VOLUME 80, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MRcH 1998

Spin-Wave Dynamics in Real Crystals
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We derive the spin-wave dynamics in crystals from the time-dependent variational principle, which
involves Berry phase terms as well as the energy of frozen spin waves. The general formulation is
based on the adiabatic and harmonic approximations. Formulas for ferromagnets and antiferromagnets
are derived in terms of Kohn-Sham wave functions, which are particularly suitable for prattigatio
calculations. [S0031-9007(98)05490-8]
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In spite of the fact that when applied to itinerant elec- Our derivation of the spin dynamics is based on the
trons, the Heisenberg Hamiltonian is at best only a paadiabaticity assumption that the electronic wave function
rametrized model, all calculations of spin-wave dispersiorcan always follow the instantaneous spin-wave configura-
curves have to this day been based on that venerable modain [4]. We first introduce a frozen spin-wave stdie
[1]. This is exemplified in a recent monograph wheredefined as the lowest energy state with a given spin-wave
Aharoni [2] chooses “to use the assumption of localizedconfigurationm(r)[é(r) + S(r)] = (¥|p(r)o|). This
magnetic moments on lattice sites, and the Heisenbengakes|y) a functional ofS(r) or a function of its Fourier
Hamiltonian, because it is the only way to include thecomponent$g. Then we demand th& should evolve
variation of the magnetization in space.” Contrary to thiswith time in such a way that the adiabatic wave function
widely held belief, in this Letter we derive spin-wave equa-e/|4[S¢(r)]) satisfies the time-dependent Schrédinger
tions of motion which in the harmonic and adiabatic limit equation for some phagir).
are exact everywhere between the localized moment and This requirement can be conveniently implemented by
jellium limits, and are universally applicable to ferromag- employing the time-dependent variational principle that
nets, antiferromagnets, and ferrimagnets. We then shothe action/ L dt should be extremized by physical wave
how the quantities appearing in the equations of motiorfunctions, wherel. = <\I’|zhal|\If> — (V|H|¥). When
can be exactly evaluated within density functional theorywe substitute the adiabatic wave function into this expres-
[3], which is known to yield accurate values for the groundsion, we obtain a Lagrangian for the variab&s
state magnetization of Fe, Co, and Ni. Interestingly, the
formulas for the ferromagnetic spin-wave frequency, when _ 1o _
written in terms of the frozen spin-wave energy, become L=n ZSGW' lw @)
identical in the jellium and localized limits.

General formulation—Suppose we have a symmetry where the dot or$G indicates a time derivative, and =
broken ground statéy,) with a magnetization density (¢|H|y) is the energy of the system for the given spin
m(r)é(r) = (Yol p(r)alyo), whereo is the Pauli matrix configuration. The variablsg is the real or imaginary
vector andp (r) is the density operator. The directiéfr)  part of a vector component 8¢;, and; is an index labeling
(constant for a ferromagnet) may be a function of positiorthe six different possibilities. The phagé) in the adia-
in general, but we assume it has a periodicity commensubatic wave function only contributes a term of total time
rate with the crystal lattice, whilj) has the periodicity  derivative, which we have dropped from the Lagrangian
of the magnetic lattice defined ly(r)é(r). Withthe exci-  without any physical consequences [5]. The terms in the
tation of a spin wave, the magnetization density becomesum are related to the Berry phase of the adiabatic wave
m(r)[é(r) + S(r)], where for a small amplitude &(r)  function, and their appearance is universal in adiabatic

we can write the spin wave in the form Lagrangians of slow variables [6].
The Euler-Lagrange equations for extremizing the ac-
S(r) = Rel e/ Z SGeiG'r] (1) tion then governs the dynamics of these variables,
. oE
where the sum is over the reciprocal lattice vectors of the bl asé

magnetic unit cell. Our task is to establish the equations

of motion governing the time evolution of the spin-wave Where the{) matrix (the Berry curvature) is defined as
excitations. When these equations are linearized for small )

amplitudes, we should be able to obtain the normal modeSQGG, = a, <¢| |¢,> - q, (] ’a_ ). (4)
and their frequency dispersions. ase  ast, aS& 9SE
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Consistent with our assumption of small amplitudes, wg6) may be dropped, yielding
make the harmonic approximation by linearizing the force ,/ _ phase ok (SE) | (SE)

IE/3S¢, yielding Qe = e @)
ESGSG’
Z[—ﬁﬂc’;’cSé n Ké’é,sé/] —0, (5) Reduction by symmetries:It has been a common
j.G practice to separate the dynamics of the transverse spin

components from the longitudinal. This does not seem

whereK (g is the second derivative of the enerywith  to be possible in the presence of spin-orbit coupling,
respect toS¢; and Sé/. Both ) and K are evaluated at unless the ground state magnetization and the Bloch wave
the ground state configuration, where the first derivativeyector of the spin wave lie along a crystal axis. In
of the energy vanish. this Letter, we will consider the simpler situation where

The above set of equations is a central result of thigpin-orbit coupling is neglected. Then the ground state
work, which in principle allows one to study the spin magnetization is along a fixed direction, say, thirection
dynamics for a general many-body system. Since the spititz and —z for an antiferromagnet), and the matrices
variables are realk is obviously real, and so is th@ () and K are invariant under spin rotations about the
matrix [7]. Also, by definition,K is symmetric in the axis, with the following consequences: (i) All the matrix
simultaneous interchange 6fand; with G’ andj’, while  elements coupling thewith thex andy components must
Q is antisymmetric. The secular equations for the normavanish; (i) thexx and theyy elements of the matrices are
modes are obtained by replacing the time derivative bygqual; and (iii) thexy and yx elements of the matrices
—iw. The above properties of the matrices guarantee thatiffer only by a sign. Because of these properties, the
the eigenfrequencies are real. spin dynamics of* + iS”,S* — iSY, andS* are mutually

The elements of th&& matrix may be obtained in a decoupled. Moreover, the spectra of the two transverse

straightforward manner. Ldi(Sg;) be the energy (relative Polarizations are simply related by time reversal.

to the ground state energy) in the state of the frozen spinf'?l the rest of this Ldetter, Vr;’,e r\wN'IH Ee conceLned with one I

configuration (1) with a single amplitud]é present. Then ofthe transverse modes, which is known 1o have a_spectra
L i reiva ] . . branch (Goldstone mode) whose frequency vanishes as

we have;Kgg(Sg)” = E(Sg), from which the diagonal ' gy spin wave (1) will be restricted to the form

elements of theK matrix are obtained. To obtain the

off-diagonal elements, I€E(Sg, S¢./) be the energy in the S(r) = Rl e/ ® ™00 S (% 4 19)S. /G 8
state of the frozen spin configuration (1) with the two spin (r) ¢ %(X i§)See - @

amplitudes present. ThngG’S]GS]G",iS just the energy Using the new independent variabl§g = ReSg and

differenceE(Sg, S¢)) — E(Sg) — E(S¢). _ S& = Im S, we can now repeat the calculations through
. The evalua}non of th&) matrix needs some .conS|dera- Eq. (7) without changing any formulas, except that the
tion, but the final formula is straightforward to implement. syperscriptj now labels the two possibilities instead of
For small amplitudes, the produgt)ds S¢S¢ is equal  the previous six.
to the phase, or the imaginary part of the logarithm of the Further simplifications are achieved by the observation
following quantity: that a spin rotation about theaxis is equivalent to a phase
A A y y change of the amplitudég, that is, a rotation between
WO (SE) (SN (SEN) (W(SENNW(0)), (6)  the real and imaginary parts. Therefore, invariance of

the ) and K r;wzatrices ur;der the g,pin rotation implies
P 11 1 1 .
where|i(0)) is the ground state, angs(S3)) is the state  that Qg = Qg and Qggr = —Ogg:, with the same

with a single spin-wave amplituds;. This result can be rellatlopsz forK._ Because of these, the variablég =
shown by a brute force expansion to quadratic order in th&S + zS(;_and its Comp'ex conjugate are decoupled, and
spin-wave amplitudes, bearing in mind tkat(0/0S)|) e equations of motion (5) are reduced to
is purely imaginary [7]. The above result was motivated .
from a relation between the Berry curvature and the Berry g[’thGG' + Koc' IS¢ = 0, ©)
phase [8].

The quantity (6) is quite suitable for numerical calcula-where we have replaced the time derivative byw.
tions, because one needs to deal only with wave function§he new matrices are defined 8g¢' = Qi — Qi
of a single spin-wave amplitude. Also, because each wavend Kg' = Kso — iKigy. Because of the symmetry
function and its complex conjugate appears in the expregproperties among the matrix elements mentioned above
sion, one need not worry about the arbitrary phases of thend earlier [the paragraph below that of Eq. (5)], the new
wave functions [9]. Finally, if we choose the phases of theK matrix is Hermitian,K¢.¢ = Kgg/, while the new()
wave functions such that their projections on the groundnatrix is anti-Hermitian Qg ¢ = —Qgg. This implies
state are real and positive, then the first and last factors ithat forG’ = G, Kg and Q¢ vanish.
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Kohn-Sham—We now consider how our formalism  The almost-jellium regime-Here, the lowest branch
may be implemented in the Kohn-Sham density func-of the spin waves is dominated by tige = 0 Fourier
tional theory [3], in which the many-body wave function component except near the zone boundary. Then, we can
is represented by a determinant of single particle stategmmediately solve for the eigenfrequency from (9) as
In the absence of spin-orbit coupling, the single particle D
states in the ground state of the system may be taken _ Ko 7Koo (Sp)*

) . . : . ho = — = )
as either spin up, or spin down, with the spatial wave —iQ 2 [vlvy — (uluy]
functions being Bloch waves. To fix ideas, we consider
how a spin-up state mixes with a spin-down componentusing (12) withG = G’ = 0. As previously discussed,
when the magnetization is tilted away from theaxis the numerator is just the energy£ (k) to create the spin

due to a spin wave of wave vectar and amp”tudesé wave. The denominator is simply the reduction of the
[10]. The spin-density functional theory dictates that thetotal crystal spinS due to the spin wave, becausgv|v);
Kohn-Sham potential becomes a position dependent matriepresents the reduction of the up component of the spin-
whose eigenspinors line up with the local magnetizatior!p electrons andu|u), represents the reduction of the
direction [11,12]. Thanks to an insight by Herring [13], down component of the spin-down electrons. Therefore,
one can show that the potential matrix and thus the Kohnwe have the more transparent result

Sham_ Hamil_tonian are invariant under a lattice translation Fw = 20E(K)/S6?, (14)
combined with a spin rotation. This leaves the wave func- _ _ o

tion in the form|u(SE)H 1) + |v(SE)) 1), where|u) and where# is the angle of tilt of the local magnetization from

¢/k*G)r|y) are Bloch waves [14] which can be calculatedth€ z direction. _ _ _
using standard band structure techniques. _ Severai remarks are in order. Fir&tF(k) is propor-
The K matrix can be obtained from standard proceduredional to6~, so thatw is independent of tilt angle. Second,
for the energetics of the frozen spin-wave states, so w8!thoUghAE(k) andS are total crystal quantities, we may
will focus on the calculation of the) matrix. It is @ISO take them to be the spin-wave energy and net spin per
straightforward to show that the Berry curvature of theunit cell. Third, atlong wavelengths, the enedy; (k) is
many-body wave function is equal to the sum of Berryproportlon?l to the square of the spin-density gradient, so
curvatures of the occupied states [15]. The same kind dhat@ = k=. Finally, for a Heisenberg Hamiltonian with
reasoning leading to Egs. (6) and (7) can be applied to 8PN S per unit cell, one also obtains (14) [19], although

. . o the energyA E(k) for the two cases is not the same.
single pa(tlcle state. Therefore, the contribution(tg Near ?hye Brillouin zone boundary, coupling between
from a spin-up state is the phase of '

different Fourier components becomes important.k At
(S u(SL)) + (W (SE)w(SE)) (10) —G/2, the spin waves of amplitud, andS¢ have equal
o but opposite wave vectors, and they are degenerate because
divided by %Sésé/. It is understood that this formula the 00 andsG components are equal to each other for both

should be used after choosing the phasehitf)), {S = theK and() matrices [20]. This degeneracy will be lifted
S{;,Sé,}, such that the projections(0)|u(S)) are real and to produce a gap at the zone edge when their coupling is

positive. Consistent with this condition and to secondtaking into account
order in the spin-wave amplitudes, the phase of (10) is [iZhw Q¢ + KoolSo + [ifiwQog + Kog]Sg = 0,
; ; J J’ -
equal to the imaginary part (Qi;(SG)Iv(SIG/» [16]_. This [ifiw Qo + KeolSo + [iheQee + KeglSe = 0.
shows that when the amplitud§g, andSg: are given the (15)
same value, the contribution Qg = Q&g — i Q&
from the spin-up state may be written as In addition, if the ground state has space inversion symme-
. . ) . 5 try, then thedG andG0 components are also equal for both
IM(v(Sg)lv(Sg)) — iIm{w(S)lv(Sg)) (1)  thek andQ matrices [21]. Because of the Hermiticity of
- L . K and anti-Hermiticity of(}, the above symmetry argu-
Lel ol 1 NI ]
divided by 3SGSg. This is just i{v(S¢)lv(Se) ments imply that the elemen§?, Kia, Qdo, andQds all

(13)

i(v(S¢)lv(Sg)), because of the relatiov(S¢)) =  vanish. Thus,
e~y (S&)) [17]. Finally, after a similar considera- . 0
tion for spin-down states, we find thtgg' is given by Fe — Koo * Kog _ Koo * Ko (16)
o = PELOSESEN — u(SENuSEN] 1, wooe T e
GG — 15(1}5(1; . (12) In the case of an antiferromagnetic ground state, the
2 !

denominators in (13) and (14) vanish, so it is essential to
where the sum is over the occupied single particle statesclude other Fourier components of the spin wave even
and the arrows indicate the spin orientation of the state ifior k away from the zone boundary. For this purpose,
the absence of the spin wave [18]. we consider the effect of coupling to a single of
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minimal size for which the spin-wave changes sign under

H. Suhl (Academic Press, New York, 1966), Vol. 4.

translations connecting the up and down spin sublattice$14] In order to keep the wave function continuous at zero

In this case, the matrix elementky, Qgg, and Ky are
zero [22], with which Eq. (15) yields

VKooK
ho = Y2266 (17)
| QoG |
where we have used the relatifl;p = — Q0.

The above result confirms the usual behavior for anti-

ferromagnetic spin waves that « k ask — 0, because
Koo is of orderk?, while Kgg and Qo approach finite

constants. This qualitative result remains true even if th
coupling to other Fourier components is included, althoug

the frequency may be changed quantitatively.

In summary, within the adiabatic and harmonic approxi-
mations, we have obtained the exact spin-wave equations
of motion for any ferromagnetic, ferrimagnetic, or anti-
ferromagnetic crystal. We showed how to evaluate the
parameters therein in both the many-body and the one eleft7]
tron pictures. We also demonstrated that the frequency

has the correck dependence at small and at the zone

boundary for both the ferromagnetic and antiferromagneti?1

crystals.
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spin-wave amplitude which is necessary for the Berry
curvature calculations later, the spin rotation operator
about thez axis used in [11,12] is modified into the form
ei?@:=D/2 wheree, is thez component Pauli matrix, and

¢ = (k + G) - r is the angle of rotation.

The easiest way to prove this is to show the same
statement for the quantityy|(9/0SG)|). Since the
derivative acts separately on the single particle wave
functions, it may be regarded as a sum of single particle
operators.

In the presence of a spin wave, the potential matrix
has off-diagonal elements first order in the spin-wave
amplitude, while the diagonal elements differ from the
unperturbed one only in second order. Moreover, we have
required(u(0)|u(S)) to be real and positive. Therefore,
[v(S)) is of first order in the spin-wave amplitudg and
[u(S)) — |u(0)) is of second order.

The spin wave of amplitudég = iS¢ can be obtained
from a spin wave of amplitudeS¢ = S§ by a spin
rotation. Applying the spin rotation operator in Ref. [14]
with ¢ = —m /2, we obtain the relation in the text.

8] In the atomic sphere approximation [11,12] where the

direction of magnetization is taken to be constant over
each Wigner-Seitz spherg, andk + G are equivalent,
soG’s other thanG = 0 are redundant. In a full potential
calculation, one can force a spin wave wiflg as its
main component, but self-consistency will cause it to
be dressed with other Fourier components of smaller
amplitude. Equation (12) still holds for the dressed spin-
wave amplitudes with the understanding tRgtstands for
the amplitude of the main component of a spin wave.
Although it can be shown in general, here we show
it for a nearest neighbor linear chain. Following
C. Kittel [Introduction to Solid State Physic8Niley,
New York, 1996), 7th ed.], we havdiw = 4JS(1 —
coska), whereas E(k) = —2JS, - S,+1 = —2J(S? +

§2 coska) andAE = E(k) — E(0) = 2JS2 (1 — coska) =
2J5%6%(1 — coska).

The ground state is invariant under complex conjugation
which is equivalent to time reversal followed by a spin
rotation of 180 about they axis. For a spin-wave
state withk = —G/2, this operation reflects the spin
component, and thus replaces the rolesSgfand S¢ by

S¢ andSg, respectively.

Under space inversion, the roles played$syand Sg are
interchanged. Therefore, the matrix elementKadind ()
must be invariant unddr — G.

In the presence of spin waves of amplitutjeand S¢, the
energy above the ground state equals hal&gflS,|> +
KogSoSe + KgoSGSo + KgglSgl?>. Under the symmetry
operation of time reversal followed by the translatior>

r + R/2 between the sublattices, the spin-wave amplitude
Sy changes a phase &f - R/2, while S¢ changes a phase
of (k + G) - R/2. The extra phase irfg makes the
second and third terms of the energy switch their signs.
In order for the energy to be invariant under the symmetry
operation, these terms must vanish for arbiti&yandSg,
which implies the vanishing oK.



