
Supplementary of Polynomial Cauchy Coordinates for Curved Cages

ZHEHUI LIN, University of Science and Technology of China, China
RENJIE CHEN*, University of Science and Technology of China, China

ACM Reference Format:
Zhehui Lin and Renjie Chen*. 2024. Supplementary of Polynomial Cauchy Coordinates for Curved Cages. In SIGGRAPH Asia
2024 Conference Papers (SA Conference Papers ’24), December 3–6, 2024, Tokyo, Japan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3680528.3687654

1 INTRODUCTION
This document serves as supplementary material for the paper “Polynomial Cauchy Coordinates for Curved
Cages”, providing a comprehensive derivation of our novel coordinate system and addressing computational
optimizations for high-degree Bézier curves.

2 DERIVATION OF POLYNOMIAL CAUCHY COORDINATES
Building upon the foundational concepts presented in the main paper’s background section, including Cauchy’s
integral formula and Bézier curve representation, we delve into the mathematical intricacies of our coordinate
system. Our analysis incorporates advanced mathematical tools such as binomial theorem expansion and com-
plex integration.

2.1 Our Coordinates
We consider a scenario where the source cage is a polygonal structure represented by a set of closed, counter-
clockwise oriented line segments. The target cage is a curved structure defined by a Bézier spline. Both cages
have𝑀 edges or curve segments, respectively. Our goal is to derive a discrete form of Cauchy’s integral formula
and apply it to each Bézier control point, thereby obtaining the expression for our barycentric coordinates.

The core derivation process for our coordinates has been presented in the main paper. Here, we provide the
final expression for our coordinates and offer a detailed derivation of the Integral function:

𝐶 𝑗,𝑚 (𝑧) = 1
2𝜋𝑖

Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑛 𝑗 ) . (1)

𝑢 (𝑧) =
∑

𝑒 𝑗 ∈𝜕𝐷

𝑛 𝑗∑
𝑚=0

𝐶 𝑗,𝑚 (𝑧)bj,m (2)

Authors’ Contact Information: Zhehui Lin, University of Science and Technology of China, Hefei, Anhui, China, linzhehui626@ustc.edu.cn;
Renjie Chen*, University of Science and Technology of China, Hefei, Anhui, China, renjiec@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1131-2/24/12
https://doi.org/10.1145/3680528.3687654

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1145/3680528.3687654
https://doi.org/10.1145/3680528.3687654


2 • Lin and Chen.

Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑁 )

=
∫
𝑒 𝑗

(𝑁
𝑚

)
( 𝑤−𝑧 𝑗−1
𝑧 𝑗−𝑧 𝑗−1 )

𝑚 ( 𝑧 𝑗−𝑤
𝑧 𝑗−𝑧 𝑗−1 )

𝑁−𝑚

𝑤 − 𝑧
𝑑𝑤

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

(𝑤 − 𝑧 𝑗−1)𝑚 (𝑧 𝑗 −𝑤)𝑁−𝑚

𝑤 − 𝑧
𝑑𝑤

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

(
(𝑤 − 𝑧) − 𝐵 𝑗−1

)𝑚 (
𝐵 𝑗 − (𝑤 − 𝑧)

)𝑁−𝑚

𝑤 − 𝑧
𝑑𝑤

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

( ∑𝑚
𝑘=0

(𝑚
𝑘

)
(𝑤 − 𝑧)𝑘 (−𝐵 𝑗−1)𝑚−𝑘

) ( ∑𝑁−𝑚
𝑙=0

(𝑁−𝑚
𝑙

)
(𝐵 𝑗 )𝑙

(
− (𝑤 − 𝑧)

)𝑁−𝑚−𝑙
)

𝑤 − 𝑧
𝑑𝑤

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘−1 (−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙𝑑𝑤

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
(−𝐵 𝑗−1)𝑚 (𝐵 𝑗 )𝑁−𝑚 log

𝐵 𝑗

𝐵 𝑗−1
+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

) (𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘

𝑁 −𝑚 − 𝑙 + 𝑘 (−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙
�����𝑧 𝑗
𝑧 𝑗−1

]

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
(−𝐵 𝑗−1)𝑚 (𝐵 𝑗 )𝑁−𝑚 log

𝐵 𝑗

𝐵 𝑗−1
+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘
(
(𝐵 𝑗 )𝑁−𝑚+𝑘 (𝐵 𝑗−1)𝑚−𝑘 − (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙

)]
The closed-form expression for our coordinates, denoted as𝐶 𝑗,𝑚 (𝑧), is evaluated for each edge 𝑒 𝑗 and assigned

to the corresponding Bézier control point bj,m. Algorithm 1 details the computation of the Integral function.

Algorithm 1: Calculation of Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑁 )
Input: Interior point 𝑧, edge 𝑒 𝑗 , index of Bézier control points𝑚, degree of current Bézier curve 𝑁
Output: result as 2𝜋𝑖 ·𝐶 𝑗,𝑚 (𝑧)
result = 0;
for k = 0:m do

for l = 0:N-m do
if N-m-l+k == 0 then

result += (−𝐵 𝑗−1)𝑚 (𝐵 𝑗 )𝑁−𝑚 log
𝐵 𝑗

𝐵 𝑗−1
;

else

result +=
(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁 −𝑘−𝑙

𝑁−𝑚−𝑙+𝑘

(
(𝐵 𝑗 )𝑁−𝑚+𝑘 (𝐵 𝑗−1)𝑚−𝑘 − (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙

)
;

end
end

end
result ×=

(𝑁
𝑚

)
/(𝐴 𝑗 )𝑁 ;

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Polynomial Cauchy Coordinates Supplementary • 3

2.2 Derivatives of our coordinates
For derivative computation, we leverage the infinite differentiability of the holomorphic function 𝑢 within the
interior of 𝐷 . Utilizing Cauchy’s integral formula, we express the derivatives of our coordinates as integral
expressions, enabling the derivation of n-th order derivatives.
We first present the first-order derivative 𝐷 𝑗,𝑚 (𝑧):

𝑢′ (𝑧) = 1
2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑤)
(𝑤 − 𝑧)2𝑑𝑤,

Since it is a polynomial integration, the derivation is similar to that of the barycentric coordinates. Coefficient
𝐷 𝑗,𝑚 (𝑧) for bj,m is given by:

1
2𝜋𝑖

∫
𝑒 𝑗

𝐵𝑁
𝑚 ( 𝑤−𝑧 𝑗−1

𝑧 𝑗−𝑧 𝑗−1 )
(𝑤 − 𝑧)2 𝑑𝑤 =

1
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

(
(𝑤 − 𝑧) − 𝐵 𝑗−1

)𝑚 (
𝐵 𝑗 − (𝑤 − 𝑧)

)𝑁−𝑚

(𝑤 − 𝑧)2 𝑑𝑤

=
1
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘−2 (−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙𝑑𝑤

=
1
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
− (𝐵 𝑗 )𝑁−𝑚 (−𝐵 𝑗−1)𝑚

(𝑁 −𝑚

𝐵 𝑗
+ 𝑚

𝐵 𝑗−1

)
log

𝐵 𝑗

𝐵 𝑗−1
+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠1

(𝑚
𝑘

) (𝑁−𝑚
𝑙

) (𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘−1

𝑁 −𝑚 − 𝑙 + 𝑘 − 1
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙

�����𝑧 𝑗
𝑧 𝑗−1

]

=
1
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
− (𝐵 𝑗 )𝑁−𝑚 (−𝐵 𝑗−1)𝑚

(𝑁 −𝑚

𝐵 𝑗
+ 𝑚

𝐵 𝑗−1

)
log

𝐵 𝑗

𝐵 𝑗−1
+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠1

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘 − 1

(
(𝐵 𝑗 )𝑁−𝑚+𝑘−1 (𝐵 𝑗−1)𝑚−𝑘 − (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙−1

)]
.

The n-th order derivative 𝑢 (𝑛) (𝑧) and coefficients 𝐶 (𝑛)
𝑗,𝑚 (𝑧) for bj,m are given by:

𝑢 (𝑛) (𝑧) = 𝑛!
2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑤)
(𝑤 − 𝑧)𝑛+1𝑑𝑤 (3)

𝐶 (𝑛)
𝑗,𝑚 (𝑧) = 𝑛!

2𝜋𝑖

∫
𝑒 𝑗

𝐵𝑁
𝑚 ( 𝑤−𝑧 𝑗−1

𝑧 𝑗−𝑧 𝑗−1 )
(𝑤 − 𝑧)𝑛+1 𝑑𝑤. (4)

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



4 • Lin and Chen.

𝑛!
2𝜋𝑖

∫
𝑒 𝑗

𝐵𝑁
𝑚 ( 𝑤−𝑧 𝑗−1

𝑧 𝑗−𝑧 𝑗−1 )
(𝑤 − 𝑧)𝑛+1 𝑑𝑤

=
𝑛!
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

(
(𝑤 − 𝑧) − 𝐵 𝑗−1

)𝑚 (
𝐵 𝑗 − (𝑤 − 𝑧)

)𝑁−𝑚

(𝑤 − 𝑧)𝑛+1 𝑑𝑤

=
𝑛!
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

∫
𝑒 𝑗

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘−(𝑛+1) (−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙𝑑𝑤

=
𝑛!
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘=𝑛

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙 log(𝑤 − 𝑧)

�����𝑧 𝑗
𝑧 𝑗−1

+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠𝑛

(𝑚
𝑘

) (𝑁−𝑚
𝑙

) (𝑤 − 𝑧)𝑁−𝑚−𝑙+𝑘−𝑛

𝑁 −𝑚 − 𝑙 + 𝑘 − 𝑛
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙

�����𝑧 𝑗
𝑧 𝑗−1

]

=
𝑛!
2𝜋𝑖

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[
𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘=𝑛

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗−1)𝑚−𝑘 (𝐵 𝑗 )𝑙 log

𝐵 𝑗

𝐵 𝑗−1
+

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠𝑛

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘 − 𝑛

(
(𝐵 𝑗 )𝑁−𝑚+𝑘−𝑛 (𝐵 𝑗−1)𝑚−𝑘 − (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙−𝑛

)]
The pseudocode for computing the n-th order derivatives is provided in Algorithm 2. Note that this algorithm

can also handle the case of 𝑛 = 0, i.e. the barycentric coordinates.

Algorithm 2: Calculation of n-th derivative of our coordinates
Input: Interior point 𝑧, edge 𝑒 𝑗 , index of Bézier control points𝑚, degree of current Bézier curve 𝑁 ,

derivative order 𝑛
Output: result as 𝐶 (𝑛)

𝑗,𝑚 (𝑧)
result = 0;
for k = 0:m do

for l = 0:N-m do
if N-m-l+k == n then

result +=
(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑚−𝑘 log

𝐵 𝑗

𝐵 𝑗−1
;

else

result +=
(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁 −𝑘−𝑙

𝑁−𝑚−𝑙+𝑘−𝑛

(
(𝐵 𝑗 )𝑁−𝑚+𝑘−𝑛 (𝐵 𝑗−1)𝑚−𝑘 − (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙−𝑛

)
;

end
end
result ×= n!

(𝑁
𝑚

)
/(𝐴 𝑗 )𝑁 /(2𝜋𝑖) ;

end

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Polynomial Cauchy Coordinates Supplementary • 5

3 ACCELERATION
The above expressions contain two nested summations, as indicated by the Σ symbol. If the Bézier curves is of
relatively low order and 𝑁 is small, the summations will not incur significant overhead, and direct evaluation is
sufficient. However, in certain applications with large 𝑁 , the computational complexity can grow unpredictably.
To address this, we will accelerate the computation process to ensure that the time complexity for evaluation
each 𝐶 (𝑛)

𝑗,𝑚 (𝑧) does not exceed 𝑂 (𝑁 ).

3.1 Accelerated Computation for Our Coordinates
We develop an 𝑂 (𝑁 2) algorithm to compute weights for Bézier control points along a curve segment, allowing
an average computation time of𝑂 (𝑁 ) per point. By precomputing combinatorial numbers and (𝐵 𝑗 )𝑚 (𝐵 𝑗−1)𝑁−𝑚

terms, we reduce the summation term evaluation to 𝑂 (1) complexity.
Further optimization is achieved by separating the double summation and precomputing two summations,𝑇 1

and 𝑇 2:

𝑇 1[𝑁 −𝑚,𝑘] =
𝑁−𝑚∑
𝑙=0

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘 𝑘 = 0, 1, ...,𝑚

𝑇 2[𝑚, 𝑁 − 𝑙] =
𝑚∑
𝑘=0

(𝑚
𝑘

)
(−1)−𝑘

𝑁 −𝑚 − 𝑙 + 𝑘 𝑙 = 0, 1, ..., 𝑁 −𝑚

𝑀𝑢𝑙𝑡 [𝑚] = (𝐵 𝑗 )𝑚 (𝐵 𝑗−1)𝑁−𝑚 𝑚 = 0, 1, ..., 𝑁

𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠0

... =
𝑚∑
𝑘=0

(𝑚
𝑘

)
(−1)𝑁−𝑘𝑇 1[𝑁 −𝑚,𝑘]𝑀𝑢𝑙𝑡 [𝑁 −𝑚 + 𝑘] −

𝑁−𝑚∑
𝑙=0

(𝑁−𝑚
𝑙

)
(−1)𝑁−𝑙𝑇 2[𝑚, 𝑁 − 𝑙]𝑀𝑢𝑙𝑡 [𝑙]

Matrices 𝑇 1 and 𝑇 2 can be recursively calculated like the combinatorial number:

𝑇 1[𝑁 −𝑚 + 1, 𝑘] =
𝑁−𝑚+1∑
𝑙=0

(𝑁−𝑚+1
𝑙

)
(−1)−𝑙

𝑁 −𝑚 + 1 − 𝑙 + 𝑘

=
𝑁−𝑚∑
𝑙=0

𝑁−𝑚+1
𝑁−𝑚+1−𝑙

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 + 1 − 𝑙 + 𝑘 + (−1)−(𝑁−𝑚+1)

𝑘

=
𝑁−𝑚∑
𝑙=0

𝑁 −𝑚 + 1
𝑘

( (𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 + 1 − 𝑙
−

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 + 1 − 𝑙 + 𝑘

)
+ (−1)−(𝑁−𝑚+1)

𝑘

=
𝑁 −𝑚 + 1

𝑘

(
𝑇 1[𝑁 −𝑚, 1] −𝑇 1[𝑁 −𝑚,𝑘 + 1]

)
+ (−1)−(𝑁−𝑚+1)

𝑘

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



6 • Lin and Chen.

𝑇 2[𝑚 + 1, 𝑁 − 𝑙] =
𝑚+1∑
𝑘=0

(𝑚+1
𝑘

)
(−1)−𝑘

𝑁 −𝑚 − 1 − 𝑙 + 𝑘

=
𝑚∑
𝑘=0

𝑚+1
𝑚+1−𝑘

(𝑚
𝑘

)
(−1)−𝑘

𝑁 −𝑚 − 1 − 𝑙 + 𝑘 + (−1)−(𝑚+1)

𝑁 − 𝑙

=
𝑚∑
𝑘=0

𝑚 + 1
𝑁 − 𝑙

( (𝑚
𝑘

)
(−1)−𝑘

𝑚 + 1 − 𝑘
+

(𝑚
𝑘

)
(−1)−𝑘

𝑁 −𝑚 − 1 − 𝑙 + 𝑘

)
+ (−1)−(𝑚+1)

𝑁 − 𝑙

=
𝑚 + 1
𝑁 − 𝑙

(
𝑇 1[𝑚, 1] +𝑇 2[𝑚, 𝑁 − 𝑙 − 1]

)
+ (−1)−(𝑚+1)

𝑁 − 𝑙
By appropriately changing the indices, we derive the following recursive formula, which can be used for

computation. The total time complexity is 𝑂 (𝑁 2).

𝑇 1[𝑁 −𝑚, 0] =
𝑁−𝑚−1∑

𝑙=0

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 − 𝑙

𝑇 1[𝑁 −𝑚,𝑘] =𝑁 −𝑚

𝑘

(
𝑇 1[𝑁 −𝑚 − 1, 1] −𝑇 1[𝑁 −𝑚 − 1, 𝑘 + 1]

)
+ (−1)−(𝑁−𝑚)

𝑘
𝑘 = 1, ...,𝑚

𝑇 2[𝑚,𝑚] =
𝑚∑
𝑘=1

(𝑚
𝑘

)
(−1)−𝑘

𝑘

𝑇 2[𝑚, 𝑁 − 𝑙] = 𝑚

𝑁 − 𝑙

(
𝑇 1[𝑚 − 1, 1] +𝑇 2[𝑚 − 1, 𝑁 − 𝑙 − 1]

)
+ (−1)−𝑚

𝑁 − 𝑙
𝑙 = 0, 1, ..., 𝑁 −𝑚 − 1

This approach transforms the computation into an𝑂 (𝑁 2) precomputation step and an𝑂 (𝑁 ) per-point coordi-
nate calculation, significantly reducing the complexity from the original𝑂 (𝑁 3) per point and𝑂 (𝑁 4) per Bézier
curve. Algorithm. 3 presents the accelerated method for computing 𝐶 𝑗,𝑚 (𝑧).

Algorithm 3: Accelerated Calculation of our coordinates
Input: Interior point 𝑧, edge 𝑒 𝑗 , index of Bézier control points𝑚, degree of current Bézier curve 𝑁 ,

derivative order 𝑛
Output: result as 𝐶 𝑗,𝑚 (𝑧)
Load precalculated 𝑇 1, 𝑇 2 and combinatorial number

(∗
∗
)
;

𝑀𝑢𝑙𝑡 [0 :𝑁 ] = 𝐵 (0:𝑁 )
𝑗 · 𝐵 (𝑁 :0)

𝑗−1 ;
result = (−1)𝑚𝑀𝑢𝑙𝑡 [𝑁 −𝑚] log 𝐵 𝑗

𝐵 𝑗−1
;

for k = 0:m do
result +=

(𝑚
𝑘

)
(−1)𝑁−𝑘𝑇 1[𝑁 −𝑚,𝑘]𝑀𝑢𝑙𝑡 [𝑁 −𝑚 + 𝑘];

end
for l = 0:N-m do

result -=
(𝑁−𝑚

𝑙

)
(−1)𝑁−𝑙𝑇 2[𝑚, 𝑁 − 𝑙]𝑀𝑢𝑙𝑡 [𝑙];

end
result ×=

(𝑁
𝑚

)
/(𝐴 𝑗 )𝑁 /(2𝜋𝑖);

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Polynomial Cauchy Coordinates Supplementary • 7

3.2 Accelerated Computation for the Derivatives of Our Coordinates
The computation for the derivatives of our coordinates can be accelerated similar to the previous section, with
the following additional summations:

𝑇 1[𝑁 −𝑚,−1] =
𝑁−𝑚∑
𝑙=0

𝑙≠𝑁−𝑚−1

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 − 𝑙 − 1
𝑚 = 0, 1, ..., 𝑁

𝑇 2[𝑚,𝑚 − 1] =
𝑚∑
𝑘=0
𝑘≠1

(𝑚
𝑘

)
(−1)−𝑘

𝑘 − 1
𝑚 = 0, 1, ..., 𝑁

The direct calculation of these summation is also 𝑂 (𝑁 2), and then the derivative of our coordinates can be
computed in 𝑂 (𝑁 ) time as well.

𝑀𝑢𝑙𝑡𝐷 [𝑚] = (𝐵 𝑗 )𝑚 (𝐵 𝑗−1)𝑁−𝑚−1 𝑚 = −1, 0, 1, ..., 𝑁
𝑚∑
𝑘=0

𝑁−𝑚∑
𝑙=0

𝑁−𝑚−𝑙+𝑘≠1

... =
𝑚∑
𝑘=0

(𝑚
𝑘

)
(−1)𝑁−𝑘𝑇 1[𝑁 −𝑚,𝑘−1]𝑀𝑢𝑙𝑡𝐷 [𝑁 −𝑚+𝑘−1] −

𝑁−𝑚∑
𝑙=0

(𝑁−𝑚
𝑙

)
(−1)𝑁−𝑙𝑇 2[𝑚, 𝑁 −𝑙−1]𝑀𝑢𝑙𝑡𝐷 [𝑙]

Theaccelerated algorithm for𝐷 𝑗,𝑚 (𝑧) is provided in Algorithm. 4.The n-th order derivatives can be accelerated
similar to that of the first-order derivative. With precomputation not exceeding𝑂 (𝑁 2), we can achieve the same
efficiency for the n-th order derivatives. The matrices 𝑇 1, 𝑇 2, and the cage-related data can be precomputed,
which can greatly improve the overall computational efficiency.

Algorithm 4: Accelerated Calculation of First-order Derivative of Our coordinates
Input: Interior point 𝑧, edge 𝑒 𝑗 , index of Bézier control points𝑚, degree of current Bézier curve 𝑁 ,

derivative order 𝑛
Output: result as 𝐷 𝑗,𝑚 (𝑧)
Load precalculated 𝑇 1, 𝑇 2 and combinatorial number

(∗
∗
)
;

𝑀𝑢𝑙𝑡𝐷 [−1 :𝑁 ] = 𝐵 (−1:𝑁 )
𝑗 · 𝐵 (𝑁 :−1)

𝑗−1 ;
result = (−1)𝑚+1𝑀𝑢𝑙𝑡𝐷 [𝑁 −𝑚]

(
(𝑁 −𝑚) 𝐵 𝑗−1

𝐵 𝑗
+𝑚

)
log

𝐵 𝑗

𝐵 𝑗−1
;

for k = 0:m do
result +=

(𝑚
𝑘

)
(−1)𝑁−𝑘𝑇 1[𝑁 −𝑚,𝑘 − 1]𝑀𝑢𝑙𝑡𝐷 [𝑁 −𝑚 + 𝑘 − 1];

end
for l = 0:N-m do

result -=
(𝑁−𝑚

𝑙

)
(−1)𝑁−𝑙𝑇 2[𝑚, 𝑁 − 𝑙 − 1]𝑀𝑢𝑙𝑡𝐷 [𝑙];

end
result ×=

(𝑁
𝑚

)
/(𝐴 𝑗 )𝑁 /(2𝜋𝑖);

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.


	1 Introduction
	2 Derivation of Polynomial Cauchy Coordinates
	2.1 Our Coordinates
	2.2 Derivatives of our coordinates

	3 Acceleration
	3.1 Accelerated Computation for Our Coordinates
	3.2 Accelerated Computation for the Derivatives of Our Coordinates


