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Background
ØCognitive diagnosis for knowledge proficiency

Ø Domain: Education, Recruitment, Sports, Game, etc
Ø Goal: Evaluating how much students learn about different knowledge 

concepts 
Ø Math subject: Function, Set, Inequality, etc

Ø Fundamental task
Ø Evaluation, Testing, Recommendation, etc
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Background
ØLearning activities

Ø Taking courses, Practicing exercises, Taking Tests, etc
Ø Classroom-based

Ø Rely on expertise of teachers
Ø Hard to record data

Ø Online learning
Ø Open environment with computer-aided technology
Ø Learning data of students can be recorded
Ø KhanAcademy, MOOC, etc
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Background
ØCognitive diagnosis Problem
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Related work
ØStatic modeling

Ø IRT: Item Response Theory

Ø DINA: 

Ø PMF: Probabilistic Matrix Factorization

Latent trait

Knowledge vector

Latent vector
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Related work
ØDynamic modeling

Ø BKT: Baysian Knowledge Tracing
Ø Hidden Markov Model
Ø Tracing for single concept
Ø Discrete results (mastered or non-mastered)

Student’s 
knowledge state 

Probability 
transition matrix

Observation, 0 for 
wrong, 1 for correct
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Related work
ØDynamic modeling

Ø DKT: Deep Knowledge Tracing
Ø Apply RNNs (LSTM) to model student knowledge over time
Ø Tracing all concepts together
Ø Hidden states can represent the latent knowledge states

Knowledge 
states

DKVMN WWW 2017

DKT-Trees Cognitive Computation 2018

PDKT-C ICDM 2018

DKT+ time 
factors

WWW 2019

… …



Anhui Province Key Laboratory of Big Data Analysis and Application 9

Background
ØLimitation

Ø Ignoring the dynamic memory factors
Ø How can we learn and remember knowledge?
Ø Why do we forget what we have learned ?

Ø Lack of interpretability
Ø Don’t know the meaning of latent vectors/ hidden states

Ø Learning records are sparse
Ø Students practice very few exercises  
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Problem & Overview
ØGiven

Ø Exercising logs as a score tensor: 
Ø Q-matrix representing exercise-knowledge relation: 

ØGoal
Ø Tracking the change of knowledge proficiency of students from time 1 to T    
Ø Predicting her proficiency on K concepts and performance scores on 

specific exercises at time T + 1
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Problem & Overview
ØModel overview

Ø KPT: Knowledge Proficiency Tracing model
Ø EKPT: Exercise-correlated Knowledge Proficiency model
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KPT model
ØProbabilistic modeling

Ø For each student and exercise, modeling the responses as:

Ø : proficiency vector of student i, representing how much 
students learn on K concepts at time t

Ø : knowledge vector of exercise j, denoting the latent 
correlation between exercise j and K concepts

Ø How to establish the corresponding relationship among students, exercises
and knowledge concepts?
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KPT model
ØModeling V with Q-matrix prior

Ø Goal: project exercise into knowledge space, enhancing interpretability
Ø Traditional Q-matrix

Ø Denoting exercise-knowledge correlation
Ø Binary entries: do not fit for probabilistic modeling

Ø Our work assumption
Ø If Qjq = 1, then this concept q is more relevant to exercise j than all other 

concepts with mark 0

e1, k1, k2
e1, k1, k3
e2, k3, k1
…
e5, k1, k2
e5, k1, k4
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KPT model
ØModeling U with learning theories

Ø Goal: explain the dynamic factors in the learning process

Ø Two learning theories
Ø Learning curve: The more exercises she does, the higher 

level of proficiency on the related knowledge she will get

Ø Forgetting curve: The longer the time passes, the more 
knowledge she will forget

Number of 
practice times

Time interval
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EKPT model
ØSparsity problem

Ø Students practice very few exercises compared with the huge exercise space
Ø Inaccurate if students just practices few exercises at each time

ØEKPT model
Ø Exercise connectivity assumption

Ø Students may get consistent scores on these knowledge-based exercises
Ø Learning each exercise vector with its similar ones
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EKPT model
ØEKPT model

ØModeling V with exercise connectivity
Ø For exercise j, we define a neighbor set

Ø The knowledge vector of exercise j is influenced by the set:

Ø is the weight influence, which can be any weight function, like

Equal contribution for all neighbor exercicses
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Model
ØModel Comparasion

KPT
EKPT
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Model
ØModel Learning

KPT EKPT
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Model
ØApplication

Ø Knowledge Proficiency Estimation

Ø Student Performance Prediction

Ø Diagnosis results explanation and visualization
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Experiment
ØDataset

ØBaseline

sparse

Static models

Dynamic models

Variants

Ours
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Experiment
Ø Knowledge Proficiency Estimation

Ø DOA: if a masters better than b on a concept k at time T, then a will have a 
higher probability to get correct answers to the exercises related to concept k
than b at time T

Ø Our models perform better than baselines
Ø EKPT is better than KPT on sparse dataset
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Experiment
Ø Student Performance Prediction

Ø MAE, RMSE

Ø Dynamic models are better than static ones
Ø Deep learning based models (DKT) perform not very good

Ø Possible: Time is not longer enough, Data volume may not support
Ø Diagnosis results visualization

Ø The student practices many times on K3, knowledge proficiency increases
Ø The student practices very few exercises on K4, she may forget what she have learned
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Experiment
ØModel Analysis

Ø Computational Performance
Ø Though our model needs more time for training, they are competitive compared 

with DKT (deep learning based ones)

Ø Parameter sensitivity
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Experiment
ØModel Analysis

Ø Exercise relationship
Ø Exercise with same concepts are grouped together
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Conclusion & Future work
ØConclusion

Ø A focused study on tracking the knowledge proficiency of students
Ø Two explanatory probabilistic models considering different educational 

factors
Ø Incorporating learning theories for explaining the knowledge change
Ø Incorporating Q-matrix for improving the interpretability
Ø Incorporating exercise connectivity property to address sparsity problem

Ø Experiments on different datasets show the both effectiveness and 
explanatory power of our models

ØFuture work
Ø Consider different specific modeling for learning and forgetting factors
Ø Consider student behaviors and social connections for more precise diagnosis
Ø Consider different learning scenarios

Ø Game
Ø Multiple-attempt response
Ø Repeated learning
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Thanks for your listening!

huangzhy@mail.ustc.edu.cn


