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A quantal system in an eigenstate, slowly transported round a circuit C 
by varying parameters R  in its Hamiltonian H(R),  will acquire a geo
metrical phase factor exp{iy(C)} in addition to the familiar dynamical 
phase factor. An explicit general formula for y(C) is derived in terms of the 
spectrum and eigenstates of H(R)  over a surface spanning C. I f  C lies near 
a degeneracy of //, y(C) takes a simple form which includes as a special 
case the sign change of eigenfunctions of real symmetric matrices round a 
degeneracy. As an illustration y(C) is calculated for spinning particles in 
slowly-changing magnetic fields; although the sign reversal of spinors on 
rotation is a special case, the effect is predicted to occur for bosons as well 
as fermions, and a method for observing it is proposed. I t  is shown th a t the 
Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

1. I n t r o d u c t i o n

Imagine a quantal system whose Hamiltonian H describes the effects of an un
changing environment, and let the system be in a stationary state. I f  the environ
ment, and hence H, is slowly altered, it follows from the adiabatic theorem (Messiah 
1962) tha t a t any instant the system will be in an eigenstate of the instantaneous H. 
In particular, if the Hamiltonian is returned to its original form the system will 
return to its original state, apart from a phase factor. This phase factor is observable 
by interference if the cycled system is recombined with another tha t was separated 
from it a t an earlier time and whose Hamiltonian was kept constant.

My purpose here is to explain how the phase factor contains a circuit-dependent 
component exp (iy) in addition to the familiar dynamical component exp ( — i 
which accompanies the evolution of any stationary state. A general formula for y 
in terms of the eigenstates of H will be obtained in §2. I f  the circuit is close to a 
degeneracy in the spectrum of H, y takes a particularly simple form which will be 
derived in § 3; this contains, as a special case, the sign change around a degeneracy 
of the eigenstates of a system whose Hamiltonian is real as well as Hermitian 
(Herzberg & Longuet-Higgins 1963; Longuet-Higgins 1975; Mead 1979; Mead & 
Truhlar 1979; Mead 1980a, b;Berry & Wilkinson 1984).

A particle of any spin in an eigenstate of a slowly-rotated magnet ic field is another 
case where y can be calculated explicitly (§4), and gives predictions that could be
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tested experimentally. This phase factor exists for bosons as well as fermions. 
A special case is the sign change of spinors slowly rotated by 2k , predicted by 
Aharonov & Susskind (1967); this will be shown to be different from the dynamical 
phase factors measured in experiments on precessing neutrons (reviewed by 
Silverman 1980).

Finally, it is shown in § 5 th a t physical effects of magnetic vector potentials in 
the absence of fields, predicted by Aharonov & Bohm (1959) and observed by 
Chambers (i960), can be understood as special cases of the geometrical phase factor.

M. V. Berry

2. G e n e r a l  f o r m u l a  f o r  p h a s e  f a c t o r

Let the Hamiltonian H be changed by varying parameters R = ( , ...) on
which it depends. Then the excursion of the system between times = 0 and t = T  
can be pictured as transport round a closed path R(t) in parameter space, with 
Hamiltonian H(R(t)) and such tha t R(T) = 0). The path will henceforth be called
a circuit and denoted by C. For the adiabatic approximation to apply, T  must be 
large.

The state \ ft(t)) of the system evolves according to Schrodinger’s equation

dw))\ w»  = i*|f<o>- (!)

At any instant, the natural basis consists of the eigenstates |w(f?)) (assumed 
discrete) of H(R)  for R  = R{t), th a t satisfy

J?(«) |»(«)> =  B n( * )  |»(*)>, (2)

with energies En(R). This eigenvalue equation implies no relation between the 
phases of the eigenstates |w(JR)) at different R. For present purposes any (differen
tiable) choice of phases can be made, provided |w(.R)} is single-valued in a parameter 
domain tha t includes the circuit C.

Adiabatically, a system prepared in one of these states |w(/?(0))) will evolve with 
H and so be in the state \n(R(t))) at t.

Thus can be written as

|^(0> = exp { ^ J od^ ( « ( n ) ) exp(iyn(0)|n(^W ». (3)

The first exponential is the familiar dynamical phase factor. In this paper the object 
of attention is the second exponential. The crucial point will be tha t its phase y n(t) is 
non-integrable; y n cannot be written as a function of R  and in particular is not 
single-valued under continuation around a circuit, i.e. y n( T #  yn(0).

The function y n(t) is determined by the requirement tha t satisfy Schro
dinger’s equation, and direct substitution of (3) into (1) leads to

y n(t) = i(n(R(t))\ VRv(R(t)))'R(t).(4)
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The total phase change of | \jr) round C is given by

\ f (T) }  =  exp(ir „(C))exp{-=± P d f £„(«(())} |f(0)>, (5)

where the geometrical phase change is

y„(C) = i |  <»(R)| Vs n(R))-dR.  (6)

Thus y n(C) is given by a circuit integral in parameter space and is independent of 
how the circuit is traversed (provided of course tha t this is slow enough for the 
adiabatic approximation to hold). The normalization of | implies tha t (n\WRn) 
is imaginary, which guarantees tha t y n is real.

Direct evaluation of jV^w) requires a locally single-valued basis for | and can 
be awkward. Such difficulties are avoided by transforming the circuit integral (6) 
into a surface integral over any surface in parameter space whose boundary is C. In 
order to employ familiar vector calculus, parameter space will be considered as 
three-dimensional, and this will turn out to be the important case in applications; 
the generalization to higher dimensions will be outlined at the end of this section.

Stokes’s theorem applied to (6) gives, in an obvious abbreviated notation.
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7JC) = - I m J J  d S - V x ( n \ V n ) , (la)

=— ImJ*J d5 -(Vn| x |Vn), (76)

=  — Im IT  d S -2  (Vn| x |Vn>,
JjC m^n

(7c)

where diS" denotes area element in R  space and the exclusion in the summation is 
justified by (ji\ Vn) being imaginary. The off-diagonal elements are obtained from 
(2) as

(m\Vn)  = (m\VH \n)/(En - E m), m ^ n .  (8)
Thus y n can be expressed as /» f*

r«(C) = -  d (9)
where

J J c

,/ t d \ _T™ V (n(R)\Vs 6 (R) \ m(R) )x (m(R) \VRH(R)\n(R))
^  } rkn (Em( R ) - E n( R ) f

(10)

Obviously y n(C) is zero for a circuit which retraces itself and so encloses no area.
Equations (9) and (10) embody the central results of this paper. Because the 

dependence on | Vn) has been eliminated, phase relations between eigenstates with 
different parameters are now immaterial, and (as is evident from the form of (10)), 
it is no longer necessary to choose | m)and | to be single-valued in R : any solutions
of (2) may be employed without affecting the value of Vn. This is a surprising 
conclusion, as can be seen by comparing (9) with (la) which show that Vn is the 
curl of a vector, (n\Vn), and (n|Vn) certainly does depend on the choice of phase
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of the (single-valued) eigenstate \n(R)). The dependence on phase is of the following 
kind: if | ri)-> exp {ijn(R)} \n)then (n| Wn)-> + iV/£ (in another context the
importance of such gauge transformations has been emphasized by Wu & Yang 
(1975)). Thus the vector is not unique but its curl is. The quantity Vn is analogous to 
a ‘magnetic field’ (in parameter space) whose ‘vector potential’ is Im<n|Vn>. In 
Appendix A it is shown directly from (10) th a t V • Vn vanishes, thus confirming tha t 
(9) gives a unique value for y n(C).

Using perturbation theory, Mead & Truhlar (1979) obtained essentially the 
formulae (9) and (10) for an infinitesimal circuit, in a study of molecular electronic 
states which (in the Born-Oppenheimer approximation) depend parametrically on 
nuclear coordinates. Their phase factor was not intended to apply to a ) th a t 
evolves slowly under the time-dependent Schrodinger equation, but to the variation 
of eigenstates | n)under a particular phase-continuation rule in I?-space which can 
be shown to give the same result.

In parameter spaces of higher dimension, Stokes’s theorem cannot be employed to 
transform the circuit integral (6). The appropriate generalization, provided by the 
theory of differential forms (see, for example, Arnold 1978, chap. 7), transforms (6) 
into the integral of a 2-form over a surface bounded by C. The surprising result (10) 
can now be expressed as follows: independently of the choice of phases of the 
eigenstates, there exists in parameter space a phase 2-form, which gives y(C) when 
integrated over any surface spanning C. This 2-form is obtained from (10) by 
replacing V by the exterior derivative d and x by the wedge product A. The validity 
of this generalization is consistent with the observation th a t in the three-dimensional 
version there are infinitely many choices of interpolating Hamiltonian (and hence 
of parameter spaces) on the surfaces bounded by C, and the geometrical phase 
factor is independent of the choice.

Professor Barry Simon (1983), commenting on the original version of this paper, 
points out tha t the geometrical phase factor has a mathematical interpretation in 
terms of holonomy, with the phase two-form emerging naturally (in the form (76)) 
as the curvature (first Chern class) of a Hermitian line bundle.

M. V. Berry

3. D e g e n e r a c i e s

The energy denominators in (10) show that if the circuit C lies close to a point R* 
in parameter space at which the state n is involved in a degeneracy, then Vn(R), and 
hence y n(C), is dominated by the terms m corresponding to the other states involved. 
We shall consider the commonest situation, where the degeneracy involves only 
two states, to be denoted + and —, where E+(R) ^  E_(R).  For R  near H(R)  
can be expanded to first order in R — R*,and

V IP)  < + ( R ) \ V a ( R * ) \ - ( R ) ) x ( - ( R ) \ V f i ( R *
v +{ K ) - i m  {E+{R)-E_(R))*  • ( j

Obviously V_(R) = -  V+(R), so tha t y_(C) = — y+(C).
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Phase factors accompanying adiabatic changes 49

W ithout essential loss of generality we can take = 0 and R* = 0. H(R)
can be represented by a 2 x 2 Hermitian matrix coupling the two states. The most 
general such matrix satisfying the given conditions depends on three parameters 
X,  Y, Z  which will be taken as components of R,  and by linear transformation in 
R-space can be brought into the following standard form

The eigenvalues are

£ ( * > = 4
Z

X  + i Y
X - i Y

- Z ( 12)

E +(R) = - E _ ( R)  = ±(X2 + Y 2 + Z 2)t = (13)

Thus the degeneracy is an isolated point a t which all three parameters vanish. This 
illustrates an old result of Von Neumann & Wigner (1929): for generic Hamiltonians 
(Hermitian matrices), it is necessary to vary three parameters in order to make a 
degeneracy occur accidentally, tha t is, not on account of symmetry. Alternatively 
stated, degeneracies have co-dimension three.

The form (12) was chosen to exploit the fact tha t

VH =  iff, (14)

where the components a x , a Y , az  of the vector operator a are the Pauli spin 
matrices. When evaluating the matrix elements in (11) it greatly simplifies the 
calculations to take advantage of the isotropy of spin and temporarily rotate axes 
so th a t the Z-axis points along R,  and to employ the following relations, which 
come from the commutation laws between the components of :

a x  | ± ) — | + )> | ± ) — ± i | + X az \ ± y  — ± \ ±y.  (15)

With these rotated axes, (11) gives

Vx+ = (Im<+ I fir  I -><- I fiz I + »/2&  = 0,'j
Fr+  = (Im< + | a z | - > < - | S x l + » / 2^  = 0, ()C)

Fz+ =  Im< + |$ x | —> ( —|S F |+ > =  1/ 2RK j

Reverting to unrotated axes, we obtain

V+(R) = R / 2R 3. (17)

Now use of (9) shows tha t the phase change y+(C) is the flux through C of the 
magnetic field of a monopole with strength — |  located at the degeneracy. Thus we 
obtain the pleasant result, valid for the natural choice (12) of standard form for H, 
th a t the geometrical phase factor associated with C is

exp (iy±(C)} = exp { + £i£?(C)}, (18)

where i2(C) is the solid angle tha t C subtends a t the degeneracy; Q is, in a sense, 
a measure of the view of the circuit as seen from the degeneracy. The phase factor is
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independent of the choice of surface spanning C, because Q can change only in 
multiples of 4jt (when the surface is deformed to pass through the degeneracy).

An important special case of (18) occurs when C consists entirely of real Hamil
tonians and so is confined to the plane Y  = 0 (cf. (12)). The energy levels inter
sect conically in the space E, X , Z, whose origin, where the degeneracy occurs, 
is a ‘diabolical po in t’ of the type recently studied by Berry & Wilkinson (1984) in 
the spectra of triangles. This illustrates the result th a t for real symmetric matrices, 
degeneracies have co-dimension two: see Appendix 10 of Arnold 1978. If  C encloses 
the degeneracy, Q = + 2n;if not, Q = 0. Thus the phase factor (18) is

exp (iy±(C)} = — 1, if C encircles the degeneracy,
= 4- 1, otherwise, (19)

which expresses the sign changes of real wavefunctions as a degeneracy involving 
them is encircled, a phenomenon first described by Herzberg & Longuet-Higgins 
(1963). (Sign changes are not restricted to circuits involving real Hamiltonians: 
(18) shows tha t the phase factor is — 1 if C lies in any plane through the degeneracy 
and encircles it.)

Confirmation of the correctness of (17) can be obtained without the rotation-of- 
axes trick, by a lengthy calculation of (11) involving explicit formulae for the 
eigenvectors | ± (jR)) of the matrix (12). Alternatively, direct continuation of the 
eigenvectors may be attempted. This cannot be accomplished for all circuits by 
means of (6) because it is not possible to construct eigenvectors tha t are globally 
single-valued continuous functions of R; multivaluedness can be reduced to 
singular lines connecting the degeneracy with infinity, and in the analogue F(.R) 
these appear as Dirac strings attached to the monopole. Such approaches obscure 
the simplicity and essential isotropy of the solid-angle result (17).

Using topological arguments not involving explicit formulae for C), Stone 
(1976) proved tha t if C is expanded from one point R  and contracted on to another 
so as to sweep out a surface enclosing a degeneracy, then the geometrical phase 
factor traverses a circle in its Argand plane. This property (which follows easily 
from (18)), is the Hermitian generalization of the sign-reversal test for degeneracy.

M. V. Berry

4. S p i n s  i n  m a g n e t i c  f i e l d s

A particle with spin s (integer or half-integer) interacts with a magnetic field B 
via the Hamiltonian

El(B) = kUB-s , (20)
where k is a constant involving the gyromagnetic ratio and s is the vector spin 
operator with 2s +1 eigenvalues n with integer spacing and tha t lie between — s 
and + S. The eigenvalues are

En(B) = KhBn, (21)
and so there is a (2s + l)-fold degeneracy when 0. (The special case s = 
reproduces the two-fold degeneracy considered in the last section.) We consider

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 F

eb
ru

ar
y 

20
24

 



the components of B as the parameters R  in our previous analysis, and calculate the 
phase change y n(C) of an eigenstate \n, s(B))of s in the direction along B, as B is 
slowly varied (and hence the spin rotated) round a circuit C.

The vector Vn(B) as given by (10) can be expressed by using (20) and (21) as

Phase factors accompanying adiabatic changes 51

j/ / j)\_Im ^  (n , s (B) \ s \m, s{B))x(m, s(B) \ s \n , s{B) )
( 22)

To evaluate the matrix elements we again temporarily rotate axes so tha t the 
Z-axis points along B, and employ the following generalization of (15):

(s^ + iSy) |w,s> = [s(s+ l ) - n  1)]1 |n + l,« > ,' 
(sx - i s Y ) |w,,s> = [>(s+ l ) - n  1)]1 l,s>,

sz  |w,<s) = n |w,s>.
(23)

I t  is clear th a t only states with m — n± 1 are coupled with in (22), and tha t Vx
and Vv are zero because they involve off-diagonal elements of To find , we make 
use of (23) to obtain

(n± l, s |s x |w,s> = |[s (s+ l)-w (w ±  l)]i, |
( n±  1,s| sY |w,«) = + £i[s(s-f- 1)]*J

then (22) gives

Im
VZn = ^2  KWI 5A' \n + 1> (n + 1 |«F \n ) ~ (n \ SY \n + 1) 11 >

+ (w| sx  \n— l ) (w — 1| sY \n) — (n\ 1 |){w — 1| sx  |w>}
n

=  (25)

Reverting to unrotated axes, we obtain

Vn{B) = n B /B \  (26)

Now, use of (9) shows tha t y n{C) is the flux through C of the ‘ magnetic field ’ of a 
monopole — nlocated at the origin of magnetic field space. Thus the geometrical 
phase factor is

exP{i7n(c )} = exp { — mf2(C)}, (27)

where Q{C) is the solid angle th a t C subtends a t 0. Note tha t y n depends only 
on the eigenvalue n of the spin component along B and not on the spin s of the 
particle, so tha t y n is insensitive to the strength + 1 of the degeneracy at = 0.

I t  follows from (27) th a t any phase change can be produced by varying B round 
a suitable circuit. For fermions (half-integer a whole turn of B (rotation through 
2 k in a plane, giving Q = 2k ) produces a phase factor — 1. In the special case n 
this shows th a t the sign change of spinors on rotation and the sign change of wave- 
functions round a degeneracy have the same mathematical origin. For bosons 
(integer n), a whole turn of B produces a phase factor + 1. To produce a sign change,
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different circuits are required; if n = 1, for example, varying B round a cone of 
semiangle 60° will give Q = y  = n and hence a phase factor -  1.

The following experiment could be carried out to test the predictions embodied 
in (27). A polarized monoenergetic beam of particles in spin state n along a magnetic 
field B is split into two. Along the path of one beam B is kept constant. Along the 
path of the other beam, B is kept constant in magnitude but its direction is varied 
slowly (in comparison with the dynamical precession frequency) round a circuit C 
subtending a solid angle Q, the field being generated by an arrangement enabling 
Q to be changed. The beams are then combined and the count rate a t a detector is 
measured as a function of Q. The dynamical phase factor (the second exponential 
in (5) is the same for both beams because the energy E n(B) (21) is insensitive to the 
direction of B. There will in addition be a propagation phase factor which can be 
made unity by adjusting the path-length of one of the beams when = 0. The 
resulting fringes occur as a consequence of the geometrical phase factor. I f  C is a 
circuit round a cone of semiangle 6, the predicted intensity contrast is

1(6) = cos2 (nn 1 — cos 6)). (28)

M. V. Berry

I wish to emphasize tha t this proposed experiment is different from those carried 
out by Rauch et al. (1975, 1978) and Werner (1975) (see Silverman 1980) with 
unpolarized neutrons in a constant magnetic field. Those neutrons were not in an 
eigenstate, and their phase changed dynamically, rather than geometrically, under 
the Hamiltonian (20) (with B along Z  and a replacing s) according to the evolution 
operator

exp ( — i Ht/h) = exp ( — cos \KBt 1 01 
0 1 4- i sin 1 0 

0 - 1 (29)

The sign changed whenever \i<Bt was an odd multiple of n, and this was interpreted 
on the basis of precession theory as corresponding to odd numbers of complete 
rotations about B.

5. A h a r o n o v - B ohm  e f f e c t

Consider a magnetic field consisting of a single line with flux For positions R 
not on the flux line, the field is zero but there must be a vector potential A(R)  
satisfying

A(R) dR = 0 , (30)

for circuits C threaded by the flux line. Aharonov & Bohm (1959) showed th a t in 
quantum mechanics such vector potentials have physical significance even though 
they correspond to zero field. I shall now show how their effect can be interpreted as 
a geometrical phase change of the type described in §2.

Let the quantal system consist of particles with charge q confined to a box 
situated at JR and not penetrated by the flux line (figure 1). In the absence of flux
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Phase factors accompanying adiabatic changes 53

F ig ube  1. Aharonov-Bohm effect in a box transported round a flux line.

( A = 0), the particle Hamiltonian depends on position f  and conjugate momentum 
p  as follows:

H = H ( p , f - R ) ,  (31)

and the wavefunctions have the form \Jrn{r — R) with energies independent of R. 
With non-zero flux, the states |w(i?)) satisfy

H(p-qA(r ) ,  f-R) | n(R)) = E n )>, (32)

an equation whose exact solutions are obtained by multiplying \Jrn by an appropriate 
Dirac phase factor, giving

<r|»(R)> = e x p { |P d r '- A ( r ') j s M r  —R). (33)

These solutions are single-valued in r and (locally) in R. The energies are 
unaffected the vector potential.

Now let the box be transported round a circuit C threaded by the flux line; in 
this particular case it is not necessary tha t the transport be adiabatic. After com
pletion of the circuit there will be a geometrical phase change that can be calculated 
from (6) and (33) by using

<«(R)|VS«(R)>=. f f f d 3r « ( r - R ) { ^ ^ ( R ) f „ ( r  —R) + Vs ^ „ (r-R )}

= - i  qA(R)/h.  (34)
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(The vanishing of the second term in braces follows from the normalization of \Jrn.) 
Evidently in this example the analogy between Im<w|Vw) and a magnetic vector 
potential becomes a reality. Thus

r.(C ) =  |£ / i ( H ) - d  (35)

which shows th a t the phase factor is independent of n, and also of C if this winds 
once round the flux line. The phase factor could be observed by interference 
between the particles in the transported box and those in a box which was not 
transported round the circuit.

In elementary presentations of the Aharonov-Bohm effect (including its antici
pation by Ehrenburg & Siday 1949), the Dirac phase factor is often invoked in 
comparing systems passing opposite sides of a flux line. Such invocations are subject 
to the objection tha t the wavefunction thus obtained is not single-valued. One way 
to avoid this objection is by summation over all contributions (whirling waves) 
representing different windings round the flux line (Schulman 1981; Berry 1980; 
Morandi & Menossi 1984). Another way, adopted in the original paper by Aharonov 
& Bohm, is to solve Schrodinger’s equation exactly for scattering in the flux line’s 
vector potential. The argument of the preceding paragraphs, which employs the 
geometrical phase factor, is a third way of obtaining the Aharonov-Bohm effect 
by using only single-valued wavefunctions.

Mead (1980^,6), employs the term ‘molecular Aharonov-Bohm effect’ in a 
different context, to describe how degeneracies in electron energy levels affect the 
spectrum of nuclear vibrations. He explains two options, both leading to the same 
vibration spectrum. The first option is to continue the electronic states round 
degeneracies (in the space of nuclear coordinates) in the manner described in this 
paper, thus causing the electronic wavefunctions to be multi-valued, with a com
pensating multi-valuedness in the nuclear states, which must be incorporated into 
their boundary conditions. The alternative is to enforce single-valuedness on the 
electronic (and hence also the nuclear) states, and this introduces a vector potential 
into the Schrodinger equation for nuclear motion. In general one may expect such 
effects whenever an isolated system is considered as being divided into two inter
acting parts, each slaved to a different aspect of the other (in the molecular case, 
electron states are slaved to nuclear coordinates, and nuclear states are slaved to the 
electronic states and wavefunctions). The systems considered in this paper might be 
regarded as a special case, in which the coupling is with ‘the rest of the Universe’ 
(including us as observers). The only role of the rest of the Universe is to provide a 
Hamiltonian with slowly-varying parameters, thus forcing the system to evolve 
adiabatically with phase continuation governed by the time-dependent Schrodinger 
equation.

M. V. Berry
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Phase factors accompanying adiabatic changes 55

6. D i s c u s s i o n

A system slowly transported round a circuit will return in its original state; this 
is the content of the adiabatic theorem. Moreover its internal clocks will register the 
passage of time; this can be regarded as the meaning of the dynamical phase factor. 
The remarkable and rather mysterious result of this paper is tha t in addition the 
system records its history in a deeply geometrical way, whose natural formulation 
(9) and (10) involves phase functions hidden in parameter-space regions which 
the system has not visited.

The total phase of the transported state (5) is dominated by the dynamical part, 
because T -> oo in the adiabatic limit, and it might be thought that this must over
whelm the geometrical phase y n and make its physical effects difficult to detect. 
This objection can be met by observing tha t the strengths of non-adiabatic transi
tions are exponentially small in T  if //changes smoothly (Hwang & Pechukas 1977), 
so tha t essentially adiabatic evolution can occur even when the dynamical phase is 
only a few times greater than 2 71.

As we saw in § 3, degeneracies in the spectrum of H(R)  are the singularities of the 
vector V(R) (equation (10)) in parameter space, and so have an important effect on 
the geometrical phase factor. This is reminiscent of the part played by singularities 
of an analytic function, but the analogy is imperfect: if y(C) were completely 
singularity-determined, V(R) would be the sum of the ‘magnetic fields’ of ‘mono
poles’ situated at the degeneracies (cf. (17)) and so would have zero curl, which is 
not the case (zero curl, unlike zero divergence, is not a property which is invariant 
under deformations of R  space, and in the general case the sources of V are not just 
monopoles but also ‘currents’ distributed continuously in parameter space). 
A closer analogy is with wavefront dislocation lines, which are phase singularities of 
complex wavefunctions in three-dimensional position space (Nye & Berry 1974; 
Nye 1981; Berry 1981), tha t dominate the geometry of wavefronts without com
pletely determining them.

In  view of the emphasis on degeneracies as organizing centres for phase changes, 
it is worth remarking tha t close approach of energy levels is not a necessary condition 
for the existence of nontrivial geometrical phase factors. Indeed, our examples have 
shown th a t y(C) can be non-zero even if C involves isospectral deformations of H{R)  
(in the Aharonov-Bohm illustration, the levels E n do not depend on R at all).

The results obtained here are not restricted to quantum mechanics, but apply 
more generally, to the phase of eigenvectors of any Hermitian matrices under a 
natural continuation in parameter space. Therefore they have implications through
out wave physics. For example, the electromagnetic field of a single mode travelling 
along an optical fibre will change sign if the cross section of the fibre is slowly 
altered so tha t its path (in the space of shapes) surrounds a shape for which the 
spectrum of the Helmholtz equation is degenerate (such as one of the diabolical 
triangles discovered by Berry & Wilkinson 1984).
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A p p e n d i x  A

To show that y(C) is independent of the surface spanning C, it is necessary to 
prove that V(R) (equation (10)) has zero divergence. This can be accomplished by 
expressing V in terms of the vector Hermitian operator B defined by

B = - i Z \ V n ) ( n \ .  (Al)
n

From (8), the off-diagonal elements of B are

(n\ B \m) = — i(m\V// \n)/ (En — Em), #  (A 2)
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Thus (10) becomes
V = Im (n \B  x B\n).  (A3)

Now we can calculate the divergence:

V - F  = Im{(Vw| • B x B\ n)  + (n\ B x B-|Vw> + (w| V - ( B x l )  |w>}, (A 4)

Use of a consequence of (A 1), namely

\Vn) = iB\n)  (A 5)
gives

V F  = n ( - & - B x &  + B x B ' B ) \ n )  + I m ( n \ ( V x d - B - B ' V x B \ n ).(A 6)

For the curl of B, (A 1) and (A 5) give

V x B  = + i S  |Vw>x<Vw| (A7)
n n

whence V- F vanishes by the dot-cross rule for triple products.
This result is valid everywhere except a t the ‘monopole’ singularities arising 

from degeneracies.
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