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Electric driving of magnetization dynamics in a hybrid insulator
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Established forms of electromagnetic coupling are usually conservative (in insulators) or dissipative (in metals
and semiconductors). Here, we point out the possibility of nondissipative electric driving of magnetization
dynamics, if the valence electronic states have nontrivial topology in the combined space of crystal momentum
and magnetization configuration. We provide a hybrid insulator system to demonstrate that the topology-based
nonconservative electrical generalized force is capable of supporting sustained magnetization motion in the
presence of Gilbert damping, with quantized and steady energy pumping into magnetization motion from
the electric field. We also generalize our results to magnetic textures, and discuss an electric-field-induced
Dzyaloshinskii-Moriya interaction which can be nonconservative.
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I. INTRODUCTION

The study of the electrical control of magnetization dynam-
ics has occupied a large part of solid state research for many
decades, which generally falls into two separate categories
known as multiferroics [1–3] and spintronics [4] depending
on the conductive behavior of the hosting materials. The
former deals with insulators where the electrical effects on
magnetization are characterized through the free energy [5],
and the resulting torque would be naturally considered as
conservative and unable to drive the sustained motion of the
magnetization for a static electric field. In the latter, one
finds various current-induced magnetic torques in metals and
semiconductors [6–8], which can provide a persistent source
of energy for the sustained motion of magnetization, but one
has to deal with wasteful and prohibitive Joule heating in
practice.

Magnetic insulators have recently been utilized to achieve
low-dissipation magnetization control by combining the insu-
lator with heavy metals hosting a prominent spin Hall effect
that injects a spin current into the insulator [9,10]. An electric
field can also directly manipulate magnetization in an insu-
lator without Joule heating by means of spin-orbit torques
mediated by occupied electronic states [11–13]. In particular,
mesoscopic transport theories proposed the exchange gapped
edge states of a two-dimensional topological insulator com-
bined with a magnet as a unique platform for studying the
magnetic Thouless motor [14,15], which works as the inverse
mode of the adiabatic charge pumping by a cyclic magnetic
motion [16–18] under an applied voltage. By using the scatter-
ing matrix approach [19], previous works showed quantized
electrical energy transfer into the magnet if the magnetization
accomplishes a cyclic motion [14,15]. On the other hand, as
the Berry curvature in the mixed space of crystal momentum
and magnetization configuration underlies magnetic Thouless
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pumping, it would be interesting to reveal the relation be-
tween nonzero electrical energy input into magnetic dynamics
and the topological characteristics in the mixed parameter
space [20]. Moreover, it has not been shown whether the
electric driving of sustained magnetic motion, which enables
a motor, can be realized in the presence of magnetic damping
due to the coupling of magnetization to degrees of freedom
other than electrons.

In this paper we show the possibility of nondissipative driv-
ing of magnetization dynamics with steady energy pumping
by a static electric field in insulators. This is motivated by
the fact that electric polarization is not always a single-valued
quantity [21,22], and the adiabatic current pumped by the
cyclic motion of the magnetization can acquire a quantized
net amount of energy from a static electric field under certain
topological conditions of the valence electronic states. We
exploit this idea in a model system of edge states of a two-
dimensional topological insulator gapped by a hybrid with a
magnetic wire, and show explicitly sustained magnetization
motion when a constant electric field is applied to overcome
Gilbert damping.

Our results can also be generalized to the case of slowly
varying magnetic textures. There is a topological current bi-
linear in the gradient and time derivative of the magnetization
density [23], a sort of anomalous Hall current induced by
the artificial electric field from a time-dependent magnetic
texture [24–27]. This current provides a channel of nondis-
sipative drive of the magnetic texture by an external static
electric field. In topologically nontrivial cases this drive is
nonconservative and capable of delivering a nonzero and
quantized amount of energy when the magnetic texture wraps
around the Bloch sphere in time. In topologically trivial cases,
where the electric polarization induced by a magnetization
gradient is well defined, the drive is conservative because it
can be identified as originating from a polarization energy
density whose susceptibility to the magnetization gradient
gives the electric-field-induced Dzyaloshinskii-Moriya inter-
action (DMI) [28–31].
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The rest of the paper is organized as follows. In Sec. II
we focus on the electric-field-induced generalized force on
a homogeneous magnetization in insulators, and study its
nonconservative nature which is related to certain topological
conditions of the occupied electronic states. These general
rationales are illustrated in a hybrid insulator in Sec. III, in
which the electric driving of sustained magnetic motion is also
demonstrated. Section IV is devoted to the electrical general-
ized force on the magnetization in inhomogeneous insulators
and its relation to an electric-field-induced DMI. Finally, we
conclude the paper in Sec. V.

II. ELECTRICAL GENERALIZED
FORCE ON MAGNETIZATION

In the language of analytic mechanics, a generalized force
is an amount of work done on the system per unit displace-
ment in the dynamical variable (the magnetization here).
Considering a system with a homogeneous magnetization m
coupled to an electronic insulator, the change in the magneti-
zation can in general pump an adiabatic electric current

j = e
∫

[dk]�km · ṁ, (1)

where �km is the electronic Bloch-state Berry curvature in the
parameter space of the magnetization and crystal momentum
k (set h̄ = 1 unless otherwise noted), with its Cartesian com-
ponents given by −2 Im〈∂ki u|∂m j u〉. Here, |u〉 is the periodic
part of the Bloch wave, and the band index n is omitted
for simple notation. [dk] ≡ dd k/(2π )d with d as the spatial
dimension, and the summation over valence bands is implied.
Through this adiabatic current, an external electric field can
deliver work on the system, with the work density δw =
E · jdt , which is proportional to δm = ṁ · dt . Therefore, we
obtain the electrical generalized force density on magnetiza-
tion as

Ee
m ≡ δw

δm
= eE ·

∫
[dk]�km. (2)

This electrical generalized force is nondissipative because
of the lack of conduction electrons for Joule heating, and is
in fact topological in the sense that it delivers a quantized
amount of energy over a cycle of the magnetization motion.
For simplicity, we first consider an insulator with zero Chern
numbers in the Brillouin zone at each point over the path of
m, such that one can take a k-space periodic gauge to locally
define an electronic polarization P = −e

∫
[dk]Ak [21], with

Ak = 〈u|i∂ku〉. Then the electrical work density delivered
over the cycle can be written in terms of the change of this
polarization,

w =
∮

dm · Ee
m = E · �P. (3)

This change is quantized in units of �P = −ea/V0 with a
being a discrete lattice vector (including the null vector) and
V0 the volume of a unit cell. When this change is zero, so that
the polarization is globally defined, the electrical generalized
force is conservative in the sense that its work can be regarded
as a change in the globally well-defined polarization energy
density −E · P. When this change is nonzero, the electrical

generalized force is nonconservative and capable of support-
ing sustained magnetization motion even in the presence of
Gilbert damping due to other dissipative channels.

Some comments are in order. First, if the electronic insu-
lator is one dimensional, then the electrical work (per unit
length) over a cycle of the magnetization reduces to eE times
the Chern number over the torus of the combined space of
crystal momentum and the magnetization (along its path), cor-
responding to the quantized number of electrons pumped over
the cycle. Second, quantization of electrical work over the
cycle of magnetization also applies to insulators with nonzero
k-space Chern numbers by a simple argument. Although one
cannot take a periodic gauge in k space, one can always
choose a periodic gauge over a fixed one-dimensional path
of the magnetization. It is then clear that the electrical work
over the cycle equals the Brillouin-zone integral of the k
gradient of the Berry’s phase over the cycle. Topological
quantization of this work then follows from the multivalued-
ness of the Berry’s phase. Third, using the Bianchi identity
on Berry curvatures, one can easily show that the electrical
generalized force is curl-free ∂m × Ee

m = 0 everywhere in m
space, except the singular points where the energy gap above
the filled states of the electron system closes.

When can the electrical work on magnetization be
nonzero? The quantization of its value implies that the elec-
trical work is invariant if the path in m space is deformed
without closing the energy gap. In particular, within a singly
connected region where the gap is open, the electrical work is
zero on all closed paths. This applies for example to the north
or south hemispheres of magnetization in the two-dimensional
ferromagnetic Dirac model studied in Ref. [32], where one
can define polarization energies separately for each region,
although not globally because of the gap closing on the equa-
tor. Consequently, this model system cannot provide nonzero
electrical work for sustained magnetization motion. It is there-
fore clear that the singular points of gap closing have to be
arranged to define multiply connected regular regions, where
electrical work can possibly be nonzero on topologically non-
trivial paths.

III. A MODEL FOR SUSTAINED
MAGNETIZATION MOTION

Here, we propose a one-dimensional model system, where
the gap closes on the two poles of the magnetization Bloch
sphere, and the electrical work per unit length is eE times
the winding number of the path around the poles. The system
is constructed by interfacing a magnetic wire with the topo-
logical edge states of a two-dimensional topological insulator
(Fig. 1). The exchange coupling renders the electronic system
insulating by opening a gap in the Dirac spectrum. The rele-
vant low-energy Hamiltonian is

ĥ = h̄vkσ̂y + Jσ̂ · m, (4)

where v is the Fermi velocity, σ̂ is the Pauli matrix, and J
is the coupling constant. The magnetization m is assumed to
have a fixed magnitude and is parametrized by the polar angle
θ relative to the y axis and the azimuthal angle φ as shown in
Fig. 1. The energy gap is open everywhere except at the north
and south poles of the Bloch sphere with my = ±m (red dots).
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FIG. 1. A ferromagnetic wire (blue bar) hybridizes and gaps the
edge states of a two-dimensional topological insulator (green region).
When the magnetization m moves around (blue circle on the right)
on the Bloch sphere, the pumped adiabatic current j along the edge
couples to an applied electric field E to provide energy to overcome
Gilbert damping. A static magnetic field H is applied to help prepare
the system into a sustained motion of limit cycle.

Assuming that the lower band is filled and the electric field is
applied along the magnetic wire (positive x direction), we can
evaluate the formula for the electrical generalized force to find

Ee = −eE

2πm

êφ

sin θ
= −eE

∂mφ

2π
. (5)

It is singular at the poles and is a gradient of the multiple-
valued azimuthal angle, so that the electrical work density
over a closed path on the Bloch sphere is quantized in terms
of the winding number of the path,∮

dm · Ee = −Nt eE , (6)

in line with the aforementioned general topological argu-
ments. The winding number Nt counts how many times the
closed path wraps around the y axis counterclockwise.

In such a one-dimensional insulator it is also interesting
to understand the electrical generalized force from the polar-
ization as Ee = E∂mP, where the polarization is not single
valued and can only be determined to be P = −eφ/2π up to
an uncertainty quantum −e. Consistently, the two gap closing
poles are singular points of the polarization, and the change of
polarization upon a closed path on the Bloch sphere is −eNt .

We now proceed to study the dynamics of the magne-
tization to see the effect of this generalized force. In the
absence of coupling to the electronic system, we can rewrite
the Landau-Lifshitz-Gilbert equation of the ferromagnet in
the form of −∂mG0 + ṁ × �0

m − η0ṁ = 0, as balancing out a
conserved force from the free energy G0, a Lorentz-type force
from the m-space Berry curvature �0

m [33], and a frictional
force with a scalar damping coefficient η0. We will model the
free-energy density as G0 = −K0m̂2

x − Hmy with an easy-axis
anisotropy and an applied static magnetic field H . The m-
space Berry curvature is given in terms of the gyromagnetic
ratio γ 0 as �0

m = m/(m2h̄γ 0). The damping coefficient is
related to the Gilbert number λ as λ = (γ 0)2η0.

In the presence of coupling to the electronic system, the
equation of motion becomes

Ee
m − ∂mG + ṁ × �m − ηṁ = 0, (7)

where the electrical generalized force enters as an extra term
along with electronic modifications to the other terms. The
gap opening in the electronic system contributes a lowering of

FIG. 2. Free-energy contours in the angular space and typical
evolution trajectories on the Bloch sphere in the absence (top panels)
and presence (middle panels) of an electric field, and in the presence
of both electric and magnetic fields (bottom panels). In the last case,
a limit cycle emerges.

the free energy Ge = Ke(m̂2
y − 1) that we model as a hard-

axis anisotropy. The electronic contribution to the m-space
Berry curvature is given by �e

m = ∫
[dk]�m = m/(m2h̄γ e),

where �m = ∂m × Am is derived from Am = 〈u|i∂mu〉, and
γ e = 2πv/J . Finally, we assume that the gap of the elec-
tronic system remains open during the course of dynamics, so
there is no electronic contribution to the damping coefficient
η = η0.

Representative results of the magnetization motion are pre-
sented in Fig. 2, where we take γ e/γ 0 = π , Ke/(m/γ 0) =
K0/(m/γ 0) = 1 GHz, and η = 0.2/(mγ 0). Shown in the top
and middle panels (H = 0), there are two types of energy
conserved motion in the absence of damping and external
fields, divided by the contour of zero energy (the white dashed
curve). In the area enclosing the two points of lowest energy,
m rotates around the x axis, whereas in the upper and lower
areas outside of the zero-energy contour m goes around the y
axis. This situation is changed in the presence of damping, as
shown in the top panel, where two points (φ = 0, θ = 0.3π )
and (φ = 0, θ = 0.7π ) outside of the zero-energy contour
evolve to different points of lowest energy. In the middle
panels, an electric field eE/2π = 0.1K0 is applied, which
gives a force in the clockwise (negative φ) direction. The blue
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FIG. 3. Time dependence of the polar angle for different initial
conditions, φ = 0, θ = 0.001π (black), θ = 0.4π (red), θ = 0.8π

(blue). Correspondingly on the Bloch sphere shown in the inset,
the red and blue trajectories evolve into a right-handed limit cycle,
whereas the black trajectory evolves into the point of lowest energy.

trajectory starting from (φ = 0, θ = 0.7π ) falls faster to the
+mx axis, while the red trajectory starting from (φ = 0, θ =
0.3π ) extends for 3/4 circle before the final decay into the
same energy minimum as the other trajectory.

The lower panels show the situation where the limit cycle
motion is found. We found it important to prepare the system
with predominantly around-my-axis energy contours, so that
the nonconservative electrical force can be best utilized. We
therefore apply a static magnetic field in the y direction with
the magnitude H = K0/m to change the energy landscape.
We also switched the direction of the electric field so that
the electrical force goes along the directions of the energy
contours. We found that all initial points in a wide region,
between the two dashed circles shown on the right of the
lower panels of Fig. 2, fall into the same limit cycle. For
instance, the blue curve starts from (φ = 0, θ = 0.4π ) and
evolves into the right-handed limit cycle under an electric field
eE/2π = −0.1K0. Figure 3 shows how the limit cycle motion
is reached in time for two trajectories (blue and red) from
different initial angles, along with one (black) that falls into an
energy minimum. On the limit cycle, we found that the energy
input from the electrical force balances out the energy dissi-
pation from the Gilbert damping,

∮
dm · (Ee

m − ηṁ) = 0, as
can be easily derived from the equation of motion.

IV. ELECTRICAL DMI FORCE

So far we have been concentrating on nondissipative
electrical driving on a uniform magnetization. When the
magnetization is nonuniform, the electrical generalized force
Eq. (2) still applies as a local force density, but there will
be additional contributions due to the magnetization gradi-
ents. In metals, the electric-current-induced DMI has been
discussed recently [34–36], which is similar to the current-
induced orbital magnetization [37,38]. The intrinsic analog,
the electric-field-induced nondissipative DMI [1,39], remains
elusive in the band picture, but should be well defined in
insulators as we show now.

To first order in the gradient, there is an adia-
batic current pumped by the magnetization dynamics [23]
j = e

∫
[dk]�k[kr]m · ṁ involving the second Chern form

of Berry curvatures �ks[kr]mj ≡ �kski�rim j + �ksri�mj ki +
�ksmj �kiri . Through this current, an external electric field can
produce a work density δw = E · jdt proportional of δm,
implying an electrical generalized force linear in the magneti-
zation gradient,

Ee
m = eE ·

∫
[dk]�k[kr]m. (8)

For reasons to be discussed later, we will call this an electri-
cal DMI force, although it is nonconservative in general and
capable of sustained driving of magnetization textures.

Because the second Chern form is antisymmetric in the
crystal momentum, a nonzero result demands that the elec-
tronic system is more than one dimensional. Consider for
simplicity a two-dimensional system with the magnetization
gradient in the y direction (one-dimensional domain wall or a
spiral) and an electric field applied in the transverse x direc-
tion. The electrical work per unit transverse width over one
pumping period may be written as

W = eExNyt

∫
T 2

d2k

2π

∫
S2

dθdφ

2π
�kxkyθφ = eExNytC2, (9)

which is topological and quantized in terms of the second
Chern number C2 in the space [40] spanned by the Bril-
louin zone and the Bloch sphere, and the winding number
Nyt = 1

4π

∫
dydtm̂ · (∂ym̂ × ∂t m̂) for the mapping m̂(y, t ) of

the yt space-time onto the Bloch sphere [41] (m̂ = m/m).
This winding number previously appeared in a discussion of
quantized electromotive force induced by a moving domain
wall [42], the so-called ferro-Josephson effect, and the second
Chern number may be regarded as the quantum measure of
the anomalous Hall response to this emf [43]. The quantized
electrical work is therefore a result of this quantized Hall
current in the direction of the applied electric field.

The same second Chern number has also been introduced
in the study of electric charges carried by magnetic textures
such as a skyrmion [30], where it may be understood as the
quantum measure of charge response to the quantized flux of
an artificial magnetic field [43]. This is a sort of Streda dual
effect of the quantum Hall current response to the artificial
electric field of the magnetic texture. This relationship be-
comes especially clear in the absence of spin-orbit coupling,
where �kxkyθφ = �kxky�θφ and C2 reduces to the first Chern
number in k space [44] which characterizes the usual quantum
anomalous Hall insulators.

In non-Chern insulators where one may choose a periodic
gauge in k space, the electrical generalized force may be
written as a field derivative of the polarization energy, Ee

m =
−δmU , with [30,31]

U = −
∫

drE · P =
∫

drDil∂iml , (10)

where P is the electric polarization induced by a magnetiza-
tion gradient, including a topological Chern-Simons part [23]
for which

Dil = e

2
Ej

∫
[dk]

(
Ak j �kiml + Aki�ml k j + Aml �k j ki

)
. (11)
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FIG. 4. Spin generation due to the electrical generalized force
in a model of chiral Néel wall of ferromagnetic transition metal
dichalcogenide monolayer.

However, this expression for the DMI coefficient is only
locally defined because of the gauge dependence of the Chern-
Simons form [45].

On the other hand, the electrical DMI force Ee
m [Eq. (8)]

is not only gauge invariant and single valued but also well
defined for Chern insulators. In practice, such a force enters
directly in determining the static and dynamic behavior of the
magnetic textures. For example, we show in the following that
the width of a chiral Néel wall may be tuned by such a force,
as would normally be anticipated from DMI effects [34,35].
Specifically, we consider a chiral Néel wall with easy axis
in the z direction in a model of the insulating transition
metal dichalcogenide monolayer materials with a magnetic
proximity effect, and show that its width would be enhanced

(decreased) when an electric field is applied in the x (−x)
direction. We employ the model Hamiltonian ĥ = ĥ0 + Jσ̂ ·
m, where ĥ0 is a six-band tight-binding Hamiltonian suitable
for the low-energy physics in monolayers of AB2 (A = Mo,
W; B = S, Se, Te), as was detailed in Ref. [46]. Considering a
right-handed up-down Néel-type wall with easy axis in the
z direction, the induced spin is plotted in Fig. 4 under an
electric field in the positive x direction. With the lowest two
bands filled, the first Chern form contribution vanishes. The
dominant component δsx is antisymmetric on the two sides of
the domain wall center. Thus the torque exerted on magnetiza-
tion δτ = δs × m is in the positive y direction on both sides,
increasing the width of the domain wall. Apparently, when
the electric field is reversed, the width of the domain wall is
decreased.

V. CONCLUSION

In conclusion, we have studied nondissipative electric driv-
ing of magnetization motion in uniform and nonuniform
magnetic insulators due to nontrivial topologies of occupied
Bloch states in the combined space of crystal momentum and
magnetization configuration. The resultant nonconservative
electrical generalized force is capable of supporting sustained
magnetization motion even in the presence of Gilbert damp-
ing. A minimal model has been exploited to show explicitly
the limit-cycle behavior of magnetic evolution. For magnetic
textures, there is an additional nonconservative and nondissi-
pative electrical generalized force, related to a Chern-Simons
DMI for non-Chern insulators in the presence of an electric
field.
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