalous
velocity, and plays a central role in the understanding of AHE. It appears in the presence
of magnetic Bloch bands and ferromagnetic backgroy@3—25] On the other hand,

the Iatter,]—",;ﬂiu and ]—",;#r appear only in the presence of ttime-dependent Bloch basis
mentioned above.

3. Statement of the problem

Before discussing the EOM in the following section, let us define and formulate our
problem here as well as listing all the assumptions we will make. We stress here that all the
approximations which we will make are stated here, and that the derivation of the EOM in
the following section is indeeexactunder the assumptions made in this section.

Let us consider the motion of a wave packet of Bloch functions under perturbations
slowly varying in space and time. This perturbation can be, e.g., external electro-magnetic
field, as was the case in the study of magnetic Bloch b§®@4]. The external pertur-
bation 8(x, t), varying incommensurately to the crystal structure, breaks the translational
symmetry of the unperturbed Hamiltonian,

A i2
Ho(p,X)=W+U(X), Ux+a)=U(X), 9

whereA i represents the vector potential of homogeneous magnetic field in case it exists.
The full vector potentialA is thus divided into two parts a& = Ayni + SA, wheresA

is absorbed imB1(x, t). Eigenstates of the above Hamiltoni€d), i.e., (magnetic) Bloch
bands (specified by band indicesare characterized by crystal momehta

Holo% (k) = €2 (k) |92 (k). (10)

3 The innocent looking equation, E(R), more specifically, the periodic potenti&l(x) in it, encodes all the
information on the band structure and, consequently, the secrets of its nontrivial topological nature. It should be
emphasized thal/ (x) is written symbolicallyin the sense that (i) it can also be a function of momengudue
to spin—orbit interaction, (ii) it is generally spin-dependent, either, i.e., it takes a thatrix form in spin space
on top of a ferromagnetic background, (iii) the smallest unit of translational symmétmeplaced by magnetic
translation vectors in the case of magnetic Bloch b46HsThus Eq(9) should be interpreted accordingly to the
situation.
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Once the perturbatiof(x, t) is switched on, this crystal momentukris no longer a good
guantum number of the system. However, the typical wave length of the external pertur-
bation is longer by several order of magnitudes than the lattice constants, in a physically
relevant parameter regime of our interest. In that case, intermediate length scales do exist,
to which our wave packet will belong, in which the external perturbaféx ) can be
regarded spatially constant at the zeroth order of approximation. We are thus entitled to
consider a wave packet, well localized in this length scale of external perturbation, which
has also a peak sharp enough in the space of crystal momentum, moving under perturba-
tions slowly varying in space and time.

Let us now consider a wave packig,(¢)), localized in theophase spacespanned by the
real space coordinateand the crystal momentuR in the vicinity of (k, X). For simplic-
ity, and without losing generality, we can assume that the wave packet has a symmetric and
smooth shape such that it has a well-distinguished peék(at, X(1)) in the phase space,
wherek (1) andx(r) should coincide with the expectation valuekadndx at a given time.

Our present goal is to study, as accurately as possible, the quantum mechanical motion
of this wave packet, and derive the effective equations of motior ordk. As will soon
become clearer, an interpretation in terms of reciprocal gauge field (strength) uncover the
nature of various physical phenomena, such as anomalous Hall effect (Bf28)-25]
spin Hall effecf{10] and quantum charge/spin pumpiiig},15].

3.1. Assumption of slowly varying perturbatigix, ¢)-concept of théocal Hamiltonian
and itslocal Bloch bands

We consider from now on a perturbatig@tx, ¢) introduced in Eq(5). As far as the
intermediate length scales discussed at the beginning of this section are congéxned,
can be regarded, over the spread of our wave packet, almost spatially constant. We, there-
fore, choose, as the starting point of our analysis, a Hamiltonian, dubbed ifi7Re a
local Hamiltonian, in whichx-dependence g8 (X, ¢) is replaced by, a constant at a given
time:

Hioc = H(p’ X; B(X, t)) (11)

This Hioc has a very remarkable property; at a given timiehas the same translational
symmetry as the nonperturbed Hamiltonidgy= H (p, X; 8 = 0), i.e., in other wordsHoc
can be diagonalized by a setlotal Bloch eigenstategy, (k, X, ¢)) forming alocal band
en (K, X, 1), which now depends ox(z) andt:

Hioc|¢n (K, X, 1)) = €5(K, X, 1)|pn (K, X, 1)). (12)

We are actually considering a degenerate case whekex,r) m =1,..., N) takes the
same value, which we define to bg:(k, X, 1), i.e.,

€loc(K, X, 1) =e1(K, X, 1) = - =en(k, X, 1). (13)

We will see below that the concept of tleeal Hamiltonian and its associated conduction
bands plays a central role in the derivation of EOM.
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3.2. Construction of a wave packet

Superposingocal Bloch functions introduced above, we now construct our wave
packet. In the spirit of Boltzmann’s transport theory, an exchange of energy between the
electron and the environment occurs only through scattering events. In the following, we
will investigate an adiabatic motion of this wave packet. This picture should be valid over
the typical length scale of adiabaticflight between two scattering events, i.e., over the
mean free path of an electron. Let us now proceed step by step, making each logical step
as clear as possible.

(1) Let us first focus on the real space, in which the electron wave packet is localized
aroundX. Then we can compose a wave patkatt of local Bloch functions associated
with the local Hamiltonian ak:

N
|n1/(t))=2/dkan(k,r)|¢n(k,>‘<, 1). (14)
n=1

a,(k, 1) should be normalized properly. TRedependence af¥ (¢)) is implicit on the left-
hand side of Eq(14), which is actually due to the time dependent Bloch bagjsk, X, 1)).

(2) In order for the self-consistency, we require that our wave pgdkitdoes give,
thecorrectexpectation value of, i.e.,x(t) = (x1(¢), ..., xp(?)):

X0 (@) = (& @) |xu|¥ @) (15)

This guarantees that our wave packet yield, indeed, the center-of-mass postesigned
in Eq.(11), and that our program makes a self-consistent closed loop.

Our wave packet{14) can be also regarded asfunctional of a,(k, ), i.e., [¥(?)) =

¥ ({a, (K, t)})), in which the coefficienta, (k, t) are chosen so that the self-consistency
condition(15) should be satisfied. E¢L5)is, however, nothing but a weak constraint com-
pared with a huge number of degrees of freedom allowed,fdt, 7). In order to specify

with further precision the coefficients, (k, t), we now turn our eyes to thle-space. As

has been discussed at the beginning of this section, we can consider, in the length scale of
our interest, a wave packet which is localized botlx iand ink. We therefore require, in
addition to Eq.(15), that our wave packet shouldso give the correct expectation value

of k,:

k(1) = (W (1) |k, | W (). (16)
Thek dependence gf¥ (1)) is thus encoded in, (k, 1).°

4 As has been discussed at the beginning of this section, the expdh4jan justified, as far as the spread
of wave packet in real space is sufficiently small compared with the typical length scale over which the external
perturbation can be regarded almost constant.

5 So far, our treatment of andk has not been symmetric. This is entirely due to the fact that our perturbation
B(x, t) does not depend dn We can consider, in principle and without much difficulty, such a perturbation that
depends ork, and perform symmetric treatmentfandk. However, in this paper, we restricted ourselves, for
the clarity of the paper, to the former case.
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In the following section, we will derive the EOM féu(z) andk(z), following the quan-
tum mechanical motion of the wave packet we have just prepared. In order to make the
set of EOM self-contained, however, we need also to take care of the motion of inter-
nal pseudospin degrees of freedom spannedvblpands. For that purpose it will turn
out to be convenient to separatg(k, ¢) into its “phase” or pseudospin pad',(k, ) =
(zak,1),...,zn(k, 1)), and its “amplitude” partp (k, t), by introducing

N
an k. =vpK Dzak,1),  pky = Jantk, 0]

n=1

Iz |2 clearly represents the probability that the electron wave packet sits orihttEand
among theN-fold degenerated bands. Thereby it corresponds to the internal degrees of
freedom associated with the wave packet, such as spin and/or orbital,akilg is the
momentum distribution function for the wave packet. Since we assumed that the wave
packet is well-localized not only in its real space but also in its reciprocal space, we can
assume without any loss of generality the following reduction formula,

/dk fk,pk, )= f(k@),1), (17)

for any sufficiently smooth functiorf (k, ¢). This prescription will be used frequently at
the final stage of the derivation of EOM.

3.3. First order perturbation theory with respect fgx, ¢): a linear response theory
The wave packet introduced above should obey the Schrédinger equation
d
iE‘lI/(I)) = H|¥(1)). (18)

As we have briefly seen in the introduction, our eventual objective is to apply the EOM to
the framework of the Boltzmann transport theory, using formula such a&3Edn order

to describe phenomena including the anomalous Hall effect, spin Hall effect and quantum
pumping, etc. For that purpose it is enough to consider a linear response of the system,
keeping only the terms up to first orderaf (X, r)/9X andap(X, t)/ot.

In the case of the electro-magnetic fields, the perturbafién ¢) is embodied by a
vector potentiaA (X, 1), and a scalar potentialg(X); the full Hamiltonian read$io(x, p +
eA(x,1)) — eAog(X). Thereby, a linear response to applied electro-magnetic figlds,
—0dAg/dx — dA/dt, B =V x A corresponds to the first order perturbation theory w.r.t.
B(X, t).

We expand the Hamiltonian in powers)# X as

D
1 _ 0Hioc 0 Hioc -
H = Hjoc + > l;l{(xu —Xu) 0%, + m(xu _xu)}' (19)

The first order term on the r.h.s. is written in a symmetrical way in order to keep the
Hamiltonian to be Hermitian. In the following, based on EP)we develop a systematic



R. Shindou, K.-I. Imura / Nuclear Physics B 720 [FS] (2005) 399-435 409

perturbation theory w.r.i8(X, 7). In this paper, we focus on the linear response of the sys-
tem, keeping only the terms up to first order in the expansion. Our treatment is, therefore,
self-consistent in the framework of linear response theory.

4. Equationsof motion

In this section, we sketch the derivation of EOM, paying particular attention to, how
the two different types of reciprocal field strength, introduced in Se@j@ppear in the
EOM. Before going into the details of the derivation of EOM, let us remind you that there
are two possible sources of Berry curvature in the reciprocal parameter space:

(1) projection of available Hilbert space onto the degenerat&loch bands;
(2) local Bloch basis changing gradually in the course of time.

The time dependence of the local Bloch basis stems, not only from the expliefien-
dence of thdocal Hamiltonian, Hiqc, but also from our self-consistent treatment of the
problem, where théocal Hamiltonian depends on the center-of-mass position of the elec-
tron wave packet through the external perturbatix(z), ).

In many respects, our point of view is reminiscent of the standard Ehrenfest’s theorem of
guantum mechanics: the expectation value of an operator, sucbras obeys a classical
EOM. We actually follow the same type of procedure as the derivation of the Ehrenfest's
theorem, and in this sense our EOM can be regardedyeseralized Ehrenfest’s theorem
for Bloch electrons under perturbations varying slowly in space and time. We will come
back to this point later.

4.1. Preliminaries

We investigate, in this section, time evolution of the wave packet constructed (h4q.
We are interested, not only in its motion in the phase space, but also in the motion of its
internal spin/orbital degrees of freedom. In Secttowe will develop further analyses,
from the viewpoint of transport phenomena, on the dynamics associated with such internal
degrees of freedom. Having in mind applications of our formalism to those fields, we
formulate our equations as generally as possible. More concretely, we consider the time
evolution of an arbitrary observabl@, or rather of its expectation value,

O(t) = (¥ )| O|w (1)).
Since we have adopted, for the sake of simplicity, the Schrddinger picture, as seen in
Eg. (18), the wave functions evolve in time, while observables are time-independent. We
develop later more detailed analyses on the EOM focusing on the case @hkeng, or
k,., but we consider a general observabileas far as possible in formulating our equa-
tions. This will make it easier to apply our formalism to further studies on the dynamics

associated with the internal degrees of freedom of Bloch electron.
Having those in mind, let us consider the expectation value of an arbitrary obse®able

N
o=y /dkdk’a;‘”(k’,t)((’))mn(k’,k)an(k,t), (20)

m,n=1
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where we have introduced an abbreviated notation for the matrix elements of an operator
O evaluated in the restricted subspace spannell Bjoch bands, i.e.,

(O)yn (K, K) = (b (K, %, 1)| O (K, %, 1)). (21)

Note that in this restricted Hilbert space not oRly, x,, or H but alsod/dt are considered
to be an operata®. (0),,,,(k’, k) is generally aNV x N matrix for given(k’, k), whereas
for a given(m, n), it has, in general, off-diagonal matrix elements, and can be also regarded
as a matrix irk-space. The presence of finite off-diagonal matrix element®#f,,, (k’, k),
either in thek space or in the pseudospin space prevents some observables from commuting
each other, thereby induces Berry curvature in our final EOM.

Let us first consider two concrete examples:

(1) Case o0 = x,: the matrix elements of an observablgare

<x/4>mn (k/a k) = i5(k/ — K)dmn % + S(k/ —k) (Akﬂ)mm (22)
n

The first term is off-diagonal ik-space, whetk is discrete, due to thk-derivative, but
is diagonal w.r.t. the band index. In E(2), we kept bothk’ andk indices in order to
emphasize the fact that this first term is off-diagonal. In the following, we will omit quite
frequently thek’-index, pretending thaf,, )., (", k) is diagonal irk-space afte (k' — k)
is integrated away. On the contrary, the second term is diagohkaspace, but the recip-
rocal vector potentialy defined similarly to Eq(6), as,

dun(K, X, 1)
ok, |

has off-diagonal matrix element between different bands. In the above equations we did
not write down the explicit-dependence of(¢) in the brackets.

(2) Case of© =k, this case is even simpler. The crystal momenkiis diagonal
both ink and in pseudospin indices,

(Aku )mn = l<um (kv )_(7 t)

<ku)mn (k/» k) = 5(k/ - k)amnkw (23)

Let us further investigate thaff-diagonalcomponents ofx,, )., (k’, k). We focus here on

its commutation relation ifk-space. Since the first term on the r.h.s. of E2R) is off-
diagonal and the second term is not proportional to an identity matrix, these two terms do
not commute each other. One can indeed verify

(o) (0) ], () = i (Fiy kI mn (24)

where[A, Bl = AB — BA is a standard commutator of twé x N matricesA, B. Thus
the noncommutativity ofx,. )., (k) turns out to be the origin of the emergence of Berry
curvatureFy, k. Another important remark on E¢22) is that it leads us to introduce
naturally the concept afovariantderivative in momentum spa¢#0], defined as

d
(VkM )mn = 6mn BT - i(AkM )mn . (25)
w
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In terms of the covariant derivativeVy, )., thus introduced, the matrix elements
(x,.)mn(K) can be rewritten simply as

(%Y mn k) = i(vku)mn- (26)
The commutator between two covariant derivatives along different axes is directly related
a non-Abelian Berry curvature

[Vk#a Vkv ]mn = _i(]:kﬂkv )mn~ (27)

In geometric terms, Eq27) can be interpreted in such a way that two parallel transports
along different axes on a curved surface generally do not commute each other.

4.2. To derive the EOM

Let us now consider the time derivative of the expectation valde). Expanding
|¥ (1)) in terms of the local Bloch functions as EG4), one can classify the time derivative
of O(¢) into three parts:

d@(t) = ” w ” ”
dt _Z,,/dkdk o (Oloor (K KDagr (k7. 1)

t f dK' dK" a3, (K. r)( (© >a’a”(k’,k”))aa//(k”,t)

+Z/dk/dka;’;,(k/, D{0) g (K, k)w (28)

oo

We have in mind that the operatoris eitherx,,, k, or some other observables. In the case
of standard Ehrenfest’s theorem,

d
T WIOW) =i (WIIH. Olly).

the second term of E¢28) does not exist, since the matrix elemeid®), ., (k’, k) is time-
dependent only when the local Bloch basis evolves in time. The first and the third terms,
i.e., the change of expansion coefficiemtgk, 7) yields a commutatof,H, O]. They con-
tain, however, also a Berry connection contribution, which, together with the second term,

produce a new type of contribution, which we will ca}lg) in EQ. (32). The first term of
Eq. (32), Q((Ql), is a generalization of the standard Ehrenfest's commuf&o©], which
induces, wher0 = x,,, 7 z,in the EOM. On the other hand, the second teﬂéﬁ), can
be rewritten in terms of; ; andFi ;.

In order to rewrite Eq(28)in terms offzg) andszg), let us first look into the following
relation,

N

da*(k, d
e = (k,t>[<5> +i<H>mn<k>]. (29)
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The first term is a Berry connection contribution. As is clear when it is written more pre-

cisely as
DN L 22— (%000 1) 2t (. %00, 1)) (30)
0t [ \un ot at
it emerged as a result of the time evolution of theal Bloch basis. On the other hand,
the second term of Eq29) yields the commutatiofH, O],,, in Eq. (32). Note also that
the derivatived/at in Eq. (29) picks up both thexplicit andimplicit -dependence. Cor-
respondingly, one can also rewrite the first term of &§) using two types of the gauge
field introduced in Sectiog, i.e.,
ad dx,
v = Xy )mn mn- 31
(3] =G+ ) @

ouy,

Our next objective is to calculate the time derivative of an operator suéhsand
express them in such a way that their interpretation in terms of the reciprocal field strength
will become as easy as possible. For that purpose, we rearrange the term¢28)tto

two parts,(z((gl) andﬂg) asb

d ~ ), 5@
Lo =% 02,
o ) o+

N
@ =iy / dkydkoa KD[(H), ()] (ke Kaan(Ka).

m,n=1

N
.Qg)z Z /dkldkga;:l(kl)

m,n=1

ad ad
X {|:<&>a (O)i|mn(kl, k2) + (5(O>mn(kl, k2)> }an(kZ)- (32)

In Eq. (32) we did not write down explicitly, for the sake of simplicity, the dependence
onx andz in |¢, (K)) = |¢, (K, X(2), 1)).

As has been announced in advaneé? is a generalization (or, rather a restricted ver-
sion) of the standard Ehrenfest's commutator, coming exclusively from the first and third
terms of Eq.(28), Whereang) is a new type of contribution, which is a collection of
Berry curvature terms from all the three parts of E28). Not only have they different
origins, but also are they susceptible of different physical interpretations in terms of the
reciprocal field strength. We will see in Sectidr® that in the particular case @ = x,,,
the two contributionssz)ﬁi) and .(2)((,2) are related actually to the two different parts of the
gauge field introduced in Secti@i.e., (1) Fi,,, and (i) Fi,,x,, » F,z-

6 In order to obtain Eq(32), one has only to substitutierally Eq. (29) into the expression fod@/d: in
Eq. (28), and rename the dummy variables in the following way:

kK — kq, k' — ko, k — k3,

/ "
o — m, o —n, o—1.
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Having in mind what has been stated above, we can now derive the EQiy] fiorand
k, (t). Let us first consider the case 6f= k,,. As seen in Eq(23), the momentum oper-
atork,, is not only diagonal irk coordinates and band indices, but also its matrix element
is time-independent. Thus only the first tem;gl) contributes to its EOM . Furthermore,
among various matrix elements of the Hamlltonlan giverf3h), (36), only those terms
which contain off-diagonal matrix elements w.ktindices contribute to its commutator
with k... As a result, its EOM turns out to be simplified as,

(33)

dk dku(®) _ /dkp(k, 0 3€Ioc(|_(» X0 _ _36|oc(|_<, X, t)_
Cdr 0xy 0xy,

In the second equality, we replackdn the integrand by its mean value, following the
prescription given in Eq(17). This is nothing but the standard EOM for the momentum of
the electron wave packet shown in Edj).

As for the position operatog,, Eq. (22) contains both thek-derivative and time-
dependent matrix elements between different band indices. As a result, the EOM for the
real space coordinate is subject to a drastic change in comparison wifR)Etp Sec-
tion 2, we classified the reciprocal fields into two categories, i.e Ffjk,, and (i) Fi,,;
and Fi,x, ‘5 4% We will see in the next section that the decomposifi&®) clearly demon-
strates Why we classified them in that way. We have studied on a very general basis in
this section that the two componen(zg) and.{z(z) are structurally well distinguishable,
and have completely different nature. We will see more specifically in the next section that
Q,E}) and Qﬁ) are related respectively to the reciprocal fields (i) and (ii). Thus different
origins of two types of reciprocal fields will be uncovered. The fact that the classification
of reciprocal fields discussed in Sectidnan be done explicitly and unambiguously as the
decomposition(32), is actually one of the main advantages of our approach. Let us now
turn to a close inspection of the natures@ i) andfzg).

4.3. Nature oﬁzﬁ) and Q)Ei)

In this section let us further analyze the nature of decompo<a); focusing on the
case of0 = x,,. X(¢) is given by Eq(15) together with Eq(22). The first term of Eq(32),
.Q,E}) in the present case, has particularly a familiar form, which often appears in the context
of the Ehrenfest's theorem

W 1pul¥) a9
m

d
2Vl =i(WILH, x.]1¥) =

The similarity betweerrzg) and Eq.(34) becomes clearer, when one expands the wave
packet|y/) in terms of a complete set of basigg) as|y) = >, a«l¢d«). The difference
is that the set of bases used in the expansion aeaspletein Eq. (34), whereas it was
restricted toN Bloch bandsin Qii). This constraint is the origin of nonvanishing field
strengths.

Let us now proceed to rewrit@,ﬁi) in terms of the reciprocal field strengty ,
defined in(7). The matrix elements of the Hamiltonian, i.e., EfQ) in the restricted sub-
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space, spanned hy Bloch bands are calculated to be

<H>mn(k/a k) = (¢m (k/» X, 1) |H |¢n(k» X, t)) = S(k/ = K)(H)mn(K), (35)
_ d€loc _ i | d€ioc d€loc
(H)mn(K) = €eff — 8_)21;)6‘} + E{ 0% (Vi) mn + (Vku)mnf)—)?u}’ (36)

whereeioe = €oc(k, X, 1) is a degenerate eigenvalue of the local Hamiltorfiale also
introduced a renormalized energys (K, X, ¢), which takes the form of & by N matrix
whose(m, n)-components are given by

€M (k, %, 1) = €toc(K, X, 1)8mn + Aémn(K, %, 1). (37)

Its off-diagonal matrix elements are due to correction terms,

_ i oum, (K, X, 1) _ u, (K, X, 1)
Aepn (K, X, 1) = —<— Hioc — €1oc(K, X, 1) f>
2 aku ( oc oc ) 8x,L
i oum(K, X, 1) _ du, (K, X, 1)
(P (Hioe — K.X,))|————
2< 3%, ( loc — €loc(K, X, )) ok, >’

where the summation over =1, ..., D was assumed implicitly. Using the matrix ele-
ments given in Eq435), (36)one can rewriteQ)Ei) in the following way?

N
QP =3 f dkp<k,t)z7;<k,r>{[vku,eemk,x, ]

m,n=1

D _
d€ioc(K, X, t
+ E (fkﬂku)mn —IOC( = )

v=1 v

}zn(k,t) +a2®. (38)

Apart from the energy correctiofe, the first term on)E/lL) is nothing but a standard ve-
locity term, i.e., the first term in the r.h.s. of B@). A remark worth mentioning here is
that the covariant derivative in the commutator plays a central role in ensurir@ktié)
gauge invariance of final results, which we will see Iamﬁ? is a irrelevant terfiwhich
vanishes with the help of prescription introduced in Edy). For a later convenience, let
us introduce the following abbreviated vector notationaik (1), ¢):

20" = (5 (k@) 1), ..., 2 (k@) 1)), (39)

7 See Egs(11), (13) Recall also that

(Hioc)mn (k' k) = (¢m ', %, t)|H|0C|¢n (K, %, t)) = 38K — K)dmneioc(k, X, 1)

is proportional to an identity in the pseudospin space.
8 Details are given if\ppendix A
9 lts explicit form is given in Eq(A.4) in Appendix A
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where we always have in mind the prescript{@?). Using this notation, one can further
rewrite Eq.(38) as

N
ad
Q= w® Vg, cen®)],, +Z(fkuku>mn €'°f( )}Tn(r), (40)
m,n=1 v=1 v

wherex-dependence afioc (k) is not written explicitly.

In contrast toQ,Elll), the second term of Eq32), Qﬁi) in the present case, would not
have existed, unless the local Bloch basis had evolved in time. However, in a general sit-
uation described by a time-dependent Bloch basis, there is no reason to beli@éﬁhat
should vanish. Indeed, we will give you in Sectidaome concrete examples where a finite

contribution fromQ(z) plays a crucial role in determining the physical properties of the

system. Using E((29), one can easily verify thaTZ(Z) are related to the second category

of reciprocal fields, i.e 7, and 7y, x, ‘1;;’ 52,5,2} can be rewritten as
N
Q;i) = — Z /dkp(k t)Zm(k t){(fkuxl,)mn dt +(-7:k t)mn}zn(k t)
m,n=1
dx,
= —2(t) {Zf,% +Fi }z(r) (41)

where the summation over=1,..., D was omitted in the first line. The decompo-
sition (32) together with Eqs(40), (41) gives a complete physical justification of the
classification ofF,,,, done in Sectior2. In other approachgg,30] the two types of recip-
rocal fields appear in an indistinguishable manner, and two different origins of reciprocal
gauge field studied in this paper remain to be hidden.

4.4. The complete set of EOM and its @) gauge invariance

We have successfully related the two contribution%ﬁ)(t) in the decompositiof32),
ie., () and2!?, respectively, to two types of gauge invariant reciprocal fieldsEi(), ,
and (i) Fx,r and F,,x, <5 dxy . Together with Eq(33), this allows us to rewrite our EOM for
x(t) andk(z) as

di, dk, dx,

d—f = ZT{[V]EH’ Gfo] fkll iy d[ ]:kuxv dt -7:](” } (42)
dky _ deioc(K, X, 1) (43)
dr d%,, '

Repeated indices should be summed over=1, ..., D. Theeffectiveenergyees is re-
lated to the locakioc as Eq.(37). In Egs.(42), (43) eeff andejoc are functions ok, X, 7,
i.e., eeff = €efi(K, X, 1), €l0c = €10c(K, X, 7). In order to obtain a complete set of EOM, we
still need to know an EOM fok(r) defined in(39). The details of its derivation is given in
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Appendix B and the result is,

z dk
.dz ( - 3€Ioc1_ KA

i— = eef —Fu—-1— —=
dt "%, dr ~kn

dx -
_ d—t"A;ﬂ — At>z, (44)
where repeated indices should be summed over = 1,..., N, and again,eeff =
Eeff(k: )_(7 t)! €loc = E|OC(ka )_(9 t)

Here let us make a few comments on the physical meaning q#&y.0n the r.h.s. the
diagonal part otef, i.€.,€10c(K) 1, together with the second term simply give rise to a usual

U (1) phase factor associated with an effective enesgy(k, X, 1) — Zﬁ’zl iu%ﬁl’”)
On the other handAe(k) generally has off-diagonal matrix elements between different
bands and thereby yields a nontriviBlU(N) phase factor, which corresponds to the pre-
cession of the spin and/or orbital associated with the wave packet. The remaining terms
of Eq. (44) represents a Berry—Wilczek—Zee ph§z# originating from the adiabatic mo-
tion of the wave packet. The first two terms are due to its motio¢kirx)-space. In the
Abelian case §f = 1), the EOM forx(r) andk(r), i.e., Eqs(42), (43) are independent of
the motion of phase degree of freeddatr,), whereas(z) acquires a quantal phase due to
the evolution of andk: expli [ dt (%A,;M + %A;M + A;)] where the summation over
u was omitted. This is analogous to the Berry quantal pfiske

Finally let us briefly sketch how one can make sure of $tN)gauge invariance of
our EOM. Namely, as th& -fold Bloch states are energetically degenerate over the whole
Brillouin zone, these EOM should be independent of the choic€ &loch bases and be
invariant under the following gauge transformation:

N
i (K. X, 1)) = > Jum (K, X, 1)) gmn (K, X, 1),

m=1
2k, 1) =g (k. %, z(k, 1). (45)
Here|u, (k, X, 1)) andz(k, r) are transformed inversely to each other, making the I.h.s. of

Eg. (14)invariant. The gauge field and the field strength associated with it are transformed
in the following way,

~ ag ~
-1 - -1 -1
A‘Iu =8 Aqug -8 86] ’ f‘]u‘]v =8 ‘7:%1% &>
m

whereg,, = k,X%, . Using this, one can easily see that the covariant derivative, defined
generally for thisy,, as

0

qu = @ — l.Aqu, (46)

behaves as if it were a linear transformation in the vector space spanmeddigt degen-
erate Bloch states:

6‘1# = gilv‘]p,g' (47)
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This is why it is dubbed as @ovariantderivative. Furthermore, one can also check that
the N x N matrix eqf1(K) defined in Eq(37)is transformed as
Eerf(k) = g eert(K)g.

Using the above transformation rules, one can indeed verify that our 2\ (43) in
combination with(44) are invariant undeBU(N) gauge transformatiof#5).

Eqgs.(42)—(44)constitute the central result of this paper together with their applications,
which will be further discussed in Sectién

4.5. Abelian case: comparison with other approaches

In the Abelian caselV = 1, the above equations of moti¢h2), (43) reduces to

dx, ek, X, 1) _ dk, _ di, _

AT ok, Ekar TR e “8)
@ — _ 8€|OC(l:(v )_(7 t) ) (49)
dt 0xy

EOM similar to Eqs(48), (49)have been derived, to our knowledge, twice, using either

(1) time-dependent variational princidlg or;
(2) path-integral method using Wannier ba$is.

If we compare Egs. (2.19) of Rdfl] and our Eqs(48), (49) it can be observed that three
terms,
dx dk
Fz,.% d_tv + 5k, d_tu + Fru (50)

are lacking on the right-hand side (f9). However, one can easily check by a simple
power counting that these terms appealy at orders higher thar? in the perturbation
series w.r.t,8 or x — X. Let us briefly illustrate this point. Since a subscripimplies a
derivative w.r.tx, which is always accompanied &y X, it increases the power by one. It
is also the case for the subscriptfTherefore, the first and the last terms(49) turns out
immediately to be at least of the second ordegoSincedeoc(k, X, 1)/3x, is also of the
first order w.r.t.8 in (49), one can verify that the second term(60) is also at least of the
second order w.r.13. One can thus conclude that all the lacking te(B¥) should appear
only at the second order w.r.or x — X.

Another difference between Eq48), (49)and Eq. (2.19) of Ref7] is that in our EOM
for dk/dt, the derivatived /3, applies toeoc(K, X, £) and not toees (K, X, 1) as in Ref[7].
In our formalism, as is clearly shown in E@®3), there is no room fone(k, X, 1) to enter

10 we had some difficulty to justify the use of Wannier basis used in[R6f.as acompletebasis necessary in
the path integral formalism. This is closely related to the arbitrariness of Wannier function discussed extensively
in Ref.[34].
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the expressiof49). Nevertheless, repeating the same type argument, i.e., the power count-
ing for Ae(k, %, 1), one can confirm that the contribution frofve (k, X, 7) is not physically
relevant at the first order ¢f or of x — X.

We have not only developed a systematic perturbation theory gfrotx — X, but also
we make no approximation apart from the assumptions stated in S8c@ar calculation
must be, thereforexactat the first order of perturbation theory. Since possible discrepan-
cies start only at the second order in the perturbation series, our resul{4By949)is
not inconsisterit with that of Ref.[7].

5. Discussion: Berry phase engineering

The gauge invariant EOM42), (43) have been successfully derived in the previous
section. The decompositiq82) uncovered the origin of two different types of reciprocal
fields introduced in Sectiof. In this section we discuss some physical consequences of
Sectiond in the context of Berry phase engineering.

In the introduction, we argued that a finite net charge current could be induced by the
U (1) Berry phase correction to the semiclassical EQY] (2). This finite charge current
is actually carried by all the electrons below the Fermi surface, i.e., by the electrons in the
ground state. Generalizing thig(1) argument to the non-Abelian case, we will discuss in
this section how the various types of non-Abelian field strength appearing in our EOM are
related to concrete physical realizations, mainly focusing orSth@) case. This opens a
new possibility of manipulating the ground state electronic wave function by controlling
Berry phase, which is sometimes called, Berry phase engineering.

After introducing some terminologies and fixing notations, we will focus on two topics.
In Section5.2, we will see thatFy,, is related to the physics of Hall type current. We
first observe that the charge Hall current can be described by a trace of non-Abelian field
strengthZ; x,, While this current vanishes whenever the system is time-revergaijing
variant. The charge Hall current carried byia 1) Bloch electron and that of the-k, |)
electron precisely cancel each other. This observation leads us to investigate two physical
situations which avoids such a cancellation that occurs to the charge Hall current and allows
the reciprocal magnetic field to expose experimentally as a Hall-type current. The two
situations are:

(1) anomalous (charge) Hall current observed in systems with broken reversal symme-
try, i.e., in ferromagnetfs,23-25]
(2) spin Hall current in time reversally symmetric systgdsl2].

In Section5.3, we will argue that7; ,, is directly related to various types of polariza-
tion currents, currents induced in insulators under time-dependent perturbations. Similarly
to the case of Hall type charge current, which will be discussed in SetRmwe first

11 The calculation done in Ref7] is also first order, in particular, their Hamiltonian, Egs. (2.1), (2.14) and
(2.15), is first order, but they kept all the possible Berry phase contribution without making further consideration
of power counting, whereas we omitted systematically higher order terms.
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Table 1
Transformation properties under time reverfand spatial inversiot

Invariance T
Chargel

Spin: (S) (k)

Parity: (IT) (k)

Hall-type currentFy  k, (k)
Polarization current?—'kw(k) +

I+ 1+
S

A negative (positive) sign indicates whether a matrix element in questibnaterses its sign (or not) in com-
parison with that o~k when the system is invariant under a certain symmetry operation, suttoas. For
example, thenegativesign for (S)(k) in the T-invariant case means that the spin mats¥ ) (k) is identical to
—({S«)(—k))" up to a certairBU(N) gauge transformation as given in §§7).

Table 2

Cancellation rules for charge/spin/parity Hall-type/polarization currents

Type of current Hall-type Polarization

invariance T I T I
Charge — + + —
Spin + + - -
Parity - — + +

A negative (positive) sign indicates that contributions to the total charge/spin/parity (vertical axis) Hall-
type/polarization (horizontal axis) current frdoand—k electrons (do not) cancel each other when the systemis
invariant under eithef or /. This table can be deduced frofable 1 For example, in th& -invariant case, aeg-

ative sign for the spin inTable 1gives, together with anotheregativesign for the Hall-type current, positive

sign for the spin Hall current in this table, corresponding, respectively, to(E€).(65) and (78)

observe that in such systems that are symmetric under spatial inversion, the polarization
electric/spin current actually vanishes due to a cancellation associated with the inversion
symmetry of the system. Then, in order to overcome this difficulty we propose, in paral-
lel with Section5.2, two physical systems in which the problem of cancellation will be
resolved, and the gauge invariant reciprocal field strength appears explicitly in a macro-
scopic physical quantity, i.e., as a polarization current:

(1) If the inversion symmetry is broken externally or spontaneously, the Ab&lign
gives rise to a relevant contribution to the polarization electric/spin cuit&r2]

(2) Even in systems symmetric under spatial inversion, non-Abéfigh may have a
chance to manifest itself as a polarizatmnbital current, if that orbital degree of freedom
changes its sign under the spatial inversion.

The analogy and correspondence between the Hall type and polarization currents are sum-
marized inTables 1 and 2

5.1. Preliminaries

Before further discussing Berry phase transport, we first introduce some terminologies
as well as giving an unambiguous definition to spin/orbital currents.
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In order to illustrate our point, let us first consider a spin current. We have naturally
in mind that there are different points of vigd0-12] on the definition of spin current
operator,J,fM. The difficulty of defining a spin current stems simply from the fact that
the bare spirs,, is generallynota conserved quantity due to spin—orbit interaction, i.e., the
continuity equationg S, /9t + fozl aJlfa/axu =0, is not satisfied. Thereby the Noether's
theorem does not apply. If one focuses on the time derivative of a locabgpint) in the
general case of nonconserved spin, one could observe that there are two contributions to
it of physically different nature, i.e., contributions from (i) a local spin current, (ii) a local
precession of spin. The former is the one of our interest, and the latter is related to the non-
conservation of spin. Unfortunately, there is no systematic prescription for distinguishing
between those two contributions.

We can still define on quite general ground a current operhtaassociated with an
internal degree of freedofh as the time derivative of a spatial polarizatioriZoas,

APy
Jr=—-—, 51
= (51)

1 L1
PIZ—LDE L%+ %L} (52)

=1

L and M denote the system size and the total number of electrons, respectively. The sub-
scripts j attributed toZ andx specify each electron. In the case of a spin current, the
operatorZ in Egs. (51), (52)is simply a usual spin operatdf, = S,. The spin/orbital
current defined in this way is indeed directly observadBl&or example, an increasing
(Ps,). = P.(Sy) indicates that extra up (down)-spin electrons with= +1/2 (—1/2)
accumulate in one (the other) end of a system wjth= L /2 (—L/2), which could be
experimentally detected by some optical probes.

We will also discuss orbital currents. A Bloch electron has, in addition to the spin degree
of freedom, orbital degrees of freedafhin multiband systems. These orbital degrees of
freedom describe the charge distribution in the unit cell, and hhce,

nx,p)=I(x+a,p). (54)
12 otherwise, we could have defined it also as

M
< 1 1 dx dx
=152, E{IJ‘E+EIJ‘}~

This type of definition is convenient for the application of Kubo formiila, 12,29]
13 The periodicity off7, i.e., Eq.(54) excludes its off-diagonal matrix elementskirspace:

(I mn (K, k) = 8K — K)(IT)pn (K),

2 D
<H>mn<k)=<¢m<k,z>\nl¢n<k,z>):% f dx {um (K, D[ XPT (X, =iV + K)(X|un (k, 1)) (53)
cel
unit cell
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In Section5.3we focus on an orbital operatdf which behaves quite contrastingly to the
spin under time reversal and spatial inversion, i.e.,

(x,p) =—I1(—X, —p), (55)
I1(x, p) = IT*(x, p). (56)

In contrast to the spin operatdy, the orbital operatod7 reverses its sign under spatial
inversion, while invariant under time reversal. Accordingly, we dub this orbital operator
as aparity operatof* Various transformation properties of the operatbrs S, , IT are
summarized ifmable 1

The spin/orbital current associated with an oper@taras introduced in Eq$51), (52)
We calculate in Sectiors.2 and 5.3hose spin/parity currents carried by the ground state.
In order to make later discussions clearer and physically more appealing, we keep only
their matrix elements in the restricted subspAtspanned by-fold degenerate bands; if
m e N andl ¢ NV, then

(dm (0] Sa| 1 (k) =0, (57)
{dm (O[T (X, p) |1 (K)) = 0. (58)

As will be seen in Section§.2 and 5.3these approximations make the following dis-
cussions considerably simpler, i.e., not only a charge current but also spin/parity currents
become related simply to the non-Abelian field strengif)«, and 7,

5.2. Fy,k, induces Hall type currents: AHE and spin Hall effect

The field strengtl¥#; «, describes various kinds of spontaneous Hall currents carried by
the ground state. In order to demonstrate it we expose our system under a uniform electric
field E; we consider below the following Hamiltonian,

D
H(p. X, B(X.0)) = Ho(P.X) + e Y Eyx,. (59)
n=1

We see below that the Hall-type current can be expressed essentially as a e Qf

in the N-fold degenerate pseudospin space. The cancellation or the survival of such Hall-
type topological current is determined by its transformation properties under time reversal
(T) of the system. In systems with brok@hsymmetry a finite charge/mass Hall current
generally appear. In two spatial dimensibn= 2, this situation is often described in terms

of Chern—Simons gauge field, accounting for the quantized Hall condudticas well

as fractional charge and statistif&6]. Chern—Simons terms also appear in electrically
neutral systemf37]. Quantization of spin Hall conductance in unconventional superfluids
has also been studied in this contf3a].

14 This orbital operator is different from the angular momentum operaterx x p, which we might also call
an orbital operatok reverses its sign under time reversal, while remains invariant under spatial inversion.
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5.2.1. Charge Hall current

Let us first see that the trace of the non-Abelian field strerfgth, describes a sponta-
neous charge Hall conductivity, i.e., an anomalous Hall conduc{&jB3—25] In terms of
Egs.(51), (52) we are considering the case®t 1. Applying the EOM, Eqs(42), (43)
to the present case, we consider a Bloch electron, intin@seudospin stateand with a
crystal momentunk. The SU(N) gauge invariant EOM for this electron under a uniform
electric fieldE now reads,

Az deoc®) < I

T T N DR Rz 2 60
o i, ; ok, (K) (60)
dk

d—t" = —¢E,,. (61)

When the crystal momentuin is located below the Fermi surface, all those pseudospin
states are completely occupied and contribute to the charge current. In order to calculate
the charge Hall current, we need

N =) " N
dxu a€|oc(k) 2 (Ht — .
- =—Ne——" — 2k, (0ZVE
ejzzl 7 e ok, e ; Kk, (K) v
deoc(k _
— _Ne 6(;0]5( ) —EZTr[}—kMkv (k)]EU (62)
i

Then, by integrating these contributions over filleghoints, we obtain the total current
carried by all the electrons below the Fermi enesgy

D

(Jga”)/t — _¢2 Z / % Tr[]-'kukv (k)]Ev. (63)
v=1 c

€loc(K) <€

Here we assumed for the sake of simplicity that the nonperturbed Hamiltéfjgn x)

is also invariant under spatial inversioh)(As far as the Hall type current is concerned,

however, thisl symmetry plays only a minor role. E¢63) takes indeed the form of a

Hall type current reflecting the antisymmetry 8§« Fi,k, = —Fk,, - The first term of

Eq.(62)did not contribute to Eq63) due to a cancellation associated with fheymmetry.

On the contrary, Eq63) remains finite irrespective of theinvariance ofHjp.

Unfortunately, the charge Hall current obtained in E&R) vanishes whenever the sys-
tem is T-invariant. Let us see this point more explicitly. We consider an unperturbed
Hamiltonian Ho(X, p) which is invariant under T. The T-invariance relates it¥v-fold
degenerate Bloch functionslawith those at-k up to a certairBU(N) gauge transforma-
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tions g(k),

N
D lioylap(x, blui (k) =ZX alu;(0)gji (k). (64)
b=1,] j=1

In the language of field strength, this reduces to,

Fipky (—K)' = =g 1 F i, g, (65)

where the superscript represents a transposed matrix, i€)u, = (F)um. One can
verify this using Eqs(6), (7), (64) Consequently, the charge current carried by a Bloch
electron ak cancels with that of-k electron, i.e.,

ZTr Tk, (0] Ey = ZTr Tk, (K] Ey (66)

v=1
Eqgs.(63), (66)indicate the absence of spontaneous Hall currefit-invariant systems.

5.2.2. Spin Hall current

We are thus led to investigate tls@in current, expecting that the spin Hall current
remains finite even il -invariant systemf8—12]. The underlying idea is simply that such
a sign change as seen in H§6) may be compensated by that of spin operator under
the operation of time reversal. The spin current has been defined i(bEgin a more
general context for an arbitrary internal degree of freedorhet us first observe that the
T -invariance ofHy(x, p) is instrumental for this compensation. The total spin carried by
the Bloch electrons & has the same absolute value amghosite sigrof that of the Bloch
electrons at-k,6

Tr[(Se) (K)] = = Tr[(Sa) (—K) ], (68)

where(S,)(k) isaN x N matrix, whosgm, n)-components are given by

(Sa)mn (K) = (¢ (K)| Sec | (K))

(2m)P /
= d
Veell X Z (

unit cell a.b=1.4

1
) )E(O'oz)ab<x’ b|un(k)) (69)

Let us now consider the spin Hall current defined%s), (52) with Z beingZ = S, the
usual spin operator. In order to evaluatepin Hall current, the EOM60), (61) used for
the calculation othargeHall current are no longer sufficient. We need instead to derive

16 To be more specificl -invariance relates the matrix 6f, atk and at—k through aSU(N) gauge transfor-
mationg,

(Sa) (k) = —g 1S (K)g. (67)

Eq.(67) can be verified explicitly using E¢64).
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EOM for an observable,
1
Ofa = Ou(Soc) = E(Socxp, +XMS04)~ (70)

Following the same type of procedure as the derivation of E&f$), (61) we perform,
in particular, the decompositia32). As was also the case in Eq$0), (61) the second
contribution to(32), i.e.,.Q(Z) vanishes in the present caeThe EOM reads,

dOS
Z /dkdk’a* Kk, O[(H). (O3], K. K)an (K, 1)
m,n=1
=i Z /dkam|:Ho +eZE (xXu)s W] an. (71)
m,n=1 mn

The assumpt|o(57) allows us to rewrite Ec(.?l) as

dOS detoc(k
-y [ ooz r)[( Salmn (22

m,n=1

v=1
The details of the derivation of E§72) is given inAppendix C We then apply the pre-
scription(17), replacingk in the integrand by its mean valke The contribution to the
spin Hall current by an electron occupying tfila pseudospin state ktis, therefore,

+3 Z{(<Sa>(k>ﬂﬂkl, ), Ev+ h.c.}},l(k, 0). (72)

AS () C D
do/wt (j = iy 0€10c(K) e ; - _
—H 2D, (k)2 Ry 2 ZNTs,)(k k)2 +c.clE
- (s @0z =2 +2;1{ (Sa) () Fi i, ()2 + C.C} B,
) (73)
Finally we take the summation ovaf pseudospin states and over filleghoints to find,
i NogoSW!
(JHaII) — / dk dO;uxJ
S Jua @m)P & dr
€Ic)c(|2)<€F 1=
_‘32 / (2 )D Tr[(Sa) (K) Fiuk, (K) ] E. (74)
N éloc(k)<€F

As was the case in E63), we also assumed in E{4) that Hp is invariant under, so
that the first term of Eq(73) should not appear in E¢74), i.e.,

dk detoc(K)
/ 5 81001222

—0. (75)

floc(k)<€F

17 As long as the electric fiel& in Eq. (59) is uniform, the local Bloch function defined in E¢L1) has no
dependence onand:. As a result,Q(2> vanishes.
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Contrary to thimmormalpart, the spin Hall current associated with the anomalous velocity,
given by Eq.(74), has a possibility to be finite irrespective of theand T symmetries.
When the system is invariant under eittferor 7,18 the spin current carried by a Bloch
electron ak and that of—k give the same contribution;

Tr[ (Se) (K) Fiyk, (K) ] = Tr[(Sa) (—K) Fie, i, (K] (78)

UnderT symmetry Eq(78) is a consequence of Eq®5), (67) Eqgs.(74), (78)confirm
that our expectation that the spin Hall current is robust agdirsstmmetry was indeed the
case. A set of cancellation rules for the Hall type currents are establisfietlia 2

5.3. Fi,: induces a polarization current: parity polarization current and quantum spin
pump

We have seen in the previous section tga}y, is related to Hall type currents associ-
ated with the internal degrees of freedom such as charge and spin, by applying a uniform
electric field to the system. Here we argue t#at, describes various kinds gblariza-
tion current. More specifically, we consider a situation where a band insulator is subject
to a time-dependent perturbation whidbes notbreak the periodicity of the underlying
crystal, i.e., we consider a Hamiltonian,

H(x,p; B(1)) = H(x+a,p; B(1)). (79)

Since the perturbatiofi(r) does not depend of) thelocal Hamiltonian defined in Eq11)
reduces simply to

Hioc(X, p, 1) = H(X7 p; ﬂ(t))

Depending on the perturbatigsiz), the ground state wave function of the local Hamil-
tonian, Hioc(X, p, t) also evolves temporally. Since an electronic wave function for the
ground state describes spatial distributions of charge, spin and orbital, its evolution in gen-
eral induces various kinds of currents in the system. When the system is isolated from the
external circuit, an induced current accumulates an extra charge (or spin, orbital) on one
side of the system, which results in a spatial polarization of charge, spin and §8bital
Accordingly, this type of current associated with such internal degrees of freedom is often
called apolarizationcurrent. In the following, we describe the physics of polarization cur-
rent using the language of non-Abelian gauge field, in particular, th&} gf One of the
advantages of taking such a viewpoint is that the role of symmetry becomes transparent,
which we summarized as a setazfncellation rulesn Table 2

18 |n the/-invariant case, instead of E@4), Eq.(84)holds, i.e., thd -invariance ofHg relates(—x, a|u; (—K))
with (x, 7|u ; (K)) up to aSU(N) gauge degree of freedom This reduces in terms of spin and field strength to

(Sa) (k) = hH(Sa) (Ko, (76)
Fieey (—K) = Fp 1, (K. 7
Eq. (76)justifies(75), whereas multiplying Eq$76) and (77)one finds immediately Eq{78).
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5.3.1. Charge polarization current
Let us first consider ahargepolarization current. In the case of time-dependent pertur-
bation(79), the EOM analogous to Eq&0), (61) are found to be

Az depnc(k)

(it e ()
= = — 29" F ik, 0)ZY, 80
0 i, kit (K, 1) (80)
7(J)
dk

2 —o, (81)
dt

wherej =1,..., N. Collecting contributions from alV pseudospin states and from all
filled k points, one can calculate the charge current carried by the ground state as

(Jp0|) _ dR Zd_(]) / []__k (k l‘)] (82)
¢ (@n)P 4 (@m)P

Bz

where thek-integral was performed over the whole Brillouin zone (BZ). BR) is anal-
ogous to Eq(63), which we found for the charge Hall current. We can see that the trace
of different types of reciprocal field strength, i.€%,, and 7, are related to different
types of physical currents, i.e., polarization and Hall type currents.

We have seen in the previous section that no chatgié current flows whenever the
system is invariant under time revers@l In contrast, we are going to see below that
the chargepolarization current vanishes whenever the system is invariant under spatial
inversion’,1°

H|0C(Xv pv t) = H|OC(_X7 _pv t)' (83)

In this case, itsV-fold degenerate Bloch functions ktis related to those atk up to a
certainSU(N) gauge transformatioh(k, ¢),

N
(=, alui(=k, 0)) = "(x, au;k, )k ji (K, 1. (84)
j=1

Since the field strengttfy ; is related through Eqg6), (7) to those wave functions,
Eq.(84) reduces to the following identity,

Fr (=K, 1) = =™ F (K, Dh. (85)
Consequently,
Tr[Fi (=K, 0)] = = Tt[ Fr,.i (k. 1)]. (86)

Egs.(82) and (86)indicate that thechargepolarization current always vanishes frn-
variant systems.

19 | e, the underlying crystal structure has centro-symmetric points.
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5.3.2. Parity polarization current

We have already encountered a similar situation in the previous section. Under the time
reversalT’, Fi,, (K) is transformed to—(]—"kukv(—k))’ up to aSU(N) gauge degree of
freedom, as seen in E(G5). As a result, thehargeHall current vanished i -invariant
systems. On the other handsginHall current was robust againBtinvariance. The reason
was that not onlyF x, but also the spin operator are odd under the time-reversal, as given
respectively in EqY65) and (67)

Following the same type of logic, we can expect thatoabital polarization current
may remain finite irrespective of thieinvariance ofHqc, as far as the associated orbital
operatorl] (x, p) changes its sign under the spatial inversiaf? Accordingly we dub this
type of orbital current parity polarization current.

Expecting that the above analogy is indeed a sensible one, let us further analyze the
parity polarization current carried by the ground state. Since we have defined this orbital
current as Eqg51), (52) we have to consider an EOM for

1
Ol =0, (I (x,p) = > UT x4 x, 0. (87)

We derive their EOM in terms of the decompositig@2). Our local Hamiltonian is time-
dependent, and so is its local Bloch function. Thereftmgf7 appearing in Eq(32)
"

remains finite in general:

domn
L _ oM @
o~ ot op

=i Z /dkdk’a* (k, )[(Hioc) — iV, (O )] (k, KNa, (K, 1). (88)
m,n=1

This equation is analogous to E'1). The covariant derivativ&/, = (x,) in Eq. (71)
was replaced in Eq88) by another covariant derivative w.r.t. time, i.¥,,

ad
(ivt)mn = a_t(smn - i(At)mn- (89)

Let us further develop the analogy between the two cases, i.e., we rewri(8&q the
following way, precisely as we rewrof@1) as(72). The details of the derivation is given
in Appendix D which is in parallel withAppendix G and the result is

dO” 9
Z / dk p(K)z, (K, 1) (IT) i (K) 6!;"’() n (K, 1)
m,n "L
1
= 52 K DN K Fi, (0 + hc), 2k, 1), (90)

20 see Eq(55).



428 R. Shindou, K.-I. Imura / Nuclear Physics B 720 [FS] (2005) 399-435
Following the prescriptior{17), we see that the parity polarization current carriedkby
Bloch electron occupying thgth pseudospin state is given by,

dOfZ(j)
dt

() aEIOE(R)

— 20Ty (k)z — (2T (k) F, ()2 + c.c). (91)

m

After taking its summation oveN pseudospin states and over fillegboints, we finally
obtain a parity polarization current carried by the ground state,

pol dO”(/) /
(35 / (ZmD oy TN O Fi ) (92)

The first term of Eq(91) did not contribute to Eq(92) due to a cancellation associated
with the T—invariancez,1

deroc(k
/ @b ' m] ZOJEC: ‘=0 ®5)

On the contrary, the Berry phase contribution, i.e., @8) turns to be quite robust against
both 7 and T symmetries. In particular, in thé-invariant case{/T)(k) is identical to
—(IT)(—Kk) up to theSU(N) gauge transformatioh,

(M) (—k) = —h~H(IT) (K)h. (96)
This can be shown explicitly using E($5), (56), (84), (53)Eqgs.(85), (96)indicate

Tr[(1T) (K) Fi,o (k)] = Tr[(IT) (=K) F,,. e (—K) ] (97)

Eq.(97) holds also true in th& invariant case, as is clear from E¢83), (94) Egs.(92),
(97) confirm our hypotheses that tiparity polarization current is indeed robust against
symmetry.

5.3.3. Quantum spin pump

Another possible direction to be explored is to study how to induce a spin polarization
current by breaking botfi-invariance and -invariance. This scenario can be implemented
[15]in a certain kind of quantum spin chains such as Cu-bensoate aj#&y . he ground
state of these quantum magnets is known to be quantum critical point (QCP), which is
interpreted as a Dirac monopole, i.e., a source oftitig) field strengthF;,. When this
guantum system is drivearoundthis QCP by applying an electric fieleland/or magnetic

21 T.jnvariance relatesv-fold degenerate Bloch functions ktwith the ones at-k up to aSU(N) gauge
degree of freedorg as Eq.(64). This implies,

(M) (—k))" =g~ Hm)K)g. (93)
(Frut (—0) = 2,1 (kg (94)
Eq. (93)justifies(95), whereas multiplying Eq93) with Eq. (94) one finds immediatel{97).
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field B, a spin polarization current can be induced. The electro-magnetic fields break both
the I-invariance andr-invariance. They also induce a spin gap and realize a quantum
critical point at the origin oE-B plane. When the system goes adiabatically around this
origin, a quantized number of spins will be transported from one edge to the other through
the system. This quantized value is a physical manifestation of the first Chern number
associated with the QCP.

5.4. Fy,x, associated with the spatial inhomogeneity

Contrary toFy,,«, and.Fy,,, the reciprocal field strengtfy ., does not seem to be re-
lated directly to a physical observable such as Hall type currents and polarization currents.
However, when the system contains spatial inhomogeneity such as lattice d&jegts,
appears and plays an important role in the dynamics of Bloch electrons around the de-
fects[7]. Another possible application ¢f; ., is the electron transport properties around
a magnetic domain wall, where the spatial modulation of ferromagnetic moments induce
Fk,x,» and naturally influences the EOM for the electron wave packet through this Berry
curvature.

6. Conclusions

We have derived and analyzed the semiclassical EOM for a wave packet of Bloch elec-
trons, under perturbations slowly varying in space and in time. Their interpretation in terms
of non-Abelian gauge field in the reciprocal parameter space was the central issue of the
paper. The same type of EOM has been previously derived for the Abeliai] {I6.case,
by using either (i) time-dependent variational principigor (ii) path-integral method us-
ing Wannier basi$30]. We have generalized such EOM to a non-Abelian case by using
only the most fundamental principles of quantum mechanics.

The advantage of our formalism was that

(1) it wasasymptotically exadn the framework of linear response theory, as a result
of systematic expansion w.r.t. the perturbatgpor x — X,

(2) it revealed that there are different types of gauge field of different physical origin,

(3) it was useful for developing symmetry analyses on various types of Berry phase
transport.

The first point refers to Eq19) and all the related analyses developed in Sectioasd 4

The relevance of our results in relation to other approaches was further discussed in Sec-
tion 4.4. As for the second point, two different sources of gauge field have been revealed,
i.e., (i) projection onto a subspace spannedNoyBloch bands; (ii) Bloch basis mov-

ing in the course of time. The former is the origin &t «, which is directly related to
spontaneous Hall currents of various degrees of freedom. The latter brings/&hout

and ., which plays an important role in the spatially and temporally inhomogeneous
system.
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Finally, concerning the last point in the above list, we have applied our formalism to the
analyses on the spin and orbital transport phenomena with the help of Boltzmann trans-
port theory. The role of time reversal and space inversion symmetries in the appearance of
finite Hall/polarization currents has been extensively studied. CEmeellation rulesare
summarized infables 1 and 2The concept oparity polarization current has also been
introduced, which may concretize Berry phase engineering in the conterbitdl trans-
port.

We leave for a future study further investigations on their application to the domain
wall physics and that of quantum pumping. In conclusion, we believe that our analyses on
non-Abelian gauge field will see in the near future a possible application in the context of
Berry phase engineering.

Note added

After completion of this work, we were informed of a related effort by D. Culcer, Y. Yao
and Q. Niu[40].
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Appendix A. Matrix element (H),,,(k) and A.Q,E’l}

Matrix elements of the linearized Hamiltonian, i.e., E(g5), (36) have been exten-
sively used in Sectiod.3. Let us recall those equations together with the matrix elements
of noncommutative coordinates, i.e., E4®2), (26), (24), (27)Our purpose here is to
substitute the expressi@@6) into

N
QP =iy / dka, (O[(H), (x)],,, K)an (K), (A1)

m,n=1

an expression analogous to the second line of(&2), and to rewriteQ)((i) in terms of the
field strengthl F,x, Imn -

The first term of Eq(36), i.e.,eeff(K, X, 1) gives a standard velocity term when inserted
into Eq.(A.1). Since[Fk,k, Imn is related to the commutatdiVy, , Vi, Imn OF equivalently,
[{x.), (xv)1mn (K), One can easily imagine that the last two terms give in(B@) give when
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inserted into Eq(A.1) a contribution related t7, «, lm»- One can indeed verify

Loy | g, doc) g
- = 0
AR "”a % bl

i | de e
= __[ OC[ kus Vkﬂ]mn + Z|: o vk,l:| [vku]ln
ml

2| oax,

d€) e
+ Z Vku]ml|: > kﬂi| + Ve Vi I —— ]
In

ax,
aEloc 1 0%€loc 32Eloc
i > v Vie Imn s— =) A.2
0%, k”kﬁz(akuaxv[ ol + Vi I 5o, (A-2)

The second term of E¢36) gives, when inserted into the commutator,
deoc(K, X, 1) _ %€l _
— X, Vi =- — Xy
Xy “ L 0k, 0,
Collecting the contributiofA.3) and the last two terms of EEA.2), i.e., terms not related
to Fi,k,, one definesxszﬁllf introduced in Eq(37):

(A.3)

82€|
AQO = _ /ko k, ){x,(t) —iz* (K, O)[ Vi Jza(k, 1)} A.4
o ; 05, D{F () — iz (K, OV, Jza(k, 1)} (A4)

This term vanishes aftérintegration with the help of prescription given in 7).

Appendix B. Derivation of the EOM for Z(¢)

We demonstrate here the derivation of EOM #6r), i.e., EOM describing the motion
of the internal pseudospin degree of freedom. For that purpose we once have to go back to
Eqg. (29). After multiplying it with a weight/p (k, ¢), we integrate it over all thk-points,
to find,

19 0z

86Ioc O€loc

s
=i/dkp(k,t){ et + Fu +%A;M+Af}z

0%,  0x,
l aaoc 9z
dkp(k,t B.1
+ [ dkotnelE GEY
whereeeff = €jocl + A€ as given in Eq(37). In Eq. (B.1), repeated:-indices should be
summed ovepr =1, ..., D. In order to obtain Eq(B.1), we also used,

8€|oc(k) 8 a€|oc _ 1 3E|OC 32
/dk{‘/— 9%, W(‘/—ZH_ Zakﬂaxu}_zfdk 9%, 0k, (B.2)
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We now substitute,

D

Gl ad deloc(K, X, 1)
—(pk, 1)) = K,t) ———,
2 (ptk.0) ;akﬂ{m e }
into Eq.(B.1), then perform a partial integral w.rk,.. The result is,

/dkp(k t){ a€|0c 0z n BZ}

8k

86|0C 8€|OC d)EM
fdkp{ Eeff +Xlu axu — aiu Ak# + WA)EM + A[}Z. (B3)
Finally, in order to rewrite Eq(B.3) in the form of Eq.(43) and complete its derivation,
we adopt the prescriptiofl7).

Appendix C. EOM for (’) . and spin Hall current

Our purpose here is to rewrite an EOM for E@l) into its final form, i.e., Eq(72), so
that we can express the spin Hall current as the following trace in the pseudospin space,
Tri(S, >(k)fk 3 (K1E, .

Let us first recall the assumption we made in E5y). This assumption allows us to
factorlze((’)s Ymn (K, K") in EQ.(71)into a product of(S,) and(x,,);

N

<Saxu + xuSa>mn = Z((Sa)ml (xp,)ln + (Xu)ml(sa)ln)-
=1

Correspondingly, the commutator appearing in &d.) can be decoupled into the follow-
ing two types of commutators,

1 1
[ (O] = S (Sa)]txi) + 5 (S [(H). x,)] = hc. (C.1)

The first term together with its Hermitian conjugate conceives a commutator befWeen
and(S,), which constitutes the EOM for the spiﬁ%’. Firstly, we show that this commu-
tator vanishes. Sincgs,,) is diagonal ink-space, it clearly commutes witlip);

[(Ho). (Sa)],,, (K'. k) = 8(K" — K)[€t0c(K). (Sa) (K], (C2)

Therefore, the commutator betweéH) and (S,) becomes proportional to the covariant
derivative of(Sy)(K) w.rt. k,, i.e.,

[(H). (Sa)],,, K. k)—eZE (). (Sa)],,, (K K)
n=1
D
=ies(k' — k) Z Eu[Vi,. (Sa) (K], . (C.3)

u=1
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Because the spin operator itself does not depend on the crystal momentum, the partial
derivative of(Sy) (k) w.r.t. k,, reduces to the commutator betweety, and(Sy)(k), i.e.,

d [ Bum (k) dun (K)
_(Sa)mn(k)—< aku aku >

ok,,
N ol duy
-G )b e

In the second ling-dependence is not written explicitly. We used E5j7) between the
two lines. Then the covariant derivative ¢§,)(k) w.r.t. k,, appearing in Eq(C.3) also
vanishes,

S |Mn(k)) + (um (k) | S

Ml><MI|Sa|Mn> + (Um|Se |ul><“l

- aiﬂ ((Sadn (0) — [i-Ag, . (Sa) )], =0, (C5)
Consequently, the first term and its Hermitian conjugate in(Edl) are indeed zero. On

the other hand, the second term in EG.1) contains the commutator betweéH) and

{(xy), which describes the EOM for, now. This term gives rise to a field strength«,
through the commutator between covariant derivatives w.r.t. different components of the
crystal momentum, i.e[Vi,,, Vi, 1. Namely,

[Vku ’ <S‘¥>(k)]mn

D
[(H). (x)] = [(Ho) +e > Eulx). <xu>}<k’, k)

u=1

D
=5 —k) [aoc(k)l +e) EiVy,. in‘C|
n=1

D
=—is(k — k){ a;]':c 1—e)  Eu(Fiur, K) } (C.6)
v u=1

Finally, substituting Eq(C.1) together with Eqs(C.3), (C.5) and (C.6nto Eq.(71), one
finds Eq.(72).

Appendix D. EOM for (’),’Z and parity polarization current

In parallel withAppendix G we rewrite below Eq(88)into its final form, i.e., Eq(90).
Let first recall the assumptiofb8), which says that the parity operathf has no matrix
element outside th& -fold degenerate band. This implies thélf) can be factorized into
a product of twoN by N matrices, orITx,) = (IT){(x,). Thanks to this factorization, the
commutator in Eq(88) can be decomposed into two types of commutators as

[(Hioc) — Vi, (O)])]

1 1
= E([(Hlod — iV, (IM)]{x,) +h.c)+ E((”)[U‘Iloc) — iV, (xu)]+h.c).
(D.1)
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On the r.h.s., the first term is a commutator betwé&Bg.) — iV, and(IT), which consti-

tutes the EOM of the parity under time-dependent perturbatibigd:. Since the parity
operator itself is independent of time, we can prove that this commutator indeed vanishes,
in the same way as we did in E(.4),

[(Hioc) — iV, (IT)] = 0. (D.2)

On the other hand, the second line of ER.1) is a commutator betweetHp) — iV,
and(x,), which describes the EOM for,,. This commutator gives rise t6;,, through a
commutation relation between two covariant derivatives, one w.r.t. time and the other w.r.t.
the momentum(i Vi, , i V] =i Fi,;. Thus the second line of E¢D.1) may be rewritten as

[(Hloc> —iVy, <~xﬂ>]mn(k/a K)=is(K' — k)[EIoc(k) — iV, ivk,l]mn

8floc(k)(S
dak,

Substituting Eq(D.1) together with Eqs(D.2), (D.3)into Eq.(88), one finds Eq(90).

= —l(S(k/ — k){ mn — (fkut)mn}- (DS)

References

[1] P.A.M. Dirac, Proc. R. Soc. London 133 (1931) 60.
[2] G. 't Hooft, Nucl. Phys. B 79 (1974) 276;
A.M. Polyakov, JETP Lett. 20 (1974) 194.
[3] M. Onoda, N. Nagaosa, J. Phys. Soc. Jpn. 71 (2002) 19.
[4] Z. Fang, et al., Science 302 (2003) 92.
[5] See also, G.E. Volovik, JETP Lett. 46 (1987) 98, and references therein.
[6] M.C. Chang, Q. Niu, Phys. Rev. Lett. 75 (1995) 1348;
M.C. Chang, Q. Niu, Phys. Rev. B 53 (1996) 7010.
[7] G. Sundaram, Q. Niu, Phys. Rev. B 59 (1999) 14915.
[8] J.E. Hirsch, Phys. Rev. Lett. 83 (1999) 1834.
[9] S. Zhang, Phys. Rev. Lett. 85 (2000) 393.
[10] S. Murakami, N. Nagaosa, S.C. Zhang, Science 301 (2003) 1348;
S. Murakami, N. Nagaosa, S.C. Zhang, Phys. Rev. B 69 (2004) 235206.
[11] J. Sinova, et al., Phys. Rev. Lett. 92 (2004) 126603.
[12] D. Culcer, et al., Phys. Rev. Lett. 93 (2004) 046602.
[13] S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665.
[14] D.J. Thouless, Phys. Rev. B 27 (1983) 6083;
Q. Niu, Phys. Rev. Lett. 64 (1990) 1812.
[15] R. Shindou, J. Phys. Soc. Jpn. 74 (2005) 1214.
[16] M.V. Berry, Proc. R. Soc. London, Ser. A 392 (1984) 45.
[17] C.A. Mead, Chem. Phys. 49 (1980) 23.
[18] R. Karplus, J.M. Luttinger, Phys. Rev. 95 (1954) 1154.
[19] J. Zak, Phys. Rev. B 15 (1977) 771,
J. Zak, Phys. Rev. B 16 (1977) 4154.
[20] E.N. Adams, E.I. Blout, Phys. Chem. Solids 10 (1959) 286;
E.l. Blout, Solid State Phys. 13 (1962) 305.
[21] D.J. Thouless, et al., Phys. Rev. Lett. 49 (1982) 405.
[22] R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47 (1993) 1651,
R. Resta, Europhys. Lett. 22 (1993) 133;
See also, R. Resta, Rev. Mod. Phys. 66 (1994) 899, and references therein.



R. Shindou, K.-I. Imura / Nuclear Physics B 720 [FS] (2005) 399-435

[23] K. Ohgushi, S. Murakami, N. Nagaosa, Phys. Rev. B 62 (2000) 6065.
[24] R. Shindou, N. Nagaosa, Phys. Rev. Lett. 87 (2001) 116801.
[25] T. Jungwirth, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 88 (2002) 207208.
[26] V. Yao, et al., Phys. Rev. Lett. 92 (2004) 037204.
[27] F. Wilczek, A. Zee, Phys. Rev. Lett. 52 (1984) 2111.
[28] J. Inoue, G.E.W. Bauer, L.W. Molenkamp, Phys. Rev. B 70 (2004) R041303.
[29] J. Schliemann, D. Loss, Phys. Rev. B 69 (2004) 165315.
[30] H. Koizumi, Y. Takada, Phys. Rev. B 65 (2002) 153104.
[31] A. Berard, H. Mohrbach, Phys. Rev. D 69 (2004) 127701.
[32] N. Seiberg, E. Witten, JHEP 9909 (1999) 32.
[33] A. Connes, M.R. Douglas, A. Schwarz, JHEP 9802 (1998) 3.
[34] N. Marzari, D. Vanderbilt, Phys. Rev. B 56 (1997) 12847.
[35] K. Ishikawa, T. Matsuyama, Z. Phys. C 33 (1986) 41;
K. Ishikawa, T. Matsuyama, Nucl. Phys. B 280 (1987) 523.
[36] S.C. Zhang, T.H. Hansson, S. Kivelson, Phys. Rev. Lett. 62 (1989) 82;
See also, S.C. Zhang, Int. J. Mod. Phys. 6 (1992) 25.
[37] G.E. Volovik, JETP 67 (1988) 1804;
J. Goryo, K. Ishikawa, Phys. Lett. A 260 (1999) 294,
A. Furusaki, M. Matsumoto, M. Sigrist, Phys. Rev. B 64 (2001) 054514.
[38] G.E. Wolovik, V.M. Yakovenko, J. Phys.: Condens. Matter 1 (1989) 5263;
T. Senthil, J.B. Marston, M.P.A. Fisher, Phys. Rev. B 60 (1999) 4245.
[39] N. Sai, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 66 (2002) 104108.
[40] D. Culcer, Y. Yao, Q. Niu, cond-mat/0411285, Phys. Rev. B, in press.

435



	Noncommutative geometry and non-Abelian Berry phase in the wave-packet dynamics of Bloch electrons
	Introduction
	Origin of the gauge field
	Non-Abelian gauge field, or Berry phase, encoding information on the band structure
	Gauge field of two different origins

	Statement of the problem
	Assumption of slowly varying perturbation beta(x, t)-concept of the local Hamiltonian and its local Bloch bands
	Construction of a wave packet
	First order perturbation theory with respect to beta(x,t): a linear response theory

	Equations of motion
	Preliminaries
	To derive the EOM
	Nature of Omegaxµ(1) and Omegaxµ(2)
	The complete set of EOM and its SU(N) gauge invariance
	Abelian case: comparison with other approaches

	Discussion: Berry phase engineering
	Preliminaries
	Fkµknu induces Hall type currents: AHE and spin Hall effect
	Charge Hall current
	Spin Hall current

	Fkµt induces a polarization current: parity polarization current and quantum spin pump
	Charge polarization current
	Parity polarization current
	Quantum spin pump

	Fkµxµ associated with the spatial inhomogeneity

	Conclusions
	Note added
	Acknowledgements
	Matrix element <H>mn(k) and DeltaOmega(1)xµ
	Derivation of the EOM for z(t)
	EOM for OµalphaS and spin Hall current
	EOM for OµPi and parity polarization current
	References


