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We derive the spin-wave dynamics in crystals from the time-dependent variational principle, w
involves Berry phase terms as well as the energy of frozen spin waves. The general formulat
based on the adiabatic and harmonic approximations. Formulas for ferromagnets and antiferrom
are derived in terms of Kohn-Sham wave functions, which are particularly suitable for practicalab initio
calculations. [S0031-9007(98)05490-8]
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In spite of the fact that when applied to itinerant elec
trons, the Heisenberg Hamiltonian is at best only a p
rametrized model, all calculations of spin-wave dispersi
curves have to this day been based on that venerable mo
[1]. This is exemplified in a recent monograph wher
Aharoni [2] chooses “to use the assumption of localize
magnetic moments on lattice sites, and the Heisenb
Hamiltonian, because it is the only way to include th
variation of the magnetization in space.” Contrary to th
widely held belief, in this Letter we derive spin-wave equa
tions of motion which in the harmonic and adiabatic lim
are exact everywhere between the localized moment a
jellium limits, and are universally applicable to ferromag
nets, antiferromagnets, and ferrimagnets. We then sh
how the quantities appearing in the equations of moti
can be exactly evaluated within density functional theo
[3], which is known to yield accurate values for the groun
state magnetization of Fe, Co, and Ni. Interestingly, th
formulas for the ferromagnetic spin-wave frequency, wh
written in terms of the frozen spin-wave energy, becom
identical in the jellium and localized limits.

General formulation.—Suppose we have a symmetr
broken ground statejc0l with a magnetization density
msrdêsrd ­ kc0jr̂srds jc0l, wheres is the Pauli matrix
vector andr̂srd is the density operator. The directionêsrd
(constant for a ferromagnet) may be a function of positio
in general, but we assume it has a periodicity commen
rate with the crystal lattice, whilejc0l has the periodicity
of the magnetic lattice defined bymsrdêsrd. With the exci-
tation of a spin wave, the magnetization density becom
msrd fêsrd 1 Ssrdg, where for a small amplitude ofSsrd
we can write the spin wave in the form

Ssrd ­ Re

(
eik?r

X
G

SGeiG?r

)
, (1)

where the sum is over the reciprocal lattice vectors of t
magnetic unit cell. Our task is to establish the equatio
of motion governing the time evolution of the spin-wav
excitations. When these equations are linearized for sm
amplitudes, we should be able to obtain the normal mod
and their frequency dispersions.
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Our derivation of the spin dynamics is based on th
adiabaticity assumption that the electronic wave functio
can always follow the instantaneous spin-wave configura
tion [4]. We first introduce a frozen spin-wave statejcl
defined as the lowest energy state with a given spin-wav
configurationmsrd fêsrd 1 Ssrdg ­ kcjr̂srds jcl. This
makesjcl a functional ofSsrd or a function of its Fourier
componentsSG. Then we demand thatSG should evolve
with time in such a way that the adiabatic wave function
eifstdjcfSGstdgl satisfies the time-dependent Schrödinge
equation for some phasefstd.

This requirement can be conveniently implemented b
employing the time-dependent variational principle tha
the action

R
L dt should be extremized by physical wave

functions, whereL ­ kCjih̄
≠

≠t jCl 2 kCjHjCl. When
we substitute the adiabatic wave function into this expres
sion, we obtain a Lagrangian for the variablesSG,

L ­ h̄
X
Gj

ÙS
j
Gkcj

i≠

≠S
j
G

jcl 2 E , (2)

where the dot onS
j
G indicates a time derivative, andE ­

kcjHjcl is the energy of the system for the given spin
configuration. The variableS

j
G is the real or imaginary

part of a vector component ofSG, andj is an index labeling
the six different possibilities. The phasefstd in the adia-
batic wave function only contributes a term of total time
derivative, which we have dropped from the Lagrangia
without any physical consequences [5]. The terms in th
sum are related to the Berry phase of the adiabatic wa
function, and their appearance is universal in adiabat
Lagrangians of slow variables [6].

The Euler-Lagrange equations for extremizing the ac
tion then governs the dynamics of these variables,

2
X
j0,G0

h̄V
jj0

GG0
ÙS

j0

G0 1
≠E

≠S
j
G

­ 0 , (3)

where theV matrix (the Berry curvature) is defined as

V
jj0

GG0 ­
≠

≠S
j
G

kcj
i≠

≠S
j0

G0

jcl 2
≠

≠S
j0

G0

kcj
i≠

≠S
j
G

jcl . (4)
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Consistent with our assumption of small amplitudes, w
make the harmonic approximation by linearizing the forc
≠Ey≠S

j
G, yieldingX

j0 ,G0

f2h̄V
jj0

GG0
ÙS

j0

G0 1 K
jj0

GG0 S
j0

G0g ­ 0 , (5)

whereK
jj0

GG0 is the second derivative of the energyE with

respect toS
j
G and S

j0

G0 . Both V and K are evaluated at
the ground state configuration, where the first derivative
of the energy vanish.

The above set of equations is a central result of th
work, which in principle allows one to study the spin
dynamics for a general many-body system. Since the sp
variables are real,K is obviously real, and so is theV
matrix [7]. Also, by definition,K is symmetric in the
simultaneous interchange ofG andj with G0 andj0, while
V is antisymmetric. The secular equations for the norm
modes are obtained by replacing the time derivative b
2iv. The above properties of the matrices guarantee th
the eigenfrequencies are real.

The elements of theK matrix may be obtained in a
straightforward manner. LetEsSj

Gd be the energy (relative
to the ground state energy) in the state of the frozen sp
configuration (1) with a single amplitudeS

j
G present. Then

we have1
2 K

jj
GGsSj

Gd2 ­ EsSj
Gd, from which the diagonal

elements of theK matrix are obtained. To obtain the
off-diagonal elements, letEsSj

G, S
j0

G0d be the energy in the
state of the frozen spin configuration (1) with the two spi
amplitudes present. Then,K

jj0

GG0 S
j
GS

j0

G0 is just the energy

differenceEsSj
G , S

j0

G0d 2 EsSj
Gd 2 EsSj0

G0d.
The evaluation of theV matrix needs some considera

tion, but the final formula is straightforward to implement
For small amplitudes, the product1

2 V
jj0

GG0 S
j
GS

j0

G0 is equal
to the phase, or the imaginary part of the logarithm of th
following quantity:

kcs0djcsSj
Gdl kcsSj

GdjcsSj0

G0dl kcsSj0

G0djcs0dl , (6)

wherejcs0dl is the ground state, andjcsSj
Gdl is the state

with a single spin-wave amplitudeS
j
G. This result can be

shown by a brute force expansion to quadratic order in t
spin-wave amplitudes, bearing in mind thatkcjs≠y≠Sdjcl
is purely imaginary [7]. The above result was motivate
from a relation between the Berry curvature and the Ber
phase [8].

The quantity (6) is quite suitable for numerical calcula
tions, because one needs to deal only with wave functio
of a single spin-wave amplitude. Also, because each wa
function and its complex conjugate appears in the expre
sion, one need not worry about the arbitrary phases of t
wave functions [9]. Finally, if we choose the phases of th
wave functions such that their projections on the groun
state are real and positive, then the first and last factors
2206
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(6) may be dropped, yielding

V
jj0

GG0 ­
phase ofkcsSj

GdjcsSj0

G0dl
1
2 S

j
GS

j0

G0

. (7)

Reduction by symmetries.—It has been a common
practice to separate the dynamics of the transverse s
components from the longitudinal. This does not see
to be possible in the presence of spin-orbit coupling
unless the ground state magnetization and the Bloch wa
vector of the spin wave lie along a crystal axis. In
this Letter, we will consider the simpler situation where
spin-orbit coupling is neglected. Then the ground sta
magnetization is along a fixed direction, say, thez direction
(1z and 2z for an antiferromagnet), and the matrice
V and K are invariant under spin rotations about thez
axis, with the following consequences: (i) All the matrix
elements coupling thez with thex andy components must
vanish; (ii) thexx and theyy elements of the matrices are
equal; and (iii) thexy and yx elements of the matrices
differ only by a sign. Because of these properties, th
spin dynamics ofSx 1 iSy , Sx 2 iSy , andSz are mutually
decoupled. Moreover, the spectra of the two transver
polarizations are simply related by time reversal.

In the rest of this Letter, we will be concerned with one
of the transverse modes, which is known to have a spect
branch (Goldstone mode) whose frequency vanishes
k ! 0. Our spin wave (1) will be restricted to the form

Ssrd ­ Re

(
eisk?r2vtd

X
G

sx̂ 1 iŷdSGeiG?r

)
. (8)

Using the new independent variablesS1
G ­ ReSG and

S2
G ­ Im SG, we can now repeat the calculations throug

Eq. (7) without changing any formulas, except that th
superscriptj now labels the two possibilities instead o
the previous six.

Further simplifications are achieved by the observatio
that a spin rotation about thez axis is equivalent to a phase
change of the amplitudeSG, that is, a rotation between
the real and imaginary parts. Therefore, invariance
the V and K matrices under the spin rotation implies
that V

11
GG0 ­ V

22
GG0 and V

12
GG0 ­ 2V

21
GG0 , with the same

relations for K. Because of these, the variablesSG ­
S1

G 1 iS2
G and its complex conjugate are decoupled, an

the equations of motion (5) are reduced toX
G0

fih̄vVGG0 1 KGG0gSG0 ­ 0 , (9)

where we have replaced the time derivative by2iv.
The new matrices are defined asVGG0 ­ V

11
GG0 2 iV12

GG0

and KGG0 ­ K11
GG0 2 iK12

GG0 . Because of the symmetry
properties among the matrix elements mentioned abo
and earlier [the paragraph below that of Eq. (5)], the ne
K matrix is Hermitian,Kp

G0G ­ KGG0 , while the newV

matrix is anti-Hermitian,Vp
G0G ­ 2VGG0 . This implies

that forG0 ­ G, K12
GG andV

11
GG vanish.
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Kohn-Sham.—We now consider how our formalism
may be implemented in the Kohn-Sham density fun
tional theory [3], in which the many-body wave function
is represented by a determinant of single particle stat
In the absence of spin-orbit coupling, the single partic
states in the ground state of the system may be tak
as either spin up, or spin down, with the spatial wav
functions being Bloch waves. To fix ideas, we consid
how a spin-up state mixes with a spin-down compone
when the magnetization is tilted away from thez axis
due to a spin wave of wave vectork and amplitudeS

j
G

[10]. The spin-density functional theory dictates that th
Kohn-Sham potential becomes a position dependent ma
whose eigenspinors line up with the local magnetizatio
direction [11,12]. Thanks to an insight by Herring [13]
one can show that the potential matrix and thus the Koh
Sham Hamiltonian are invariant under a lattice translati
combined with a spin rotation. This leaves the wave fun
tion in the formjusSj

Gdlj "l 1 jysSj
Gdlj #l, wherejul and

eisk1Gd?rjyl are Bloch waves [14] which can be calculate
using standard band structure techniques.

TheK matrix can be obtained from standard procedur
for the energetics of the frozen spin-wave states, so
will focus on the calculation of theV matrix. It is
straightforward to show that the Berry curvature of th
many-body wave function is equal to the sum of Berr
curvatures of the occupied states [15]. The same kind
reasoning leading to Eqs. (6) and (7) can be applied to
single particle state. Therefore, the contribution toV

jj0

GG0

from a spin-up state is the phase of

kusSj
GdjusSj0

G0dl 1 kysSj
GdjysSj0

G0dl (10)

divided by 1
2 S

j
GS

j0

G0 . It is understood that this formula
should be used after choosing the phases ofjusSdl, hS ­

S
j
G, S

j0

G0j, such that the projectionskus0djusSdl are real and
positive. Consistent with this condition and to secon
order in the spin-wave amplitudes, the phase of (10)
equal to the imaginary part ofkysSj

GdjysSj0

G0dl [16]. This
shows that when the amplitudesS2

G0 andS1
G0 are given the

same value, the contribution toVGG0 ; V
11
GG0 2 iV12

GG0

from the spin-up state may be written as

ImkysS1
GdjysS1

G0dl 2 i ImkysS1
GdjysS2

G0dl (11)

divided by 1
2 S1

GS1
G0 . This is just ikysS1

GdjysS1
G0dlp ­

ikysS1
G0djysS1

Gdl, because of the relationjysS2
G0dl ­

e2ispy2djysS1
G0 dl [17]. Finally, after a similar considera-

tion for spin-down states, we find thatVGG0 is given by

VGG0 ­
i
P

fkysS1
G0djysS1

Gdl" 2 kusS1
G0djusS1

Gdl#g
1
2 S1

GS1
G0

, (12)

where the sum is over the occupied single particle stat
and the arrows indicate the spin orientation of the state
the absence of the spin wave [18].
c-

es.
le
en
e

er
nt,

e
trix
n

,
n-

on
c-

d

es
we

e
y
of
a

d
is

es,
in

The almost-jellium regime.—Here, the lowest branch
of the spin waves is dominated by theG ­ 0 Fourier
component except near the zone boundary. Then, we
immediately solve for the eigenfrequency from (9) as

h̄v ­
K00

2iV00
­

1
2 K11

00 sS1
0d2P

fkyjyl" 2 kujul#g
, (13)

using (12) withG ­ G0 ­ 0. As previously discussed,
the numerator is just the energyDEskd to create the spin
wave. The denominator is simply the reduction of th
total crystal spinS due to the spin wave, because

P
kyjyl"

represents the reduction of the up component of the sp
up electrons andkujul# represents the reduction of th
down component of the spin-down electrons. Therefo
we have the more transparent result

h̄v ­ 2DEskdyS u2, (14)

whereu is the angle of tilt of the local magnetization from
thez direction.

Several remarks are in order. First,DEskd is propor-
tional tou2, so thatv is independent of tilt angle. Second
althoughDEskd andS are total crystal quantities, we may
also take them to be the spin-wave energy and net spin
unit cell. Third, at long wavelengths, the energyDEskd is
proportional to the square of the spin-density gradient,
that v ~ k2. Finally, for a Heisenberg Hamiltonian with
spin S per unit cell, one also obtains (14) [19], althoug
the energyDEskd for the two cases is not the same.

Near the Brillouin zone boundary, coupling betwee
different Fourier components becomes important. Atk ­
2Gy2, the spin waves of amplitudeS0 andSG have equal
but opposite wave vectors, and they are degenerate bec
the 00 andGG components are equal to each other for bo
theK andV matrices [20]. This degeneracy will be lifted
to produce a gap at the zone edge when their coupling
taking into account

fih̄vV00 1 K00gS0 1 fih̄vV0G 1 K0GgSG ­ 0 ,

fih̄vVG0 1 KG0gS0 1 fih̄vVGG 1 KGGgSG ­ 0 .
(15)

In addition, if the ground state has space inversion symm
try, then the0G andG0 components are also equal for bot
theK andV matrices [21]. Because of the Hermiticity o
K and anti-Hermiticity ofV, the above symmetry argu-
ments imply that the elementsK12

00 , K12
0G, V

11
00 , andV

11
0G all

vanish. Thus,

h̄v ­
K00 6 K0G

isV00 6 V0Gd
­

K11
00 6 K11

0G

V
12
00 6 V

12
0G

. (16)

In the case of an antiferromagnetic ground state, t
denominators in (13) and (14) vanish, so it is essential
include other Fourier components of the spin wave ev
for k away from the zone boundary. For this purpos
we consider the effect of coupling to a singleG of
2207
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minimal size for which the spin-wave changes sign unde
translations connecting the up and down spin sublattice
In this case, the matrix elementsV00, VGG, andK0G are
zero [22], with which Eq. (15) yields

h̄v ­

p
K00KGG

jV0Gj
, (17)

where we have used the relationVG0 ­ 2V
p
0G.

The above result confirms the usual behavior for ant
ferromagnetic spin waves thatv ~ k as k ! 0, because
K00 is of order k2, while KGG and V0G approach finite
constants. This qualitative result remains true even if th
coupling to other Fourier components is included, althoug
the frequency may be changed quantitatively.

In summary, within the adiabatic and harmonic approxi
mations, we have obtained the exact spin-wave equatio
of motion for any ferromagnetic, ferrimagnetic, or anti-
ferromagnetic crystal. We showed how to evaluate th
parameters therein in both the many-body and the one ele
tron pictures. We also demonstrated that the frequenc
has the correctk dependence at smallk and at the zone
boundary for both the ferromagnetic and antiferromagnet
crystals.
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