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ABSTRACT

Diagnosing students’ knowledge proficiency, i.e., the mas-
tery degrees of a particular knowledge point in exercises, is
a crucial issue for numerous educational applications, e.g.,
targeted knowledge training and exercise recommendation.
Educational theories have converged that students learn and
forget knowledge from time to time. Thus, it is necessary to
track their mastery of knowledge over time. However, tradi-
tional methods in this area either ignored the explanatory
power of the diagnosis results on knowledge points or relied
on a static assumption. To this end, in this paper, we devise
an explanatory probabilistic approach to track the knowledge
proficiency of students over time by leveraging educational
priors. Specifically, we first associate each exercise with a
knowledge vector in which each element represents an ex-
plicit knowledge point by leveraging educational priors (i.e.,
Q-matrix). Correspondingly, each student is represented as
a knowledge vector at each time in a same knowledge space.
Second, given the student knowledge vector over time, we
borrow two classical educational theories (i.e., Learning curve
and Forgetting curve) as priors to capture the change of each
student’s proficiency over time. After that, we design a proba-
bilistic matrix factorization framework by combining student
and exercise priors for tracking student knowledge proficiency.
Extensive experiments on three real-world datasets demon-
strate both the effectiveness and explanatory power of our
proposed model.
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1 INTRODUCTION

Real-world education service systems, such as intelligent
tutoring systems, allow students to learn and do exercises
individually. Their conveniences and rapid developments have
caused an increasing attention of educators and publics [1, 5].

A key issue in such systems is the Knowledge Proficien-
cy Diagnosis (KPD) of students, i.e., to discover the latent
mastery degrees of students on each knowledge point [32].
Figure 1 shows a toy example for this KPD task. From the
figure, there are two students (𝑢1 and 𝑢2) doing differen-
t mathematical exercises from March to May 2016. Each
exercise contains different knowledge points, which can be
represented as a Q-matrix provided by educational expert-
s [8]. Specifically, the number 1 in Q-matrix denotes that
the corresponding exercise contains the knowledge point and
0 otherwise. As shown in this figure, exercise 𝑒1 contains
a knowledge point Function, and exercise 𝑒9 is related to
knowledge points Function and Inequality. The KPD task
in educational area asks that: Given students’ historical ex-
ercise records and the provided Q-matrix, how to diagnose
the mastery degrees of students to the knowledge points (i.e.,
Function and Inequality in Figure 1)? In fact, as these diag-
nosis results are beneficial to numerous applications, such as
targeted knowledge training [12] and personalized exercise
recommendation [26], many efforts have been devoted to this
KPD task. On one hand, cognitive diagnosis models from the
educational psychology area usually characterize students’
knowledge proficiency by a latent trait value [11] or a binary
skill mastery vector [8]. On the other hand, by treating the
KPD task as a data mining problem (i.e., student score pre-
diction), matrix factorization techniques project each student
in a latent space that depicts students’ implicit knowledge
states [16]. In summary, these two research directions usually
model users’ historical records without any temporal informa-
tion, thus, they are good at predicting student’s proficiency
from a static perspective.

However, educational psychologists have long converged
that the learning process of students is not static but evolves
over time [29]. They claims that students learn and forget
the knowledge from time to time. Two classical educational
theories can well explain this dynamic change: the Learning
curve theory argues that students can enhance their knowl-
edge proficiency with constant trails or exercises [2] and the
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Figure 1: A showcase of KPD task on mathematical exercises related to the knowledge points of Function and Inequality
from March to May, 2016. The left area contains two parts: the top part shows the student learning process with different

exercises, and a related Q-matrix that depicts the knowledge points of the exercises. Specifically, each row of the Q-
matrix denotes an exercise and each column stands for a knowledge point. The bottom part shows the corresponding

diagnosis results of the two students to these two knowledge points over time.

Ebbinghaus forgetting curve theory indicates that students’
knowledge proficiency may decline due to the forgetting fac-
tor [10]. Let us take the two students in Figure 1 as an
example. As time goes on, student 𝑢2 improved her profi-
ciency on both two knowledge points with some exercises
she took and learned. Therefore, she should focus on some
exercises about new knowledge points. In contrast, student
𝑢1’s knowledge proficiency decreased with the possible reason
of the forgetting factor. Thus, a timely review is necessary to
reinforce these two knowledge points for 𝑢1. Therefore, it is
necessary to leverage these two educational theories to track
students’ knowledge proficiency over time.

In fact, several research works from both the cognitive
diagnosis area [6, 7, 20, 21, 34] and the data mining commu-
nity [27, 33, 35] have already attempted to solve KPD task
from a dynamic perspective. And the experimental results
empirically showed the superiority of adding the temporal
information for this task. However, there are still some ques-
tions to answer. Specifically, the data mining based methods,
such as the TF model [33], only capture the latent factors
of students over time, thus are hard to explain in practice.
We argue that the explicit knowledge point explanation is
especially important in the KPD task. With explicit knowl-
edge point meaning, students can quantitatively measure the
strengthes and weaknesses of themselves for self-improvement
(e.g., targeted exercise training [12]). In addition, in the
cognitive models, such as Baysian Knowlege Tracing based
models [7, 20, 34], the learning and forgetting factors are
viewed as additional parameters, which neglects that these
two factors are closely related to the exercises they do at
each time as suggested by educational experts. Thus, these
cognitive models could not answer the question of how these
educational theory could help to explain the evolution of
students’ knowledge proficiency over time. Therefore, few of
the existing approaches can address the following challenge:
how to embed the educational priors in the KPD modeling
task to better explain and predict the KPD task of students
to knowledge points?

To solve the challenge mentioned above, in this paper, we
propose an explanatory probabilistic Knowledge Proficiency
Tracing (KPT) model to track the KPD task of students over
time by leveraging educational priors. Specifically, we first
associate each exercise with a knowledge vector, in which
each element represents an explicit knowledge point. The
Q-matrix that is marked by educational experts to depict
the relationship between knowledge points and exercises, is
exploited as priors to generate exercise representations. To
track students’ knowledge proficiency, each student is rep-
resented as a knowledge vector at each time in the same
knowledge space. Then we embed the classical educational
theories (i.e., Learning curve and Forgetting curve) as pri-
ors to capture the change of each student’s proficiency over
time. After that, we design a probabilistic matrix factoriza-
tion framework by combining student and exercise priors.
Thus, the proposed model can track and explain students’
knowledge proficiency over time. Finally, the experimental
results clearly validate both the effectiveness and explanatory
power of our proposed KPT model. To best of our knowledge,
this is the first comprehensive attempt to incorporate three
educational priors (Q-matrix, Learning curve and Forgetting
curve) into a probabilistic matrix factorization framework for
tracking KPD task with both precise and explanatory power.

2 RELATED WORK

Generally, we summarize the related work of our research as
the following three categories.

The first category is student modeling [31, 35] in data
mining area, with the goal to learn students’ latent repre-
sentations from their exercise. These learned representations
could be applied to applications, such as score prediction [30].
Usually, we also regard the obtained representations of stu-
dents as their implicit knowledge proficiency. There are two
types of representative techniques: factorization models [16]
and neural networks [22]. For instance, Thai-Nghe et al. [27]
leveraged matrix factorization models to map each student
into a latent vector that depicts students’ implicit knowledge
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Table 1: A toy example of exercise logs.

StudentId ExerciseId UpdateTime Score

𝑆1 𝐸1 𝑇1 1

𝑆1 𝐸2 𝑇2 0.25

𝑆2 𝐸2 𝑇3 0
𝑆2 𝐸3 𝑇4 1

𝑆2 𝐸3 𝑇5 0.75

𝑆5 𝐸2 𝑇6 1
. . . . . . . . . . . .

states. In order to track changes of student learning process,
Thai-Nghe et al. [27] and Xiong et al. [33] proposed tensor
factorization approaches by incorporating additional time
dimensions for KPD over time. Recently, through establishing
a bridge between knowledge points and neurons, Piech et
al. [22] developed a recurrent neural network based approach
to model student learning process, which improved the per-
formance of score prediction task. Nevertheless, a common
limitation of these works is that these models operate like
a black box, thus the output of the student representations
are hard to explain. That is to say, neither the latent vec-
tors from factorization models nor the hidden layers from
neural networks can correspond to any explicit knowledge
point. In contrast, our model improves the traditional matrix
factorization by leveraging educational priors (i.e., Q-matrix,
Learning curve and Forgetting curve), which guarantees the
explanatory power.

The second direction is KPD research in educational cogni-
tive area, which aims at discovering the proficiency of students
on defined knowledge points [9, 14]. Widely-used approaches
could be divided into two aspects: one-dimensional models
and multi-dimensional models. Among them, Item Response
Theory (IRT), as a typical one-dimensional model, consid-
ered each student as a single proficiency variable (i.e., latent
trait) [11]. Comparatively, multi-dimensional models, such as
Deterministic Inputs, Noisy-And gate model, characterized
students by a binary latent vector which described whether
or not she mastered the knowledge points with the given
Q-matrix prior [8]. Furthermore, Wu et al. [32] proposed
FuzzyCDM to quantitatively diagnose student knowledge
proficiency. However, to the best of our knowledge, all these
methods rely on static assumption and ignore temporal factor
for KPD task. In this work, we focus on the dynamic learning
process of students and capture the change of each student’s
knowledge proficiency over time.

In order to explain the dynamic changes of students’ knowl-
edge proficiency during their learning process, educational
psychologists have converged two classical theories: Learning
curve theory argues that students can enhance their knowl-
edge proficiency with constant trails or exercises [2] and
Ebbinghaus forgetting curve theory indicates that students’
knowledge proficiency may decline as time goes on [10]. Based
on these two prior theories, researchers have attempted to
develop a series of models for solving KPD task from an
evolving perspective. For example, some IRT based models,
such as Learning Factors Analysis [6] and Performance Fac-
tors Analysis [21], were proposed to improve traditional IRT,
which assumed that students shared the same parameters of

Table 2: Some important notations.

Notation Description
𝑁 the total number of students
𝑀 the total number of exercises
𝑇 the total number of time windows
𝐾 the total number of knowledge points
𝑅𝑡

𝑖𝑗 the response of Student 𝑖 on Exercise 𝑗 in time window 𝑡

𝑈𝑡
𝑖 the knowledge proficiency of Student 𝑖 in time window 𝑡

𝑉𝑗 the correlation level of Exercise 𝑗 on each knowledge point
𝑏𝑗 the difficulty of Exercise 𝑗
𝛼𝑖 the balance parameter of Student 𝑖

learning rate when exercising. Furthermore, Wang et al. [29]
proposed a time-series IRT model to estimate a dynamic
latent trait of each student. In addition, researchers proposed
variations of Bayesian Knowledge Tracing (BKT) based mod-
els [7, 15, 20, 34] to capture the change of students’ knowledge
proficiency over time. Despite the importance of these efforts,
there are still some limitations in practice: First, IRT based
models only estimate a variable (e.g., latent trait) for each
student so that they cannot discover students proficiency on
multiple knowledge points simultaneously (i.e., KPD task
for two knowledge points in Figure 1). Second, BKT based
models focus on a simplified learning scenario where students
are allowed to keep doing the same exercise while overlooking
a more practical one in Figure 1 where students just do each
exercise only once. In most cases, students seldom repeat
doing the same exercises but seek more different exercises
for learning. Last but not least, both IRT and BKT based
models neglect the influence of exercises for the learning and
forgetting factors directly, thus is hard to explain students’
knowledge evolution over time.

Based on the learning scenario that most students do each
exercise only once, in this paper, we aim to track and explain
students knowledge proficiency on multiple knowledge points
leveraging by underlying theories (i.e., Q-matrix, Learning
curve and Forgetting curve).

3 KNOWLEDGE PROFICIENCY
TRACKING MODEL

In this section, we first formally introduce the KPD task and
our study overview. Then we introduce the technical details
of our proposed model KPT. At last, we specify parameter
learning and prediction of KPT.

3.1 Problem and Study Overview

Suppose there are 𝑁 students, 𝑀 exercises and 𝐾 knowledge
points in a learning system where students do exercises at
different times recorded by students’ exercise logs (as shown
in Table 1). Specifically, the students’ response logs can be
represented as a response tensor 𝑅 ∈ R𝑁×𝑀×𝑇 . If student 𝑖
does exercise 𝑗 at time 𝑡, 𝑅𝑡

𝑖𝑗 denotes 𝑖’s score of exercise 𝑗.
In addition, we also have a Q-matrix provided by educational
experts, which can be represented as a binary knowledge
matrix 𝑄 ∈ R𝑀×𝐾 . If exercise 𝑗 relates to knowledge point
𝑘, 𝑄𝑗𝑘 = 1 and vice versa. It is worth mentioning that at
different time, most students do the same exercises only once
because they usually choose different exercises to learn a
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Figure 2: The framework of the KPT model.

specific knowledge point in general cases. Without loss of
generality, the problem can be formulated as:

(PROBLEM FORMULATION) Given the students’
response tensor 𝑅 and Q-matrix labeled by educational expert-
s, our goal is two-fold: 1) modeling the change of students’
knowledge proficiency from time 1 to 𝑇 ; 2) predicting stu-
dents’ knowledge proficiency and responses at time 𝑇 + 1.

As shown in Figure 2, our solution is a two-stage framework,
which contains a modeling stage and a predicting stage: 1)
In modeling stage, given exercise response logs of students
(Table 1) and Q-matrix labeled by experts, we first project
each student’s latent vector into a knowledge space with the
help of the Q matrix prior provided by educational experts.
Then, we propose KPT to address KPD of students over time
by incorporating the Learning and Forgetting curve theories.
After that, we can obtain students’ knowledge proficiency 𝑈
at different times and each exercise’s knowledge vector 𝑉 . 2)
In predicting stage, KPT predicts students’ responses (𝑅𝑇+1)
and knowledge proficiency (𝑈𝑇+1) in the future.

In the following, we will specify the probabilistic model-
ing, parameter learning and prediction of KPT. For better
illustration, some notations are summarized in Table 2.

3.2 Probabilistic Modeling with Priors

Inspired by many existing works [25, 27], for each student
and each exercise, we model the response tensor 𝑅 as:

𝑝(𝑅|𝑈, 𝑉, 𝑏) =
𝑇∏︁

𝑡=1

𝑁∏︁
𝑖=1

𝑀∏︁
𝑗=1

[𝒩 (𝑅𝑡
𝑖𝑗 |⟨𝑈 𝑡

𝑖 , 𝑉𝑗⟩ − 𝑏𝑗 , 𝜎
2
𝑅)]

𝐼𝑡𝑖𝑗 , (1)

where 𝒩 (𝜇, 𝜎2) is a Gaussian distribution with mean 𝜇 and
variance 𝜎2. 𝐼 is an indicator tensor and 𝐼𝑡𝑖𝑗 equals to 1 if
student 𝑖 does exercise 𝑗 in time window 𝑡, and vice versa.
𝑈 𝑡

𝑖 ∈R𝐾×1 is the knowledge proficiency of student 𝑖 in time
window 𝑡. 𝑉 ∈R𝑀×𝐾 denotes the relationship between exer-
cises and knowledge points. 𝑏𝑗 is the difficulty bias of exercise
𝑗, which is widely adopted in KPT task modeling [11]. Given
this likelihood function, in the following, we would detail

how to incorporate the educational priors in the modeling
process. We first explain how to embed the knowledge of the
Q matrix to model V. Specifically, we incorporate Q-matrix
prior to associate each exercise with a knowledge vector in
which each element represents an explicit knowledge point.
Then we model 𝑈 by combining two educational theories (i.e.,
forgetting and learning) as priors to track students’ dynamic
learning process.

Modeling 𝑉 with the Q-matrix prior. Traditional
probabilistic matrix factorization models suffer from the in-
terpretation problem as the learned latent dimensions are
unexplainable. Comparatively, many efforts in educational
field have been made to build an interpretative model by
leveraging the prior knowledge based on Q-matrix. How-
ever, such traditional Q-matrix has two disadvantages: 1)
inevitable error or subjective bias from manual labeling [18];
2) the sparsity with the binary entries which does not fit
probabilistic modeling well. To mitigate these existing issues,
we refine and utilize a partial order [23] based on Q-matrix
to reduce the subjective impact of experts and associate each
exercise with sets of knowledge points. As for exercise 𝑗, the
partial order >+

𝑗 can be defined as:

𝑞 >+
𝑗 𝑝, if 𝑄𝑗𝑞 = 1 and 𝑄𝑗𝑝 = 0. (2)

Specifically, for exercise 𝑗, if a knowledge point 𝑞 is marked
as 1, then we assume that 𝑞 is more relevant to exercise 𝑗
than all the other knowledge points with mark 0. Please note
that we cannot infer comparability of knowledge points with
the same mark. After that, we can transform the original
Q-matrix into a set of comparability 𝐷𝑇 ∈ 𝑅𝑀×𝐾×𝐾 by:

𝐷𝑇 = {(𝑗, 𝑞, 𝑝)|𝑞 >+
𝑗 𝑝}. (3)

Thus, 𝐷𝑇 is not as sparse as Q-matrix and can capture
more accurate pairwise relationship between two knowledge
points (𝑞, 𝑝) based on an exercise 𝑗 with a good interpretation.
We learn the latent exercise matrix 𝑉 ∈R𝑀×𝐾 by incorpo-
rating this prior partial order. The Bayesian formulation
of finding the correct partial order for all pairs of knowl-
edge points (𝑞, 𝑝) turns to maximize the following posterior
probability:

𝑝(𝑉 |𝐷𝑇 ) ∝ 𝑝(𝐷𝑇 |𝑉 )× 𝑝(𝑉 ). (4)

All exercises are presumed to be marked independently
by educational experts. We also assume the ordering of each
pair [23] of knowledge points (𝑞, 𝑝) for a specific exercise is
independent of the ordering of every other pair. Hence, the
likelihood function 𝑝(𝐷𝑇 |𝑉 ) can be given as follows:

𝑝(𝐷𝑇 |𝑉 ) =
∏︁

(𝑗,𝑞,𝑝)∈𝐷𝑇

𝑝(𝑞 >+
𝑗 𝑝|𝑉𝑗). (5)

In order to get a correct partial order relation on 𝑉 , we
define the probability that exercise 𝑗 is more relevant to
knowledge point 𝑞 than knowledge point 𝑝 as:

𝑝(𝑞 >+
𝑗 𝑝|𝑉𝑗) =

1

1 + e−(𝑉𝑗𝑞−𝑉𝑗𝑝)
. (6)

Besides, following the traditional Bayesian treatment, we
also assume 𝑉 follows a zero-mean Gaussian prior. Combining
Eq. (4), (5) and (6), we can formulate the log posterior
distribution over 𝐷𝑇 on 𝑉 as:
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ln 𝑝(𝑉 |𝐷𝑇 ) = ln
∏︁

(𝑗,𝑞,𝑝)∈𝐷𝑇

𝑝(>+
𝑗 |𝑉 )𝑝(𝑉 )

=

𝑀∑︁
𝑗=1

𝐾∑︁
𝑞=1

𝐾∑︁
𝑝=1

𝐼
(︀
𝑞 >+

𝑗 𝑝
)︀
ln

1

1 + e−(𝑉𝑗𝑞−𝑉𝑗𝑝)

− 1

2𝜎2
𝑉

||𝑉 ||2𝐹 .

(7)
Modeling 𝑈 with two dynamic learning theories.

Now we specify the modeling of students’ latent tensor 𝑈 .
As mentioned before, during students’ dynamic learning pro-
cess, there are two widely accepted theories in educational
psychology that could guide us in the modeling process: 1)
Learning curve. [2] depicts the knowledge we learned can
be enhanced with several exercises. 2)Ebbinghaus forgetting
curve [28] hypothesizes the knowledge we learned will be
gradually forgotten over time.

Combining the two theories as priors, we assume a studen-
t’s current knowledge proficiency is mainly influenced by two
underlying reasons: 1) The more exercises she does, the high-
er level of related knowledge proficiency she will get. 2) The
longer the time passes, the more knowledge she will forget.
Formally, we model two effects of each student’s knowledge
proficiency at time window 𝑡 = 2, 3, ..., 𝑇 as:

𝑝(𝑈 𝑡
𝑖 ) = 𝒩 (𝑈 𝑡

𝑖 |𝑈 𝑡
𝑖 , 𝜎

2
𝑈I),where 𝑈 𝑡

𝑖=
{︀
𝑈 𝑡

𝑖1, 𝑈
𝑡
𝑖2...

¯𝑈 𝑡
𝑖𝐾

}︀
𝑈 𝑡

𝑖𝑘=𝛼𝑖𝑙
𝑡(*) +(1− 𝛼𝑖) 𝑓

𝑡(*), s.t. 0 ≤ 𝛼𝑖 ≤ 1, (8)

where 𝑈 𝑡
𝑖 ∈ R𝐾×1, the knowledge proficiency of student 𝑖 in

time window 𝑡, follows a Gaussian distribution with mean 𝑈 𝑡
𝑖

and variance 𝜎2
𝑈I. 𝑈

𝑡
𝑖𝑘 is student 𝑖’s knowledge proficiency

on knowledge point 𝑘 at time 𝑡. 𝑙𝑡(*) is the learning factor
which means the learned knowledge at time 𝑡 after several
exercises and 𝑓 𝑡(*) is the forgetting factor which indicates the
remaining knowledge at time 𝑡. 𝛼𝑖 balances the two factors
to capture the students’ learning characteristics. Intuitively,
if student 𝑖 has a large 𝑎𝑖, she may be diligent. Thus 𝑙𝑡(*),
instead of 𝑓 𝑡(*), affects her future knowledge proficiency more
significantly, and vice versa. In the following, we formally
define 𝑙𝑡(*) and 𝑓 𝑡(*).

𝑙𝑡(*) captures the growth of knowledge with exercises:

𝑙𝑡(*) = 𝑈 𝑡−1
𝑖𝑘

𝐷 * 𝑓 𝑡
𝑘

𝑓 𝑡
𝑘 + 𝑟

, (9)

where 𝑓 𝑡
𝑘 denotes the frequency of knowledge 𝑘 examined in

time window 𝑡. 𝑟 and 𝐷 are two hyper-parameters, which
control the magnitude and multiplier of growth respectively.

𝑓 𝑡(*) depicts the decline of knowledge over time:

𝑓 𝑡(*) = 𝑈 𝑡−1
𝑖𝑘 e−

Δ𝑡
𝑆 , (10)

where ∆𝑡 is the time interval between time window 𝑡 − 1
and time window 𝑡, 𝑆 is a hyper-parameter that denotes the
strength of memory.

At the initial time 𝑡 = 1, we do not know the initial level
of each student. Therefore, we assume a zero-mean Gaussian
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Figure 3: Graphical representation of KPT.

distribution of student’s knowledge proficiency at that time.
Then we summarize the prior over user latent tensor as:

𝑝(𝑈 |𝜎2
𝑈 , 𝜎

2
𝑈1) =

𝑁∏︁
𝑖=1

𝒩 (𝑈1
𝑖 |0, 𝜎2

𝑈1I)

𝑇∏︁
𝑡=2

𝒩 (𝑈 𝑡
𝑖 |𝑈 𝑡

𝑖 , 𝜎
2
𝑈I). (11)

3.3 Model Learning and Prediction

We summarize the graphical representation of the proposed
latent model in Figure 3, where the shaded and unshaded
variables indicate the observed and latent variables. Given
students’ response tensor 𝑅 and partial order >+

𝑗 based on

Q-matrix, our goal is to learn the parameters Φ = [𝑈, 𝑉, 𝛼, 𝑏],
𝛼 = [𝛼𝑖]

𝑁
𝑖=1. Particularly, combining Eq. (1), (4) and(11), the

posterior distribution over Φ is:

𝑝(𝑈, 𝑉, 𝛼, 𝑏|𝑅,𝐷𝑇 ) ∝ 𝑝(𝑅|𝑈, 𝑉, 𝛼, 𝑏)×𝑝(𝑈 |𝜎2
𝑈 , 𝜎

2
𝑈1)×𝑝(𝑉 |𝐷𝑇 ).

(12)
Maximizing the log posterior of the above equation is

equivalent to minimizing the following objective:

min
Φ

ℰ(Φ) = 1

2

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐼𝑡𝑖𝑗 [𝑅̂
𝑡
𝑖𝑗 −𝑅𝑡

𝑖𝑗 ]
2

− 𝜆𝑃

𝑀∑︁
𝑗=1

𝐾∑︁
𝑞=1

𝐾∑︁
𝑝=1

𝐼
(︀
𝑞 >+

𝑗 𝑝
)︀
ln

1

1 + e−(𝑉𝑗𝑞−𝑉𝑗𝑝)
+

𝜆𝑉

2

𝑀∑︁
𝑖=1

||𝑉𝑖||2𝐹

+
𝜆𝑈

2

𝑇∑︁
𝑡=2

𝑁∑︁
𝑖=1

||𝑈 𝑡
𝑖 − 𝑈 𝑡

𝑖 ||2𝐹 +
𝜆𝑈1

2

𝑁∑︁
𝑖=1

||𝑈1
𝑖 ||2𝐹 , (13)

where 𝜆𝑃 =𝜎2
𝑅, 𝜆𝑈 =

𝜎2
𝑅

𝜎2
𝑈
, 𝜆𝑈1 =

𝜎2
𝑅

𝜎2
𝑈1

and 𝜆𝑉 =
𝜎2
𝑅

𝜎2
𝑉
. Among

them, 𝜆𝑃 is a tradeoff coefficient between the responses pre-
diction loss and partial order loss, and 𝜆𝑈 is a coefficient that
measures how student’s knowledge proficiency changes over
time. 𝜆𝑈1 and 𝜆𝑉 are regularization parameters for students’
knowledge proficiency at time 1 and the exercise-knowledge
correlation matrix.

Specifically, the derivative of each parameter are:

∇𝑈𝑡
𝑖𝑘

=

𝑀∑︁
𝑗=1

𝐼𝑡𝑖𝑗(𝑅̂
𝑡
𝑖𝑗 −𝑅𝑡

𝑖𝑗)𝑉𝑗𝑘 + ℐ[𝑡 = 1]𝜆𝑈1𝑈
1
𝑖𝑘

+ ℐ[𝑡 ≥ 2]𝜆𝑈 (𝑈 𝑡
𝑖𝑘 − 𝑈 𝑡

𝑖𝑘) (14)

+ 𝜆𝑈 (𝑈
(𝑡+1)
𝑖𝑘 − 𝑈

(𝑡+1)
𝑖𝑘 )((1− 𝛼𝑖)e

−Δ𝑡
𝑆 + 𝛼𝑖

𝐷𝑓 𝑡
𝑘

𝑓 𝑡
𝑘 + 𝑟

),
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∇𝑉𝑗𝑘 =
∑︁𝑇

𝑡=1

∑︁𝑁

𝑖=1
𝐼𝑡𝑖𝑗(𝑅̂

𝑡
𝑖𝑗 −𝑅𝑡

𝑖𝑗)𝑈
𝑡
𝑖𝑘 + 𝜆𝑉 𝑉𝑗𝑘

− 𝜆𝑃

∑︁𝐾

𝑝=1
𝐼
(︀
𝑘 >+

𝑗 𝑝
)︀ e−(𝑉𝑗𝑘−𝑉𝑗𝑝)

1 + e−(𝑉𝑗𝑘−𝑉𝑗𝑝)

− 𝜆𝑃

∑︁𝐾

𝑞=1
𝐼
(︀
𝑞 >+

𝑗 𝑘
)︀ −e−(𝑉𝑗𝑞−𝑉𝑗𝑘)

1 + e−(𝑉𝑗𝑞−𝑉𝑗𝑘)
, (15)

∇𝛼𝑖 = 𝜆𝑈

𝑇∑︁
𝑡=2

𝐾∑︁
𝑘=1

(𝑈 𝑡
𝑖𝑘 − 𝑈 𝑡

𝑖𝑘)(𝑈
𝑡
𝑖𝑘(

𝐷𝑓 𝑡
𝑘

𝑓 𝑡
𝑘 + 𝑟

− e−
Δ𝑡
𝑆 )), (16)

∇𝑏𝑗 =

𝑀∑︁
𝑖=1

𝐼𝑡𝑖𝑗(𝑅̂
𝑡
𝑖𝑗 −𝑅𝑡

𝑖𝑗), (17)

here ℐ[𝑥] is an indicator function that equals to 1 if 𝑥 is true.
We can update 𝑈 , 𝑉 and 𝑏 directly by using Stochastic

Gradient Descent (SGD) method [4]. With the bound con-
straints of 𝛼𝑖, a local minimum can be found by the Projected
Gradient (PG) method [17]. Specifically, for each 𝛼𝑖 ∈ [0, 1]
the PG method updates the current solution 𝛼𝑘

𝑖 in 𝑘-th
iteration to 𝛼𝑘+1

𝑖 by the following rule:

𝛼𝑘+1
𝑖 = 𝑃 [𝛼𝑘

𝑖 − 𝜂∇𝛼𝑖 ], 𝑃 (𝛼𝑖) =

⎧⎪⎨⎪⎩
𝛼𝑖 if 0 ≤ 𝛼𝑖 ≤ 1,

0 if 𝛼𝑖 < 0,

1 if 𝛼𝑖 > 1.

(18)

With students’ knowledge proficiency 𝑈1, 𝑈2, ..., 𝑈𝑇 and
related parameters, students’ responses and knowledge profi-
ciency at time T+1 can be predicted as:

𝑈
(𝑇+1)
𝑖 =

{︁
𝑈

(𝑇+1)
𝑖1 , 𝑈

(𝑇+1)
𝑖2 , ..., 𝑈

(𝑇+1)
𝑖𝐾

}︁
,

𝑈
(𝑇+1)
𝑖𝑘 ≈ (1− 𝛼𝑖)𝑈

𝑇
𝑖𝑘e

−Δ(𝑇+1)
𝑆 + 𝛼𝑖𝑈

𝑇
𝑖𝑘

𝑀𝑓𝑇+1
𝑘

𝑓𝑇+1
𝑘 + 𝑟

,

𝑅̂
(𝑇+1)
𝑖𝑗 ≈ ⟨𝑈 (𝑇+1)

𝑖 , 𝑉𝑗⟩ − 𝑏𝑗 . (19)

After obtaining 𝑅̂(𝑇+1) and 𝑈 (𝑇+1) at time T+1, we can
recommend relevant exercises with high probability to get
wrong response or forget for student 𝑖. In summary, we give
the training algorithm of KPT in Algorithm 1.

Algorithm 1: Parameter Learning of the KPT Model

Initialize 𝑈 , 𝑉 , 𝛼 and 𝑏 ;
while not converged do

for 𝑖 = 1, 2, ...𝑁 do
for 𝑡 = 1, 2, ..., 𝑇 do

for 𝑘 = 1, 2, ...,𝐾 do
Fix 𝑉, 𝛼, 𝑏, update 𝑈𝑡

𝑖𝑘 using SGD;

Fix 𝑈, 𝑉, 𝑏, update 𝛼𝑖 using PG ;

for 𝑖 = 1, 2, ...,𝑀 do
for 𝑘 = 1, 2, ...,𝐾 do

Fix 𝑈,𝛼, 𝑏, update 𝑉𝑗𝑘 using SGD;

Fix 𝑈, 𝑉, 𝛼, update 𝑏 using SGD;

Return 𝑈 , 𝑉 , 𝛼 and 𝑏 ;

Time Complexity. KPT costs most of time in computing
the knowledge proficiency of each student and balancing pa-
rameters. Suppose there are 𝑟 non-empty entries in response
tensor 𝑅, then the average response records of each student
in each time window are 𝑡𝑟 = 𝑟

𝑁×𝑇
. In each iteration, the

time complexity is 𝑂(𝑁 × 𝑇 × 𝐾 × 𝑡𝑟 = 𝑂(𝐾 × 𝑟)) for 𝑈 ,
𝑂(𝐾 × 𝑟) for 𝑉 , and 𝑂(𝑟) for the balance parameters. Thus
the total complexity of parameter learning in each iteration is
𝑂(𝐾× 𝑟), which is linear with the records and time windows.

4 EXPERIMENTS

In this section, we first introduce our experimental datasets
and setups. Then, we report experimental results from the
following four aspects: (1) the predictive performance of
our KPT model; (2) the effectiveness on KPD task; (3) the
influence of parameter settings in KPT; (4) the explanatory
power of the diagnosis results of KPT by a case study.

4.1 Datasets

In the experiments, we use three real-world datasets, i.e.,
Math1, Math2 and ASSIST, respectively. Among them, Math1
and Math2 are two private datasets which are collected from
daily exercise records of high school students (Table 1) for
mathematics problems. ASSIST is a public dataset Assist-
ments1 2009-2010 “Non-skill builder” [20], which records the
student mathematics exercise logs in an on-line tutor.

In Math1 and Math2, each dataset contains responses of
students with time record and a given Q-matrix (an example
is shown in Table 3) by educational experts. We treat each
month as a time window, and thus there are 4 (10) time
points in dataset Math1 (Math2). In data splitting process,
we use the data till time 𝑇 for model training, i.e., T=3
(T=9) in Math1 (Math2), and the records of the last time
window are for testing.

As for ASSIST, we preprocess the original dataset for our
KPD task as follows: (1) we select 71 exercises with 7 frequent
knowledge points from ASSIST in the experiments because
the knowledge points at different time require a high coverage.
(2) Since the system allows students to repeat doing the same
exercises, we just take the first-attempt responses of them to
each exercise as records for fairness. (3) ASSIST only records
the order (no explicit time information) of student exercise
history, we divided each student logs into four parts according
to their sequencial order, thus we have 4 time windows in
ASSIST. Specifically, we use the first 3 order logs of student
for model training, and the remain one is for testing.

In summary, Figure 4 shows the preview of three Q-
matrices (we only show subsets of 28 exercises for better
illustration), where each row of each subfigure denotes an
exercise and each column stands for a knowledge point. The
white one means the exercise is related to the knowledge
point, while the black one indicates the exercise does not
contain the knowledge point. Moreover, a better explanation
about Q-matrix is shown in Table 3, which contains 5 exer-
cises and the related knowledge points in Math1. From the
Figure 4 and Table 3, we can see that most of the exercises
are less than two knowledge points, which indicates that Q-
matrix is very sparse. Table 4 summarizes the basic statistics
of three datasets.

4.2 Experimental Setup

KPT Setting. We first introduce the parameter settings of
𝑙𝑡(*) and 𝑓 𝑡(*) , i.e., Learning curve and Ebbinghaus forget-
ting curve, respectively. Specifically, for 𝑙𝑡(*), we set 𝐷 = 2
to control the multiplier of growth and the average frequency

1https://sites.google.com/site/assistmentsdata/home/assistment-
2009-2010-data
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Table 3: A practical example of Q-matrix in Math1.

ExerciseId Knowledge Points

E1 Function

E2 Function, Set

E3 Function, Derivative, Inequality

E4 Solid geometry, Trigonometric function

E5 Propositional logic

Figure 4: Q-matrix of two DataSets.

among all knowledge points 𝑟 as 4, 9, 6 in Math1, Math2, AS-
SIST respectively; For 𝑓 𝑡(*), we set ∆𝑡 as 1 for all time inter-
vals between time window 𝑡− 1 and 𝑡. And memory strength
𝑆 as 5 to fit forgetting curve. Then, as for several regulariza-
tion parameters in KPT model, we set 𝜆𝑈1=𝜆𝑉 = 0.01. 𝜆𝑈

is set to be 3, 1 and 2 in Math1, Math2 and ASSIST, and
𝜆𝑃 is set to be 1.5, 1 and 2 in Math1, Math2 and ASSIST
respectively(we will discuss the sensitivity of parameters in
the next subsection).

Baseline Approaches. To compare the performance of
our proposed KPT model, we borrow some baselines from
various perspectives. The details of them are as follows:

∙ IRT : a cognitive diagnosis method modeling students’ la-
tent trait and exercises’ parameters by a logistic-like func-
tion [3] .

∙ DINA: a cognitive diagnosis method modeling each stu-
dent’s knowledge proficiency by a binary vector with Q-
matrix [8].

∙ PMF : a probabilistic matrix factorization method that
projects students and exercises into low-rank latent fac-
tors [24].

∙ BKT : a kind of Hidden Markov Model (HMM) which
models students’ latent knowledge state as a set of binary
variables and determines when a knowledge point has been
learned [7].

∙ LFA: an improved IRT model that assumes students share
the same parameters of learning rate during their learning
process [6].

∙ QMIRT : QMIRT is a variant of basic IRT model, where
we extend the latent trait value of each student in IRT to
a multi-dimension knowledge proficiency vector with our
proposed partial order prior of Q-matrix.

∙ QPMF : QPMF is a variant of basic PMF model, where we
incorporate our proposed partial order prior of Q-matrix
into PMF to improve the explanatory power. Particularly,
QPMF is also a simplified model of KPT that does not
consider priors of forgetting and learning.

Table 4: The statistics of the three datasets.

Dataset Math1 Math2 ASSIST

Training scores logs 521,248 347,424 13,443
Testing scores logs 74,464 18,312 1,822

Students 9,308 1,306 215
Exercises 64 280 71

Time windows 4 10 4

Knowledge points 12 13 7

Average knowledge points 1.15 1.3215 1.02
of each exercise

Concretely, the chosen baselines are all widely-used in the
educational psychology area (IRT, DINA, BKT, LFA) and da-
ta mining community (PMF), and the two variants (QMIRT,
QPMF) are adopted to highlight the effectiveness of our pro-
posed partial order Q-matrix prior. Also, all these baselines
can be categorized into static diagnostic models (IRT, DINA,
PMF, QMIRT, QPMF) and the dynamic ones (LFA, BKT).
For better illustration, we summarize the characteristics of
these models in Table 5.

In the following experiments, both KPT and baselines are
implemented by Python and all experiments are run on a
Linux server with four 2.0GHz Intel Xeon E5-2620 CPUs and
100G memory. For fairness, all parameters in these baselines
are tuned to have the best performances.

4.3 Experimental Results

Students’ Responses Prediction. To demonstrate the
predictive performance of KPT model, we first conduct ex-
periments on the task of predicting the responses of students
(i.e., whether or not a student get the correct answer to a
specific exercise) at time window 𝑇 + 1 (the first task in
predicting stage of our framework in Figure 2). In this task,
we adopt all the baselines mentioned above for comparison,
and use the widely-used mean absolute error (MAE) and root
mean square error (RMSE) as the evaluation metrics [24].

Figure 5 shows the overall results of all models in students’
score prediction task. There are several observations: First,
our proposed model KPT performs best on all three datasets.
Second, QMIRT and QPMF outperform traditional IRT and
PMF, which indicates the effectiveness of incorporating the
partial order based Q-matrix prior. Third, KPT and LFA,
as dynamic models, perform better than those with static
assumption (IRT, DINA, PMF), which demonstrates that it
is more effective to diagnose students’ knowledge proficiency
from an evolving perspective. However, BKT does not perfor-
m well on this task. We guess a possible reason is that BKT
focuses on the scenario that students keep doing the same
exercises. But in our data, most students just do a specific
exercise only once, thus the exercise sequence lengths of stu-
dents are not enough for BKT. In summary, these evidences
demonstrate the rationality of three priors (i.e., Q-matrix,
learning curve and forgetting curve).

Knowledge Proficiency Diagnosis. As mentioned be-
fore, the second task in predicting stage of our framework in
Figure 2 is predicting students’ knowledge proficiency in the
future. In order to validate the effectiveness of this prediction
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Table 5: Characteristics of the Baselines and KPT.

Model
Data Source Prediction Dynamic

Q-matrix Multi-Skill Question Repeating Answer Question Time Multi-Knowledge Proficiency Response Explanation?
IRT[3] × × × × ×

√
×

DINA[8]
√ √

× ×
√ √

×
PMF[24] × × × × ×

√
×

BKT[7]
√

×
√ √ √ √ √

LFA [6]
√ √ √ √

×
√ √

𝑄𝑀𝐼𝑅𝑇
√ √

× ×
√ √

×
𝑄𝑃𝑀𝐹

√ √
× ×

√ √
×

𝐾𝑃𝑇
√ √

×
√ √ √ √

Math1 Math2 ASSIST

R
M
S
E

0.25
0.3

0.35
0.4

0.45

Math1 Math2 ASSIST

M
A
E

0.15
0.2

0.25
0.3

0.35

KPT

QPMF

QMIRT

PMF

IRT

DINA

LFA

BKT

Figure 5: Responses prediction task performance.

(i.e., whether or not the diagnosis results of students are
good), we also conduct several experiments.

Intuitively, if student 𝑎 masters better than student 𝑏 on a
specific knowledge point at time 𝑇 +1 (calculated by Eq. 19),
she will have a higher probability to get correct answers to
the related exercises than student 𝑏 at time 𝑇 + 1. We adopt
Degree of Agreement (DOA) [13, 19] metric to evaluate this
ranking performance. Particularly, for a specific knowledge
𝑘, the DOA result on 𝑘 is defined as:

𝐷𝑂𝐴(𝑘) =
𝑀∑︁
𝑗=1

𝐼𝑗𝑘

𝑁∑︁
𝑎=1

𝑁∑︁
𝑏=1

𝛿
(︁
𝑈𝑇+1

𝑎𝑘
, 𝑈𝑇+1

𝑏𝑘

)︁
∩ 𝛿

(︁
𝑅𝑇+1

𝑎𝑗 , 𝑅𝑇+1
𝑏𝑗

)︁
𝛿
(︁
𝑈𝑇+1

𝑎𝑘
, 𝑈𝑇+1

𝑏𝑘

)︁ (20)

where 𝑈𝑇+1
𝑎𝑘 is knowledge proficiency of student a on knowl-

edge point k at time 𝑇 + 1. 𝑅𝑇+1
𝑎𝑗 ( denoted in Table 2) is

student 𝑎’s response on exercise 𝑗 at time 𝑇 +1. 𝛿(𝑥, 𝑦) is an
indicator function, where 𝛿(𝑥, 𝑦) = 1 if 𝑥 > 𝑦. 𝐼𝑗𝑘 is an an-
other indicator function, where 𝐼𝑗𝑘 = 1 if exercise 𝑗 contains
knowledge point 𝑘. Then DOA value ranges from 0 to 1 and
the larger the better. Furthermore, we also average DOA(k)
of all knowledge points for measuring the whole effectiveness
on KPD task, which is denoted as DOA-Avg.

For model comparisons, we choose DINA, QMIRT, QPMF
and BKT for this KPD task as baselines because all other
latent factor models mentioned before are unexplainable for
the diagnosis, i.e., each dimension of student latent vectors
cannot correspond to any explicit knowledge point.

Figure 6 illustrates the whole effectiveness results of all
models on KPD task and Table 6 shows the results of each
specific knowledge point in all three datasets. Specifically,
for all datasets, KPT performs best on KPD task for all

knowledge points, followed by QPMF and QIRT, which indi-
cates that the educational prior of Q-matrix does effectively.
Besides, we also observe that traditional cognitive diagnosis
model DINA does not perform well, indicating that the static
model is unsuitable for solving the KPD task over time. Last
but not least, we can see that BKT, as a dynamic model, does
not perform as well as KPT. This observation demonstrates
the effectiveness of incorporating both priors of Learning
curve and Forgetting curve.

Sensitivity of Parameters. In our KPT model, there
are four parameters playing crucial roles: 𝜆𝑈1, 𝜆𝑉 , 𝜆𝑈 and 𝜆𝑃 .
Among them, 𝜆𝑈1 and 𝜆𝑉 are the regularization parameters
of students’ vectors of knowledge proficiency at time 𝑇 = 1
and exercises’ vectors of knowledge related, respectively. Since
𝜆𝑈1 and 𝜆𝑉 have a similar form to PMF model, we tune
them on PMF and set them under the setting of the best
performance on PMF. In the following, we report the setting
parameters 𝜆𝑈 and 𝜆𝑃 with the evaluation metrics of RMSE
and DOA-Avg on both two tasks mentioned above.

𝜆𝑈 regularizes that students learn and forget knowledges
from time to time, Figure 7(a), Figure 7(c) and Figure 7(e)
visualizes the performance with the increasing values of 𝜆𝑈

from 1, 0.1, 1 to 10, 5, 5 in datasets Math1, Math2, ASSIST
respectively. As we can see from the figure, as 𝜆𝑈 increases,
the performances of KPT firstly increase but decrease when
𝜆𝑈 surpasses 3, 1, 2 in datasets Math1 ,Math2, ASSIST.
Therefore, we set 𝜆𝑈 = 3, 1, 2 in Math1, Math2, ASSIST for
obtaining the best results.

Also, as shown in Figure 7(b), Figure 7(d) and Figure 7(f),
parameter 𝜆𝑃 , which controls how much the KPT model is
restricted by the partial order Q-matrix prior, has the similar
property to 𝜆𝑈 . As a result, we set 𝜆𝑃 = 1.5, 1, 2 in Math1,
Math2, ASSIST respectively because the performance of KPT
achieves the best when it reaches the corresponding value.

Case Study. We argue that KPT can track KPD of
students in an interpretable way. Figure 8 visualizes the
diagnosis results of a student on six knowledge points at
three particular time in Math2 (we only show six knowledge
points for better illustration). From the figure, she makes
progress on knowledge point “Function” from Mar (0.08)
to May (0.36), 2016 with possible learning factor (she does
from 2 to 7 exercises about Function from March to May).
In contrast, her proficiency on knowledge point Analytic
geometry declines (from 0.65 to 0.36) over time with possible
forgetting factor because she practices less than 2 relevant
exercises at each time. These observations imply that she
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Table 6: KPD task performance for each knowledge point.

(a) Math1

K
Baselines

KPT QPMF QMIRT DINA BKT

K1 0.798 0.565 0.595 0.524 0.558
K2 0.733 0.576 0.621 0.473 0.623
K3 0.827 0.614 0.629 0.497 0.523
K4 0.752 0.581 0.675 0.486 0.565
K5 0.791 0.559 0.723 0.476 0.578
K6 0.838 0.730 0.766 0.485 0.628
K7 0.842 0.697 0.634 0.520 0.697
K8 0.784 0.699 0.657 0.498 0.617
K9 0.771 0.609 0.712 0.501 0.645
K10 0.834 0.597 0.515 0.489 0.503
K11 0.786 0.608 0.631 0.478 0.617
K12 0.842 0.532 0.641 0.523 0.645

(b) Math2

K
Baselines

KPT QPMF QMIRT DINA BKT
K1 0.804 0.743 0.754 0.517 0.568
K2 0.757 0.632 0.659 0.534 0.753
K3 0.818 0.761 0.723 0.510 0.669
K4 0.688 0.733 0.734 0.534 0.711
K5 0.891 0.703 0.668 0.474 0.553
K6 0.699 0.547 0.653 0.489 0.644
K7 0.791 0.677 0.722 0.483 0.730
K8 0.726 0.722 0.659 0.523 0.668
K9 0.736 0.558 0.541 0.507 0.567
K10 0.652 0.639 0.650 0.511 0.614
K11 0.888 0.836 0.692 0.522 0.630
K12 0.798 0.737 0.794 0.498 0.528
K13 0.813 0.797 0.804 0.453 0.633

(c) ASSIST

K
Baselines

KPT QPMF QMIRT DINA BKT

K1 0.793 0.747 0.716 0.605 0.592

K2 0.823 0.653 0.673 0.593 0.672

K3 0.887 0.852 0.671 0.631 0.577

K4 0.792 0.598 0.755 0.525 0.569

K5 0.891 0.576 0.672 0.511 0.624

K6 0.871 0.647 0.657 0.628 0.604

K7 0.901 0.793 0.654 0.573 0.796

Dataset
Math1 Math2 ASSIST

D
O
A
-A
vg

0.4

0.5

0.6

0.7

0.8 KPT

QPMF

QMIRT

DINA
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Figure 6: KPD task performance for all knowledge
points.

needs a timely review on Analytic geometry. Therefore, these
evidences could lead to more personalized training for her.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we designed an explanatory probabilistic KPT
model for solving the KPD task of students over time by
leveraging educational priors. Specifically, we associated each
exercise with a knowledge vector with the Q-matrix prior.
And each student was also represented as a knowledge vector
at each time in the same knowledge space. Then we embedded
the classical educational theories (i.e., Learning curve and
Forgetting curve) as priors to capture the change of each
student’s proficiency over time. After that, we designed a
probabilistic matrix factorization framework by combining
student and exercise priors. Extensive experiments on three
real-world datasets clearly demonstrated the effectiveness
and explanatory power of our proposed model.

In the future, there are some directions for further studies.
First, we will consider to combine more kinds’ of users’ be-
haviors (e.g., reading records) for the KPD task. Second, as
students may learn difficult knowledge points (e.g., Function)
after some basic ones (e.g., Set), it is interesting to take this
kind of knowledge relationship into account for KPD task.
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