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Abstract

Motivated by a recent proposal on the possibility of observing a monopole in the band stru
and by an increasing interest in the role of Berry phase in spintronics, we studied the adiabatic
of a wave packet of Bloch functions, under a perturbation varying slowly and incommensura
the lattice structure. We show, using only the fundamental principles of quantum mechanics,
effective wave-packet dynamics is conveniently described by a set of equations of motion (
for a semiclassical particle coupled to anon-Abeliangauge field associated with a geometric Be
phase.

Our EOM can be viewed as a generalization of the standard Ehrenfest’s theorem, and their
tion was asymptotically exact in the framework of linear response theory. Our analysis is e
based on the concept oflocal Bloch bands, a good starting point for describing the adiabatic
tion of a wave packet. One of the advantages of our approach is that the various types o
fields were classified into two categories by their different physical origin: (i) projection onto
cific bands, (ii) time-dependentlocal Bloch basis. Using those gauge fields, we write our EOM
a covariant form, whereas the gauge-invariant field strength stems from thenoncommutativityof
covariant derivatives along different axes of the reciprocal parameter space. On the other h
degeneracy of Bloch bands makes the gauge fieldsnon-Abelian.

For the purpose of applying our wave-packet dynamics to the analyses on transport phe
in the context of Berry phase engineering, we focused on the Hall-type and polarization cu
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Our formulation turned out to be useful for investigating and classifying various types of topolo
current on the same footing. We highlighted their symmetries, in particular, their behavior
time reversal (T ) and space inversion (I ). The result of these analyses was summarized as a s
cancellation rules. We also introduced the concept ofparity polarization current, which may embod
the physics of orbital current. Together with charge/spin Hall/polarization currents, this type of o
current is expected to be a potential probe for detecting and controlling Berry phase.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

The search for a quantized magnetic monopole has a long history[1,2]. Recently a
group of condensed-matter physicists[3,4] embodied the idea of detecting a monopole
the band structure[5]. In crystal momentum space, monopoles appear as a source
sink of the reciprocal magnetic field[6,7] associated with the geometric phase of Blo
electrons. The geometric phase of a Bloch electron, i.e., its Berry phase, has also a
much attention on the technological side, in particular, in the context ofspintronics. A spin
Hall effect has been of much theoretical concern[8–12], since it may provide a possib
efficient way to induce spin current in a semiconductor sample on which spintronic de
[13] will be constructed.

The subject studied in this paper stands at the interface between the forefront
search for a monopole and the latest technology of spintronics. We study the wave-
dynamics of a Bloch electron under perturbations slowly varying in space and in
We derive and analyze a set of equations of motion (EOM) which describes the c
of-mass motion of such a wave packet together with its internal motion associate
its (pseudo)spin. A reciprocal gauge field of geometric origin (Berry connection) ap
naturally in such EOM[7]. Then we combine our formalism with the Boltzmann transp
theory to describe such phenomena as spin and orbital transport. Its relevance to q
charge/spin pumping[14,15]will be also briefly discussed.

Before plunging into the detailed description of our project, let us briefly remind
what the Berry phase is, and how it has become to be widely recognized in the
munity. In his landmark paper[16], Berry introduced it as a quantal phase acquired
a wave function whose Hamiltonian is subject to an adiabatic perturbation. The
connection, i.e., a gauge field appears as a phase of the overlap of two wave fu
infinitesimally separated in the adiabatic parameter space. Before being formula
such a systematic manner, the Berry phase, however, had already been recogni
discussed, for somewhat restricted cases though, in several independent contex
molecular Aharonov–Bohm effect discussed in Ref.[17] is nothing but a manifestatio
of Berry phase. Its relevance to band structure had also been recognized in limited
tions, such as anomalous Hall effect (AHE)[18,20] as well as in the study of quantize
Hall conductance[21]. The role of Berry phase in piezo- and ferro-electrics has also
of much theoretical interest[22]. Recently, the Berry phase in AHE has attracted a rene
attention, revealing its rich topological structures[3,4,6,7,23–26]. The Berry phase has als

been generalized to a non-Abelian case[27].
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The equations of motion (EOM) for a wave packet of Bloch functions1 is instrumental
in all the analyses done in the paper. In order to illustrate our program, we begin with
details of the description of such EOM. A wave packet of Bloch functions is localize
the phase space around(k̄, x̄) (wherek̄ is a crystal momentum characterizing the Blo
function). The wave packet is also composed of a specific Bloch bandn, whose energy
dispersion relation is given byε(0)

n (k̄). The center of mass coordinates(k̄, x̄) obey a set of
classical EOM, as the Ehrenfest’s theorem says. In the presence of electro-magne
(E,B), its motion is subject to an electric and Lorentz forces,

(1)
dk̄
dt

= −e

(
E(x) + d x̄

dt
× B(x)

)
,

(2)
d x̄
dt

= ∂ε
(0)
n (k̄)

∂k̄
.

These EOM, together with the Boltzmann transport theory, describe the electro-ma
response of the system. To see this point, let us express the charge current in term
momentum distribution functionf (k̄) as

(3)JC = −e

∫
dk̄

(2π)D
f (k̄)

d x̄
dt

,

whereD is the dimension of coordinate space. The net current vanishes in the th
equilibrium. A finite net current appears when either

(1) f (k̄) is deviated from its equilibrium value, or
(2) d x̄/dt acquires an anomalous term, i.e., an anomalous velocity.

Case (1) corresponds obviously to the usual ohmic transport, in which the current
duced by a small deformation of a Fermi sphere from its thermally equilibrated distrib
In this case the current is, therefore, carried only by the electrons in the vicinity of the
surface.

The Berry phase contribution to Eq.(3) corresponds to Case (2), and involves, in c
trast to Case (1), all the electrons below the Fermi surface. This type of geometric c
might be alsodissipationless[10,28,29]. When Berry connection is taken into account,
classical EOM, in particular, Eq.(2) is subject to a modification. In terms of areciprocal
magnetic fieldB, the EOM forx̄ now reads[7],

(4)
d x̄
dt

= ∂εeff(k̄, x̄, t)

∂k̄
+ dk̄

dt
×B(k̄),

whereεeff(k̄, x̄, t) is an effective energy, which will be defined in more precise term
Eq. (37). The nature of reciprocal magnetic field will be clarified in Section2. One can
observe in Eq.(4) thatB(k̄) acts quite similarly to the Lorentz force in the real space.B(k̄)

1 A Bloch function is an eigenstate of a periodic Hamiltonian such as Eq.(9), whose energy spectrum forms
band structureε(0)
n (k̄) defined as in Eq.(10).
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encodes information on the topological nature of band structure, in particular, that o
crossings[7]. Indeed, a degeneracy point corresponds to a monopole ofB(k̄) [5], which
has played a crucial role in the understanding of anomalous Hall effect (AHE)[6,23–25].

In this paper we study the wave-packet dynamics of Bloch electrons subject to a p
bationβ(x, t) varying slowly in space and time. Even though our treatment ofβ(x, t) is in
completely general terms, we can give some concrete examples ofβ(x, t) as in Ref.[7],

(5)H
(
p,x;β(x, t)

) = H0
(
p + β1(x, t),x + β2(x, t)

) + β3(x, t).

H(p,x;β = 0) is an unperturbed Hamiltonian. The first two categories,β1(x, t) and
β2(x, t), are in a vectorial form, whereasβ3(x, t) is a scalar. In the case of electro-magne
perturbations,β2(x, t) = 0. A finite β2(x, t) could be relevant, e.g., for the study of def
mational perturbations in a crystal[7].

Following the quantum mechanical motion of a wave packet localized around(k̄, x̄), we
study its EOM focusing on the topological nature of band structure, and interpret th
terms of the reciprocal vector potentialAq defined in the(2D + 1)-dimensional paramete
space{q} = (k̄, x̄, t). This set of parameters{q} plays in our case the role of adiaba
parameters in the original formulation of Berry phase[16]. Our approach is entirely base
on the fundamental relations of Schrödinger quantum mechanics, and makes no re
to (i) time-dependent variational principle[7], or (ii) path-integral method using Wanni
basis[30]. Although our approach is conceptually much simpler than those ment
above, this type of analysis can be found, to our knowledge, only in the classical lite
[19,20]. We have in mind a linear response theory with the help of Boltzmann equa
We, therefore, restricted our analysis to the first order of external perturbationβ(x, t). We
emphasize here that all our analyses areasymptotically exactin the framework of linear
response theory.

This paper is organized as follows: in Section2, we first discuss the nature of no
Abelian gauge field, appearing in our EOM, which will be derived later in Section4. In
Section3, we state and formulate unambiguously our problem, as well as listing a
assumptions we will make. The EOM is derived in Section4, whose possible applicatio
to Berry phase engineering is discussed in Section5, before coming to the conclusions
Section6. Some technical details are left forAppendices A–D.

2. Origin of the gauge field

The nature of a reciprocal magnetic fieldB(k̄) appeared in Eq.(4) lies, as will be further
discussed in Section4, in the noncommutativity of the center of mass coordinates,(k̄, x̄)

[10]. In more mathematical terms,B(k̄) is a curvature associated with a geometric Be
connection, i.e., a gauge field. The relation between such noncommutative coordin
seen in Eqs.(24), (27)and the MM in momentum space has been of much theoretical i
est[3,4,10,31]. From a more general point of view, physics in noncommutative space–
coordinates has been of great theoretical interest, rather in high-energy physics c
nity, in particular, in the context of string andM theories[32,33]. In the following we

consider, instead, the physical origins from which our gauge fields stem, and the mecha-



R. Shindou, K.-I. Imura / Nuclear Physics B 720 [FS] (2005) 399–435 403

arying

cture

,
metry

neracy
then
ost
otion

f non-
ions of
course

he
e EOM

ressed
loch
re. As

-

s.

etic

ed as
nism how they are generated, focusing on the case of Bloch electrons under slowly v
perturbationβ(x, t).

2.1. Non-Abelian gauge field, or Berry phase, encoding information on the band stru

Let us consider the motion of a wave packet composed of a limited number, sayN of
degenerate bands over the whole Brillouin zone. When neither the time reversal sym
nor the spatial inversion symmetry is broken, there always appears a two-fold dege
at everyk-point (Kramers doublet). If there is no further degeneracy in the system,
N = 2 in our language. In the following chapters, we will derive, using only the m
fundamental relations of Schrödinger quantum mechanics, effective equations of m
(EOM) for this wave packet. These EOM are most conveniently interpreted in terms o
Abelian gauge fields in the reciprocal space. When we derived these effective equat
motion, we restricted our available Hilbert space to these degenerated bands. In the
of this procedure of projection onto theN bands, all the relevant information, about t
bands integrated away, was encoded in the form of a gauge field, and appears in th
for the wave packet as a Berry phase.

In order to illustrate this point, let us investigate how those gauge fields are exp
explicitly in terms of Bloch functions. We will see in later sections that the concept of B
bands is susceptible of perturbations varying incommensurately to the lattice structu
a result Bloch electrons become subject to a (non-Abelian) gauge field in a(2D + 1)-
dimensional parameter space(k̄, x̄, t), which we will call below thereciprocalspace, from
the view point that it is a generalization of the space spanned byk̄, the mean crystal mo
mentum of the wave packet. The reciprocal vector potential takes the form of aN × N

matrix, whose elements are given by

(6)(Aq)mn = i

〈
um(k̄, x̄, t)

∣∣∣∣∂un(k̄, x̄, t)

∂q

〉
,

whereq should be understood as a general coordinateq = k̄µ, x̄ν, t andµ,ν = 1, . . . ,D.
k̄, x̄ are center of mass coordinates defined in more precise terms, respectively, in Eq(16)
and (15). |un(k, x̄, t)〉 = exp(−ik ·x)|φn(k, x̄, t)〉 is the periodic part of alocal2 Bloch state,
〈x + a|un(k, x̄)〉 = 〈x|un(k, x̄)〉. Inner products involving the periodic part|un(k, x̄, t)〉,
mean an integration over the unit-cell, with a normalization〈un(k, x̄, t)|un(k, x̄, t)〉 = 1.
In the Abelian caseN = 1, this vector potential is indeed related to the reciprocal magn
field B(k̄) introduced in Eq.(4) as

B(k̄) = ∂

∂k̄
×Ak̄.

In the non-Abelian case, the gauge invariant reciprocal field strength should be defin

(7)Fq1q2 = ∂q1Aq2 − ∂q2Aq1 + i[Aq1,Aq2],

2 The concept oflocal Bloch function will be briefly introduced in Section2.2 before being formulated in

more precise terms in Section3.
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whereq1, q2 = kµ, x̄µ, t . Using a trivial relation〈 ∂um

∂q
|un〉 + 〈um| ∂un

∂q
〉 = 0, the last term o

Eq.(7) can be rewritten as

i

N∑
l=1

(〈
∂um

∂q2

∣∣∣∣ul

〉〈
ul

∣∣∣∣∂un

∂q1

〉
−

〈
∂um

∂q1

∣∣∣∣ul

〉〈
ul

∣∣∣∣∂un

∂q2

〉)
,

whereas,

(8)(∂q1Aq2 − ∂q2Aq1)mn = i

(〈
∂um

∂q1

∣∣∣∣∂un

∂q2

〉
−

〈
∂um

∂q2

∣∣∣∣∂un

∂q1

〉)
.

Comparing those two equations, one can immediately see that if
∑N

l=1 |ul〉〈ul | were 1,
i.e., if {|ul〉; l = 1, . . . ,N} spanned a complete basis, thenFq1q2 would vanish identically
This indicates the fact that the nature of our gauge field lies indeed in the projection
available Hilbert space onto the relevantN bands. If|ul〉 spanned a complete basis, a
no band were projected away, there would be no information which should be enco
the gauge fields. Note also that Eq.(8) takes the familiar form of the Berry curvature in t
study of magnetic Bloch bands[6,21].

2.2. Gauge field of two different origins

The gauge field introduced in Eq.(6) has two different physical origins:

(1) Projection onto a subspace spanned byN Bloch bands;
(2) Bloch basis moving in time.

The first point has been already discussed in Section2.1, whereas the second point m
need some explanation. In the following sections, we will study the wave-packet dyn
in the phase space in the presence of space and time dependent external perturbatio
variesincommensuratelyto the lattice structure. In order to define a crystal momentum
such a situation, we replace the spatial coordinatex in the perturbationβ(x, t), introduced
as in Eq.(5), by the center-of-mass coordinatex̄ of a wave packet under consideration. T
recovers the original lattice periodicity of the Hamiltonian, leading us to the conceptlo-
cal Hamiltonian (Eq.(11)) and itslocal Bloch eigenstates (Eq.(12)). The above procedur
is justified, whenever the external perturbation varies sufficiently smoothly compare
the width of the wave packet. We then expand the wave packet in terms of thelocal Bloch
eigenstates,|φn(k, x̄(t), t)〉, which evolve as a function of time, both explicitly (throught)
and implicitly (throughx̄(t)). This is why ourlocal Bloch function, or rather its periodi
part, which has appeared in Eq.(6), depended not only onk but alsox̄ andt . Because of the
nature of ourlocal Bloch basis, such nontrivial gauge field structure as was introduc
the previous section emerges. To be precise, we had better distinguish between two
ent types of gauge field (strength) appearing in Eqs.(6), (7): (i) Fk̄µk̄ν

, (ii) Fk̄µx̄ν
andFk̄µt .

Although the reciprocal field strength introduced in Eq.(7) has various components, i.e
not only (a)Fk̄µk̄ν

, Fk̄µx̄ν
andFk̄µt ((a) = (i)+ (ii )), but also (b)Fx̄µx̄ν andFx̄µt , the latter

components (b) do not appear in our EOM for the wave packet, showing a clear co

with Ref. [7]. However, we will be working in the framework of a linear response theory,
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and within that framework our EOM turn out to be consistent, whenN = 1, with those of
Ref. [7]. This point will be further clarified in Section4.4 by performing a simple powe
counting analysis.

We will see in detail in Section4 that the two types of gauge field

(1) Fk̄µk̄ν
,

(2) Fk̄µx̄ν
andFk̄µt ,

have actually slightly different origins, as well as their different physical conseque
which we will discuss in Section5. The former,Fk̄µk̄ν

, is indeed related to the projectio
of available Hilbert space onto the relevant degenerateN bands. It yields a finite anomalou
velocity, and plays a central role in the understanding of AHE. It appears in the pre
of magnetic Bloch bands and ferromagnetic backgrounds[6,23–25]. On the other hand
the latter,Fk̄µx̄ν

andFk̄µt appear only in the presence of thetime-dependent Bloch bas
mentioned above.

3. Statement of the problem

Before discussing the EOM in the following section, let us define and formulate
problem here as well as listing all the assumptions we will make. We stress here that
approximations which we will make are stated here, and that the derivation of the EO
the following section is indeedexactunder the assumptions made in this section.

Let us consider the motion of a wave packet of Bloch functions under perturba
slowly varying in space and time. This perturbation can be, e.g., external electro-ma
field, as was the case in the study of magnetic Bloch bands[6,21]. The external pertur
bationβ(x, t), varying incommensurately to the crystal structure, breaks the transla
symmetry of the unperturbed Hamiltonian,3

(9)H0(p,x) = (p + eAuni)
2

2me

+ U(x), U(x + a) = U(x),

whereAuni represents the vector potential of homogeneous magnetic field in case it
The full vector potentialA is thus divided into two parts asA = Auni + δA, whereδA
is absorbed inβ1(x, t). Eigenstates of the above Hamiltonian(9), i.e., (magnetic) Bloch
bands (specified by band indicesn) are characterized by crystal momentak,

(10)H0
∣∣φ(0)

n (k)
〉 = ε(0)

n (k)
∣∣φ(0)

n (k)
〉
.

3 The innocent looking equation, Eq.(9), more specifically, the periodic potentialU(x) in it, encodes all the
information on the band structure and, consequently, the secrets of its nontrivial topological nature. It sh
emphasized thatU(x) is writtensymbolicallyin the sense that (i) it can also be a function of momentump due
to spin–orbit interaction, (ii) it is generally spin-dependent, either, i.e., it takes a 2× 2 matrix form in spin space
on top of a ferromagnetic background, (iii) the smallest unit of translational symmetrya is replaced by magneti
translation vectors in the case of magnetic Bloch bands[6]. Thus Eq.(9) should be interpreted accordingly to th

situation.
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Once the perturbationβ(x, t) is switched on, this crystal momentumk is no longer a good
quantum number of the system. However, the typical wave length of the external p
bation is longer by several order of magnitudes than the lattice constants, in a phy
relevant parameter regime of our interest. In that case, intermediate length scales d
to which our wave packet will belong, in which the external perturbationβ(x, t) can be
regarded spatially constant at the zeroth order of approximation. We are thus enti
consider a wave packet, well localized in this length scale of external perturbation,
has also a peak sharp enough in the space of crystal momentum, moving under pe
tions slowly varying in space and time.

Let us now consider a wave packet,|Ψ (t)〉, localized in thephase space, spanned by the
real space coordinatex and the crystal momentumk, in the vicinity of (k̄, x̄). For simplic-
ity, and without losing generality, we can assume that the wave packet has a symme
smooth shape such that it has a well-distinguished peak at(k̄(t), x̄(t)) in the phase space
wherek̄(t) andx̄(t) should coincide with the expectation value ofk andx at a given timet .

Our present goal is to study, as accurately as possible, the quantum mechanical
of this wave packet, and derive the effective equations of motion forx̄ andk̄. As will soon
become clearer, an interpretation in terms of reciprocal gauge field (strength) unco
nature of various physical phenomena, such as anomalous Hall effect (AHE)[6,23–25],
spin Hall effect[10] and quantum charge/spin pumping[14,15].

3.1. Assumption of slowly varying perturbationβ(x, t)-concept of thelocalHamiltonian
and itslocalBloch bands

We consider from now on a perturbationβ(x, t) introduced in Eq.(5). As far as the
intermediate length scales discussed at the beginning of this section are concernedβ(x, t)

can be regarded, over the spread of our wave packet, almost spatially constant. We
fore, choose, as the starting point of our analysis, a Hamiltonian, dubbed in Ref.[7] as a
local Hamiltonian, in whichx-dependence ofβ(x, t) is replaced bȳx, a constant at a give
time:

(11)Hloc = H
(
p,x;β(x̄, t)

)
.

This Hloc has a very remarkable property; at a given timet it has the same translation
symmetry as the nonperturbed HamiltonianH0 = H(p,x;β = 0), i.e., in other words,Hloc
can be diagonalized by a set oflocal Bloch eigenstates|φn(k, x̄, t)〉 forming alocal band
εn(k, x̄, t), which now depends on̄x(t) andt :

(12)Hloc
∣∣φn(k, x̄, t)

〉 = εn(k, x̄, t)
∣∣φn(k, x̄, t)

〉
.

We are actually considering a degenerate case whereεn(k, x̄, t) (n = 1, . . . ,N) takes the
same value, which we define to beεloc(k, x̄, t), i.e.,

(13)εloc(k, x̄, t) ≡ ε1(k, x̄, t) = · · · = εN(k, x̄, t).

We will see below that the concept of thelocal Hamiltonian and its associated conducti

bands plays a central role in the derivation of EOM.
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3.2. Construction of a wave packet

Superposinglocal Bloch functions introduced above, we now construct our w
packet. In the spirit of Boltzmann’s transport theory, an exchange of energy betwe
electron and the environment occurs only through scattering events. In the followin
will investigate an adiabatic motion of this wave packet. This picture should be valid
the typical length scale of anadiabaticflight between two scattering events, i.e., over
mean free path of an electron. Let us now proceed step by step, making each logic
as clear as possible.

(1) Let us first focus on the real space, in which the electron wave packet is loc
aroundx̄. Then we can compose a wave packet4 out of local Bloch functions associate
with the local Hamiltonian at̄x:

(14)
∣∣Ψ (t)

〉 = N∑
n=1

∫
dkan(k, t)

∣∣φn(k, x̄, t)
〉
.

an(k, t) should be normalized properly. Thex̄-dependence of|Ψ (t)〉 is implicit on the left-
hand side of Eq.(14), which is actually due to the time dependent Bloch basis,|φn(k, x̄, t)〉.

(2) In order for the self-consistency, we require that our wave packet(14) does give,
thecorrectexpectation value ofx, i.e., x̄(t) = (x̄1(t), . . . , x̄D(t)):

(15)x̄µ(t) = 〈
Ψ (t)

∣∣xµ

∣∣Ψ (t)
〉
.

This guarantees that our wave packet yield, indeed, the center-of-mass positionpreassigned
in Eq.(11), and that our program makes a self-consistent closed loop.

Our wave packet(14) can be also regarded as afunctional of an(k, t), i.e., |Ψ (t)〉 =
|Ψ ({an(k, t)})〉, in which the coefficientsan(k, t) are chosen so that the self-consiste
condition(15)should be satisfied. Eq.(15) is, however, nothing but a weak constraint co
pared with a huge number of degrees of freedom allowed foran(k, t). In order to specify
with further precision the coefficientsan(k, t), we now turn our eyes to thek-space. As
has been discussed at the beginning of this section, we can consider, in the length
our interest, a wave packet which is localized both inx and ink. We therefore require, in
addition to Eq.(15), that our wave packet shouldalso give the correct expectation valu
of kµ:

(16)k̄µ(t) = 〈
Ψ (t)

∣∣kµ

∣∣Ψ (t)
〉
.

The k̄ dependence of|Ψ (t)〉 is thus encoded inan(k, t).5

4 As has been discussed at the beginning of this section, the expansion(14) is justified, as far as the sprea
of wave packet in real space is sufficiently small compared with the typical length scale over which the e
perturbation can be regarded almost constant.

5 So far, our treatment ofx andk has not been symmetric. This is entirely due to the fact that our perturb
β(x, t) does not depend onk. We can consider, in principle and without much difficulty, such a perturbation
depends onk, and perform symmetric treatment ofx andk. However, in this paper, we restricted ourselves,

the clarity of the paper, to the former case.
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In the following section, we will derive the EOM for̄x(t) andk̄(t), following the quan-
tum mechanical motion of the wave packet we have just prepared. In order to ma
set of EOM self-contained, however, we need also to take care of the motion of
nal pseudospin degrees of freedom spanned byN bands. For that purpose it will tur
out to be convenient to separatean(k, t) into its “phase” or pseudospin part,zt (k, t) =
(z1(k, t), . . . , zN(k, t)), and its “amplitude” part,ρ(k, t), by introducing

an(k, t) = √
ρ(k, t)zn(k, t), ρ(k, t) =

N∑
n=1

∣∣an(k, t)
∣∣2.

|zn|2 clearly represents the probability that the electron wave packet sits on thenth band
among theN -fold degenerated bands. Thereby it corresponds to the internal degr
freedom associated with the wave packet, such as spin and/or orbital, whileρ(k, t) is the
momentum distribution function for the wave packet. Since we assumed that the
packet is well-localized not only in its real space but also in its reciprocal space, w
assume without any loss of generality the following reduction formula,

(17)
∫

dkf (k, t)ρ(k, t) = f
(
k̄(t), t

)
,

for any sufficiently smooth functionf (k, t). This prescription will be used frequently
the final stage of the derivation of EOM.

3.3. First order perturbation theory with respect toβ(x, t): a linear response theory

The wave packet introduced above should obey the Schrödinger equation

(18)i
∂

∂t

∣∣Ψ (t)
〉 = H

∣∣Ψ (t)
〉
.

As we have briefly seen in the introduction, our eventual objective is to apply the EO
the framework of the Boltzmann transport theory, using formula such as Eq.(3), in order
to describe phenomena including the anomalous Hall effect, spin Hall effect and qu
pumping, etc. For that purpose it is enough to consider a linear response of the s
keeping only the terms up to first order of∂β(x̄, t)/∂ x̄ and∂β(x̄, t)/∂t .

In the case of the electro-magnetic fields, the perturbationβ(x̄, t) is embodied by a
vector potentialA(x̄, t), and a scalar potentialA0(x̄); the full Hamiltonian readsH0(x,p +
eA(x, t)) − eA0(x). Thereby, a linear response to applied electro-magnetic fields,E =
−∂A0/∂x − ∂A/∂t , B = ∇ × A corresponds to the first order perturbation theory w
β(x̄, t).

We expand the Hamiltonian in powers ofx − x̄ as

(19)H = Hloc + 1

2

D∑
µ=1

{
(xµ − x̄µ)

∂Hloc

∂x̄µ

+ ∂Hloc

∂x̄µ

(xµ − x̄µ)

}
.

The first order term on the r.h.s. is written in a symmetrical way in order to kee

Hamiltonian to be Hermitian. In the following, based on Eq.(19) we develop a systematic
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perturbation theory w.r.t.β(x̄, t). In this paper, we focus on the linear response of the
tem, keeping only the terms up to first order in the expansion. Our treatment is, the
self-consistent in the framework of linear response theory.

4. Equations of motion

In this section, we sketch the derivation of EOM, paying particular attention to,
the two different types of reciprocal field strength, introduced in Section2, appear in the
EOM. Before going into the details of the derivation of EOM, let us remind you that t
are two possible sources of Berry curvature in the reciprocal parameter space:

(1) projection of available Hilbert space onto the degeneratedN Bloch bands;
(2) local Bloch basis changing gradually in the course of time.

The time dependence of the local Bloch basis stems, not only from the explicitt depen-
dence of thelocal Hamiltonian,Hloc, but also from our self-consistent treatment of
problem, where thelocal Hamiltonian depends on the center-of-mass position of the e
tron wave packet through the external perturbation,β(x̄(t), t).

In many respects, our point of view is reminiscent of the standard Ehrenfest’s theo
quantum mechanics: the expectation value of an operator, such asx or p, obeys a classica
EOM. We actually follow the same type of procedure as the derivation of the Ehren
theorem, and in this sense our EOM can be regarded as ageneralized Ehrenfest’s theore
for Bloch electrons under perturbations varying slowly in space and time. We will c
back to this point later.

4.1. Preliminaries

We investigate, in this section, time evolution of the wave packet constructed in Eq(14).
We are interested, not only in its motion in the phase space, but also in the motion
internal spin/orbital degrees of freedom. In Section5 we will develop further analyses
from the viewpoint of transport phenomena, on the dynamics associated with such in
degrees of freedom. Having in mind applications of our formalism to those fields
formulate our equations as generally as possible. More concretely, we consider th
evolution of an arbitrary observable,O, or rather of its expectation value,

Ō(t) = 〈
Ψ (t)

∣∣O∣∣Ψ (t)
〉
.

Since we have adopted, for the sake of simplicity, the Schrödinger picture, as s
Eq. (18), the wave functions evolve in time, while observables are time-independen
develop later more detailed analyses on the EOM focusing on the case whereO = xµ or
kµ, but we consider a general observableO as far as possible in formulating our equ
tions. This will make it easier to apply our formalism to further studies on the dyna
associated with the internal degrees of freedom of Bloch electron.

Having those in mind, let us consider the expectation value of an arbitrary observaO,

(20)Ō(t) =
N∑ ∫

dkdk′a∗
m(k′, t)〈O〉mn(k′,k)an(k, t),
m,n=1
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where we have introduced an abbreviated notation for the matrix elements of an op
O evaluated in the restricted subspace spanned byN Bloch bands, i.e.,

(21)〈O〉mn(k′,k) = 〈
φm(k′, x̄, t)

∣∣O∣∣φn(k, x̄, t)
〉
.

Note that in this restricted Hilbert space not onlykµ, xµ or H but also∂/∂t are considered
to be an operatorO. 〈O〉mn(k′,k) is generally aN × N matrix for given(k′,k), whereas
for a given(m,n), it has, in general, off-diagonal matrix elements, and can be also reg
as a matrix ink-space. The presence of finite off-diagonal matrix elements of〈O〉mn(k′,k),
either in thek space or in the pseudospin space prevents some observables from com
each other, thereby induces Berry curvature in our final EOM.

Let us first consider two concrete examples:

(1) Case ofO = xµ: the matrix elements of an observablexµ are

(22)〈xµ〉mn(k′,k) = iδ(k′ − k)δmn

∂

∂kµ

+ δ(k′ − k)(Akµ)mn.

The first term is off-diagonal ink-space, whenk is discrete, due to thek-derivative, but
is diagonal w.r.t. the band index. In Eq.(22), we kept bothk′ andk indices in order to
emphasize the fact that this first term is off-diagonal. In the following, we will omit q
frequently thek′-index, pretending that〈xµ〉mn(k′,k) is diagonal ink-space afterδ(k′ −k)

is integrated away. On the contrary, the second term is diagonal ink-space, but the recip
rocal vector potentialAk defined similarly to Eq.(6), as,

(Akµ)mn = i

〈
um(k, x̄, t)

∣∣∣∣∂un(k, x̄, t)

∂kµ

〉
,

has off-diagonal matrix element between different bands. In the above equations
not write down the explicitt-dependence of̄x(t) in the brackets.

(2) Case ofO = kµ: this case is even simpler. The crystal momentumk is diagonal
both ink and in pseudospin indices,

(23)〈kµ〉mn(k′,k) = δ(k′ − k)δmnkµ.

Let us further investigate theoff-diagonalcomponents of〈xµ〉mn(k′,k). We focus here on
its commutation relation ink-space. Since the first term on the r.h.s. of Eq.(22) is off-
diagonal and the second term is not proportional to an identity matrix, these two ter
not commute each other. One can indeed verify

(24)
[〈xµ〉, 〈xν〉

]
mn

(k) = i(Fkµkν )mn,

where[A,B] = AB − BA is a standard commutator of twoN × N matricesA,B. Thus
the noncommutativity of〈xµ〉mn(k) turns out to be the origin of the emergence of Be
curvatureFkµkν . Another important remark on Eq.(22) is that it leads us to introduc
naturally the concept ofcovariantderivative in momentum space[10], defined as

(25)(∇kµ)mn = δmn

∂ − i(Akµ)mn.

∂kµ
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In terms of the covariant derivative(∇kµ)mn thus introduced, the matrix elemen
〈xµ〉mn(k) can be rewritten simply as

(26)〈xµ〉mn(k) = i(∇kµ)mn.

The commutator between two covariant derivatives along different axes is directly r
a non-Abelian Berry curvature

(27)[∇kµ,∇kν ]mn = −i(Fkµkν )mn.

In geometric terms, Eq.(27) can be interpreted in such a way that two parallel transp
along different axes on a curved surface generally do not commute each other.

4.2. To derive the EOM

Let us now consider the time derivative of the expectation value,Ō(t). Expanding
|Ψ (t)〉 in terms of the local Bloch functions as Eq.(14), one can classify the time derivativ
of Ō(t) into three parts:

dŌ(t)

dt
=

∑
σ,σ ′′

∫
dkdk′′ ∂a∗

σ (k, t)

∂t
〈O〉σσ ′′(k,k′′)aσ ′′(k′′, t)

+
∑
σ ′σ ′′

∫
dk′ dk′′ a∗

σ ′(k′, t)
(

∂

∂t
〈O〉σ ′σ ′′(k′,k′′)

)
aσ ′′(k′′, t)

(28)+
∑
σ ′σ

∫
dk′ dka∗

σ ′(k′, t)〈O〉σ ′σ (k′,k)
∂aσ (k, t)

∂t
.

We have in mind that the operatorO is eitherxµ, kµ or some other observables. In the ca
of standard Ehrenfest’s theorem,

d

dt
〈ψ |O|ψ〉 = i〈ψ |[H,O]|ψ〉,

the second term of Eq.(28)does not exist, since the matrix element,〈O〉mn(k′,k) is time-
dependent only when the local Bloch basis evolves in time. The first and the third
i.e., the change of expansion coefficientsaσ (k, t) yields a commutator,[H,O]. They con-
tain, however, also a Berry connection contribution, which, together with the second
produce a new type of contribution, which we will callΩ

(2)

O in Eq. (32). The first term of

Eq. (32), Ω
(1)

O , is a generalization of the standard Ehrenfest’s commutator[H,O], which

induces, whenO = xµ, Fk̄µk̄ν
in the EOM. On the other hand, the second term,Ω

(2)
xµ

, can
be rewritten in terms ofFk̄µx̄ν

andFk̄µt .

In order to rewrite Eq.(28) in terms ofΩ(1)

O andΩ
(2)

O , let us first look into the following
relation,

(29)
∂a∗

n(k, t)

∂t
=

N∑
a∗
m(k, t)

[〈
∂

∂t

〉
+ i〈H 〉mn(k)

]
.

m=1 mn
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The first term is a Berry connection contribution. As is clear when it is written more
cisely as

(30)

〈
∂

∂t

〉
mn

=
〈
um

∣∣∣∣∂un

∂t

〉
= 〈

um

(
k, x̄(t), t

)∣∣ ∂

∂t

∣∣un

(
k, x̄(t), t

)〉
,

it emerged as a result of the time evolution of thelocal Bloch basis. On the other han
the second term of Eq.(29) yields the commutation[H,O]mn in Eq. (32). Note also tha
the derivative∂/∂t in Eq. (29) picks up both theexplicit and implicit t-dependence. Cor
respondingly, one can also rewrite the first term of Eq.(29) using two types of the gaug
field introduced in Section2, i.e.,

(31)

〈
∂

∂t

〉
mn

= (Ax̄ν )mn

dx̄ν

dt
+ (At )mn.

Our next objective is to calculate the time derivative of an operator such ask̄, x̄ and
express them in such a way that their interpretation in terms of the reciprocal field st
will become as easy as possible. For that purpose, we rearrange the terms in Eq.(28) into
two parts,Ω(1)

O andΩ
(2)

O as,6

d

dt
Ō(t) = Ω

(1)

O + Ω
(2)

O ,

Ω
(1)

O = i

N∑
m,n=1

∫
dk1 dk2 a∗

m(k1)
[〈H 〉, 〈O〉]

mn
(k1,k2)an(k2),

Ω
(2)

O =
N∑

m,n=1

∫
dk1 dk2 a∗

m(k1)

(32)×
{[〈

∂

∂t

〉
, 〈O〉

]
mn

(k1,k2) +
(

∂

∂t
〈O〉mn(k1,k2)

)}
an(k2).

In Eq. (32) we did not write down explicitly, for the sake of simplicity, the depende
on x̄ andt in |φn(k)〉 = |φn(k, x̄(t), t)〉.

As has been announced in advance,Ω
(1)

O is a generalization (or, rather a restricted v
sion) of the standard Ehrenfest’s commutator, coming exclusively from the first and
terms of Eq.(28), whereasΩ(2)

O is a new type of contribution, which is a collection
Berry curvature terms from all the three parts of Eq.(28). Not only have they differen
origins, but also are they susceptible of different physical interpretations in terms
reciprocal field strength. We will see in Section4.2 that in the particular case ofO = xµ,

the two contributions,Ω(1)
xµ

andΩ
(2)
xµ

are related actually to the two different parts of t
gauge field introduced in Section2, i.e., (i)Fkµkν , and (ii)Fkµxµ , Fkµt .

6 In order to obtain Eq.(32), one has only to substituteliterally Eq. (29) into the expression fordŌ/dt in
Eq.(28), and rename the dummy variables in the following way:

k′ → k1, k′′ → k2, k → k3,
σ ′ → m, σ ′′ → n, σ → l.
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Having in mind what has been stated above, we can now derive the EOM forx̄µ(t) and
k̄µ(t). Let us first consider the case ofO = kµ. As seen in Eq.(23), the momentum oper
atorkµ is not only diagonal ink coordinates and band indices, but also its matrix elem

is time-independent. Thus only the first termΩ(1)
kµ

contributes to its EOM . Furthermor
among various matrix elements of the Hamiltonian given in(35), (36), only those terms
which contain off-diagonal matrix elements w.r.t.k indices contribute to its commutato
with kµ. As a result, its EOM turns out to be simplified as,

(33)
dk̄µ(t)

dt
= −

∫
dkρ(k, t)

∂εloc(k, x̄, t)

∂x̄µ

= −∂εloc(k̄, x̄, t)

∂x̄µ

.

In the second equality, we replacedk in the integrand by its mean value, following t
prescription given in Eq.(17). This is nothing but the standard EOM for the momentum
the electron wave packet shown in Eq.(1).

As for the position operatorxµ, Eq. (22) contains both thek-derivative and time-
dependent matrix elements between different band indices. As a result, the EOM
real space coordinate is subject to a drastic change in comparison with Eq.(2). In Sec-
tion 2, we classified the reciprocal fields into two categories, i.e., (i)Fkµkν , and (ii)Fkµt

andFkµxν

dx̄ν

dt
. We will see in the next section that the decomposition(32) clearly demon-

strates why we classified them in that way. We have studied on a very general b
this section that the two components,Ω

(1)

O andΩ
(2)

O , are structurally well distinguishable
and have completely different nature. We will see more specifically in the next sectio
Ω

(1)
xµ

andΩ
(2)
xµ

are related respectively to the reciprocal fields (i) and (ii). Thus diffe
origins of two types of reciprocal fields will be uncovered. The fact that the classific
of reciprocal fields discussed in Section2 can be done explicitly and unambiguously as
decomposition(32), is actually one of the main advantages of our approach. Let us
turn to a close inspection of the nature ofΩ

(1)
xµ

andΩ
(2)
xµ

.

4.3. Nature ofΩ(1)
xµ

andΩ
(2)
xµ

In this section let us further analyze the nature of decomposition(32), focusing on the
case ofO = xµ. x̄(t) is given by Eq.(15) together with Eq.(22). The first term of Eq.(32),

Ω
(1)
xµ

in the present case, has particularly a familiar form, which often appears in the c
of theEhrenfest’s theorem

(34)
d

dt
〈ψ |xµ|ψ〉 = i〈ψ |[H,xµ]|ψ〉 = 〈ψ |pµ|ψ〉

m
.

The similarity betweenΩ(1)
xµ

and Eq.(34) becomes clearer, when one expands the w
packet|ψ〉 in terms of a complete set of bases|φα〉 as |ψ〉 = ∑

α aα|φα〉. The difference
is that the set of bases used in the expansion wascompletein Eq. (34), whereas it was
restricted toN Bloch bandsin Ω

(1)
xµ

. This constraint is the origin of nonvanishing fie
strengths.

Let us now proceed to rewriteΩ(1)
xµ

in terms of the reciprocal field strength,Fkµkν ,

defined in(7). The matrix elements of the Hamiltonian, i.e., Eq.(19) in the restricted sub-
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(35)〈H 〉mn(k′,k) = 〈
φm(k′, x̄, t)

∣∣H ∣∣φn(k, x̄, t)
〉 = δ(k′ − k)〈H 〉mn(k),

(36)〈H 〉mn(k) = εeff − ∂εloc

∂x̄ν

x̄ν + i

2

{
∂εloc

∂x̄ν

(∇kν )mn + (∇kν )mn

∂εloc

∂x̄ν

}
,

whereεloc = εloc(k, x̄, t) is a degenerate eigenvalue of the local Hamiltonian.7 We also
introduced a renormalized energy,εeff(k, x̄, t), which takes the form of aN by N matrix
whose(m,n)-components are given by

(37)εeff
mn(k, x̄, t) = εloc(k, x̄, t)δmn + �εmn(k, x̄, t).

Its off-diagonal matrix elements are due to correction terms,

�εmn(k, x̄, t) = i

2

〈
∂um(k, x̄, t)

∂kµ

∣∣∣∣(Hloc − εloc(k, x̄, t)
)∣∣∣∣∂un(k, x̄, t)

∂x̄µ

〉

− i

2

〈
∂um(k, x̄, t)

∂x̄µ

∣∣∣∣(Hloc − εloc(k, x̄, t)
)∣∣∣∣∂un(k, x̄, t)

∂kµ

〉
,

where the summation overµ = 1, . . . ,D was assumed implicitly. Using the matrix el
ments given in Eqs.(35), (36)one can rewriteΩ(1)

xµ
in the following way,8

Ω(1)
xµ

=
N∑

m,n=1

∫
dkρ(k, t)z∗

m(k, t)

{[∇kµ, εeff(k, x̄, t)
]
mn

(38)+
D∑

ν=1

(Fkµkν )mn

∂εloc(k, x̄, t)

∂x̄ν

}
zn(k, t) + �Ω(1)

xµ
.

Apart from the energy correction�ε, the first term ofΩ(1)
xµ

is nothing but a standard ve
locity term, i.e., the first term in the r.h.s. of Eq.(2). A remark worth mentioning here
that the covariant derivative in the commutator plays a central role in ensuring theSU(N)

gauge invariance of final results, which we will see later.�Ω
(1)
xµ

is a irrelevant term9 which
vanishes with the help of prescription introduced in Eq.(17). For a later convenience, le
us introduce the following abbreviated vector notation forzn(k̄(t), t):

(39)z̄(t)† ≡ (
z∗

1

(
k̄(t), t

)
, . . . , z∗

N

(
k̄(t), t

))
,

7 See Eqs.(11), (13). Recall also that

〈Hloc〉mn(k′,k) = 〈
φm(k′, x̄, t)

∣∣Hloc
∣∣φn(k, x̄, t)

〉 = δ(k′ − k)δmnεloc(k, x̄, t)

is proportional to an identity in the pseudospin space.
8 Details are given inAppendix A.

9 Its explicit form is given in Eq.(A.4) in Appendix A.
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where we always have in mind the prescription(17). Using this notation, one can furth
rewrite Eq.(38)as

(40)Ω(1)
xµ

=
N∑

m,n=1

z̄m(t)∗
{[∇k̄µ

, εeff(k̄)
]
mn

+
D∑

ν=1

(Fk̄µk̄ν
)mn

∂εloc(k̄)

∂x̄ν

}
z̄n(t),

wherex̄-dependence ofεloc(k̄) is not written explicitly.
In contrast toΩ(1)

xµ
, the second term of Eq.(32), Ω

(2)
xµ

in the present case, would n
have existed, unless the local Bloch basis had evolved in time. However, in a gene
uation described by a time-dependent Bloch basis, there is no reason to believe thΩ

(2)
xµ

should vanish. Indeed, we will give you in Section5 some concrete examples where a fin
contribution fromΩ

(2)
xµ

plays a crucial role in determining the physical properties of

system. Using Eq.(29), one can easily verify thatΩ(2)
xµ

are related to the second catego

of reciprocal fields, i.e.,Fkµt andFkµxν

dx̄ν

dt
. Ω

(2)
xµ

can be rewritten as

Ω(2)
xµ

= −
N∑

m,n=1

∫
dkρ(k, t)z∗

m(k, t)

{
(Fkµx̄ν )mn

dx̄ν

dt
+ (Fkµt )mn

}
zn(k, t)

(41)= −z̄(t)†

{
D∑

ν=1

Fk̄µx̄ν

dx̄ν

dt
+Fk̄µt

}
z̄(t),

where the summation overν = 1, . . . ,D was omitted in the first line. The decomp
sition (32) together with Eqs.(40), (41) gives a complete physical justification of th
classification ofFq1q2 done in Section2. In other approaches[7,30] the two types of recip
rocal fields appear in an indistinguishable manner, and two different origins of recip
gauge field studied in this paper remain to be hidden.

4.4. The complete set of EOM and its SU(N) gauge invariance

We have successfully related the two contributions tod
dt

x̄(t) in the decomposition(32),

i.e.,Ω(1)
xµ

andΩ
(2)
xµ

, respectively, to two types of gauge invariant reciprocal fields, (i)Fkµkν ,

and (ii)Fkµt andFkµxν

dx̄ν

dt
. Together with Eq.(33), this allows us to rewrite our EOM fo

x̄(t) andk̄(t) as

(42)
dx̄µ

dt
= z̄†

{
[∇k̄µ

, εeff] −Fk̄µk̄ν

dk̄ν

dt
−Fk̄µx̄ν

dx̄ν

dt
−Fk̄µt

}
z̄,

(43)
dk̄µ

dt
= −∂εloc(k̄, x̄, t)

∂x̄µ

.

Repeated indicesν should be summed overν = 1, . . . ,D. Theeffectiveenergyεeff is re-
lated to the localεloc as Eq.(37). In Eqs.(42), (43), εeff andεloc are functions of̄k, x̄, t ,
i.e., εeff = εeff(k̄, x̄, t), εloc = εloc(k̄, x̄, t). In order to obtain a complete set of EOM, w

still need to know an EOM for̄z(t) defined in(39). The details of its derivation is given in
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Appendix B, and the result is,

(44)i
d z̄
dt

=
(

εeff − x̄µ

∂εloc

∂x̄µ

1 − dk̄µ

dt
Ak̄µ

− dx̄µ

dt
Ax̄µ −At

)
z̄,

where repeated indicesµ should be summed overµ = 1, . . . ,N , and again,εeff =
εeff(k̄, x̄, t), εloc = εloc(k̄, x̄, t).

Here let us make a few comments on the physical meaning of Eq.(44). On the r.h.s. the
diagonal part ofεeff, i.e.,εloc(k̄)1, together with the second term simply give rise to a us

U(1) phase factor associated with an effective energy,εloc(k̄, x̄, t) − ∑N
µ=1 x̄µ

∂εloc(k̄,x̄,t)
∂x̄µ

.
On the other hand,�ε(k) generally has off-diagonal matrix elements between diffe
bands and thereby yields a nontrivialSU(N) phase factor, which corresponds to the p
cession of the spin and/or orbital associated with the wave packet. The remaining
of Eq.(44) represents a Berry–Wilczek–Zee phase[27] originating from the adiabatic mo
tion of the wave packet. The first two terms are due to its motion in(k̄, x̄)-space. In the
Abelian case (N = 1), the EOM forx̄(t) andk̄(t), i.e., Eqs.(42), (43), are independent o
the motion of phase degree of freedom,z̄(t), whereas̄z(t) acquires a quantal phase due

the evolution of̄x andk̄: exp[i ∫
dt (

dk̄µ

dt
Ak̄µ

+ dx̄µ

dt
Ax̄µ +At )] where the summation ove

µ was omitted. This is analogous to the Berry quantal phase[16].
Finally let us briefly sketch how one can make sure of theSU(N)gauge invariance o

our EOM. Namely, as theN -fold Bloch states are energetically degenerate over the w
Brillouin zone, these EOM should be independent of the choice ofN Bloch bases and b
invariant under the following gauge transformation:

∣∣ũn(k̄, x̄, t)
〉 = N∑

m=1

∣∣um(k̄, x̄, t)
〉
gmn(k̄, x̄, t),

(45)z̃(k̄, t) = g−1(k̄, x̄, t)z(k̄, t).

Here|un(k̄, x̄, t)〉 andz(k̄, t) are transformed inversely to each other, making the l.h.
Eq.(14) invariant. The gauge field and the field strength associated with it are transfo
in the following way,

Ãqµ = g−1Aqµg − ig−1 ∂g

∂qµ

, F̃qµqν = g−1Fqµqν g,

whereqµ = k̄, x̄, t . Using this, one can easily see that the covariant derivative, de
generally for thisqµ as

(46)∇qµ = ∂

∂qµ

− iAqµ,

behaves as if it were a linear transformation in the vector space spanned byN -fold degen-
erate Bloch states:

˜ −1
 (47)∇qµ = g ∇qµg.
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This is why it is dubbed as acovariantderivative. Furthermore, one can also check t
theN × N matrix εeff(k̄) defined in Eq.(37) is transformed as

ε̃eff(k̄) = g−1εeff(k̄)g.

Using the above transformation rules, one can indeed verify that our EOM(42), (43) in
combination with(44)are invariant underSU(N) gauge transformation(45).

Eqs.(42)–(44)constitute the central result of this paper together with their applicat
which will be further discussed in Section5.

4.5. Abelian case: comparison with other approaches

In the Abelian case:N = 1, the above equations of motion(42), (43) reduces to

(48)
dx̄µ

dt
= ∂εeff(k̄, x̄, t)

∂k̄µ

−Fk̄µk̄ν

dk̄ν

dt
−Fk̄µx̄ν

dx̄ν

dt
−Fk̄µt ,

(49)
dk̄µ

dt
= −∂εloc(k̄, x̄, t)

∂x̄µ

.

EOM similar to Eqs.(48), (49)have been derived, to our knowledge, twice, using eith

(1) time-dependent variational principle[7] or;
(2) path-integral method using Wannier basis.10

If we compare Eqs. (2.19) of Ref.[7] and our Eqs.(48), (49), it can be observed that thre
terms,

(50)Fx̄µx̄ν

dx̄ν

dt
+Fx̄µk̄ν

dk̄ν

dt
+Fx̄µt

are lacking on the right-hand side of(49). However, one can easily check by a sim
power counting that these terms appearonly at orders higher than2 in the perturbation
series w.r.t.β or x − x̄. Let us briefly illustrate this point. Since a subscriptx̄ implies a
derivative w.r.t.x̄, which is always accompanied byx − x̄, it increases the power by one.
is also the case for the subscriptt . Therefore, the first and the last terms of(49) turns out
immediately to be at least of the second order ofβ. Since∂εloc(k̄, x̄, t)/∂x̄µ is also of the
first order w.r.t.β in (49), one can verify that the second term of(50) is also at least of the
second order w.r.t.β. One can thus conclude that all the lacking terms(50) should appea
only at the second order w.r.t.β or x − x̄.

Another difference between Eqs.(48), (49)and Eq. (2.19) of Ref.[7] is that in our EOM
for dk̄/dt , the derivative∂/∂x̄µ applies toεloc(k̄, x̄, t) and not toεeff(k̄, x̄, t) as in Ref.[7].
In our formalism, as is clearly shown in Eq.(33), there is no room for�ε(k̄, x̄, t) to enter

10 We had some difficulty to justify the use of Wannier basis used in Ref.[30] as acompletebasis necessary i
the path integral formalism. This is closely related to the arbitrariness of Wannier function discussed exte

in Ref. [34].
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the expression(49). Nevertheless, repeating the same type argument, i.e., the power
ing for �ε(k̄, x̄, t), one can confirm that the contribution from�ε(k̄, x̄, t) is not physically
relevant at the first order ofβ or of x − x̄.

We have not only developed a systematic perturbation theory w.r.t.β or x − x̄, but also
we make no approximation apart from the assumptions stated in Section3. Our calculation
must be, therefore,exactat the first order of perturbation theory. Since possible discre
cies start only at the second order in the perturbation series, our result, Eqs.(48), (49)is
not inconsistent11 with that of Ref.[7].

5. Discussion: Berry phase engineering

The gauge invariant EOM(42), (43)have been successfully derived in the previo
section. The decomposition(32) uncovered the origin of two different types of reciproc
fields introduced in Section2. In this section we discuss some physical consequenc
Section4 in the context of Berry phase engineering.

In the introduction, we argued that a finite net charge current could be induced
U(1) Berry phase correction to the semiclassical EOM(1), (2). This finite charge curren
is actually carried by all the electrons below the Fermi surface, i.e., by the electrons
ground state. Generalizing thisU(1) argument to the non-Abelian case, we will discuss
this section how the various types of non-Abelian field strength appearing in our EO
related to concrete physical realizations, mainly focusing on theSU(2) case. This opens
new possibility of manipulating the ground state electronic wave function by contro
Berry phase, which is sometimes called, Berry phase engineering.

After introducing some terminologies and fixing notations, we will focus on two top
In Section5.2, we will see thatFkµkν is related to the physics of Hall type current. W
first observe that the charge Hall current can be described by a trace of non-Abelia
strengthFkµkν , while this current vanishes whenever the system is time-reversally (T -)in-
variant. The charge Hall current carried by a(k,↑) Bloch electron and that of the(−k,↓)

electron precisely cancel each other. This observation leads us to investigate two p
situations which avoids such a cancellation that occurs to the charge Hall current and
the reciprocal magnetic field to expose experimentally as a Hall-type current. Th
situations are:

(1) anomalous (charge) Hall current observed in systems with broken reversal sy
try, i.e., in ferromagnets[6,23–25],

(2) spin Hall current in time reversally symmetric systems[8–12].

In Section5.3, we will argue thatFkµt is directly related to various types of polariz
tion currents, currents induced in insulators under time-dependent perturbations. Si
to the case of Hall type charge current, which will be discussed in Section5.2, we first

11 The calculation done in Ref.[7] is also first order, in particular, their Hamiltonian, Eqs. (2.1), (2.14)
(2.15), is first order, but they kept all the possible Berry phase contribution without making further consid

of power counting, whereas we omitted systematically higher order terms.
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Table 1
Transformation properties under time reversalT and spatial inversionI

Invariance T I

Charge:1 + +
Spin:〈S〉(k) − +
Parity:〈Π〉(k) + −
Hall-type current:Fkµkν (k) − +
Polarization current:Fkµt (k) + −
A negative (positive) sign indicates whether a matrix element in question atk reverses its sign (or not) in com
parison with that of−k when the system is invariant under a certain symmetry operation, such asT or I . For
example, thenegativesign for 〈S〉(k) in theT -invariant case means that the spin matrix〈Sα〉(k) is identical to
−(〈Sα〉(−k))t up to a certainSU(N) gauge transformation as given in Eq.(67).

Table 2
Cancellation rules for charge/spin/parity Hall-type/polarization currents

Type of current
invariance

Hall-type Polarization

T I T I

Charge − + + −
Spin + + − −
Parity − − + +
A negative (positive) sign indicates that contributions to the total charge/spin/parity (vertical axis)
type/polarization (horizontal axis) current fromk and−k electrons (do not) cancel each other when the syste
invariant under eitherT or I . This table can be deduced fromTable 1. For example, in theT -invariant case, aneg-
ativesign for the spin inTable 1gives, together with anothernegativesign for the Hall-type current, apositive
sign for the spin Hall current in this table, corresponding, respectively, to Eqs.(67), (65) and (78).

observe that in such systems that are symmetric under spatial inversion, the polar
electric/spin current actually vanishes due to a cancellation associated with the inv
symmetry of the system. Then, in order to overcome this difficulty we propose, in p
lel with Section5.2, two physical systems in which the problem of cancellation will
resolved, and the gauge invariant reciprocal field strength appears explicitly in a m
scopic physical quantity, i.e., as a polarization current:

(1) If the inversion symmetry is broken externally or spontaneously, the AbelianFkµt

gives rise to a relevant contribution to the polarization electric/spin current[15,22].
(2) Even in systems symmetric under spatial inversion, non-AbelianFkµt may have a

chance to manifest itself as a polarizationorbital current, if that orbital degree of freedo
changes its sign under the spatial inversion.

The analogy and correspondence between the Hall type and polarization currents a
marized inTables 1 and 2.

5.1. Preliminaries

Before further discussing Berry phase transport, we first introduce some termino

as well as giving an unambiguous definition to spin/orbital currents.
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In order to illustrate our point, let us first consider a spin current. We have natu
in mind that there are different points of view[10–12] on the definition of spin curren
operator,JS

αµ. The difficulty of defining a spin current stems simply from the fact t
the bare spinSα is generallynota conserved quantity due to spin–orbit interaction, i.e.,
continuity equation,∂Sα/∂t +∑D

µ=1 ∂JS
µα/∂xµ = 0, is not satisfied. Thereby the Noethe

theorem does not apply. If one focuses on the time derivative of a local spinSα(x, t) in the
general case of nonconserved spin, one could observe that there are two contribu
it of physically different nature, i.e., contributions from (i) a local spin current, (ii) a lo
precession of spin. The former is the one of our interest, and the latter is related to th
conservation of spin. Unfortunately, there is no systematic prescription for distingui
between those two contributions.

We can still define on quite general ground a current operatorJI associated with an
internal degree of freedomI as the time derivative of a spatial polarization ofI as,

(51)JI = dPI
dt

,

(52)PI = 1

LD

M∑
j=1

1

2
{Ij xj + xjIj }.

L andM denote the system size and the total number of electrons, respectively. Th
scriptsj attributed toI and x specify each electron. In the case of a spin current,
operatorI in Eqs. (51), (52) is simply a usual spin operator,I = Sα . The spin/orbital
current defined in this way is indeed directly observable.12 For example, an increasin
(PSα )µ = Pµ(Sα) indicates that extra up (down)-spin electrons withSα = +1/2 (−1/2)

accumulate in one (the other) end of a system withxµ = L/2 (−L/2), which could be
experimentally detected by some optical probes.

We will also discuss orbital currents. A Bloch electron has, in addition to the spin d
of freedom, orbital degrees of freedomΠ in multiband systems. These orbital degrees
freedom describe the charge distribution in the unit cell, and hence,13

(54)Π(x,p) = Π(x + a,p).

12 Otherwise, we could have defined it also as

J̃I = 1

LD

M∑
j=1

1

2

{
Ij

dx
dt

+ dx
dt

Ij

}
.

This type of definition is convenient for the application of Kubo formula[11,12,29].
13 The periodicity ofΠ , i.e., Eq.(54) excludes its off-diagonal matrix elements ink-space:

〈Π〉mn(k′,k) = δ(k′ − k)〈Π〉mn(k),

(53)〈Π〉mn(k) = 〈
φm(k, t)

∣∣Π ∣∣φn(k, t)
〉 = (2π)D

Vcell

∫
dx

〈
um(k, t)

∣∣x〉
Π(x,−i∇ + k)

〈
x
∣∣un(k, t)

〉
.

unit cell
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In Section5.3we focus on an orbital operatorΠ which behaves quite contrastingly to t
spin under time reversal and spatial inversion, i.e.,

(55)Π(x,p) = −Π(−x,−p),

(56)Π(x,p) = Π∗(x,p).

In contrast to the spin operatorS, the orbital operatorΠ reverses its sign under spat
inversion, while invariant under time reversal. Accordingly, we dub this orbital ope
as aparity operator.14 Various transformation properties of the operatorsI = Sα,Π are
summarized inTable 1.

The spin/orbital current associated with an operatorI was introduced in Eqs.(51), (52).
We calculate in Sections5.2 and 5.3those spin/parity currents carried by the ground st
In order to make later discussions clearer and physically more appealing, we kee
their matrix elements in the restricted subspaceN spanned byN -fold degenerate bands;
m ∈ N andl /∈ N , then

(57)
〈
φm(k)

∣∣Sα

∣∣φl(k)
〉 = 0,

(58)
〈
φm(k)

∣∣Π(x,p)
∣∣φl(k)

〉 = 0.

As will be seen in Sections5.2 and 5.3, these approximations make the following d
cussions considerably simpler, i.e., not only a charge current but also spin/parity cu
become related simply to the non-Abelian field strength,Fkµkν andFkµt .

5.2. Fkµkν induces Hall type currents: AHE and spin Hall effect

The field strengthFkµkν describes various kinds of spontaneous Hall currents carrie
the ground state. In order to demonstrate it we expose our system under a uniform
field E; we consider below the following Hamiltonian,

(59)H
(
p,x, β(x, t)

) = H0(p,x) + e

D∑
µ=1

Eµxµ.

We see below that the Hall-type current can be expressed essentially as a trace ofIFkµkν

in theN -fold degenerate pseudospin space. The cancellation or the survival of such
type topological current is determined by its transformation properties under time re
(T ) of the system. In systems with brokenT symmetry a finite charge/mass Hall curre
generally appear. In two spatial dimensionD = 2, this situation is often described in term
of Chern–Simons gauge field, accounting for the quantized Hall conductance[35], as well
as fractional charge and statistics[36]. Chern–Simons terms also appear in electric
neutral systems[37]. Quantization of spin Hall conductance in unconventional superfl
has also been studied in this context[38].

14 This orbital operator is different from the angular momentum operator,ω = x × p, which we might also cal

an orbital operator.ω reverses its sign under time reversal, while remains invariant under spatial inversion.
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5.2.1. Charge Hall current
Let us first see that the trace of the non-Abelian field strengthFkµkν describes a sponta

neous charge Hall conductivity, i.e., an anomalous Hall conductivity[6,23–25]. In terms of
Eqs.(51), (52), we are considering the case ofI = 1. Applying the EOM, Eqs.(42), (43),
to the present case, we consider a Bloch electron, in thej th pseudospin state15 and with a
crystal momentum̄k. TheSU(N) gauge invariant EOM for this electron under a unifo
electric fieldE now reads,

(60)
dx̄

(j)
µ

dt
= ∂εloc(k̄)

∂k̄µ

−
D∑

ν=1

z(j)†Fkµkν (k̄)z(j) dk̄ν

dt
,

(61)
dk̄µ

dt
= −eEµ.

When the crystal momentum̄k is located below the Fermi surface, all those pseudo
states are completely occupied and contribute to the charge current. In order to ca
the charge Hall current, we need

−e

N∑
j=1

dx̄
(j)
µ

dt
= −Ne

∂εloc(k̄)

∂k̄µ

− e2
N∑

j=1

z(j)†Fkµkν (k̄)z(j)Eν

(62)= −Ne
∂εloc(k̄)

∂k̄µ

− e2 Tr
[
Fkµkν (k̄)

]
Eν.

Then, by integrating these contributions over filledk̄ points, we obtain the total curre
carried by all the electrons below the Fermi energyεF,

(63)
(
J Hall
C

)
µ

= −e2
D∑

ν=1

∫
εloc(k̄)<εF

dk̄
(2π)D

Tr
[
Fkµkν (k̄)

]
Eν.

Here we assumed for the sake of simplicity that the nonperturbed HamiltonianH0(p,x)

is also invariant under spatial inversion (I ). As far as the Hall type current is concerne
however, thisI symmetry plays only a minor role. Eq.(63) takes indeed the form of
Hall type current reflecting the antisymmetry ofFkµkν : Fkµkν = −Fkνkµ . The first term of
Eq.(62)did not contribute to Eq.(63)due to a cancellation associated with theI symmetry.
On the contrary, Eq.(63) remains finite irrespective of theI -invariance ofH0.

Unfortunately, the charge Hall current obtained in Eq.(63) vanishes whenever the sy
tem is T -invariant. Let us see this point more explicitly. We consider an unpertu
HamiltonianH0(x,p) which is invariant underT . The T -invariance relates itsN -fold
degenerate Bloch functions atk with those at−k up to a certainSU(N) gauge transforma

15 The j th eigenstate is a linear combination of different pseudospin statesm = 1, . . . ,N , i.e.,
∑N

m=1 z
(j)
m ×
|φm(k̄)〉. These eigenstates are chosen to be orthogonal to each other:z(i)†z(j) = δij for i, j = 1, . . . ,N .
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(64)
∑

b=↑,↓
[iσy]ab

〈
x, b

∣∣ui(−k)
〉∗ =

N∑
j=1

〈
x, a

∣∣uj (k)
〉
gji(k).

In the language of field strength, this reduces to,

(65)Fkµkν (−k)t = −g−1Fkµkν (k)g,

where the superscriptt represents a transposed matrix, i.e.,(F t )mn = (F)nm. One can
verify this using Eqs.(6), (7), (64). Consequently, the charge current carried by a Bl
electron atk cancels with that of−k electron, i.e.,

(66)
D∑

ν=1

Tr
[
Fkµkν (k)

]
Eν = −

D∑
ν=1

Tr
[
Fkµkν (−k)

]
Eν.

Eqs.(63), (66)indicate the absence of spontaneous Hall current inT -invariant systems.

5.2.2. Spin Hall current
We are thus led to investigate thespin current, expecting that the spin Hall curre

remains finite even inT -invariant systems[8–12]. The underlying idea is simply that suc
a sign change as seen in Eq.(66) may be compensated by that of spin operator un
the operation of time reversal. The spin current has been defined in Eq.(51), in a more
general context for an arbitrary internal degree of freedomI. Let us first observe that th
T -invariance ofH0(x,p) is instrumental for this compensation. The total spin carried
the Bloch electrons atk has the same absolute value andopposite signof that of the Bloch
electrons at−k,16

(68)Tr
[〈Sα〉(k)

] = −Tr
[〈Sα〉(−k)

]
,

where〈Sα〉(k) is aN × N matrix, whose(m,n)-components are given by

〈Sα〉mn(k) = 〈
φm(k)

∣∣Sα

∣∣φn(k)
〉

(69)= (2π)D

Vcell

∫
unit cell

dx
∑

a,b=↑,↓

〈
um(k)

∣∣x, a
〉1
2
(σα)ab

〈
x, b

∣∣un(k)
〉
.

Let us now consider the spin Hall current defined as(51), (52) with I beingI = Sα , the
usual spin operator. In order to evaluate aspinHall current, the EOM(60), (61) used for
the calculation ofchargeHall current are no longer sufficient. We need instead to de

16 To be more specific,T -invariance relates the matrix ofSα at k and at−k through aSU(N) gauge transfor-
mationg,

(67)〈Sα〉(−k)t = −g−1〈Sα〉(k)g.
Eq.(67) can be verified explicitly using Eq.(64).
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EOM for an observable,

(70)OS
µα = Oµ(Sα) = 1

2
(Sαxµ + xµSα).

Following the same type of procedure as the derivation of Eqs.(60), (61), we perform,
in particular, the decomposition(32). As was also the case in Eqs.(60), (61), the second
contribution to(32), i.e.,Ω(2)

O vanishes in the present case.17 The EOM reads,

dŌS
µα

dt
= i

N∑
m,n=1

∫
dkdk′ a∗

m(k, t)
[〈H 〉, 〈OS

µα

〉]
mn

(k,k′)an(k′, t)

(71)= i

N∑
m,n=1

∫
dka∗

m

[
〈H0〉 + e

D∑
µ=1

Eµ〈xµ〉, 〈OS
µα

〉]
mn

an.

The assumption(57)allows us to rewrite Eq.(71)as

dŌS
µα

dt
=

N∑
m,n=1

∫
dkρ(k)z∗

m(k, t)

[
〈Sα〉mn(k)

∂εloc(k̄)

∂kν

(72)+ e

2

D∑
ν=1

{(〈Sα〉(k)Fkµkν (k)
)
mn

Eν + h.c.
}]

zn(k, t).

The details of the derivation of Eq.(72) is given inAppendix C. We then apply the pre
scription(17), replacingk in the integrand by its mean valuēk. The contribution to the
spin Hall current by an electron occupying thej th pseudospin state atk̄ is, therefore,

(73)

dŌS(j)
µα

dt
= z(j)†〈Sα〉(k̄)z(j) ∂εloc(k̄)

∂k̄µ

+ e

2

D∑
ν=1

{
z(j)†〈Sα〉(k̄)Fkµkν (k̄)z(j) + c.c.

}
Eν.

Finally we take the summation overN pseudospin states and over filledk̄ points to find,

(
J Hall
S

)
µα

=
∫

εloc(k̄)<εF

dk̄
(2π)D

N∑
j=1

dŌS(j)
µα

dt

(74)= e

D∑
ν=1

∫
εloc(k̄)<εF

dk̄
(2π)D

Tr
[〈Sα〉(k̄)Fkµkν (k̄)

]
Eν.

As was the case in Eq.(63), we also assumed in Eq.(74) thatH0 is invariant underI , so
that the first term of Eq.(73)should not appear in Eq.(74), i.e.,

(75)
∫

εloc(k̄)<εF

dk̄
(2π)D

Tr
[〈Sα〉(k)

]∂εloc(k̄)

∂k̄ν

= 0.

17 As long as the electric fieldE in Eq. (59) is uniform, the local Bloch function defined in Eq.(11) has no
dependence on̄x andt . As a result,Ω(2)
O vanishes.
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Contrary to thisnormalpart, the spin Hall current associated with the anomalous velo
given by Eq.(74), has a possibility to be finite irrespective of theI andT symmetries.
When the system is invariant under eitherT or I ,18 the spin current carried by a Bloc
electron atk and that of−k give the same contribution;

(78)Tr
[〈Sα〉(k)Fkµkν (k)

] = Tr
[〈Sα〉(−k)Fkµkν (−k)

]
.

UnderT symmetry Eq.(78) is a consequence of Eqs.(65), (67). Eqs.(74), (78)confirm
that our expectation that the spin Hall current is robust againstT symmetry was indeed th
case. A set of cancellation rules for the Hall type currents are established inTable 2.

5.3. Fkµt induces a polarization current: parity polarization current and quantum spi
pump

We have seen in the previous section thatFkµkν is related to Hall type currents asso
ated with the internal degrees of freedom such as charge and spin, by applying a u
electric field to the system. Here we argue thatFkµt describes various kinds ofpolariza-
tion current. More specifically, we consider a situation where a band insulator is su
to a time-dependent perturbation whichdoes notbreak the periodicity of the underlyin
crystal, i.e., we consider a Hamiltonian,

(79)H
(
x,p;β(t)

) = H
(
x + a,p;β(t)

)
.

Since the perturbationβ(t) does not depend onx, thelocal Hamiltonian defined in Eq.(11)
reduces simply to

Hloc(x,p, t) = H
(
x,p;β(t)

)
.

Depending on the perturbationβ(t), the ground state wave function of the local Ham
tonian,Hloc(x,p, t) also evolves temporally. Since an electronic wave function for
ground state describes spatial distributions of charge, spin and orbital, its evolution i
eral induces various kinds of currents in the system. When the system is isolated fr
external circuit, an induced current accumulates an extra charge (or spin, orbital) o
side of the system, which results in a spatial polarization of charge, spin and orbita[39].
Accordingly, this type of current associated with such internal degrees of freedom is
called apolarizationcurrent. In the following, we describe the physics of polarization
rent using the language of non-Abelian gauge field, in particular, that ofFkµt . One of the
advantages of taking such a viewpoint is that the role of symmetry becomes trans
which we summarized as a set ofcancellation rulesin Table 2.

18 In theI -invariant case, instead of Eq.(64), Eq.(84)holds, i.e., theI -invariance ofH0 relates〈−x, a|ui(−k)〉
with 〈x, τ |uj (k)〉 up to aSU(N) gauge degree of freedomh. This reduces in terms of spin and field strength

(76)〈Sα〉(−k) = h−1〈Sα〉(k)h,

(77)Fkµkν (−k) = h−1Fkµkν (k)h.
Eq.(76) justifies(75), whereas multiplying Eqs.(76) and (77), one finds immediately Eq.(78).
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5.3.1. Charge polarization current
Let us first consider achargepolarization current. In the case of time-dependent pe

bation(79), the EOM analogous to Eqs.(60), (61), are found to be

(80)
dx̄

(j)
µ

dt
= ∂εloc(k)

∂k̄µ

− z(j)†Fkµt (k̄, t)z(j),

(81)
dk̄

(j)
µ

dt
= 0,

wherej = 1, . . . ,N . Collecting contributions from allN pseudospin states and from
filled k̄ points, one can calculate the charge current carried by the ground state as

(82)
(
Jpol
C

)
µ

= −e

∫
BZ

dk̄
(2π)D

N∑
j=1

dx̄
(j)
µ

dt
= e

∫
BZ

dk̄
(2π)D

Tr
[
Fkµt (k̄, t)

]
,

where thek̄-integral was performed over the whole Brillouin zone (BZ). Eq.(82) is anal-
ogous to Eq.(63), which we found for the charge Hall current. We can see that the
of different types of reciprocal field strength, i.e.,Fkµt andFkµkν are related to differen
types of physical currents, i.e., polarization and Hall type currents.

We have seen in the previous section that no chargeHall current flows whenever th
system is invariant under time reversalT . In contrast, we are going to see below th
the chargepolarization current vanishes whenever the system is invariant under sp
inversionI ,19

(83)Hloc(x,p, t) = Hloc(−x,−p, t).

In this case, itsN -fold degenerate Bloch functions atk is related to those at−k up to a
certainSU(N) gauge transformationh(k, t),

(84)
〈−x, a

∣∣ui(−k, t)
〉 = N∑

j=1

〈
x, a

∣∣uj (k, t)
〉
hji(k, t).

Since the field strengthFkµt is related through Eqs.(6), (7) to those wave functions
Eq.(84) reduces to the following identity,

(85)Fkµt (−k, t) = −h−1Fkµt (k, t)h.

Consequently,

(86)Tr
[
Fkµt (−k, t)

] = −Tr
[
Fkµt (k, t)

]
.

Eqs.(82) and (86)indicate that thechargepolarization current always vanishes inI -in-
variant systems.
19 I.e., the underlying crystal structure has centro-symmetric points.
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5.3.2. Parity polarization current
We have already encountered a similar situation in the previous section. Under th

reversalT , Fkµkν (k) is transformed to−(Fkµkν (−k))t up to aSU(N) gauge degree o
freedom, as seen in Eq.(65). As a result, thechargeHall current vanished inT -invariant
systems. On the other hand, aspinHall current was robust againstT -invariance. The reaso
was that not onlyFkµkν but also the spin operator are odd under the time-reversal, as
respectively in Eqs.(65) and (67).

Following the same type of logic, we can expect that anorbital polarization curren
may remain finite irrespective of theI -invariance ofHloc, as far as the associated orbi
operatorΠ(x,p) changes its sign under the spatial inversionI .20 Accordingly we dub this
type of orbital current aparity polarization current.

Expecting that the above analogy is indeed a sensible one, let us further analy
parity polarization current carried by the ground state. Since we have defined this
current as Eqs.(51), (52), we have to consider an EOM for

(87)OΠ
µ = Oµ

(
Π(x,p)

) = 1

2
(Πxµ + xµΠ).

We derive their EOM in terms of the decomposition(32). Our local Hamiltonian is time
dependent, and so is its local Bloch function. Therefore,Ω

(2)

OΠ
µ

appearing in Eq.(32)

remains finite in general:

dŌΠ
µ

dt
= Ω

(1)

OΠ
µ

+ Ω
(2)

OΠ
µ

(88)= i

N∑
m,n=1

∫
dkdk′ a∗

m(k, t)
[〈Hloc〉 − i∇t ,

〈
OΠ

µ

〉]
mn

(k,k′)an(k′, t).

This equation is analogous to Eq.(71). The covariant derivative∇kµ = 〈xµ〉 in Eq. (71)
was replaced in Eq.(88)by another covariant derivative w.r.t. time, i.e.,∇t :

(89)(i∇t )mn = ∂

∂t
δmn − i(At )mn.

Let us further develop the analogy between the two cases, i.e., we rewrite Eq.(88) in the
following way, precisely as we rewrote(71) as(72). The details of the derivation is give
in Appendix D, which is in parallel withAppendix C, and the result is

dŌΠ
µ

dt
=

N∑
m,n=1

∫
dkρ(k)z∗

m(k, t)〈Π〉mn(k)
∂εloc(k)

∂kµ

zn(k, t)

(90)− 1

2
z∗
m(k, t)

(〈Π〉(k)Fkµt (k) + h.c.
)
mn

zn(k, t).
20 See Eq.(55).
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Following the prescription(17), we see that the parity polarization current carried bk̄
Bloch electron occupying thej th pseudospin state is given by,

(91)
dOΠ(j)

µ

dt
= z(j)†〈Π〉(k̄)z(j) ∂εloc(k̄)

∂k̄µ

− (
z(j)†〈Π〉(k̄)Fkµt (k̄)z(j) + c.c.

)
.

After taking its summation overN pseudospin states and over filledk̄ points, we finally
obtain a parity polarization current carried by the ground state,

(92)
(
Jpol
O

)
µ

=
∫

BZ

dk̄
(2π)D

N∑
j=1

dŌΠ(j)
µ

dt
= −

∫
BZ

dk̄
(2π)D

Tr
[〈Π〉(k̄)Fkµt (k̄)

]
.

The first term of Eq.(91) did not contribute to Eq.(92) due to a cancellation associat
with theT -invariance,21

(95)
∫

BZ

dk̄
(2π)D

Tr
[〈Π〉(k̄)

]∂εloc(k̄)

∂k̄µ

= 0.

On the contrary, the Berry phase contribution, i.e., Eq.(92) turns to be quite robust again
both I and T symmetries. In particular, in theI -invariant case,〈Π〉(k) is identical to
−〈Π〉(−k) up to theSU(N) gauge transformationh,

(96)〈Π〉(−k) = −h−1〈Π〉(k)h.

This can be shown explicitly using Eqs.(55), (56), (84), (53). Eqs.(85), (96)indicate

(97)Tr
[〈Π〉(k)Fkµt (k)

] = Tr
[〈Π〉(−k)Fkµt (−k)

]
.

Eq. (97) holds also true in theT invariant case, as is clear from Eqs.(93), (94). Eqs.(92),
(97) confirm our hypotheses that theparity polarization current is indeed robust againsI

symmetry.

5.3.3. Quantum spin pump
Another possible direction to be explored is to study how to induce a spin polariz

current by breaking bothT -invariance andI -invariance. This scenario can be implemen
[15] in a certain kind of quantum spin chains such as Cu-bensoate and Yb4As3. The ground
state of these quantum magnets is known to be quantum critical point (QCP), wh
interpreted as a Dirac monopole, i.e., a source of theU(1) field strengthFkt . When this
quantum system is drivenaroundthis QCP by applying an electric fieldE and/or magnetic

21 T -invariance relatesN -fold degenerate Bloch functions atk with the ones at−k up to aSU(N) gauge
degree of freedomg as Eq.(64). This implies,

(93)
(〈Π〉(−k)

)t = g−1〈Π〉(k)g,

(94)
(
Fkµt (−k)

)t = g−1Fkµt (k)g.
Eq.(93) justifies(95), whereas multiplying Eq.(93) with Eq.(94) one finds immediately(97).
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field B, a spin polarization current can be induced. The electro-magnetic fields brea
the I -invariance andT -invariance. They also induce a spin gap and realize a qua
critical point at the origin ofE–B plane. When the system goes adiabatically around
origin, a quantized number of spins will be transported from one edge to the other th
the system. This quantized value is a physical manifestation of the first Chern n
associated with the QCP.

5.4. Fkµxµ associated with the spatial inhomogeneity

Contrary toFkµkν andFkµt , the reciprocal field strengthFkµxν does not seem to be re
lated directly to a physical observable such as Hall type currents and polarization cu
However, when the system contains spatial inhomogeneity such as lattice defectsFkµxν

appears and plays an important role in the dynamics of Bloch electrons around t
fects[7]. Another possible application ofFkµxν is the electron transport properties arou
a magnetic domain wall, where the spatial modulation of ferromagnetic moments i
Fkµxν , and naturally influences the EOM for the electron wave packet through this
curvature.

6. Conclusions

We have derived and analyzed the semiclassical EOM for a wave packet of Bloch
trons, under perturbations slowly varying in space and in time. Their interpretation in
of non-Abelian gauge field in the reciprocal parameter space was the central issue
paper. The same type of EOM has been previously derived for the Abelian, i.e.,U(1) case,
by using either (i) time-dependent variational principle[7] or (ii) path-integral method us
ing Wannier basis[30]. We have generalized such EOM to a non-Abelian case by u
only the most fundamental principles of quantum mechanics.

The advantage of our formalism was that

(1) it wasasymptotically exactin the framework of linear response theory, as a re
of systematic expansion w.r.t. the perturbationβ or x − x̄,

(2) it revealed that there are different types of gauge field of different physical ori
(3) it was useful for developing symmetry analyses on various types of Berry p

transport.

The first point refers to Eq.(19)and all the related analyses developed in Sections3 and 4.
The relevance of our results in relation to other approaches was further discussed
tion 4.4. As for the second point, two different sources of gauge field have been rev
i.e., (i) projection onto a subspace spanned byN Bloch bands; (ii) Bloch basis mov
ing in the course of time. The former is the origin ofFkµkν which is directly related to
spontaneous Hall currents of various degrees of freedom. The latter brings aboutFkµxµ

andFkµt , which plays an important role in the spatially and temporally inhomogen

system.
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Finally, concerning the last point in the above list, we have applied our formalism t
analyses on the spin and orbital transport phenomena with the help of Boltzmann
port theory. The role of time reversal and space inversion symmetries in the appear
finite Hall/polarization currents has been extensively studied. Thecancellation rulesare
summarized inTables 1 and 2. The concept ofparity polarization current has also be
introduced, which may concretize Berry phase engineering in the context oforbital trans-
port.

We leave for a future study further investigations on their application to the do
wall physics and that of quantum pumping. In conclusion, we believe that our analys
non-Abelian gauge field will see in the near future a possible application in the cont
Berry phase engineering.

Note added

After completion of this work, we were informed of a related effort by D. Culcer, Y.
and Q. Niu[40].
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Appendix A. Matrix element 〈H 〉mn(k) and �Ω
(1)
xµ

Matrix elements of the linearized Hamiltonian, i.e., Eqs.(35), (36), have been exten
sively used in Section4.3. Let us recall those equations together with the matrix elem
of noncommutative coordinates, i.e., Eqs.(22), (26), (24), (27). Our purpose here is t
substitute the expression(36) into

(A.1)Ω(1)
xµ

= i

N∑
m,n=1

∫
dka∗

m(k)
[〈H 〉, 〈xµ〉]

mn
(k)an(k),

an expression analogous to the second line of Eq.(32), and to rewriteΩ(1)
xµ

in terms of the
field strength[Fkµkν ]mn.

The first term of Eq.(36), i.e.,εeff(k, x̄, t) gives a standard velocity term when inser
into Eq.(A.1). Since[Fkµkν ]mn is related to the commutator,[∇kµ,∇kν ]mn or equivalently,

[〈xµ〉, 〈xν〉]mn(k), one can easily imagine that the last two terms give in Eq.(36)give when
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d

n
back to
inserted into Eq.(A.1) a contribution related to[Fkµkν ]mn. One can indeed verify

−
[

1

2

(
∂εloc

∂x̄ν

∇kν + ∇kν

∂εloc

∂x̄ν

)
, i∇kµ

]
mn

= − i

2

{
∂εloc

∂x̄ν

[∇kν ,∇kµ]mn +
N∑

l=1

[
∂εloc

∂x̄ν

,∇kµ

]
ml

[∇kν ]ln

+
N∑

l=1

[∇kν ]ml

[
∂εloc

∂x̄ν

,∇kµ

]
ln

+ [∇kν ,∇kµ ]mn

∂εloc

∂x̄ν

}

(A.2)= −∂εloc

∂x̄ν

Fkνkµ + i

2

(
∂2εloc

∂kµ∂x̄ν

[∇kν ]mn + [∇kν ]mn

∂2εloc

∂kµ∂x̄ν

)
.

The second term of Eq.(36)gives, when inserted into the commutator,

(A.3)

[
∂εloc(k, x̄, t)

∂x̄ν

x̄ν,∇kµ

]
mn

= − ∂2εloc

∂kµ∂x̄ν

x̄ν .

Collecting the contribution(A.3) and the last two terms of Eq.(A.2), i.e., terms not relate
to Fkνkµ , one defines�Ω

(1)
xµ

introduced in Eq.(37):

(A.4)�Ω(1)
xµ

= −
∑
ν,m,n

∫
dk

∂2εloc

∂kµ∂x̄ν

ρ(k, t)
{
x̄ν(t) − iz∗

m(k, t)[∇kν ]zn(k, t)
}
.

This term vanishes afterk-integration with the help of prescription given in Eq.(17).

Appendix B. Derivation of the EOM for z̄(t)

We demonstrate here the derivation of EOM forz̄(t), i.e., EOM describing the motio
of the internal pseudospin degree of freedom. For that purpose we once have to go
Eq.(29). After multiplying it with a weight

√
ρ(k, t), we integrate it over all thek-points,

to find,∫
dk

{
1

2

∂

∂t

(
ρ(k, t)

)
z(k, t) + ρ

∂z
∂t

}

= i

∫
dkρ(k, t)

{
−εeff + x̄µ

∂εloc

∂x̄µ

− ∂εloc

∂x̄µ

Akµ + dx̄µ

dt
Ax̄µ +At

}
z

(B.1)+ 1

2

∫
dkρ(k, t)

∂εloc

∂x̄µ

∂z
∂kµ

,

whereεeff = εloc1 + �ε as given in Eq.(37). In Eq. (B.1), repeatedµ-indices should be
summed overµ = 1, . . . ,D. In order to obtain Eq.(B.1), we also used,

(B.2)
∫

dk
{√

ρ
∂εloc(k̄) ∂

(
√

ρz) + 1
ρz

∂εloc
}

= 1
∫

dkρ
∂εloc ∂z

.

∂x̄µ ∂kµ 2 ∂kµ∂x̄µ 2 ∂x̄µ ∂kµ
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We now substitute,

∂

∂t

(
ρ(k, t)

) =
D∑

µ=1

∂

∂kµ

{
ρ(k, t)

∂εloc(k, x̄, t)

∂x̄µ

}
,

into Eq.(B.1), then perform a partial integral w.r.t.kµ. The result is,∫
dkρ(k, t)

{
−∂εloc

∂x̄µ

∂z
∂kµ

+ ∂z
∂t

}

(B.3)= i

∫
dkρ

{
−εeff + x̄µ

∂εloc

∂x̄µ

− ∂εloc

∂x̄µ

Akµ + dx̄µ

dt
Ax̄µ +At

}
z.

Finally, in order to rewrite Eq.(B.3) in the form of Eq.(43) and complete its derivation
we adopt the prescription(17).

Appendix C. EOM for OS
µα and spin Hall current

Our purpose here is to rewrite an EOM for Eq.(71) into its final form, i.e., Eq.(72), so
that we can express the spin Hall current as the following trace in the pseudospin
Tr[〈Sα〉(k̄)Fk̄µk̄ν

(k̄)]Eν .
Let us first recall the assumption we made in Eq.(57). This assumption allows us t

factorize〈OS
µα〉mn(k,k′) in Eq.(71) into a product of〈Sα〉 and〈xµ〉;

〈Sαxµ + xµSα〉mn =
N∑

l=1

(〈Sα〉ml〈xµ〉ln + 〈xµ〉ml〈Sα〉ln
)
.

Correspondingly, the commutator appearing in Eq.(71) can be decoupled into the follow
ing two types of commutators,

(C.1)
[〈H 〉, 〈OS

µα

〉] = 1

2

[〈H 〉, 〈Sα〉]〈xµ〉 + 1

2
〈Sα〉[〈H 〉, 〈xµ〉] − h.c.

The first term together with its Hermitian conjugate conceives a commutator betwee〈H 〉
and〈Sα〉, which constitutes the EOM for the spin:dSα

dt
. Firstly, we show that this commu

tator vanishes. Since〈Sα〉 is diagonal ink-space, it clearly commutes with〈H0〉;
(C.2)

[〈H0〉, 〈Sα〉]
mn

(k′,k) = δ(k′ − k)
[
εloc(k), 〈Sα〉(k)

]
mn

= 0.

Therefore, the commutator between〈H 〉 and〈Sα〉 becomes proportional to the covaria
derivative of〈Sα〉(k) w.r.t. kµ, i.e.,

[〈H 〉, 〈Sα〉]
mn

(k′,k) = e

D∑
µ=1

Eµ

[〈xµ〉, 〈Sα〉]
mn

(k′,k)

(C.3)= ieδ(k′ − k)

D∑
Eµ

[∇kµ, 〈Sα〉(k)
]
mn

.

µ=1
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Because the spin operator itself does not depend on the crystal momentum, the
derivative of〈Sα〉(k) w.r.t. kµ reduces to the commutator betweeniAkµ and〈Sα〉(k), i.e.,

∂

∂kµ

〈Sα〉mn(k) =
〈
∂um(k)

∂kµ

∣∣∣∣Sα

∣∣un(k)
〉 + 〈

um(k)
∣∣Sα

∣∣∣∣∂un(k)

∂kµ

〉

(C.4)=
N∑

l=1

{〈
∂um

∂kµ

∣∣∣∣ul

〉
〈ul |Sα|un〉 + 〈um|Sα|ul〉

〈
ul

∣∣∣∣∂un

∂kµ

〉}
.

In the second linek-dependence is not written explicitly. We used Eq.(57) between the
two lines. Then the covariant derivative of〈Sα〉(k) w.r.t. kµ appearing in Eq.(C.3) also
vanishes,

(C.5)
[∇kµ, 〈Sα〉(k)

]
mn

= ∂

∂kµ

(〈Sα〉mn(k)
) − [

iAkµ, 〈Sα〉(k)
]
mn

= 0.

Consequently, the first term and its Hermitian conjugate in Eq.(C.1) are indeed zero. O
the other hand, the second term in Eq.(C.1) contains the commutator between〈H 〉 and
〈xν〉, which describes the EOM forxν now. This term gives rise to a field strengthFkµkν

through the commutator between covariant derivatives w.r.t. different components
crystal momentum, i.e.,[∇kµ,∇kν ]. Namely,

[〈H 〉, 〈xν〉
] =

[
〈H0〉 + e

D∑
µ=1

Eµ〈xµ〉, 〈xν〉
]
(k′,k)

= δ(k′ − k)

[
εloc(k)1 + e

D∑
µ=1

Eµi∇kµ, i∇kν

]

(C.6)= −iδ(k′ − k)

{
∂εloc

∂kν

1 − e

D∑
µ=1

Eµ

(
Fkµkν (k)

)}
.

Finally, substituting Eq.(C.1) together with Eqs.(C.3), (C.5) and (C.6)into Eq.(71), one
finds Eq.(72).

Appendix D. EOM for OΠ
µ and parity polarization current

In parallel withAppendix C, we rewrite below Eq.(88) into its final form, i.e., Eq.(90).
Let first recall the assumption(58), which says that the parity operatorΠ has no matrix
element outside theN -fold degenerate band. This implies that〈OΠ

µ 〉 can be factorized into
a product of twoN by N matrices, or〈Πxµ〉 = 〈Π〉〈xµ〉. Thanks to this factorization, th
commutator in Eq.(88)can be decomposed into two types of commutators as[〈Hloc〉 − i∇t ,

〈
OΠ

µ

〉]
= 1

2

([〈Hloc〉 − i∇t , 〈Π〉]〈xµ〉 + h.c.
) + 1

2

(〈Π〉[〈Hloc〉 − i∇t , 〈xµ〉] + h.c.
)
.

(D.1)
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ishes,

r w.r.t.
On the r.h.s., the first term is a commutator between〈Hloc〉 − i∇t and〈Π〉, which consti-
tutes the EOM of the parity under time-dependent perturbations:dΠ/dt . Since the parity
operator itself is independent of time, we can prove that this commutator indeed van
in the same way as we did in Eq.(C.4),

(D.2)
[〈Hloc〉 − i∇t , 〈Π〉] = 0.

On the other hand, the second line of Eq.(D.1) is a commutator between〈H0〉 − i∇t

and〈xµ〉, which describes the EOM forxµ. This commutator gives rise toFkν t through a
commutation relation between two covariant derivatives, one w.r.t. time and the othe
the momentum,[i∇kν , i∇t ] = iFkν t . Thus the second line of Eq.(D.1) may be rewritten as[〈Hloc〉 − i∇t , 〈xµ〉]

mn
(k′,k) = iδ(k′ − k)

[
εloc(k) − i∇t , i∇kµ

]
mn

(D.3)= −iδ(k′ − k)

{
∂εloc(k)

∂kν

δmn − (Fkµt )mn

}
.

Substituting Eq.(D.1) together with Eqs.(D.2), (D.3)into Eq.(88), one finds Eq.(90).
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