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Berry Phase Correction to Electron Density of States in Solids
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Liouville’s theorem on the conservation of phase-space volume is violated by Berry phase in the
semiclassical dynamics of Bloch electrons. This leads to a modification of the phase-space density of
states, whose significance is discussed in a number of examples: field modification of the Fermi-sea
volume, connection to the anomalous Hall effect, and a general formula for orbital magnetization. The
effective quantum mechanics of Bloch electrons is also sketched, where the modified density of states
plays an essential role.
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Semiclassical dynamics of Bloch electrons in external
fields has provided a powerful theoretical framework to
account for various properties of metals, semiconductors,
and insulators [1]. In recent years, it has become increas-
ingly clear that essential modification of the semiclassical
dynamics is necessary for a proper understanding of a
number of phenomena. It was known earlier that global
geometric phase effects [2,3] on Bloch states are very
important for insulators in our understanding of the quan-
tum Hall effect [4], quantized adiabatic pumps [5], and
electric polarization [6,7]. It was shown [8,9] later that
geometric phase also modifies the local dynamics of
Bloch electrons and thus affects the transport properties
of metals and semiconductors. Recently these ideas have
been successfully applied to the anomalous Hall effect in
ferromagnetic semiconductors and metals [10–13], as well
as spin transport [14,15].

In this Letter, we reveal a general property of the Berry
phase modified semiclassical dynamics which has been
overlooked so far: the violation of Liouville’s theorem
for the conservation of phase-space volume. Liouville’s
theorem was originally established for standard classical
Hamiltonian dynamics, and its importance cannot be over-
emphasized as it serves as a foundation for classical sta-
tistical physics. The Berry phase makes, in general, the
equations of motion noncanonical [8,9,16–18], rendering
the violation of Liouville’s theorem. Nevertheless, we are
able to remedy the situation by modifying the density of
states in the phase space.

This modified phase-space density of states enters natu-
rally in the semiclassical expression for the expectation
value of physical quantities, and has profound effects on
equilibrium as well as transport properties. We demon-
strate this with several examples. First, we consider a
Fermi sea of electrons in a weak magnetic field, and
show that the Fermi-sea volume can be changed linearly
by the field. Second, we show how the Berry phase formula
for the intrinsic anomalous Hall conductivity may be de-
rived from equilibrium thermodynamics using the Středa
formula [19]. Third, we provide a general derivation of an
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orbital-magnetization formula which is convenient for
first-principles calculations.

In addition, we present an effective quantum mechanics
for Bloch electrons in solids by quantizing the semiclassi-
cal dynamics with the geometric phase. The density of
states enters in a nontrivial manner into the commutators
of the phase-space coordinates, and relates directly to the
minimal uncertainty volume in the phase space.

To begin with, we write down the semiclassical equa-
tions of motion for a Bloch electron in weak electric and
magnetic fields [9]
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1

@

@"n�k�
@k

� _k��n�k�; (1a)

@ _k � �eE�r� � e _r�B�r�; (1b)

where �n�k� is the Berry curvature of electronic Bloch
states defined by �n�k� � ihrkun�k�j � jrkun�k�i with
jun�k�i being the periodic part of Bloch waves in the nth
band; "n�k� is the band energy with a correction due to the
orbital magnetic moment [see Eq. (10) and above]. For
crystals with broken time-reversal symmetry (such as fer-
romagnetic materials) or spatial inversion symmetry (such
as GaAs), the Berry curvature �n�k� is nonzero.

To show the violation of Liouville’s theorem, we con-
sider the time evolution of a volume element �V � �r�k
in the phase space. The equation of motion for �V is given
by �1=�V�d�V=dt � rr � _r� rk � _k [20]. A straightfor-
ward but somewhat tedious calculation shows that the
right-hand side is equal to�d ln�1� eB ��=@�=dt, which
is a total time derivative. Therefore we can solve for the
time evolution of the volume element and obtain

�V � �V0=�1� eB ��n=@�: (2)

The fact that the Berry curvature is generally k dependent
(and the magnetic field can also depend on r) implies that
the phase-space volume element changes during time evo-
lution of the state variables �r; k�.

Nevertheless, we have a remedy to this breakdown of
Liouville’s theorem. Equation (2) shows that the volume
element is a local function of the state variables (through
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the magnetic field and the Berry curvature) and has nothing
to do with the history of time evolution. We can thus
introduce a modified density of states

Dn�r; k� � �2���d�1� eB ��n=@�; (3)

such that the number of states in the volume element,
Dn�r;k��V, remains constant in time, where d is the
spatial dimensionality of the system. The prefactor
�2���d is obtained by demanding that the density of states
Dn�r;k� reduces to the conventional form when the Berry
curvature vanishes. As will be shown later, this density of
states corresponds to the minimal quantum uncertainty
volume of the state variables. Therefore, it does serve as
the semiclassical measure for the number of quantum
states per unit volume in the phase space. Based on this
understanding, we write the classical phase-space proba-
bility density as

�n�r; k; t� � Dn�r;k�fn�r;k; t�; (4)

with fn�r; k; t� being the occupation number of the state
labeled by �r;k�. Probability conservation demands that
�n�r; k; t� satisfies the continuity equation in phase space.
On the other hand, our density of states satisfies dDn=dt �
��rr � _r� rk � _k�Dn. It then follows that the occupation
number introduced above has the desired property of being
invariant along the trajectory, i.e., dfn=dt � 0 [21].

We can thus write the real space density of a physical
observable Ô in the form [22]

�O�R� �
X
n

Z
dkDn�r; k�fn�r; k; t�hÔ��r̂� R�irkn (5)

where h� � �irkn denotes the expectation value in the wave-
packet state centered at �r; k� with the band index n. In the
spatially homogeneous case, it reduces to

�O �
X
n

Z
dkDn�k�fn�k�On�k�; (6)

where On�k� is the expectation value of Ô in a Bloch state.
For simpler notation, we will drop the band index n and
assume that the integral over k includes the sum over n.

We now discuss the magnitude of the correction term
eB ��=@ to the density of states in Eq. (3). The Berry
curvature for several materials has been calculated before
using the first-principles method [11,12]. Over large re-
gions of the Brillouin zone, its magnitude is on the order of
a2 with a being the lattice constant. Thus, eB ��=@�
eBa2=@ is the ratio of the magnetic flux through a unit cell
to the magnetic flux quantum, and can be 10�2 to 10�3 for
a magnetic field of 1 T. In the vicinity of some isolated
points, the Berry curvature can be several orders of mag-
nitude higher, leading to bigger effects for measurement. In
the following, we will present a number of applications of
our formula Eq. (6).

In our first example, we consider the quantity of electron
density and show that the Fermi-sea volume can be
changed linearly by a magnetic field when the Berry
13720
curvature is nonzero. Assuming zero temperature and us-
ing Eq. (3), we have the electron density as

ne �
Z � dk

�2��d

�
1�

eB ��
@

�
; (7)

where the upper limit means that the integral is over states
with energies below the chemical potential �. Noting that
the electron density is fixed by the background charge
density, we conclude that the Fermi volume must change
with the magnetic field. To first order, this change is given
by

�VF � �
Z �0

dk
eB ��
@

: (8)

We note that while Landau levels make the Fermi-sea
volume oscillate with the field, the effect described above
gives an overall shift on average. Such a shift has important
implications to those Fermi-surface related behaviors such
as transport properties. For instance, in metals, it can
induce a magnetoresistance linearly depending on the
magnetic field. On the other hand, in band insulators, the
k space is limited to the Brillouin zone. Electrons must
populate a higher band if �e=@�

R
BZ dkB �� is negative.

When this quantity is positive, holes must appear at the top
of the valence bands. Discontinuous behavior of physical
properties in a magnetic field is therefore expected for band
insulators with a nonzero integral of the Berry curvatures
(Chern numbers).

In our second example, we show a connection between
our phase-space density of states to the intrinsic anomalous
Hall effect, which is due to spin-orbit coupling in the band
structure of a ferromagnetic crystal. In the context of the
quantum Hall effect, Středa derived a formula relating the
Hall conductivity to the field derivative of the electron
density at a fixed chemical potential [19], �xy �
�e�@ne=@Bz��. There is a simple justification of this
relation by a thermodynamic argument by considering
the following adiabatic process in two dimensions. A
time dependent magnetic flux generates an electric field
with an emf around the boundary of some region; and the
Hall current leads to a net flow of electrons across the
boundary and thus a change of electron density inside. This
argument can be straightforwardly applied to the case of
anomalous Hall effect and to three dimensions. By taking
the derivative of the electron density (7) with respect to
B � Bẑ at fixed chemical potential, we find that

�xy � �
e2

@

Z � dk

�2��d
�z: (9)

This is an intrinsic effect because it is independent of
scattering, and thus differs from conventional skew scat-
tering and side jump mechanisms [10–13].

As a third example of application, we now derive a
semiclassical formula for orbital magnetization. In the
semiclassical picture, a Bloch electron is modeled by a
wave packet in a Bloch band, which is found to rotate about
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its center of mass in general, yielding an intrinsic magnetic
moment given by m�k� � �i�e=2@�hrkuj � 	Ĥ0�k� �

"0�k�
jrkui, where Ĥ0 is the Hamiltonian [23]. In the
presence of a weak magnetic field B, the electron band
structure energy "0�k� (which may already include Zeeman
energy from spin magnetization) acquires a correction term
from this intrinsic orbital moment [8,9], "�k� � "0�k� �
m�k� �B. For an equilibrium ensemble of electrons, the
total orbital magnetization can be found from the total
energy, which is given by Eq. (6) as,

E �
Z � dk

�2��d

�
1�

eB ��
@

��
"0�k� �m�k� � B

�
: (10)

Taking the differential of Ewith respect toB, we obtain the
magnetization at zero magnetic field to be

M �
Z �0 dk

�2��d

�
m�k� �

e�
@
	�0 � "0�k�


�

�
e

2@

Z �0 dk

�2��d
i
�
@u
@k

���������	2�0 � "0�k� � Ĥ0


��������@u@k
�
:

(11)

In the upper line of the above expression, the first term is
the contribution from the intrinsic orbital moment of each
Bloch electron, and the second term comes from the ex-
plicit field dependence of the density of states and the
resulting change in the Fermi volume in Eq. (8). We expect
this effect to be important in ferromagnetic materials with
strong spin-orbit coupling.

Gat and Avron obtained an equivalent result for the
special case of the Hofstadter model [24]. Our derivation
provides a more general formula that is applicable to other
systems. Following the discussions on band insulators in
our first example, there will be a discontinuity of the orbital
magnetization if the integral of the Berry curvature over
the Brillouin zone, or the anomalous Hall conductivity, is
nonzero and quantized. Depending on the direction of the
field, the chemical potential �0 in the above formula
should be taken at the top of the valence bands or the
bottom of the conduction bands. The size of the disconti-
nuity is given by the quantized anomalous Hall conductiv-
ity times Eg=e, where Eg is the energy gap. For insulators
with zero Chern numbers, the orbital magnetization can be
directly evaluated from Wannier functions, with results
consistent with our general formula [25]. Our general
formula can also be derived from a full quantum mechani-
cal linear response analysis [26].

The central result of this Letter, Eq. (3), can be extended
to the more general case when Berry curvature includes the
components of �

$kr as well as �
$kk and �

$rr [9]. In this case,
we introduce the Berry curvature in phase space,

�
$
� �

$ rr
�
$ rk

�
$kr

�
$kk

 !
; (12)
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where each block is a 3� 3 matrix; �
$ rk
� ���

$kr
�T . The

phase-space density of states then reads,

D � �2���d
������������������������
det��

$
� J
$
�

q
: (13)

with

J
$
�

0 I
$

� I
$

0

 !
:

In the special case of electromagnetic perturbations with
�
$kk
ab � �abc�c, �

$ rr
ab � ��e=@��abcBc and �

$kr
� 0, it re-

duces to (3). On the other hand, when either �
$kk or �

$ rr

vanishes, it has a simpler form

D � �2���d det� I
$
��
$ rk
�: (14)

This result has found application in the study of spin-force
induced charge-Hall effect [27].

Finally, we show how the density of states emerges
naturally in the effective quantum mechanics of Bloch
electrons. Although our system is not canonical, it can
nevertheless be quantized following a standard procedure
developed for nonholonomic systems with second class
constraints [28,29]. First, one redefines the Poisson bracket
ff; gg� � �@f=@�a�Mab�@g=@�b�, where �a are the com-
ponents of phase-space coordinates � � �r; k� and M

$
�

��
$
� J
$
��1. Our equations of motion (1) can then be

written as _�a � f�a; "g�, where the energy "��� plays the
role as the Hamiltonian function. Then, one promotes the
Poisson brackets into quantum commutators:

	�̂a; �̂b
 � iMab; (15)

where �̂a is the quantum operator corresponding to the
phase-space coordinates. It then follows that a phase-space
point acquires a minimal uncertainty volume given by [30]

min
�Y
a

��a
�
� 2�d	det��

$
� J
$
�
�1=2: (16)

This can be understood as the phase-space volume occu-
pied by a single quantum state, therefore Eq. (13), which is
proportional to the reciprocal of this volume, can naturally
be regarded as the semiclassical expression for the number
of quantum states per unit volume in the phase space.

Equation (15) presents the effective quantum mechanics
of Bloch electrons. As a demonstration for the validity of
the quantization scheme as well as the quantum effect of
the phase-space density of states, we consider a simple toy
model of a two-dimensional electron system with a con-
stant Berry curvature, subjected to a uniform magnetic
field. The commutators read,

	x̂; ŷ
 � i
�

1��e=@�B�
; 	k̂x; k̂y
 ��i

�e=@�B
1��e=@�B�

;

	x̂; k̂x
 � 	ŷ; k̂y
 � i
1

1��e=@�B�
: (17)
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In the absence of the Berry curvature, we reduce the
problem to a known case with the familiar nontrivial
commutator 	k̂x; k̂y
 � �i�e=@�B. In the absence of the B
field, we have the nontrivial commutator 	x̂; ŷ
 � i� dis-
cussed extensively in the literature on noncommutative
geometry. It is interesting to see that in the presence of
both fields, we do not just have a combination of these
nontrivial commutators. Instead, we have a nontrivial den-
sity of states which enters into all of the commutators.

Assuming "�k� � @2k2=2m, the system can be solved
algebraically to yield the energy spectrum and degeneracy.
We found that the spectrum consists of a set of Landau
levels with the renormalized cyclotron frequency !c �
!0
c=	1� �e=@�B�
, where !0

c � eB=m is the usual cyclo-
tron frequency [31]. At the same time, it is more important
to note that each Landau level still has the same degeneracy
of eB=h as in the absence of the Berry curvature. It is
known that this degeneracy is directly related to the quan-
tized Hall conductance e2=h for a filled Landau level [32].
Had the density of states not entered in the commutators,
the Landau level degeneracy would be modified, violating
the topological requirement that the Hall conductance for a
filled Landau level is quantized.

Before closing, we note that the phase-space density of
states also enters naturally in the alternative quantization
scheme with the Feynman path integral. The S matrix is
calculated by [28]

houtjSjini �
Z Y

t

	D���d�
 exp
�

i

@

Z
Ldt

�
: (18)

where L is the Lagrangian for our system [9],

L �
1

2
_�aJab�

b � "��� � _�aAa��� (19)

with Aa��� � ihu���jr�u���i being the phase-space
gauge potentials associated with the Berry curvature field
�
$

.
In summary, we have found a Berry phase correction to

the phase-space density of states for Bloch electrons. This
correction emerges naturally in both semiclassical and
quantum mechanics of Bloch electrons, and has profound
effects on the equilibrium and transport properties.
Because of the fundamental change introduced by this
correction, it could have important implications on other
aspects of condensed matter physics, such as the Fermi
liquid theory. For instance, in the presence of a magnetic
field, interaction between electrons can change the Fermi-
sea volume by modifying the Berry curvature and thus the
phase-space density of states.
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