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Background

 Crucial step towards general artificial intelligence

 Requirements:

• Learn knowledge from data

• Understand mathematical logics

• Conduct cognitive reasoning like a human

 The ability to reason mathematical answers is a sign of the level AI achieves

Automatically solving mathematical problems 



Anhui Province Key Laboratory of Big Data Analysis and Application （USTC）

Background

Problem definition of MWP

 Input: a sequence of 𝑛 words and numeric values 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}

• E.g., “Jack has 3 apples … ”

 Output: mathematical expression 𝐸𝑃, answer 𝑆𝑃
• 𝐸𝑃 = {𝑦1, 𝑦2, … , 𝑦𝑚}, where 𝑦i comes from 𝑉𝑃 = 𝑉𝑂ڂ𝑉𝐶 𝑁𝑃ڂ

 𝑉𝑂: operators, e.g. {+,×,−,÷}

 𝑉𝐶: numeric constants, e.g. {1, 𝜋}

 𝑁𝑃: numeric variables from 𝑃, e.g. {3,2}

 E.g., “3+2”

• 𝑆𝑃: real value

 E.g., 5
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Background

Related Work

Tremendous human effort and low generality

 Traditional work

• Rule-based Methods

• Statistic-based Methods

• Semantics parsing-based Methods

 DL-based Methods

• Seq2Seq framework

 Inspired from language translation research

• Advanced: Seq2Tree, Graph2Tree, Seq2DAG…
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Background

Certain gap from human-like AI

1.  Humans learn knowledge from solving mathematical problems

• E.g., “banana” is a kind of  “fruit” 

• Interpretable to humans and can be expressed explicitly

 Existing methods: train models to simulate comprehension of problems

• E.g., better understand the semantic meaning and sentence structure

• Learning results are often represented as neural networks
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Background

Certain gap from human-like AI

Our goal: empower machines with the ability to 

autonomously learn and apply knowledge as humans

2. Humans are able to apply learned knowledge to answer unseen problems

• E.g., learn that “banana” is a kind of “fruit” from solving the problem, and apply to 

“John has 2 bananas and Lisa has 4 pears, how many fruits do they have?”.

• Important to build an AI with high generalization performance
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Insights:  Dual process theory

Background

 For cognitive process, two systems: System 1 and System 2 

• System 1 : retrieve relevant information via a fast, unconscious and instructive process

• System 2 : conduct deeper cognitive reasoning in an analytic and sequential manner

 We establish two systems: BRAIN-ARM

• BRAIN: fetches and provides information related to a math word problem

• ARM: does reasoning and generates the solution step by step
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Insights:  Information processing theory

Background

 learning process could be summarized as Store-Apply-Update steps iteratively

• Step 1: store knowledge

• Step 2: when faced with a MWP, apply the knowledge and conduct reasoning to solve it

• Step 3: after solving the problem, summarize the experience and update existing knowledge
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Challenges

Background

 How to storage ?

• Various types and forms of knowledge

 Semantics of tokens, relationships between tokens (e.g. “fruit”—“apple”,  “and” —“+”), 

Mathematical properties (e.g., commutative law )

 How to apply ?

• We need to design targeted mechanisms to apply different types of knowledge

• Contextual information should be combined

 “and” may represent “+” under certain context, or is just a conjunction

 How to update ?

• The mechanism of knowledge updating in human’s brain is still not fully understood

• Coupled with the manner of knowledge storage
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Our Method

CogSolver: Overview

Autonomously learning process:

1. Given a problem, BRAIN first retrieves stored knowledge to ARM

2. ARM applies the knowledge and conducts cognitive reasoning to figure out the problem 

3. BRAIN updates the knowledge for future application
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Our Method

CogSolver: Knowledge storage

 Three types of knowledge

1. Semantics knowledge

• Motivation: The meanings of mathematical tokens (words and operators) could be 

represented as feature vectors in the conceptual space

• Definition

 Words: 𝑊 = {𝑤𝑖 , 𝑖 = 1,2, …𝑁}

 Operators: 𝑂 = {𝑜𝑐 , 𝑐 = 1,2, …𝐶}
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Our Method

CogSolver: Knowledge storage

 Three types of knowledge

2. Relation knowledge

• Motivation: Relationships between tokens, divided into two types: 

 Word-word relation (or common-sense)

 Word-operator relation

• Definition

 word 𝑖, 𝑗: 𝑤𝑤𝑖,𝑗 ∈ [0,1]

 word 𝑖, operator 𝑐: 𝑤𝑜𝑖,𝑐 ∈ [0,1]

• Semantics and Relation form a knowledge graph 𝑩𝑮 in BRAIN
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Our Method

CogSolver: Knowledge storage

 Three types of knowledge

3. Mathematic rule knowledge

• Motivation: Commutative law is a defined property of operators, a teacher 

introducing commutative law directly to students
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Our Method

CogSolver: Knowledge application

 Problem Solving Process

• Step 1: Encoder (Semantics knowledge)

• Step 2: Decoder (Relation, Mathematic rule knowledge)
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Our Method

CogSolver: Knowledge application

 Encoder

• Retrieve Semantics knowledge from BRAIN (semantic vectors 𝑤1, 𝑤2, … , 𝑤𝑛 of words in 𝑃)

• Adopt a word-clause-problem hierarchical encoder

• Output:

 word sequence H = (ℎ1, ℎ2, … , ℎ𝑛)

 initial goal 𝑞1

Jack  has 3  apples  and  Amy  has  2  bananas,  how  many  fruits  do  they ?

𝑤1 𝑤2 𝑤𝑛
…𝑤𝑗+1… 𝑤𝑗

word-clause-problem hierarchical encoder 

ℎ1 ℎ2 ℎ𝑗 ℎ𝑗+1 ℎ𝑛……

goal 𝑞1

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder: follows the goal-driven mechanism

• Contains 4 main parts: Problem Graph, Knowledge-aware Module, Symbol Prediction and 

Commutative Module

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Problem graph 𝑷𝑮𝒕: organize semantics, relation knowledge, and goal 𝑞𝑡

• Node: goal 𝑞𝑡, word ℎ𝑖
𝑡−1, operator 𝑜𝑐

𝑡−1

• Edge: weighted, undirected

 words and words, words and operators: (𝑤𝑤𝑖,𝑗
𝑡−1, 𝑤𝑜𝑖,𝑐

𝑡−1)

 Dependency relation in a clause

 word-goal 𝑤𝑔𝑖
𝑡(from HMS)

• 𝑜𝑐
0, 𝑤𝑤𝑖,𝑗

0 , 𝑤𝑜𝑖,𝑐
0 are retrieved from BRAIN

• 𝑷𝑮𝒕 is a sub-graph of 𝑩𝑮 in BRAIN

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Knowledge-aware module 

 Motivation: knowledge may not be suitable to current reasoning step

 E.g., “and” is related to + ?

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?

goal: How many fruits do they have?

Jack … apple and Amy … bananas, how... they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Knowledge-aware module 

 Semantics

 HGCN: goal → word → operator

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Knowledge-aware module 

 Relation

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?

= 𝑤𝑤𝑖,𝑗
𝑡−1
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Our Method

CogSolver: Knowledge application

 Decoder

• Knowledge-aware module 

 Interim Goal: 𝑞′ represents the interim goal of following reasoning

 HGCN: Up → Bottom

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Symbol prediction

 Input: ℎ𝑖
𝑡 , {𝑜𝑐

𝑡}, and goal 𝑞𝑡

 Output: symbol 𝑦𝑡

 Follow pointer-generator network

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?
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Our Method

CogSolver: Knowledge application

 Decoder

• Commutative Module

 Motivation: generate the next goal 𝑞𝑡+1 while achieving commutative law

 If 𝑦𝑡 is an operator, 𝑞′ will be first decomposed to a left sub-goal 𝑞𝑙, and then generate the right 

sub-goal 𝑞𝑟 using 𝑞′ and left child subtree 𝑡𝑙

 Notice: if 𝑦𝑡 is +,×, equivalent to generate left goal 𝑞𝑙 and 𝑞𝑟

 Core idea: generate 𝑞𝑖𝑛𝑣
𝑙 by 𝑞′ and right subtree 𝑡𝑟 → represents the same meaning with 𝑞𝑙

Problem: Jack has 3 apples and Amy has 2 

bananas, how many fruits do they have?



Anhui Province Key Laboratory of Big Data Analysis and Application （USTC）

Our Method

CogSolver: Knowledge update

 Semantics

• Back-propagation

 Relation

 Mathematical Rule

• Fix
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Our Method

Summary

 Before learning, the knowledge in BRAIN is initialized randomly 

 With the Store-Apply-Update steps being iteratively conducted, knowledge is constantly 

improved and finally the long-term knowledge base is retained

 As the knowledge becomes more and more accurate, the effect of ARM to solve 

problems improves
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Experiment

Setups

 Dataset

• Math23K, MAWPS

 Baseline methods

• DNS

• Math-EN

• T-RNN

• GROUP-ATT

• GTS

• Graph2Tree

• KA-S2T

• HMS

 Evaluate metric: Answer Accuracy
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Experiment

Accuracy Performance

• CogSolver outperforms all the baselines

• CogSolver can learn knowledge from scratch

• Superior reasoning ability

• Effectiveness of each component

• Knowledge update is the most important

• Relation knowledge is more effective to reasoning
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Experiment

Analysis of BRAIN

 The BRAIN after learning on Math23K
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Experiment

Analysis of BRAIN

 Word-word relation

 Observations

1. Most of the relationships are distributed around 0.6-0.7

2. Approximately 77.2% true common-sense knowledge 

have been obtained by CogSolver

 Observations

1. Real relationships gradually strengthen

2. fake relationships are indeed lower than the 

threshold 𝛿1 = 0.7



Anhui Province Key Laboratory of Big Data Analysis and Application （USTC）

Experiment

Analysis of BRAIN

 Word-operator relation

• CogSolver can learn the reasonable word-operator knowledge correctly
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Experiment

Case study

 Aim: illustrate how our CogSolver benefits from learned knowledge to solve a problem

By paying appropriate attention to “and” and relating it with “+”, CogSolver correctly predicts “+” in 

problem 1 and 2, while Graph2Tree is unable to utilize such information, thus getting wrong

Interpretable reasoning process
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Conclusion

Summary

 Cognitive Solver (CogSolver) to model knowledge learning process for solving MWP

• Two systems: BRAIN-ARM

• Three steps: Store-Apply-Update

 Experimental results proved the effectiveness and interpretability

 Test its performance on other kinds of mathematical problems

 Include pre-trained language models to promote its comprehension ability

 Various knowledge in other fields (e.g., physics)

 …

Future Work
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