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Background

» Cognitive diagnosis for knowledge proficiency
» Domain: Education, Recruitment, Sports, Game, etc
» Goal: Evaluating how much students learn about different knowledge
concepts
» Math subject: Function, Set, Inequality, etc
» Fundamental task
» Evaluation, Testing, Recommendation, etc
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Background

» Learning activities
» Taking courses, Practicing exercises, Taking Tests, etc
» Classroom-based
» Rely on expertise of teachers
» Hard to record data
» Online learning
» Open environment with computer-aided technology

» Learning data of students can be recorded
» KhanAcademy, MOOC, etc

ONLINE
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Background

» Cognitive diagnosis Problem

Learning Process Q-matrix
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Related work

» Static modeling
» IRT: Item Response Theory
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> PMF: Probabilistic Matrix Factorization

p(R|U,V,0?) = 1:[ I1 |:N(Rij|UZTV},0'2):| Li;

Latent vector
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Related work

» Dynamic modeling
» BKT: Baysian Knowledge Tracing
» Hidden Markov Model
» Tracing for single concept
» Discrete results (mastered or non-mastered)

Student’s Probability
knowledge state transition matrix
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Related work

» Dynamic modeling
» DKT: Deep Knowledge Tracing
» Apply RNNs (LSTM) to model student knowledge over time

» Tracing all concepts together
» Hidden states can represent the latent knowledge states
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Background

» Limitation
» Ignoring the dynamic memory factors
» How can we learn and remember knowledge?
» Why do we forget what we have learned ?

» Lack of interpretability
» Don’t know the meaning of latent vectors/ hidden states

» Learning records are sparse
» Students practice very few exercises
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Problem & Overview

» Given

» Exercising logs as a score tensor: R e RN*MxT
> Q-matrix representing exercise-knowledge relation: Q € R

» Goal

» Tracking the change of knowledge proficiency of students from time 1 to T
» Predicting her proficiency on K concepts and performance scores on
specific exercises at time T + 1

(a) Exercising log example (b) @-matrix example
Student Exercise Time Score : Knowledge concepts
Exercise
[Z5] €1 b 0 kl kz k3 k4 k5
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Problem & Overview

» Model overview
» KPT: Knowledge Proficiency Tracing model
» EKPT: Exercise-correlated Knowledge Proficiency model
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KPT model

» Probabilistic modeling

» For each student and exercise, modeling the responses as:

I N M

peew.v. =TT TN NEED

t=1 i=1 j=1
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» Ul e RE*1: proficiency vector of student i, representing how much

students learn on K concepts at time t

» Ve R&*1: knowledge vector of exercise j, denoting the latent
correlation between exercise j and K concepts

» How to establish the corresponding relationship among students, exercises

and knowledge concepts?
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KPT model

» Modeling V with Q-matrix prior
» Goal: project exercise into knowledge space, enhancing interpretability
» Traditional Q-matrix

» Denoting exercise-knowledge correlation
» Binary entries: do not fit for probabilistic modeling

» Our work assumption
» If Qjq = 1, then this concept q is more relevant to exercise j than all other

concepts with mark O

Vp,q € K,p # q,if Qjq = 1and Qj, =0=>q>; P,
Vp,qEK,p#q,ifqu =1andQJ~p =1 =>q)‘jp,
Vp,q € K,p # q,if Qjy = 0 and Q;, :0=>q)4;p.
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KPT model

» Modeling U with learning theories
» Goal: explain the dynamic factors in the learning process

p(Ui’) = N(Uitlljit, crf,l), where Ulf = {Ufl, Ultz, e U:tK}
Ut = a,Lgk(*)|+ (1-a |E;k(*), st0<a; <1,
» Two learning theories A
» Learning curve: The more exercises she does, the higher m“
level of proficiency on the related knowledge she will get mr

t
Lt (%) = U] D Uik | "~ Number of
() = U ft o practice times

» Forgetting curve: The longer the time passes, the more
knowledge she will forget BINR (FH8)

A
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EKPT model

» Sparsity problem
» Students practice very few exercises compared with the huge exercise space
» Inaccurate if students just practices few exercises at each time

> EKPT model

» Exercise connectivity assumption
» Students may get consistent scores on these knowledge-based exercises
» Learning each exercise vector with its similar ones

Learning Process Q-matrix
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EKPT model

> EKPT model

» Modeling V with exercise connectivity
» For exercise j, we define a neighbor set

Ny, ={llkejnlleV,keK)

» The knowledge vector of exercise j is influenced by the set:

Vi= > wG.D{x Vi+0y,0v ~ N(0,0%).

IEij

> w(.1) is the weight influence, which can be any weight function, like

— 1 ~ .
VJ = |ij| IEZN;/j Vi + Qv,gv N(O, O'V).

Equal contribution for all neighbor exercicses
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» Model Comparasion
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ALGORITHM 1: Parameter Learning of the KPT Model

ALGORITHM 2: Parameter Learning of the EKPT Model

Initialize U, V, @ and b;

while not converged do
fori=1,2,...N do
fort=1,2,...,T do

\\ fork=1,2,...,Kdo

forj=1,2,...,Mdo
fork=1,2,...,Kdo

Return U, V, a and b;

L Fix V,a, b, update Uitk by Equation (15) using SGD;

i Fix U,V, a, update b by Equation (18) using SGD;

Initialize U, V, & and b;
while not converged do
fori=1,2,...Ndo
fort=1,2,...,Tdo
fork=1,2,...,Kdo
L |_ Fix V, &, b, update U}, by Equation (15) using SGD;

Fix U, V, b, update @; by Equation (17) and Equation (19) using PG; | FixU,V, b, update @; by Equation (17) and Equation (19) using PG ;

forj=1,2,...,Mdo
fork=1,2,...,Kdo

| FixU,a,b, update Vj by Equation (16) using SGD; | Fix U, a, b, update Vj; by Equation (25) using SGD;

| FixU,V, a, update b by Equation (18) using SGD;

Return U, V, a and b;
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» Application

» Knowledge Proficiency Estimation

~(T+1) [ 5(T+1) A (T+1) ~(T+1)
oY = {0, 0y, O

1

T+1 A(T+1)
H(T+1) T ik T -2
Uik ~ aiUik 771 T (1- ai)U,-ke S,
ik +r

> Student Performance Prediction

AT+1) . A(T+1)
Rij if 0< Rij <1,

p(T+1) _ [r1(T+1) A (T+1 o AT
R,‘j ~ <U, ,V}> - bj- R§j+ ) =40 if Rf’j +1) <0,
1 it RI*D 5 q,

L

» Diagnosis results explanation and visualization
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Experiment

» Dataset sparse
Dataset Mathl | Math2 || Assist | Adaptive
Training logs 521,248 | 347,424 || 263,327 | 229,848
Testing logs 74,464 18,312 43,888 38,308
# of students 9,308 1,306 7197 3,217
# of exercises 64 280 3211 411
# of time windows 4 10 7
# of knowledge concepts 12 13 20 12
Avg. knowledge concepts per exercise 1.15 1.3215 || 1.5073 1.06
Data Source Application )
. Model . Lo . . Knowledge Score ) L Dyna@c
> B asellne Q-matrix | Multi-Skill | Repeating | Time Estimation | Prediction Visualization | Explanation?
IRT [17] X X X X X v X X
Static models | || PINA[S]]| | V v X X v v v X
PMF [63] X X X X X v X X
BKT [31] v X v v v v v v
Dynamic models LFA [9] V V V V X N X V
DKT [52] X v v v X v X v
OMIRT v v X X v v v X
Variants OPMF V V ” X V V V v
KPT v v X v v v v v
Ours EKPT v v X N N Vv v V

Anhui Province Key Laboratory of Big Data Analysis and Application




Experiment

» Knowledge Proficiency Estimation
» DOA: if a masters better than b on a concept k at time T, then a will have a
higher probability to get correct answers to the exercises related to concept k
than b at time T

M S (UL Ut ne (REL R

N N
k
= a '

Jj=1 a-1p=1

(a) Matht1 (d) Adaptive

K Models K Models

EKPT| KPT ||QPMF | QMIRT | DINA | BKT EKPT | KPT | QPMF | QMIRT | BKT
K1 ]0.8070.798 ||0.565 | 0.595 | 0.524 |0.558 K1 [0.7420.732] 0.656 | 0.645 |0.578
K2 10.7510.733 ||0.576 | 0.621 | 0.473 | 0.623 K2 [0.799(0.780] 0.756 | 0.740 |0.609
K3 10.830|0.827 ||0.614 | 0.629 | 0.497 | 0.523 K3 [0.796 |0.793] 0.752 | 0.736 |0.592
K4 10.769]0.752 [[0.581 | 0.675 | 0.486 |0.565 K4 |[0.8040.802) 0.737 | 0.638 |0.679
K5 10.7990.791 ||0.559 | 0.723 | 0.476 | 0.578 K5 [0.812(0.808] 0.597 | 0.632 |0.552
K6 |0.844(0.838 ||0.730 | 0.766 | 0.485 | 0.628 K6 [0.8180.812] 0.659 | 0.648 |0.547
K7 [0.851/0.842 ||0.697 | 0.634 | 0.520 | 0.697 K7 10.8210.815] 0.587 | 0.668 |0.687
K8 [0.7990.784 || 0.699 | 0.657 | 0.498 | 0.617 K8 10.824|0.818] 0.624 | 0.591 |0.532
K9 [0.7960.771 || 0.609 | 0.712 | 0.501 | 0.645 K9 10.824(0.809| 0.704 | 0.692 |0.645
K10 [0.813 |0.834(0.597 | 0.515 | 0.489 | 0.503 K10 [0.823(0.819] 0.730 | 0.776 |0.732
K11 |0.796]0.786 [/ 0.608 | 0.631 | 0.478 | 0.617 K11 [0.830(0.820] 0.658 | 0.685 |[0.702
K12 |0.811 |0.842]0.532 | 0.641 | 0.523 | 0.645 K12 [0.8090.792] 0.709 | 0.693 |0.690
Avg |0.806|0.799 |[0.614 | 0.650 | 0.496 |0.601 Avg 10.809]0.801) 0.681 | 0.679 | 0.629

» Our models perform better than baselines
» EKPT is better than KPT on sparse dataset
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Experiment

> Student Performance Prediction
> MAE, RMSE

Math1 Math2 Assist Adaptive

B :xer
B «rr
B orvF
I oMIRT

| pmr

] rr
[ piNna
[ Lra
B skt
B pKT-RNN

Math1

Math2 Assist Adaptive

» Dynamic models are better than static ones
» Deep learning based models (DKT) perform not very good
» Possible: Time is not longer enough, Data volume may not support
» Diagnosis results visualization
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» The student practices many times on K3, knowledg préﬁaency écreases
» The student practices very few exercises on K4, she'may forget
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Experiment

» Model Analysis

» Computational Performance
» Though our model needs more time for training, they are competitive compared
with DKT (deep learning based ones)

Stastic Models Dynamic Models Variants Our Models
Dataset Time DKT DKT
IRT DINA PMF | BKT LFA OMIRT QPMF | KPT EKPT
(RNN) (GRU)
Mathi Each | 0.022 0.316 0.023 / 0.024 0.403 0.479 0.036 0.025 | 0.083 0.101
a
Total | 1.960 18.05 1.833 | 1.516 2.483 22.867 195.375 3.647 2.535 | 8.334 11.66
Math2 Each | 0.011 0.616 0.021 / 0.012 0.122 0.157 0.016 0.012 | 0.067 0.073
a
Total | 1.051 57.28 1.283 | 0.581 1.152 7.720 10.435 1.603 1.589 | 7.334 7.738
Assist Each | 0.015 / 0.033 / 0.026 1.594 3.207 0.283 0.265 | 0.467 0.735
UL Total | 2320/ 4951 | 1275 2991 73324 147522 | 2638 2994 |47.13  77.15
Adaoti Each | 0.013 / 0.029 / 0.015 0.273 0.338 0.105 0.110 | 0.233 0.453
Adaptive
P Total | 2.154 / 3.466 | 1.017 1942 11.734 12.522 8.412 10.45 | 24.73 48.92
» Parameter sensitivity
0.3 0.79 0.4 — 68 03 ——0.82
o S
£ 0.3} 0.78 =0 =0 034 Eﬁ
iz 38 3 z
é § § EUJ" 06ﬁ§ ; lhﬂé
0.28 0.77 033
2 /\3{ ] 3 10 0.1 05 ,\IU 3 15 /\ZU 3 5 .5 1 ;; 2 3
(a) Math1 (b) Math2 (c) Assist (d) Adaptive

Fig. 8. The impact of Ayy on four datasets.
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Experiment

» Model Analysis

» Exercise relationship
» Exercise with same concepts are grouped together
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Conclusion & Future work

» Conclusion
» A focused study on tracking the knowledge proficiency of students
» Two explanatory probabilistic models considering different educational
factors
» Incorporating learning theories for explaining the knowledge change
» Incorporating Q-matrix for improving the interpretability
» Incorporating exercise connectivity property to address sparsity problem
» Experiments on different datasets show the both effectiveness and
explanatory power of our models

» Future work
» Consider different specific modeling for learning and forgetting factors
» Consider student behaviors and social connections for more precise diagnosis
» Consider different learning scenarios
» Game
» Multiple-attempt response
» Repeated learning
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Thanks for your listening!

huangzhy @mail.ustc.edu.cn
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