
PHYSICAL REVIEW B VOLUME 25, NUMBER 4 15 FEBRUARY 1982

Quantized Hall conductance, current-carrying edge states, and the existence

of extended states in a two-dimensional disordered potential
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When a conducting layer is placed in a strong perpendicular magnetic field, there exist

current-carrying electron states which are localized within approximately a cyclotron ra-

dius of the sample boundary but are extended around the perimeter of the sample. It is

shown that these quasi-one-dimensional states remain extended and carry a current even

in the presence of a moderate amount of disorder. The role of the edge states in the

quantized Hall conductance is discussed in the context of the general explanation of
Laughlin. An extension of Laughlin's analysis is also used to investigate the existence of
extended states in a weakly disordered two-dimensional system, when a strong magnetic

field is present.

I. INTRODUCTION

In a recent paper Laughlin has given a very
elegant and general explanation of the phenomenon
that under appropriate conditions, for a two-
dimensional sample in a strong magnetic field, at
T=0, the Hall conductance is quantized in exact
multiples of the unit e /h. ' The purpose of the
present paper is to discuss some curious properties
of electronic states in a magnetic field that are im-

plied by Laughlin s analysis, and, incidentally, to
clarify some details of Laughlin's argument. In
particular, it is shown in Secs. II and III below

that states at the perimeter of the sample are
quasi-one-dimensional states which carry a current,
and which do not become localized in the presence
of a disordered potential of moderate strength.
The perimeter states play an important role in the
Hall measurement, if the Fermi levels are different
at two edges of the sample.

Following the method of Laughlin, ' we consider
a film of annular geometry, in a magnetic field
perpendicular to the plane of the film. In this
case, the currents at the inner and outer edge are in
opposite directions, and they contribute no net
current around the annulus if the Fermi levels are
the same at the two edges. If the two Fermi levels
differ by an amount eb., however, we find that the
edge states contribute a net current 5I around the
ring given by

5I=ne b, /h,
where n is an integer. This contribution is con-
sistent with the quantized Hall conductance, as the
chemical potential difference 6 is included, along
with any electrostatic potential present, in the po-

tential difference that would be measured by a
voltmeter connected between the inner and outer
edges of the ring. Of course, the edge current and
the quantity 5 are taken into account automatical-
ly in the general analysis of Laughlin. '

In Sec. IV below, we use an extension of
Laughlin's analysis to investigate the question of
whether extended states can exist in principle in
the interior of a two-dimensional disordered sys-
tem. We conclude that there must exist a band of
extended states in the vicinity of the Landau ener-

gy, or at least an energy at which the localization
length diverges, if the random potential is weak
compared to the cyclotron energy fico, .

II. IDEAL SAMPLE

Let us first consider a collection of noninteract-
ing electrons, confined in an ideal uniform film of
annular geometry, with a uniform magnetic field

Bo perpendicular to the plane of the sample. (See
Fig. 1.) We assume in addition that there is a
magnetic flux 4, confined to the interior of a
solenoid magnet threading the hole in the annulus,
and we shall be able to vary the flux 4 without
changing the magnetic field in the region where
the electrons are confined. (This is a slight modifi-
cation of the cylinder geometry considered by
Laughlin. ) We shall assume that no electric field
is present so that the electrostatic potential seen by
the electrons is constant in the interior of the film,
and we assume that the dimensions of the annulus
are very large compared to the cyclotron radius r,
for electrons in the magnetic field. %e adopt the
gauge where the vector potential A points in the
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FIG. 1. Geometry of sample. Annular film, in re-
gion PI & r & rg ls placed ln uniform IIlagnetlc flield 80,
pointing out of the page. Additional magnetic flux 4 is
confined to region r & r~. Curved arrows show direction
of currents II and I2 at the boundaries of film.

azimuthal (8) direction, and the magnitude of A
depends only on the distance from the center of
the annulus:

(2)

Away from the edges of the film, the electronic
states 1n this geometry have the form

„(r)=constxe' sf,(r r), —

where m and v are integers, with v& 0, f„ is the
v+1 eigenstate of a one-dimensional harmonic os-
cillator, and the radius r is determined by

Boer~ =m@0—4 .

Here 40 is the flux quantum, hc/e. The width of
f is of order r„where r, is the cyclotron radius.
Of course, Eq. (3) is only applicable if r~ is in the
range r& &r &r2, with r —r& and r2 —r large
compared to r, . %e shall assume throughout that

r, is small compared to r~ and r2 —r~. The ener-

gies of the states (3) are given by the Landau for-
mula

E „=%co,(v+ , ), —

where co, is the cyclotron frequency determined by
the field 80 and the carrier effective mass m ~:

co, = ie8u i/m'c .

The dectron density
i 1(,(r) i

associated with

Eq. (3) is symmetric about the radius r~, and de-

cays rapidly for
i
r r

i /ro)) 1. Th—e current
carried by the state is given by

J dr[@ i
(r r). —

The integral may be taken over the radial coordi-
nate r, at any fixed value of 8. The net current
vanishes for states in the interior of the annulus,
since the probability densities of the harmonic os-
cillator states are symmetric about the point r =r~.

The situation is very different when r is closer
than a few times r, to an edge of the sample.
Then the condition that the wave function vanish
at the edges of the sample will shift the energies of
the eigenstates away from the Landau energies (5).

I.et us focus our attention on the behavior near
the outer edge of the annulus, and let us continue
to use the index v to label the number of nodes in
the radial wave function. We may then write the
electronic wave functions as

P~,( r ) =const X e' g (r rr2 r)——,

where g,(x,s) is a wave function which is defined
in the region —00 &x &s and has v nodes, which
vanishes for x~s and x~ —00, and which obeys
the eigenvalue equation

Now it is clear that the eigenvalue E~ „mill ap-
proach the value E„=fico,(v+ —, ), for
r2 —r )g r, . The energy E,will increase mono-
tonically as r~ increases, passing through the value
E „=Pm, (2v+ —,), when r =r2, and increasing
eventually as (r~ rz) e Bo/2m—*c for
r~ —r2) r, . The energy curve is sketched in Fig.
2.

FIG. 2. Energy levels of nonrandom system, in units
of %co„as a function of the parameter r . The latter
quantity i.s determined by the azimuthal quantum num-
ber m, according to Eq. (4), and it is the radius at which
the azimuthal current density vanishes for quantum
number m. The radius r is the center of the wave
function P „provided that r is not too close to the
boundary pi or p2.
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Since the density
~ f~ „(r}

~
is no longer sym-

metric about r =r~, we no longer expect that
I~ ~=0. In fact, it Is Icadily cstablishcd that

e ~E~,
Nl, V (10}

For 8o &0, we fmd that I „&0, for r =ri, while

I~ ~& 0» near thc Inner edge P'~~p'I.
Note that the quantity

~
BE „/Bni

~
is just the

energy separation between adjacent energy levels
for a given quantum number v. Thus the total
current carried by states of a given v in a small-

energy interval 5E is equal to (e/h)5E at the outer
edge of the sample, and —(e/Ii)5E at the inner
edge. (We neglect here any spin or valley degen-

eracy of the carriers. )

Let us suppose that the Fermi level lies in be-
tween the energies E, of two Landau levels
v=n 1 and—v=n, in the interior of the sample.
Suppose also that near f~ and PI there arc Fcrim
levels EF ' and E~", respectively, which differ from
each other, but still lic IQ thc interval bctwccn

E„ I and E„. Then thc tota1 current c~& by
the Age statM b twin EF(2& and EF(1) is clmrly
given by neh '(EP ' EF"}, in —agreement with Eq.
(1).

In a real experiment, the measured Hall potential
CV is the sum of an electrostatic potential e Vo and
the difference in Fermi levels Er ' —Er". The edge
current is then only a fraction of the total Hall
current, given by (EF ' Ez")/e V =—anr, %co,C/ei
where C is the capacitance per unit length of the
edge states, and (z is a number of order unity.

Now we must show that the edge currents are
not destroyed by a moderate amount of disorder in
the sample. Let us consider the effect of a weak
random potential V(F), with

~
V(r )

~
&& fico, . Let

us consider for simplicity a situation where the
Fermi level Ez lies Imdway between the unper-
turbed Landau energies Eo and EI. It is then clear
that there will be no energy eigenstates with E near
EF in the interior of the sample, but there will
remain two bands of states with E near E~ which
are radially localized near r2 and v~, respectively.

Consider an energy eigenstate P from ihe band
at r2, and write the state as superposition of the
eigenstates f „ofthe nonrandom system:

f(r)= gc „1( (r) .

The expansion coefficient c „will be relatively

large for v=0 and r near to, but slightly smaller
than rz T. he coefficient c „will be smaller by a
factor of order V( r )/%co, for v) 1, and c „will be
"exponentially small" for

~
ri —r

~
&&r, .

The azimuthal current carried by the state l( is
given by

I ~=,— J Jdrd8tP'„(r)iti ~(r)
2'lTNl

Note that azimuthal current must be independent
of 8, since current conservation requires
V ( ] (r)) =0, wlicrc ( ) (1')) ls thc current densi-

ty carried by any exact eigenstate of the Hamil-
tonian. %e see that I~~ is identical to I~~ when
V=V. FurtllCrlilorC, fo1' r~ 11Car rz, I~0( is Of 'tllC

same ol'dc1' as I~a, Ilanicly of older CQ)~'r~/rz It.
follows then that the off-diagonal contribution
(vQv") to Eq. (12) cannot cancel the positive diag-
onal contribution (v=v'=0), when V(r )/fico, is
small; hence the current (I) is nonzero. It follows
also from current conservation that the eigenstate
(t~ is not locahzed azimuthally in any region of 8,
but must be spread more or less uniformly around
tlM aQnulus.

It is clear, physically, that the situation is unal-
tered if there are a few isolated regions with
V( r )» fico, . Although there may be localized
bound states or resonances in the regions of strong
potential, the current-carrying edge states will sim-

ply bc displaced, locally, to go aIound these I'c-

gions. Of course, if the random potential becomes
sufficiently strong that electron scattering rate is
large compared to co„ it is no longer useful to em-

ploy the Landau levels as starting points and the
arguments given heIc breakdown.

The Mguments given above can be extended,
with little difficulty, to the case where E is mid-
%'ay bet%'een tlM v= I and %=2 Landau lcvcls, ctc.
In this case there will be several values of v for
which the expansion coefficients c „can be large.
The contributions of the off-diagonal terms (v+v')
in Eq. (12) to the current carried by the state it~ are
nevertheless small for V(r )/(ri(0, « 1, because the
matrix clement I~~ 18 diagonal in Nl» whllc thc
largest values of c~„occur at different values of ni



for different oscillator levels v. Th«e»oning
clearly breaks down, on the other hand, if Ep is
too close to an unperturbed energy E,.

Our argument that (I)+0 for an edge state in a
weakly dlsordcfcd system did not show that thc
current carried satisfies Eq. (l) exactly in this case.
The validity of this equation may be most easily

established by considering what happens as one

Rdlabatlcally lncI'cases thc thfcadlng flux 4' by Gnc

flux quantum, in the inanner described by Laugh-

1in, in Ref. 1. We shall not repeat that analysis

here in detail, but we shall mention some essential

features in the following section.

A starting point of Laughlin's analysis of the
quantlzcd HRll conductance ls thc assumption that
for a collection of noninteracting electrons in Rn

infinite two-dimensional sample with weak disord-

er, in a strong perpendicular magnetic field, there
exist energy bands of extended states ("Landau
levels" ) separated by energy regions of localized

states and/or energy gaps where there are no states

at all. Laughlin shows that if the Fermi energy

occurs at a position outside the bands of extended

Landau states, and if the flux 4 threading the hole

of an annular sample is increased adiabatically by

one flux quantum 40, then the net effect will be to
tlansfcr Rn lntcgral number n electrons froID the
Fermi level at the outer edge to states at the FerIDi

levd of the inner edge of the sample. Since thc net

change in the energy of the sample is —neV, where

V is the voltage difference between the outer and

inner edge of the sample, and since the work done

in the flux change is equal to c'I@—o, where I is

the current around the loop, Laughlin has estab-

lished that I/V =nec /40.
It is natural to identify the integer n with the

number of bands of extended states below the Fer-

mi energy (multiplited by the spin and valley de-

generacy of the carriers), and it is natural to sup-

pose that for weak disorder this number will be the
same as the number of Landau levels that would

occur below E~ in the absence of disorder. If the

disorder is sufficiently strong, however, so that Rll

states below EF are localized, then we would obtain

the integer n =0, and the quantized Hall conduc-

tance would not be observed.
It is now generally believed t48t in the absence

of a magnetic field or other mechanisms to break

the time-reversal invariance of the Schrodinger

equation, the electronic states in 8 two-dimensional
random potential are akuays localized, in princi-

ple. When time-reversal symmetry is broken, the
lcadlng term responsible fof 1GCR11zatlon ln thc
rcnormalization-group cquatlons ls known to bc
absent; nevertheless, lt has remained Rn open ques-

tion whether extcndcd states can cxlst ln 8 two-

dimensional system under these conditions.
If two-dimensional states were actually always

localized there would seem to be a serious problem,
ln principle, with the starting point of LRUghlln s

theory. One could take the point of view that the
experimental cxlstcncc of R nonzero» qURntlzcd

Hall conductance is sufficient evidence for the ex-

istence of extended states, and that further discus-

sion of this point is unnecessary. For the sake of
intellectual completeness, however, i.t seems

worthwhile to note that the existence of extended

states Rnd of nonzero Hall conductance can actual-

ly bc dcmonstfatcd theorctically, Rt least ln thc
CRsc Gf 8 wcRkly disordcrcd sample ln 8 stlong
magnetic field, by an extension of Laughlin's argu-

ments, which will be given below. (Actually, we

cannot rule out the possibility that the energy re-

gions of extended states have vanishing width in

thc limit of Rn lnflnite sample, but this posslbillty

would still be compatible with a nonzero quantized

Hall conductance. ) In addition, the theoretical ar-

gument can be applied directly to the theoretically

important case of noninteracting electrons, whereas

the electron-electron interactions could a priori be

important in the experimental systems. In the
discussion below, we shall in fact confine ourselves

to the noninteracting case, although a smaB modif-

ication of the arguments also confirms that the
electron-elytron interaction, if it is not too strong,

will not destroy a nonzero, quantized Hall conduc-

tance.
Wc %gin by gcncrallzlng thc RnnUlRr geometry

of Fig. l as follows. We divide the sample into

three concentric regions, bounded by radii ri g r'i

+r2 +r~. For rl +r farl and r2 ~r ~r2, wc as-

sume the potential V(r )=0. For r i ~ r & r z, we

assume a weak random potential V(r) ~& %co,

There is no macroscopic electrostatic field present,

Rnd wc assume lnflnltc reAecting walls Rt rl and r~

as before. We shall assume the dimensions of the

sample to be arbitrarily large compared to any nu-

cfoscoplc length.
The electronic energy levels in this geometry are

lndlcatcd ln Flg. 3. In thc bolder lcglons

rl gr ~rl and r2 gr gr2, the analysis of Sec. II
applies, and the electronic states are well under-
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l

rl rp

t ordered ( disordered ) ordered

FIG. 3. Energy bands, as a function of position for
the inhomogeneous geometry described in Sec. IV. Re-
g1ons P I & P' & f ~ Mld l 2 & P' & f2 contaBl 01del ed 1deal

condUctor, while reg1on P'
l & P' & P'2 contains a Weak ran-

dom potential V(r).

stood. The states have energies E „which are
given by the Landau formula E„=fin),(v+ —,), ex-

cept at the boundaries r1 and r2, where they are
pushed upward 1Q cncfgy Rs In F1g. 2. Now, 1Q the
1ntcr1or d1sofdcfcd I'cglon r1 &; I' &; fp, wc cxpcct
that the states will occur in a series of energy
ballds of flllltc width, cclltcl'cd abollt tllc cIlcrglcs
E„. If the potential V(r ) is sufficiently weak there
should be no states in the region midway between
two Landau levels. (Alternatively, if there are a
small number of strong impurities, there may be a
small density of isolated impurity levds in the
mid-gap region; these states will be localized on a
scale of order r„however, and will not be impor-
tant for our argument. }

We may now choose one of two hypotheses:

(a) The states in the disordered region are local-
ized at a/I energies with a finite energy-dependent
localization length A,(E).

(b) The states near the center of each magnetic
energy band are delocah'zed, or at least A,(E)~ 00

for some energy E in the band.

We shall adopt hypothesis (a), and see that this
leads to 8 contfadiction.

Assume that, initially, Rll clcctI'on states 1Q thc
sample are filled up to a Fermi level E~, which we
choose to l1c Rt thc cncI'gy %co~, midway bctwccn
the v=O and v= 1 Landau levds. Let A,~,„be the
maximum value of A,(E), for E ~Ez, and choose
r2 —r

~ py k~». Let us now increase adiabatically
the fIux 4 through the hole in the annulus, by one
Aux quantum 40. Since, initially, there was no net
current flowing in the sample, there is no work

done 1n this pfoccssq O1, morc Rcculatcly, thc work
—c-' I 4 1s 1nvcfscly pfopoftloIla to thc s1zc

of the system, as the induced current will be small
for large r. %C also know that the electronic wave
functions in the ordered regions will contract
slightly during the flux change so that at the end

thcfc 1s onc state unoccup1cd JUst below EF, Rt

I'p~ and onc ncw state occuplcd Just above Ep~
Rt f'~P1.

Th1s chRngc 1Q occupRt1on costs no cnc1gy 1n thc
limit of a large sample. If, however, in the disor-
dered region the states bdow the Fermi surface are
all localized, there will be no way to transport an
electron across this region, since, as discussed by
Laugh11Q, locallzcd states remain unchanged during
the flux increase, except for an uninteresting phase
factor e'@' '. Then the electron removed from'

r =rl must be '*transferred" to a new occupied
state at r =r 2, and the new electron at r =r

~ must
bc 8ssoc1atcd with 8 hole near /' P I. However& by
construction, there are no states in the interior of
the sample with energy near Ez (except perhaps
foI' some stfongly locallzcd iInpurity stRtcs, whose
occupation cannot change during the flux increase).
It follows that the required change of occupation
must cost an energy of order Aai„which would be
a violation of conservation of energy. Therefore,
there must be at least some delocalizcd states below
the Fermi level, even in the disordered region of
the sample.

It 1s 1ntcfcst1ng to Rsk what hRppcns to thc
above argument when the random potential is suf-
ficiently strong that all states below the Fermi en-

cfgy Rrc locallzcd ln thc dlsofdcf'(xi I'cgloQ. It
seems that the bands of extended states do not
disappear, but rather are pushed upwards in energy
Rs thc dlsordcI' ls Incfcascd, and that thc Hall con-
ductance ceases when the lowest extended band
rises above the Fermi energy. ' In an inhomogene-
ous geometry such as that considered above, there
will bc current-carrying states at the Fermi level
near the boundaries of the disordered region (radii
r I and rz) analogous to the current-carrying states
at the edge of the sample. Under these cir-
cumstances, the addition of a flux quantum will
transfer an electron from a state at rl to a state at
rz and another electron from a state at r I to a
state at rI, so that the Laughlin argument cannot
be applied to the sample as a whole. The Hall
current wi. ll then be determined by the voltage
dIops acloss thc nond1sordered I'cglons only.

As a final remark, wc note that by using the
geometry described above, wc have put Laughlin s



derivation of the exact quantization of the Hall
conductance in a form which does not require any
a priori assumption about the behavior of extended
states in the disordered region, during the adiabatic
change of 4. We have only made use of the
'known behavior of the wave functions in the or-
dered boundary regions, and the relatively trivial
behavior of any localized states at the Fermi level

during the change of @. The transfer of charge
through the d1sordered region, and the quant1zed
relation for I/V, are then implied by conservation
of energy and particle number.
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