

Neural Mathematical Solver with Enhanced Formula Structure

Zhenya Huang¹, Qi Liu¹, Weibo Gao¹, Jinze Wu¹, Yu Yin¹, Hao Wang¹, Enhong Chen^{1,*} ¹Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology, University of Science and Technology of China, {huangzhy,weibogao,hxwjz,yxonic,wanghao3}@mail.ustc.edu.cn; {qiliuql,cheneh}@ustc.edu.cn

Reporter: Weibo Gao

1	Background
2	Problem Definition
3	Framework
4	Experiment
5	Conclusion & Future work

Background

> Automatically answering math problems

- ➤ A crucial and challenging task in AI
- > Requirements
 - Linguistic understanding ability
 - Semantic understanding
 - Operator extraction
 - Mathematical comprehension ability
 - Understand formulas with free-text format

Problem: Robin was making baggies of cookies with 6 cookies in each bag. If she had 23 chocolate cookies and 25 oatmeal cookies, how many baggies could she make? **Expression:** $x = (23 + 25) \div 6$ **Answer:** 8

Question: Let $f(x) = -x^3 - x^2$. Let g(x) = -2x. solve f(g(x))Answer: $8x^3 - 4x^2$

Related work

≻ Math word problem

- Elementary problem (primary school level)
- > Translate questions text into expression forms for answers
- Existing methods
 - Rules-schemes-matching methods
 - Statistical learning
 - E.g., template-based, tree-based
 - Seq2seq deep learning

Just consist of natural la	nguage conten	lt	
Math word problem		ex	pression
Gwen was organizing her book sure each of the shelves had ex it. She has 2 types of books - m and picture books. If she had 3 mystery books and 5 shelves of How many books did she have	case making actly 9 books on systery books shelves of f picture books. total?	(3	$(3+5) \times 9 = 72$

Background

➢ Math word Problem

- Elementary problem (primary school level)
 - Linguistic learning for natural language content
 - ➢ Operator extraction (+)
 - Semantic understanding
- ➤ Mathematical problem
 - Complex problem (high school level)
 - Language content
 - Specific but informative formulaş
 - Requirement
 - Linguistic understanding
 - Mathematical comprehension

```
Problem: Robin was making baggies of cookies with 6 cookies in each bag. If she had 23 chocolate cookies and 25 oatmeal cookies, how many baggies could she make? Expression: x = (23 + 25) \div 6
Answer: 8
```

Math word problem

Question: Let $f(x) = -x^3 - x^2$. Let g(x) = -2x. solve f(g(x))Answer: $8x^3 - 4x^2$

Mathematical problem

Background

Challenges: How to represent formula-enriched problem?

How to understand formulas with their free-text format?

How to design a unified architecture to incorporate linguistic and mathematical information?

Problem Definition

➢ Given

- > Mathematical problem: $P = \{p_1, p_2, \dots, p_L\}$
- Token: p_i is a word token or formula token (e.g., quantities, symbols) Goal
 - \triangleright Read tokens from *P*
 - Solution Generate answer sequence: $Y = \{y_1, y_2, \dots, y_T\}$

NMS Framework

> NMS framework

- Formula Graph Construction
 - Develop an assistant tool to construct formula dependency graph
- ➢ Neural Solver
 - ➢ FGN: Formula graph network
 - Sequence model: Encoder-Decoder architecture

NMS Framework

Formula graph construction

- Goal: present formulas in a structural way
- Develop a TeX-based formula-dependent graph tool
- ≻ Nodes
 - > Variables: θ
 - ≻ Numbers: 2
 - ➢ Operators: \tan
- Edges (four relasions)
 - Brother, father, child
 - > Relative
- ➤ Features
 - Attribute, content

Advantages

- Reduce redundant
- Keep structure information
- Enhance semantic information

NMS Framework

≻ Neural solver

- ➢ FGN: capture fomula structure information
- Sequence model: incorporate semantic and structural information

Experiment

► Dataset	Table 1: The statistics of the dataset.						
 MATH dataset (high school level) 	Num. problem	Avg. problem Length	Avg. answer Length	Avg. formula Number	Avg. formula Length		
Data analysis	31,500	48.47	8.87	3.46	35.91		
 Formula tokens take large portions 69% on average Larger portions in shorter problem 	ms						
 Baseline methods (seq2seq) GRU BiGRU RMC Attention Transformer 	Average token length Average token length	Problem Formula 30 45 60 75 90 10 Problem token lengt	3.0 2.5 2.0 2.0 1.5 1.0 0.5 0.0 h	20 40 60 8 Problem to	0 100 120 140 cen length		
Evaluation metricsACC, BLEU, ROUGE	(a)	Token Length	(1	o) Problem Dis	stribution		

Experiment

> Experiment

Task: solving mathematical problems

> Observations

- NMS performs the best
 - Capture mathematical relations effectively
- Transformer and Seq2Seq-BiGRU perform better than other baselines
 - Design sophisticated encoders
- RMC performs not very well
 - Probably because it requires many parameters

Training/test ratio	60%/40%			70%/30%			80%/20%			90%/10%		
Metric	ACC	BLEU	ROUGE									
Seq2Seq-GRU	27.94%	27.78	52.10	28.72%	28.43	52.89	29.38%	29.68	52.99	30.25%	30.50	55.37
Seq2Seq-BiGRU	30.40%	31.78	55.83	30.85%	32.09	56.94	30.47%	31.89	57.05	32.87%	33.85	57.70
Seq2Seq-RMC	26.38%	26.32	49.06	26.50%	27.01	49.81	26.82%	26.98	50.53	27.51%	27.66	51.47
Seq2Seq-Attn	29.59%	30.16	54.95	30.58%	31.48	55.15	30.94%	32.07	56.42	31.13%	31.91	55.59
Transformer	30.71%	32.15	55.81	31.31%	32.90	55.85	32.20%	33.52	56.12	32.32%	34.82	57.38
NMS-F	29.94%	31.24	53.71	30.78%	32.99	55.91	31.86%	33.54	56.96	32.16%	33.62	57.98
NMS	31.85%	33.09	55.61	32.14%	33.88	57.22	33.65%	34.08	57.55	34.21%	36.67	59.93

Table 2: The overall performance of problem solving.

Experiment

➤ Visualization

➤ Task: project problems embeddings into 2D space by t-SNE

- Observations
 - Problems with same concepts learned are easier to be grouped
 - \succ They are closer in the hidden space
 - > Problems with simple formula structures cluster nearly

≻ E.g., "Set" problems

- ➤ Many types of formulas cause different patterns
 - ► E.g., "Function" problems

1	Background
2	Problem Definition
3	Framework
4	Experiment
5	Conclusion & Future work

Conclusion & Future work

> Overall results

- Develop a TeX-based formula-dependent graph tool to maintain the structural information of each problem.
- Design FGN to capture mathematical relations.
- Design a neural solver to incorporate semantic infomation and structural infomation.

≻ Future work

- Seek ways to predict quantities effectively
 - \succ 1/2 vs. ¹¹¹/₂₂₂
- > Design different graph networks for learning formula structure
 - Reasoning on different problem types
- Consider more specific structures of more complex problems
 - "geometry" problem: containing figures

Thanks for your listening!

huangzhy@mail.ustc.edu.cn