

43rd International ACM SIGIR Conference on Research and Development in Information Retrieval VIRTUAL CONFERENCE

Learning or Forgetting? A Dynamic Approach for Tracking the Knowledge Proficiency of Students

ZHENYA HUANG, QI LIU, and YUYING CHEN, University of Science and Technology of China, China LE WU, Hefei University of Technology, China and iFLYTEK Co., Ltd, China KELI XIAO, Stony Brook University, USA ENHONG CHEN, University of Science and Technology of China, China HAIPING MA, Anhui University, China GUOPING HU, iFLYTEK Research, China

Reporter: Zhenya Huang

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 19. Publication date: February 2020.

Outline

1	Background
2	Problem & Overview
3	Model
4	Experiment
5	Conclusion & Future work

Cognitive diagnosis for knowledge proficiency

- Domain: Education, Recruitment, Sports, Game, etc
- Goal: Evaluating how much students learn about different knowledge concepts
 - ➤ Math subject: Function, Set, Inequality, etc
- Fundamental task
 - Evaluation, Testing, Recommendation, etc

Learning activities

- > Taking courses, Practicing exercises, Taking Tests, etc
- Classroom-based
 - Rely on expertise of teachers
 - ➢ Hard to record data
- Online learning
 - Open environment with computer-aided technology
 - Learning data of students can be recorded
 - ➢ KhanAcademy, MOOC, etc

➤ Cognitive diagnosis Problem

Related work

Static modeling IRT: Item Response Theory

$$P(X_{ij} = 1 | \theta_j) = c_i + \frac{1 - c_i}{1 + \exp[-1.7a_i(\theta_j - b_i)]}$$

Latent trait

➢ DINA:

$$P_j(\boldsymbol{\alpha}_i) = P(X_{ij} = 1 | \boldsymbol{\alpha}_i) = g_j^{1 - \eta_{ij}} (1 - s_j)^{\eta_{ij}}.$$

Knowledge vector

PMF: Probabilistic Matrix Factorization

Related work

Dynamic modeling

- BKT: Baysian Knowledge Tracing
 - Hidden Markov Model
 - Tracing for single concept
 - Discrete results (mastered or non-mastered)

Related work

Dynamic modeling

- DKT: Deep Knowledge Tracing
 - > Apply RNNs (LSTM) to model student knowledge over time
 - Tracing all concepts together
 - ➤ Hidden states can represent the latent knowledge states

➤ Limitation

- Ignoring the dynamic memory factors
 - ➢ How can we learn and remember knowledge?
 - ➤ Why do we forget what we have learned ?
- Lack of interpretability
 - Don't know the meaning of latent vectors/ hidden states
- ➤ Learning records are sparse
 - Students practice very few exercises

Outline

Problem & Overview

≻ Given

- Exercising logs as a score tensor: $R \in \mathbb{R}^{N \times M \times T}$
- ▷ Q-matrix representing exercise-knowledge relation: $Q \in \mathbb{R}^{M \times K}$

≻ Goal

- > Tracking the change of knowledge proficiency of students from time 1 to T
- Predicting her proficiency on K concepts and performance scores on specific exercises at time T + 1

((a) Exercising log example										
Student	Exercise	Time	Score								
u_1	e_1	t_1	0								
u_1	e_5	t_2	0.25								
u_2	e_2	t_1	0								
u_2	e_3	t_3	1								
u_2	e_1	t_3	0.75								
u_3	e_4	t_4	1								

(a) Every log every la

(b) *Q*-matrix example

Exercise	Knowledge concepts								
Exercise	k_1	k_2	k_3	k_4	k_5				
e_1	1	0	0	0	0				
e_2	0	0	1	0	0				
e_3	0	0	0	1	1				
e_4	0	1	0	0	0				
e_5	1	0	0	0	0				
					• • •				

Problem & Overview

➤ Model overview

- KPT: Knowledge Proficiency Tracing model
- EKPT: Exercise-correlated Knowledge Proficiency model

Outline

KPT model

Probabilistic modeling

➢ For each student and exercise, modeling the responses as:

$$p(R|U, V, b) = \prod_{t=1}^{T} \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}\left(R_{ij}^{t} \middle| \left\langle U_{i}^{t}, V_{j} \right\rangle - b_{j}, \sigma_{R}^{2} \right) \right]^{I_{ij}^{t}},$$

- → $U_i^t \in \mathbb{R}^{K \times 1}$: proficiency vector of student i, representing how much students learn on K concepts at time t
- → $V_j \in \mathbb{R}^{K \times 1}$: knowledge vector of exercise j, denoting the latent correlation between exercise j and K concepts
- How to establish the corresponding relationship among students, exercises and knowledge concepts?

KPT model

➤ Modeling V with Q-matrix prior

- ➤ Goal: project exercise into knowledge space, enhancing interpretability
- Traditional Q-matrix
 - Denoting exercise-knowledge correlation
 - Binary entries: do not fit for probabilistic modeling
- ➢ Our work assumption
 - If Qjq = 1, then this concept q is more relevant to exercise j than all other concepts with mark 0

$$\forall p, q \in K, p \neq q, \text{ if } Q_{jq} = 1 \text{ and } Q_{jp} = 0 \Rightarrow q >_j^+ p,$$

$$\forall p, q \in K, p \neq q, \text{ if } Q_{jq} = 1 \text{ and } Q_{jp} = 1 \Rightarrow q \neq_j^+ p,$$

$$\forall p, q \in K, p \neq q, \text{ if } Q_{jq} = 0 \text{ and } Q_{jp} = 0 \Rightarrow q \neq_j^+ p.$$

KPT model

➤ Modeling U with learning theories

➢ Goal: explain the dynamic factors in the learning process

$$p(U_i^t) = \mathcal{N}\left(U_i^t \middle| \bar{U}_i^t, \sigma_U^2 \mathbf{I}\right), \text{ where } \bar{U}_i^t = \left\{\bar{U}_{i1}^t, \bar{U}_{i2}^t, \dots, \bar{U}_{iK}^t\right\},\$$
$$\bar{U}_{ik}^t = \alpha_i L_{ik}^t(*) + (1 - \alpha_i) F_{ik}^t(*), \quad s.t. \ 0 \le \alpha_i \le 1,$$

- Two learning theories
 - Learning curve: The more exercises she does, the higher level of proficiency on the related knowledge she will get

$$L_{ik}^{t}(*) = U_{ik}^{t-1} \frac{Df_{ik}^{t}}{f_{ik}^{t} + r}$$
, Number of practice times

Forgetting curve: The longer the time passes, the more knowledge she will forget

$$F_{ik}^t(*) = U_{ik}^{t-1} e^{-\frac{\Delta t}{S}},$$
 Time interval

EKPT model

Sparsity problem

- > Students practice very few exercises compared with the huge exercise space
- ➤ Inaccurate if students just practices few exercises at each time

≻ EKPT model

- Exercise connectivity assumption
 - Students may get consistent scores on these knowledge-based exercises
 - Learning each exercise vector with its similar ones

EKPT model

► EKPT model

> Modeling V with exercise connectivity

 \succ For exercise j, we define a neighbor set

 $N_{V_j} = \{l | k \in j \cap l, l \in V, k \in K\}$

> The knowledge vector of exercise j is influenced by the set:

$$V_j = \sum_{l \in N_{V_j}} w(j, l) \times V_l + \theta_V, \theta_V \sim \mathcal{N}(0, \sigma_V^2).$$

 $\succ w(j, l)$ is the weight influence, which can be any weight function, like

$$V_j = \frac{1}{|N_{V_j}|} \sum_{l \in N_{V_j}} V_l + \theta_V, \theta_V \sim \mathcal{N}(0, \sigma_V^2).$$

Equal contribution for all neighbor exercicses

Model

➤ Model Comparasion

Model

➢ Model Learning

$$\mathbf{KPT}$$

$$\min_{\Phi} \mathcal{E}(\Phi) = \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{ij}^{t} (\hat{R}_{ij}^{t} - R_{ij}^{t})^{2}$$

$$- \lambda_{P} \sum_{j=1}^{M} \sum_{q=1}^{K} \sum_{p=1}^{K} I(q >_{j}^{+} p) \ln \frac{1}{1 + e^{-(V_{jq} - V_{jp})}} + \frac{\lambda_{V}}{2} \sum_{j=1}^{M} ||V_{j}||_{F}^{2}$$

$$+ \frac{\lambda_{U}}{2} \sum_{t=2}^{T} \sum_{i=1}^{N} ||\overline{U_{i}^{t}} - U_{i}^{t}||_{F}^{2} + \frac{\lambda_{U1}}{2} \sum_{i=1}^{N} ||U_{i}^{1}||_{F}^{2},$$

ALGORITHM 1: Parameter Learning of the KPT Model

Initialize U, V, α and b; while not converged do for i = 1, 2, ..., N do for t = 1, 2, ..., K do Fix V, α, b , update U_{ik}^t by Equation (15) using SGD; Fix U, V, b, update α_i by Equation (17) and Equation (19) using PG; for j = 1, 2, ..., M do for k = 1, 2, ..., K do Fix U, α, b , update V_{jk} by Equation (16) using SGD; Fix U, V, α , update b by Equation (18) using SGD; Return U, V, α and b;

$$\begin{aligned} \mathbf{EKPT} \\ \min_{\Phi} \mathcal{E}(\Phi) &= \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{ij}^{t} \left(\hat{R}_{ij}^{t} - R_{ij}^{t} \right)^{2} \\ &- \lambda_{P} \sum_{j=1}^{M} \sum_{q=1}^{K} \sum_{p=1}^{K} I \left(q >_{j}^{+} p \right) \ln \frac{1}{1 + e^{-(V_{jq} - V_{jp})}} + \frac{\lambda_{S}}{2} \sum_{j=1}^{M} ||V_{j} - \frac{1}{|N_{V_{j}}|} \sum_{l \in N_{V_{j}}} V_{l}||_{F}^{2} \\ &+ \frac{\lambda_{U}}{2} \sum_{t=2}^{T} \sum_{i=1}^{N} ||\overline{U_{i}^{t}} - U_{i}^{t}||_{F}^{2} + \frac{\lambda_{U1}}{2} \sum_{i=1}^{N} ||U_{i}^{1}||_{F}^{2}, \end{aligned}$$

ALGORITHM 2: Parameter Learning of the EKPT Model

Initialize U, V, α and b; while not converged do for i = 1, 2, ..., N do for t = 1, 2, ..., K do Fix V, α, b , update U_{ik}^t by Equation (15) using SGD; Fix U, V, b, update α_i by Equation (17) and Equation (19) using PG; for j = 1, 2, ..., M do for k = 1, 2, ..., K do Fix U, α, b , update V_{jk} by Equation (25) using SGD; Fix U, V, α , update b by Equation (18) using SGD; Return U, V, α and b;

Model

➤ Application

Knowledge Proficiency Estimation

$$\hat{U}_{i}^{(T+1)} = \left\{ \hat{U}_{i1}^{(T+1)}, \hat{U}_{i2}^{(T+1)}, \dots, \hat{U}_{iK}^{(T+1)} \right\},$$
$$\hat{U}_{ik}^{(T+1)} \approx \alpha_{i} U_{ik}^{T} \frac{Df_{ik}^{T+1}}{f_{ik}^{T+1} + r} + (1 - \alpha_{i}) U_{ik}^{T} e^{-\frac{\Delta(T+1)}{S}},$$

Student Performance Prediction

$$\hat{R}_{ij}^{(T+1)} \approx \left\langle U_i^{(T+1)}, V_j \right\rangle - b_j. \qquad \hat{R}_{ij}^{(T+1)} = \begin{cases} \hat{R}_{ij}^{(T+1)} & \text{if } 0 \leq \hat{R}_{ij}^{(T+1)} \leq 1, \\ 0 & \text{if } \hat{R}_{ij}^{(T+1)} < 0, \\ 1 & \text{if } \hat{R}_{ij}^{(T+1)} > 1. \end{cases}$$

Diagnosis results explanation and visualization

Outline

➤ Dataset

sparse

Math1	Math2	Assist	Adaptive
521,248	347,424	263,327	229,848
74,464	18,312	43,888	38,308
9,308	1,306	7197	3,217
64	280	3211	411
4	10	7	7
12	13	20	12
1.15	1.3215	1.5073	1.06
	521,248 74,464 9,308 64 4 12	521,248347,42474,46418,3129,3081,306642804101213	521,248347,424263,32774,46418,31243,8889,3081,30671976428032114107121320

		Data Source					Demomio			
➢ Baseline		Model	<i>Q</i> -matrix	Multi-Skill	Repeating	Time	Knowledge Estimation	Score Prediction	Visualization	Dynamic Explanation?
		IRT [17]	×	×	×	×	×	\checkmark	×	×
S	Static models	DINA [15]	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×
		PMF [63]	×	×	×	×	×	\checkmark	×	×
		BKT [31]	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Dyn	amic models	LFA [9]	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark
		DKT [52]	×	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark
Variants		QMIRT	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×
		QPMF	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×
		КРТ	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Ours	ЕКРТ	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Knowledge Proficiency Estimation

► DOA: if a masters better than **b** on a concept **k** at time **T**, then a will have a higher probability to get correct answers to the exercises related to concept **k** than **b** at time **T** $M = \sum_{M=N}^{N} \delta(u^{T+1}, u^{T+1}) \cap \delta(R^{T+1}, R^{T+1})$

$$DOA(k) = \sum_{j=1}^{M} I_{jk} \sum_{a=1}^{N} \sum_{b=1}^{N} \frac{\delta\left(U_{ak}^{I+1}, U_{bk}^{I+1}\right) \cap \delta\left(R_{aj}^{I+1}, R_{bj}^{I+1}\right)}{\delta\left(U_{ak}^{T+1}, U_{bk}^{T+1}\right)},$$

(a)	M	at	h1
()			

K	Models									
К	EKPT	KPT	QPMF	QMIRT	DINA	BKT				
K1	0.807	0.798	0.565	0.595	0.524	0.558				
K2	0.751	0.733	0.576	0.621	0.473	0.623				
K3	0.830	0.827	0.614	0.629	0.497	0.523				
K4	0.769	0.752	0.581	0.675	0.486	0.565				
K5	0.799	0.791	0.559	0.723	0.476	0.578				
K6	0.844	0.838	0.730	0.766	0.485	0.628				
K7	0.851	0.842	0.697	0.634	0.520	0.697				
K8	0.799	0.784	0.699	0.657	0.498	0.617				
K9	0.796	0.771	0.609	0.712	0.501	0.645				
K10	0.813	0.834	0.597	0.515	0.489	0.503				
K11	0.796	0.786	0.608	0.631	0.478	0.617				
K12	0.811	0.842	0.532	0.641	0.523	0.645				
Avg	0.806	0.799	0.614	0.650	0.496	0.601				

(d) Adaptive

К			Models					
K	EKPT	KPT	QPMF	QMIRT	BKT			
K1	0.742	0.732	0.656	0.645	0.578			
K2	0.799	0.780	0.756	0.740	0.609			
K3	0.796	0.793	0.752	0.736	0.592			
K4	0.804	0.802	0.737	0.638	0.679			
K5	0.812	0.808	0.597	0.632	0.552			
K6	0.818	0.812	0.659	0.648	0.547			
K7	0.821	0.815	0.587	0.668	0.687			
K8	0.824	0.818	0.624	0.591	0.532			
K9	0.824	0.809	0.704	0.692	0.645			
K10	0.823	0.819	0.730	0.776	0.732			
K11	0.830	0.820	0.658	0.685	0.702			
K12	0.809	0.792	0.709	0.693	0.690			
Avg	0.809	0.801	0.681	0.679	0.629			

Our models perform better than baselines
EKPT is better than KPT on sparse dataset

Student Performance Prediction
 MAE, RMSE

- Dynamic models are better than static ones
- Deep learning based models (DKT) perform not very good
 - Possible: Time is not longer enough, Data volume may not support
- Diagnosis results visualization

- > The student practices many times on K3, knowledge proficiency increases
- > The student practices very few exercises on K4, she may forget what she have learned

Model Analysis

Computational Performance

Though our model needs more time for training, they are competitive compared with DKT (deep learning based ones)

		Stastic Models			Dynamic Models				Variants		Our Models	
Dataset	Time	IRT	DINA	PMF	BKT	LFA	DKT (RNN)	DKT (GRU)	QMIRT	QPMF	KPT	ЕКРТ
Math 1	Each	0.022	0.316	0.023	/	0.024	0.403	0.479	0.036	0.025	0.083	0.101
Math1	Total	1.960	18.05	1.833	1.516	2.483	22.867	195.375	3.647	2.535	8.334	11.66
Matho	Each	0.011	0.616	0.021	/	0.012	0.122	0.157	0.016	0.012	0.067	0.073
Math2	Total	1.051	57.28	1.283	0.581	1.152	7.720	10.435	1.603	1.589	7.334	7.738
Amint	Each	0.015	/	0.033	/	0.026	1.594	3.207	0.283	0.265	0.467	0.735
Assist	Total	2.320	/	4.951	1.275	2.991	73.324	147.522	26.38	29.94	47.13	77.15
	Each	0.013	/	0.029	/	0.015	0.273	0.338	0.105	0.110	0.233	0.453
Adaptive	Total	2.154	/	3.466	1.017	1.942	11.734	12.522	8.412	10.45	24.73	48.92

Parameter sensitivity

Fig. 8. The impact of λ_U on four datasets.

➤ Model Analysis

- Exercise relationship
 - Exercise with same concepts are grouped together

Outline

Conclusion & Future work

Conclusion

- ➤ A focused study on tracking the knowledge proficiency of students
- Two explanatory probabilistic models considering different educational factors
 - Incorporating learning theories for explaining the knowledge change
 - Incorporating Q-matrix for improving the interpretability
 - Incorporating exercise connectivity property to address sparsity problem
- Experiments on different datasets show the both effectiveness and explanatory power of our models

≻ Future work

- Consider different specific modeling for learning and forgetting factors
- Consider student behaviors and social connections for more precise diagnosis
- Consider different learning scenarios
 - ➢ Game
 - Multiple-attempt response
 - Repeated learning

Thanks for your listening!

huangzhy@mail.ustc.edu.cn