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When a conducting layer is placed in a strong perpendicular magnetic field, there exist
current-carrying electron states which are localized within approximately a cyclotron ra-
dius of the sample boundary but are extended around the perimeter of the sample. It is
shown that these quasi-one-dimensional states remain extended and carry a current even
in the presence of a moderate amount of disorder. The role of the edge states in the
quantized Hall conductance is discussed in the context of the general explanation of
Laughlin. An extension of Laughlin’s analysis is also used to investigate the existence of
extended states in a weakly disordered two-dimensional system, when a strong magnetic

field is present.
I. INTRODUCTION

In a recent paper Laughlin has given a very
elegant and general explanation of the phenomenon
that under appropriate conditions, for a two-
dimensional sample in a strong magnetic field, at
T =0, the Hall conductance is quantized in exact
multiples of the unit e?/h.!~* The purpose of the
present paper is to discuss some curious properties
of electronic states in a magnetic field that are im-
plied by Laughlin’s analysis, and, incidentally, to
clarify some details of Laughlin’s argument. In
particular, it is shown in Secs. II and III below
that states at the perimeter of the sample are
quasi-one-dimensional states which carry a current,
and which do not become localized in the presence
of a disordered potential of moderate strength.

The perimeter states play an important role in the
Hall measurement, if the Fermi levels are different
at two edges of the sample.

Following the method of Laughlin,! we consider
a film of annular geometry, in a magnetic field
perpendicular to the plane of the film. In this
case, the currents at the inner and outer edge are in
opposite directions, and they contribute no net
current around the annulus if the Fermi levels are
the same at the two edges. If the two Fermi levels
differ by an amount eA, however, we find that the
edge states contribute a net current 81 around the
ring given by

8I =ne’A/h , (1)

where n is an integer. This contribution is con-
sistent with the quantized Hall conductance, as the
chemical potential difference A is included, along
with any electrostatic potential present, in the po-
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tential difference that would be measured by a
voltmeter connected between the inner and outer
edges of the ring. Of course, the edge current and
the quantity A are taken into account automatical-
ly in the general analysis of Laughlin.!

In Sec. IV below, we use an extension of
Laughlin’s analysis to investigate the question of
whether extended states can exist in principle in
the interior of a two-dimensional disordered sys-
tem. We conclude that there must exist a band of
extended states in the vicinity of the Landau ener-
gy, or at least an energy at which the localization
length diverges, if the random potential is weak
compared to the cyclotron energy iw,.

II. IDEAL SAMPLE

Let us first consider a collection of noninteract-
ing electrons, confined in an ideal uniform film of
annular geometry, with a uniform magnetic field
B, perpendicular to the plane of the sample. (See
Fig. 1.) We assume in addition that there is a
magnetic flux ®, confined to the interior of a
solenoid magnet threading the hole in the annulus,
and we shall be able to vary the flux ® without
changing the magnetic field in the region where
the electrons are confined. (This is a slight modifi-
cation of the cylinder geometry considered by
Laughlin.) We shall assume that no electric field
is present so that the electrostatic potential seen by
the electrons is constant in the interior of the film,
and we assume that the dimensions of the annulus
are very large compared to the cyclotron radius 7,
for electrons in the magnetic field. We adopt the
gauge where the vector potential A points in the
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FIG. 1. Geometry of sample. Annular film, in re-
gion r; <r <r; is placed in uniform magnetic field By,
pointing out of the page. Additional magnetic flux ® is
confined to region r <r;. Curved arrows show direction
of currents I, and I, at the boundaries of film.

azimuthal (0) direction, and the magnitude of A
depends only on the distance from the center of
the annulus:

A=5Bor+®/27r . 2)

Away from the edges of the film, the electronic
states in this geometry have the form

Uy, T)=const X e™Of (r—r,,) , 3)

where m and v are integers, with v>0, f, is the
v+1 eigenstate of a one-dimensional harmonic os-
cillator, and the radius r,, is determined by

Borrl =m®y—@ . )

Here @, is the flux quantum, hc/e. The width of
f is of order r,, where r, is the cyclotron radius.
Of course, Eq. (3) is only applicable if r,, is in the
range ry <rp <ry, with r,, —r| and r, —r,, large
compared to .. We shall assume throughout that
r. is small compared to r; and r,—r;. The ener-
gies of the states (3) are given by the Landau for-
mula

Ep=fio.(v+73), (5)

where w, is the cyclotron frequency determined by
the field B, and the carrier effective mass m*:

w.=|eBy| /m*c . (6)

The electron density |¥,,,(r)|? associated with
Eq. (3) is symmetric about the radius r,,, and de-
cays rapidly for |r—r,, | /ro>>1. The current
carried by the state is given by

f d"|¢'m,vf'| [mﬁ eA(r)

r c

2
B I
2 [ dr | A7) ™

m*c

The integral may be taken over the radial coordi-
nate r, at any fixed value of 6. The net current
vanishes for states in the interior of the annulus,
since the probability densities of the harmonic os-
cillator states are symmetric about the point r=r,,.
The situation is very different when #,, is closer
than a few times 7, to an edge of the sample.
Then the condition that the wave function vanish
at the edges of the sample will shift the energies of
the eigenstates away from the Landau energies (5).
Let us focus our attention on the behavior near
the outer edge of the annulus, and let us continue
to use the index v to label the number of nodes in
the radial wave function. We may then write the
electronic wave functions as

PYm A T)=constXe™O% (r —r,, r,—1,) , )

where g,(x,s) is a wave function which is defined
in the region — o0 <x <s and has v nodes, which
vanishes for x —s and x — — o, and which obeys
the eigenvalue equation

# d® Bie’x?

T 2m* dx? | 2m*c?

g,=Eg, . ©

Now it is clear that the elgenvalue E,, , will ap-

proach the value E, =i, (v+ 5 1), for

ry—ty >>r.. The energy E,, , w111 increase mono-

tomcally as r, 1ncreases, passing through the value
E, ,=fiw,2v+5 ) when r,, =r,, and increasing

eventually as (r,,, —r;)%*B3 /2m*c? for

rm —ry>r.. The energy curve is sketched in Fig.
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FIG. 2. Energy levels of nonrandom system, in units
of #w,, as a function of the parameter 7,,. The latter
quantity is determined by the azimuthal quantum num-
ber m, according to Eq. (4), and it is the radius at which
the azimuthal current density vanishes for quantum
number m. The radius r,, is the center of the wave
function ¢,,, provided that r,, is not too close to the
boundary r; or r,.
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Since the density | ¥, ,(T)|? is no longer sym-
metric about » =r,,, we no longer expect that
I, ,=0. In fact, it is readily established that

aEm,v e aEm,v
I, ,=—c 3 — 7 om (10)
For By >0, we find that I,, , >0, for r,,~r,, while
I, , <0, near the inner edge r,, ~r,.

Note that the quantity |dE,, ,/0m | is just the
energy separation between adjacent energy levels
for a given quantum number v. Thus the total
current carried by states of a given v in a small-
energy interval 8E is equal to (e /h)8E at the outer
edge of the sample, and —(e /h)SE at the inner
edge. (We neglect here any spin or valley degen-
eracy of the carriers.)

Let us suppose that the Fermi level lies in be-
tween the energies E, of two Landau levels
v=n—1 and v=n, in the interior of the sample.
Suppose also that near 7, and r; there are Fermi
levels Ey 2) and E (1), respectively, which differ from
each other, but still lie in the interval between
E,_, and E,. Then the total current carried by
the edge states between Ef ¥ and Ef D is clearly
given by neh ~\(Ef P (”) in agreement with Eq.
(1).

In a real experiment, the measured Hall potential
eV is the sum of an electrostatic potential eV, and
the difference in Fermi levels E{* —E{". The edge
current is then only a fraction of the total Hall
current, given by (Ef> —E")/eV ~anr.fiw,C /e*
where C is the capacxtance per unit length of the
edge states, and a is a number of order unity.

II1. DISORDERED SAMPLE

Now we must show that the edge currents are
not destroyed by a moderate amount of disorder in
the sample. Let us consider the effect of a weak
random potential V(7), with | V(T)| << fiw,. Let
us consider for simplicity a situation where the
Fermi level Ey lies midway between the unper-
turbed Landau energies E, and E,. It is then clear
that there will be no energy eigenstates with E near
Epr in the interior of the sample, but there will
remain two bands of states with E near Ep which
are radially localized near #, and r |, respectively.

Consider an energy eigenstate ¢ from the band
at r,, and write the state as superposition of the
eigenstates 1,,, of the nonrandom system:

UTV="S Crstimy( ) - (11)
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The expansion coefficient c,,, will be relatively
large for v=0 and r,, near to, but slightly smaller
than r,. The coefficient c,,, will be smaller by a
factor of order V(7)/#iw, for v> 1, and c,,, will be
“exponentially small” for |r,—r, | >>r..

The azimuthal current carried by the state ¢ is
given by

(I)=3 cmmvImmw » (12)
mw
where
I, = dr dO Yy, (D), (T)
mwv = 217m ff” U DYy

(13)

% lﬂ@_eA(r)
r c

Note that azimuthal current must be independent
of 6, smce current conservation requires
V+{J(¥))=0, where { j (F)) is the current densi-
ty carrled by any exact eigenstate of the Hamil-
tonian. We see that I, is identical to I,,,, when
v=+v'. Furthermore, for r,, near r,, I, is of the
same order as I,,o, namely of order ew.r./r;. It
follows then that the off-diagonal contribution
(vs£v') to Eq. (12) cannot cancel the positive diag-
onal contribution (v=+'=0), when V(T)/fiw, is
small; hence the current (I) is nonzero. It follows
also from current conservation that the eigenstate
¥ is not localized azimuthally in any region of 6,
but must be spread more or less uniformly around
the annulus.

It is clear, physically, that the situation is unal-
tered if there are a few isolated regions with
V(T)>> fiw,. Although there may be localized
bound states or resonances in the regions of strong
potential, the current-carrying edge states will sim-
ply be displaced, locally, to go around these re-
gions. Of course, if the random potential becomes
sufficiently strong that electron scattering rate is
large compared to w,, it is no longer useful to em-
ploy the Landau levels as starting points and the
arguments given here breakdown.

The arguments given above can be extended,
with little difficulty, to the case where E is mid-
way between the v=1 and v=2 Landau levels, etc.
In this case there will be several values of v for
which the expansion coefficients c,,, can be large.
The contributions of the off-diagonal terms (v=£v')
in Eq. (12) to the current carried by the state ¢ are
nevertheless small for V(T)/%iw, << 1, because the
matrix element I,,,,, is diagonal in m, while the
largest values of c,,, occur at different values of m



2188 B. I. HALPERIN 25

for different oscillator levels v. The reasoning
clearly breaks down, on the other hand, if E is
too close to an unperturbed energy E,,.

Our argument that (I )40 for an edge state in a
weakly disordered system did not show that the
current carried satisfies Eq. (1) exactly in this case.
The validity of this equation may be most easily
established by considering what happens as one
adiabatically increases the threading flux ® by one
flux quantum, in the manner described by Laugh-
lin, in Ref. 1. We shall not repeat that analysis
here in detail, but we shall mention some essential
features in the following section.

1V. DO EXTENDED STATES EXIST
IN TWO DIMENTIONS?

A starting point of Laughlin’s analysis of the
quantized Hall conductance is the assumption that
for a collection of noninteracting electrons in an
infinite two-dimensional sample with weak disord-
er, in a strong perpendicular magnetic field, there
exist energy bands of extended states (“Landau
levels”) separated by energy regions of localized
states and/or energy gaps where there are no states
at all. Laughlin shows that if the Fermi energy
occurs at a position outside the bands of extended
Landau states, and if the flux @ threading the hole
of an annular sample is increased adiabatically by
one flux quantum @, then the net effect will be to
transfer an integral number » electrons from the
Fermi level at the outer edge to states at the Fermi
level of the inner edge of the sample. Since the net
change in the energy of the sample is —neV, where
V is the voltage difference between the outer and
inner edge of the sample, and since the work done
in the flux change is equal to —c ~'I®,, where I is
the current around the loop, Laughlin has estab-
lished that I /V =nec /®.

It is natural to identify the integer n with the
number of bands of extended states below the Fer-
mi energy (multiplited by the spin and valley de-
generacy of the carriers), and it is natural to sup-
pose that for weak disorder this number will be the
same as the number of Landau levels that would
occur below E in the absence of disorder. If the
disorder is sufficiently strong, however, so that all
states below Ej are localized, then we would obtain
the integer #n =0, and the quantized Hall conduc-
tance would not be observed.

It is now generally believed that in the absence
of a magnetic field or other mechanisms to break
the time-reversal invariance of the Schrodinger

equation, the electronic states in a two-dimensional
random potential are always localized, in princi-
ple.’ When time-reversal symmetry is broken, the
leading term responsible for localization in the
renormalization-group equations is known to be
absent; nevertheless, it has remained an open ques-
tion whether extended states can exist in a two-
dimensional system under these conditions.>®

If two-dimensional states were actually always
localized there would seem to be a serious problem,
in principle, with the starting point of Laughlin’s
theory. One could take the point of view that the
experimental existence of a nonzero, quantized
Hall conductance is sufficient evidence for the ex-
istence of extended states, and that further discus-
sion of this point is unnecessary.” For the sake of
intellectual completeness, however, it seems
worthwhile to note that the existence of extended
states and of nonzero Hall conductance can actual-
ly be demonstrated theoretically, at least in the
case of a weakly disordered sample in a strong
magnetic field, by an extension of Laughlin’s argu-
ments, which will be given below. (Actually, we
cannot rule out the possibility that the energy re-
gions of extended states have vanishing width in
the limit of an infinite sample, but this possibility
would still be compatible with a nonzero quantized
Hall conductance.) In addition, the theoretical ar-
gument can be applied directly to the theoretically
important case of noninteracting electrons, whereas
the electron-electron interactions could a priori be
important in the experimental systems.® In the
discussion below, we shall in fact confine ourselves
to the noninteracting case, although a small modif-
ication of the arguments also confirms that the
electron-electron interaction, if it is not too strong,
will not destroy a nonzero, quantized Hall conduc-
tance.’

We begin by generalizing the annular geometry
of Fig. 1 as follows. We divide the sample into
three concentric regions, bounded by radii ; <7}
<rhy <ry. Forry<r<ryandry <r<ry, we as-
sume the potential ¥ (¥)=0. For r} <r<r), we
assume a weak random potential ¥V (7) << fiw,.
There is no macroscopic electrostatic field present,
and we assume infinite reflecting walls at 7, and r,
as before. We shall assume the dimensions of the
sample to be arbitrarily large compared to any mi-
croscopic length.

The electronic energy levels in this geometry are
indicated in Fig. 3. In the border regions
ri<r <r) and ry <r <r,, the analysis of Sec. II
applies, and the electronic states are well under-
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FIG. 3. Energy bands, as a function of position for
the inhomogeneous geometry described in Sec. IV. Re-
gions r; <7 <r} and ry <r <r, contain ordered “ideal”
conductor, while region 7] <r <r; contains a weak ran-
dom potential V(7).

stood. The states have energies E,,, which are
given by the Landau formula E,,:hwc(v-k%), ex-
cept at the boundaries 7 and r,, where they are
pushed upward in energy as in Fig. 2. Now, in the
interior disordered region r| <r <75, we expect
that the states will occur in a series of energy
bands of finite width, centered about the energies
E,. If the potential V(T) is sufficiently weak there
should be no states in the region midway between
two Landau levels. (Alternatively, if there are a
small number of strong impurities, there may be a
small density of isolated impurity levels in the
mid-gap region; these states will be localized on a
scale of order 7,, however, and will not be impor-
tant for our argument.)

We may now choose one of two hypotheses:

(a) The states in the disordered region are local-
ized at all energies with a finite energy-dependent
localization length A(E).

(b) The states near the center of each magnetic -
energy band are delocalized, or at least AM(E)— oo
for some energy E in the band.

We shall adopt hypothesis (a), and see that this
leads to a contradiction.

Assume that, initially, all electron states in the
sample are filled up to a Fermi level Ep, which we
choose to lie at the energy #w,., midway between
the v=0 and v=1 Landau levels. Let A,, be the
maximum value of A(E), for E < Er, and choose
ry —r] >>Ana. Let us now increase adiabatically
the flux ® through the hole in the annulus, by one
flux quantum ®,. Since, initially, there was no net
current flowing in the sample, there is no work

done in this process, or, more accurately, the work
—c! f Id® is inversely proportional to the size
of the system, as the induced current will be small
for large . We also know that the electronic wave
functions in the ordered regions will contract
slightly during the flux change so that at the end
there is one state unoccupied just below Ep, at

¥ ~F,, and one new state occupied just above Er,
at r=ry.

This change in occupation costs no energy in the
limit of a large sample. If, however, in the disor-
dered region the states below the Fermi surface are
all localized, there will be no way to transport an
electron across this region, since, as discussed by
Laughlin, localized states remain unchanged during
the flux increase, except for an uninteresting phase
factor ¢/® ™), Then the electron removed from
r ~r, must be “transferred” to a new occupied
state at 7 =13, and the new electron at r ~r; must
be associated with a hole near r ~rj. However, by
construction, there are no states in the interior of
the sample with energy near Ep (except perhaps
for some strongly localized impurity states, whose
occupation cannot change during the flux increase).
It follows that the required change of occupation
must cost an energy of order #w,, which would be
a violation of conservation of energy. Therefore,
there must be at least some delocalized states below
the Fermi level, even in the disordered region of
the sample.

It is interesting to ask what happens to the
above argument when the random potential is suf-
ficiently strong that all states below the Fermi en-
ergy are localized in the disordered region. It
seems that the bands of extended states do not
disappear, but rather are pushed upwards in energy
as the disorder is increased, and that the Hall con-
ductance ceases when the lowest extended band
rises above the Fermi energy.!® In an inhomogene-
ous geometry such as that considered above, there
will be current-carrying states at the Fermi level
near the boundaries of the disordered region (radii
r} and r}) analogous to the current-carrying states
at the edge of the sample. Under these cir-
cumstances, the addition of a flux quantum will
transfer an electron from a state at r, to a state at
r5 and another electron from a state at 7} to a
state at rq, so that the Laughlin argument cannot
be applied to the sample as a whole. The Hall
current will then be determined by the voltage
drops across the nondisordered regions only.

As a final remark, we note that by using the
geometry described above, we have put Laughlin’s
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derivation of the exact quantization of the Hall
conductance in a form which does not require any
a priori assumption about the behavior of extended
states in the disordered region, during the adiabatic
change of ®. We have only made use of the
‘known behavior of the wave functions in the or-
dered boundary regions, and the relatively trivial
behavior of any localized states at the Fermi level
during the change of ®. The transfer of charge
through the disordered region, and the quantized
relation for I/V, are then implied by conservation
of energy and particle number.
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