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Preface

These notes gather together what we regard as the essentials of real
analysis on R".

There are of course many good texts describing, on the one hand,
Lebesgue measure for the real line and, on the other, general measures
for abstract spaces. But we believe there is still a need for a source book
documenting the rich structure of measure theory on R", with particu-
lar emphasis on integration and differentiation. And so we packed into
these notes all sorts of interesting topics that working mathematical
analysts need to know, but are mostly not taught. These include Haus-
dorff measures and capacities (for classifying “negligible” sets for vari-
ous fine properties of functions), Rademacher’s Theorem (asserting the
differentiability of Lipschitz continuous functions almost everywhere),
Aleksandrov’s Theorem (asserting the twice differentiability of convex
functions almost everywhere), the area and coarea formulas (yielding
change-of-variables rules for Lipschitz continuous maps between R™ and
R™), and the Lebesgue—Besicovitch Differentiation Theorem (amount-
ing to the fundamental theorem of calculus for real analysis).

This book is definitely not for beginners. We explicitly assume our
readers are at least fairly conversant with both Lebesgue measure and
abstract measure theory. The expository style reflects this expectation.
We do not offer lengthy heuristics or motivation, but as compensation
have tried to present all the technicalities of the proofs: “God is in the
details.”

Chapter 1 comprises a quick review of mostly standard real analy-
sis, Chapter 2 introduces Hausdorff measures, and Chapter 3 discusses
the area and coarea formulas. In Chapters 4 through 6 we analyze the
fine properties of functions possessing weak derivatives of various sorts.
Sobolev functions, which is to say functions having weak first partial
derivatives in an LP space, are the subject of Chapter 4; functions of
bounded variation, that is, functions having measures as weak first par-
tial derivatives, the subject of Chapter 5. Finally, Chapter 6 discusses

xiii



xiv Preface

the approximation of Lipschitz continuous, Sobolev and BV functions
by C! functions, and several related subjects.

We have listed in the references the primary sources we have re-
lied upon for these notes. In addition many colleagues, in particular
S. Antman, J.-A. Cohen, M. Crandall, A. Damlamian, H. Ishii, N.V.
Krylov, N. Owen, P. Souganidis, S. Spector, and W. Strauss, have sug-
gested improvements and detected errors. We have also made use of S.
Katzenburger’s class notes. Early drafts of the manuscript were typed
by E. Hampton, M. Hourihan, B. Kaufman, and J. Slack.

LCE was partially supported by NSF Grants DMS-83-01265, 86-
01532, and 89-03328, and by the Institute for Physical Science and
Technology at the University of Maryland. RFG was partially sup-
ported by NSF Grant DMS-87-04111 and by NSF Grant RII-86-10671
and the Commonwealth of Kentucky through the Kentucky EPSCoR
program.

Warnings

Our terminology is occasionally at variance with standard usage.
The principal changes are these:

e What we call a measure is usually called an outer measure.

e For us a function is integrable if it has an integral (which may
equal +00).

o We call a function f summable if |f| has a finite integral.

e We do not identify two LP, BV or Sobolev functions that agree
almost everywhere.



Chapter 1

General Measure Theory

This chapter is mostly a review of standard measure theory, with par-
ticular attention paid to Radon measures on R".

Sections 1.1 through 1.4 are a rapid recounting of abstract measure
theory. In Section 1.5 we establish Vitali’s and Besicovitch’s Cover-
ing Theorems, the latter being the key for the Lebesgue—Besicovitch
Differentiation Theorem for Radon measures in Sections 1.6 and 1.7.
Section 1.8 provides a vector-valued version of Riesz’s Representation
Theorem. In Section 1.9 we study weak compactness for sequences of
measures and functions.

The reader should as necessary consult the Appendix for a summary
of our notation.

1.1 Measures and measurable functions
1.1.1 Measures

Although we intend later to work almost exclusively in R", it is
most convenient to start abstractly.

Let X denote a nonempty set, and 2% the collection of all subsets
of X.

DEFINITION 1.1. A mapping p : 2% — [0, 0] is called a measure
on X provided

(i) p(0) =0, and
(i) of .
AC U Ap,

k=1
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then
o0
p(A) <> n(Ak).
k=1

Condition (ii) is called subadditivity.

Warning: Most texts call such a mapping u an outer measure, reserv-
ing the name measure for p restricted to the collection of y-measurable
subsets of X (see below). We will see, however, that there are definite
advantages to being able to “measure” even nonmeasurable sets.

DEFINITION 1.2. Let i be a measure on X and C C X. Then p

restricted to C, written
plC,

is the measure defined by
(L O)YA):=pu(ANC) forall AC X.

DEFINITION 1.3. A set A C X is p-measurable if for each set
B C X we have

w(B) = p(BNA) + pu(B— A).

THEOREM 1.1 (Elementary properties of measures). Let u be
a measure on X.

(i) If AC BC X, then
n(A) < p(B).

(ii) A set A is p-measurable if and only if X — A is pu-measurable.

(iii) The sets O and X are p-measurable. More generally, if n(A) = 0,
then A is u-measurable.

(iv) If C is any subset of X, then each p-measurable set is also u L C-
measurable.

Proof. 1. Assertion (i) follows at once from the definition. To show
(ii), assume A is p-measurable and B C X. Then

w(B) =w(BNA)+pu(B—A)=puB—(X—-A)+uBN(X-A));

and so X — A is y-measurable.
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3

2. Suppose now p(A) = 0, B C X. Then u(BnN A) = 0, and

consequently

w(B) =z (B —A) = (BN A) + pu(B - A).

The opposite inequality is clear from subadditivity.

3. Assume A is p-measurable, B C X. Then

pl C(B)

w(BNC)

Hence A is p L C-measurable.

p(BNCO)NA)+u((BNC) — A)
p(BNA)NC)+p(B-A)NC)
pL C(BNA)+ul C(B—A).

O

THEOREM 1.2 (Sequences of measurable sets). Let {A;}72,

be a sequence of u-measurable sets.

(i) The sets
U A, and ﬂ Ay
k=1 k=1
are p-measurable.

(i) If the sets {Ar}52, are disjoint, then
0 <U Ak) = ZM(AA:)-
k=1 k=1
(iii) IfAl g .. Ak g Ak+1 ey then

Jim pu(Ay) = (UAQ

(iv) If Ay D ... A D Agy1... and u(Ay) < oo, then

Jim p(Ay) = (ﬂAQ
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Proof. 1. Since subadditivity implies
w(B) < u(BNA)+ pu(B— A)

for all A, B C R", it suffices to show the opposite inequality in order
to prove the set A is p-measurable.
For each set B C R™,

u(B)

u(B N Ay + (B — Ar)
w(BN A1)+ p((B— A1) N Az) + p((B — A1) — Az)
> p(BN (A1 UAg)) + p(B — (A1 U Ay)),

and thus A; U A, is p-measurable. By induction, the union of finitely
many p-measurable sets is g-measurable.

2. Because
X — (A1 NAy) = (X —-A)U(X - Ay),

the intersection of two, and thus of finitely many, y-measurable sets is
p-measurable.

3. Assume now the sets {Ay}72, are disjoint, and write

j
Bi=|JAr (=12...)
k=1

Then

w(Bj1) = p(Bjr1 N Aj1) + u(Bjrr — Ajra)
= p(Ajr1) +pu(B;) (G=1,...);

whence

M(U Ak) => Ay (G=1,...).

k=1 k=1
It follows that

ZM(Ak) <p (U Ak) ;
k=1 k=1

from which assertion (ii) follows.
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4. To prove (iii), we note from (ii) that

Jim pi(Ay) = p(Ar) +Zu (A1 = Ar) = (U Ak>

Assertion (iv) follows from (iii), since

p(Ar) = Tim p(Ag) = lim p(Ar - (U )

k=1

w(pfff)-

5. Recall that if B is any subset of X, then each y-measurable set is
also L B-measurable. Since B; := Uj_, Ay is p-measurable by Step
1, for each B C X with p(B) < oo we have

M(BQQA,@%L(B_[]A,C)
_ MLB<

HC8
v
=
-
e
/\
||38
><
D:J
K‘
v

= lim (pL B)(Bg)+ lim (pL B X By)
k—o0 k—o0
= pu(B).

Thus U2, Ay, is p-measurable, as is N2 ; Ay, since

X - ﬂAk_U (X — Ap).
k=1

This proves (i). O

1.1.2 Systems of sets

We introduce next certain important classes of subsets of X.

DEFINITION 1.4. A collection of subsets A C 2% is a o-algebra
provided

(i) 0, X € A;
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(ii) A€ A implies X — A € A;
(iii) Ax € A (k=1,...) implies

UAkE.A;

k=1

(iv) Ay, € A (k=1,...) implies

Remark. Since

(iv) in fact follows from (ii) and (iii). Similarly, (ii) and (iv) imply
(ii). O

THEOREM 1.3 (Measurable sets as a o-algebra). If p is a
measure on o nonempty set X, then the collection of all p-measurable
subsets of X is a o-algebra.

Proof. This follows at once from Theorems 1.1 and 1.2. O

The intersection of any collection of o-algebras is a o-algebra, and
consequently the following makes sense:

DEFINITION 1.5. IfC C 2¥ is any nonempty collection of subsets
of X, the o-algebra generated by C, denoted

a(C),
1s the smallest o-algebra containing C.

An important special case is when C is the collection of all open
subsets of R"™:

DEFINITION 1.6.

(i) The Borel o-algebra of R™ is the smallest o-algebra of R™ con-
taining the open subsets of R™.
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(i) A measure p on R™ is called Borel if each Borel set is p-
measurable.

Caratheodory’s criterion (Theorem 1.9) will provide us with a con-
venient way to check that a measure is Borel.

For various applications it is convenient to introduce as well certain
classes of subsets having less structure than o-algebras.

DEFINITION 1.7. A nonempty collection of subsets P C 2% is a
m-system provided

A, BeP implies ANBeP.

So a m-system is simply a collection of subsets closed under finite
intersections.

DEFINITION 1.8. A collection of subsets £ C 2% is a A-system
provided

(i) X € £;
(i) A,B € L and B C A implies A— B € L;
(i) of Ay € L and Ay, C Agyq fork=1,..., then

Cj A e L.
k=1

Since both w-systems and A-systems have less stringent properties
than o-algebras, it will be easy in applications to check that various
interesting collections of sets are indeed 7- or A-systems. The following
will then provide a link back to o-algebras:

THEOREM 1.4 (7—X Theorem). If P is a w-system and L is a
A-system with
PCL,

then

Proof. 1. Define



8 General Measure Theory

the intersection of all A-systems £’ containing P. Clearly P C S C L,
and it is easy to check that S is itself a A-system.

2. Claim #1: S is a w-system.
Proof of claim: Select any A, B € S; we must show AN B € S. Define
A={CCX|ANC e S}.
Since S is a A-system, it follows that A is a A-system. Therefore S C A.
But then since B € S, we see that AN B € S.

3. Claim #2: § is a o-algebra.

Proof of claim: This will follow since § is both a A- and a 7-system.
Since X € S, it follows that ) = X — X € S. Clearly A € S implies
X — A € S. Since S is closed under complements and under finite
intersections, it is closed under finite unions. Hence if Aq, As,--- € S,
then B,, := U}_;Ar € §. As § is a A-system, we see that therefore
U A, € S. Thus S is a o-algebra.

4. Since § O P is a o-algebra, it follows that
o(P)CSCL. O

As a first application, we show that finite Borel measures in R™ are
uniquely determined by their values on closed “rectangles” with sides
parallel to the coordinate axes:

THEOREM 1.5 (Borel measures and rectangles). Let u and v
be two finite Borel measures on R™ such that

for all closed “rectangles”
R={zeR"|-c0<a;<z;<b; <00 (i=1,...,n)}

Then

for all Borel sets B C R™.

Proof. We apply the m-A Theorem with

P :={R CR"| R is a rectangle}
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and
L:={B CR"| B is Borel, u(B) = v(B)}.

Then P C L, P is clearly a m-system, and we check that £ is a A-
system. Consequently, the 7-A Theorem implies o(P) C L. But o(P)
comprises the Borel sets, since each open subset of R™ can be written
as a countable union of closed rectangles. D

Remark. This proof illustrates the usefulness of A-systems. It is not
so clear that {B Borel | u(B) = v(B)} is a o-algebra, since it is not
obviously closed under intersections. D

1.1.3 Approximation by open and compact sets

Next we introduce certain classes of measures that admit good ap-
proximations of various types.

DEFINITION 1.9.

(i) A measure pn on X is regular if for each set A C X there exists
a p-measurable set B such that A C B and p(A) = u(B).

(ii) A measure p on R™ is Borel regular if p is Borel and for each
A CR" there exists a Borel set B such that A C B and pu(A) =

1(B).

(iii)) A measure p on R™ is a Radon measure if p is Borel regular
and u(K) < oo for each compact set K C R™.

THEOREM 1.6 (Increasing sets). Let u be a regular measure on
X. IfAl g Ak g Ak+1..., then

Jim pu(Ay) = (U Ak>

Remark. An important point is that the sets {A;}72; need not be
p-measurable here. O

Proof. Since p is regular, there exist measurable sets {Cy}52 ;, with
A C Cy and p(Ay) = p(Cy) for each k. Set By := N;>;C;. Then
Ay, C By, each By, is p-measurable, and p(Ay) = p(Byg). Thus

Jim pu(Ag) = lim pu(By) = (U Bk) > p (H Ak) .

k=1
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But A, C U2, A;, and so also

o
li < .
Jim pu(Ap) < | (U 4 O
j=1
We demonstrate next that if p is Borel regular, we can create a
Radon measure by restricting 4 to a measurable set of finite measure.

THEOREM 1.7 (Restriction and Radon measures). Let u be
a Borel reqular measure on R™. Suppose A C R™ is p-measurable and

u(A) < oco.
Then p L A is a Radon measure.

Remark. If A is a Borel set, then p 1 A is Borel regular, even if
p(A) = oo. O

Proof. 1. Let v := pL A. Clearly v(K) < oo for each compact
K. Since Theorem 1.1, (iv) asserts that every p-measurable set is v-
measurable, v is a Borel measure.

2. Claim: v is Borel regular.

Proof of claim: Since p is Borel regular, there exists a Borel set B such
that A C B and u(A) = pu(B) < oo. Then, since A is y-measurable,

(B — A) = pu(B) — u(A) =0.
Choose C C R"™. Then

(nL B)(C)=pu(CNB)
M(CﬂBﬂA)+/L((CﬂB)—A)
p(CNA)+pu(B—A)
(uLA)( )-

Thus L B=p L A, and so we may as well assume A is a Borel set.

3. Now let C' C R™ We must show that there exists a Borel set D
such that C' C D and v(C') = v(D). Since p is a Borel regular measure,
there exists a Borel set E such that ANC C E and u(E) = u(AnC).
Let D := EU(R"—A). Since A and E are Borel sets, so is D. Moreover,
CC(ANC)U(R™— A) C D. Finally, since DNA=E N A,

v(D)=p(DNA)=pwENA) <pE)=pANC)=v(C). O
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We consider next the possibility of measure theoretically approxi-
mating by open, closed or compact sets.

LEMMA 1.1. Let p be a Borel measure on R"™ and let B be a Borel
set.

(i) If u(B) < oo, there exists for each € > 0 a closed set C such that

CCB, u(B-0C)<e

(ii) If p is a Radon measure, then there exists for each € > 0 an open
set U such that
BCU, w(U-B)<e

Proof. 1. Let v:= p L B. Since p is Borel and u(B) < oo, v is a finite
Borel measure. Let

F:={ACR"| Ais p -measurable and for each ¢ > 0
there exists a closed set C C A with v(A — C) < €}.

Obviously, F contains all closed sets.
2. Claim #1: If {A;}2, C F, then A =N, A, € F.

Proof of claim: Fix € > 0. Since A; € F, there exists a closed set
C; C Ay withv(4; —C;) < 57 (i=1,2,...). Let C:=N§2,C;. Then C
is closed and

8

V(A - c_y<ﬂ ﬁ )

/\
< ~
I 3
’b:
Q
C/

Thus A € F.
3. Claim #2: If {A;}2, C F, then A :=UX A, € F.

Proof of claim: Fix ¢ > 0 and choose C; as above. Since v(A4) < oo, we
have
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Ili_}r&u(A—G@) —V(OOAi—GCz)
i=1 i=1

<v (G (A; — Cz‘))

<Y v -C) <e
=1

Consequently, there exists an integer m such that

But U™, C; is closed, and so A € F.

4. Since every open subset of R™ can be written as a countable
union of closed sets, Claim #2 shows that F contains all open sets.
Consider next

G={AeF|R"—-AecF}.
Trivially, if A € G, then R" — A € G. Note also that G contains all open
sets.

5. Claim #3: If {A;}72, € G, then A =U2,4; € G.
Proof of claim: By Claim #2, A € F. Since also {R" — A4;}°, C F,
Claim #1 implies R” — A =N, (R" — 4;) € F.

6. Thus G is a o-algebra containing the open sets and therefore also

the Borel sets. In particular, B € G; and hence, given € > 0, there is a
closed set C' C B such that

wB—-C)=v(B-C)<e.
This establishes (i).

7. Write U,, := B°(0,m), the open ball with center 0, radius m.
Then U, — B is a Borel set with u(U,, — B) < oo, and so we can apply
(i) to find a closed set C,,, C U,,, — B such that u((Uy, — C),) — B) =
(U — B) = C) < 55

Let U := U°_ 1 (Uy, — Cy); U is open. Now B C R™ — C,,, and thus
U,NBCU, — C,,. Consequently,

B = (UnNB)C
1

(U — Cp) = UL
1

S8
S8
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Furthermore,

,U,(U—B) =K < U (Um - Cm) - B)) < Z M((Um_cm)_B) <e€

O

THEOREM 1.8 (Approximation by open and by compact
sets). Let u be a Radon measure on R™. Then

(i) for each set A C R™,
w(A) =inf{u(U) | A C U, Uopen},
and
(ii) for each p-measurable set A C R™,

u(A) =sup{u(K) | K C A, Kcompact}.
Remark. Assertion (i) does not require A to be y-measurable. O

Proof. 1.1If u(A) = oo, (i) is obvious, and so let us suppose u(A4) < oo.
Assume first A is a Borel set. Fix ¢ > 0. Then by Lemma 1.1, there
exists an open set U D A with pu(U — A) < e. Since u(U) = u(A) +
u(U — A) < oo, (i) holds.

Now, let A be an arbitrary set. Since y is Borel regular, there exists
a Borel set B D A with u(A) = u(B). Then

1(A) = p(B) = inf{u(U) | B C U,U open}
> inf{u(U) | ACU,U open}.

The reverse inequality is clear, and so assertion (i) is proved.

2. Now let A be p-measurable, with p(A) < co. Set v := plL_ A; then
v is a Radon measure according to Theorem 1.7. Fix € > 0. Applying
(i) to v and R™ — A, we obtain an open set U with R” — A C U and
v(U) <e. Let C:=R"™ —U. Then C is closed and C C A. Moreover,

pw(A-C)=vR"-C)=v(U) <e

Thus
0 < u(4) —pu(C) <k,
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and so
p(A) =sup{u(C) | C C A,C closed}. (%)

3. Suppose that p(A) = co. Define Dy, := {x | k —1 < |z| < k}.
Then A = U2 (D N A); so 0o = u(A) = > 72 (AN Dy). Since p is
a Radon measure, u(Dg N A) < oco. Then by the above, there exists a
closed set C, € DN A with pu(C) > p(DiNA) - 55. Now U Cj, € A
and

e )+ (0)

k=1 k=1

=Sz Y (woina)- ) =
k=1

k=1

But U_,C} is closed for each n, whence in this case we also have
assertion () .

4. Finally, let B(m) denote the closed ball with center 0, radius
m. Let C be closed, Cy, := C N B(m). Each set C,, is compact and
w(C) = lim,, oo p(Cyy). Hence for each p-measurable set A,

sup{u(K) | K C A, K compact} = sup{u(C) | C C A, C closed}. O

We introduce next a simple and very useful way to verify that a
measure is Borel.

THEOREM 1.9 (Caratheodory’s criterion). Let u be a measure
on R™. If for all sets A, B C R", we have

w(AU B) = pu(A) + u(B)  whenever dist(A, B) > 0,
then p is a Borel measure.
Proof. 1. Suppose A,C C R" and C is closed. We must show
H(A) = (AN C) + (A - C), (+)
the opposite inequality following from subadditivity.

If u(A) = oo, then (x) is obvious. Assume instead pu(A) < co. Define

1
Cp = {xER"|dist(:E,C’) < ﬁ} (n=1,2,...).
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Then dist(A — C,,ANC) > % > 0. Therefore, by hypothesis,
A =Cp) +pu(ANC) = p((A=Cp) U(ANC)) < p(A). (%)

2. Claim: lim, oo (A — Cy) = p(A—C).
Proof of claim: Set

1 1
— < di <= =1,...).
Ry, {x€A|k+1<dlst(x,C)_k} (k=1,...)

Since C'is closed, A — C = (A — C,,) UU | Ry; consequently,

(A= Cn) < (A= C) < p(A=Cp)+ > 1(Ry).

k=n
If we can show Y .-, u(Ry) < oo, we will then have
lim p(A—Cp) < u(A-C)

n— o0

< lim u(A—Cy)+ lim > u(Ry)
k=n

n— oo

= lim p(4A—C,),

n— 00
thereby establishing the claim.
3. Now dist(R;, R;) > 0 if j > i 4 2. Hence by induction we find

Z#(Rzk) = p (U R2k> < pu(A),
k=1

and likewise

ZM (Rog41) = (U R2k+1> < u(A).

=0 k=0

Combining these results and letting m — oo, we discover
oo
Z w(Ry) <2u(A) < oo.
k=1
4. We therefore have

A= C) +p(ANC) = lim p(A = Cp) +u(ANC) < p(A),

according to (xx) . This proves () and thus the closed set C is u-
measurable. O



16 General Measure Theory

1.1.4 Measurable functions
We now extend the notion of measurability from sets to functions.

Let X be a set and Y a topological space. Assume p is a measure
on X.

DEFINITION 1.10.

(i) A function f: X —Y is called p-measurable if for each open
set U CY, the set

(%))

s p-measurable.

(ii)) A function f : X — Y is Borel measurable if for each open
set U CY, the set

)

is Borel measurable.

EXAMPLE. If f : R® — Y is continuous, then f is Borel-measurable.
This follows since f~1(U) is open, and therefore p-measurable, for
each open set U C Y. O

THEOREM 1.10 (Inverse images).

() If f : X — Y is p-measurable, then f~1(B) is u-measurable for
each Borel set BCY.

(ii) A function f : X — [—00,00] is p-measurable if and only if
f~Y([~o0,a)) is p-measurable for each a € R.

(i) If f: X = R™ and g : X — R™ are p-measurable, then
(f,9): X = R™™
s p-measurable.
Proof. 1. We check that
{ACY | f'(A) is y-measurable}

is a o-algebra containing the open sets and hence the Borel sets.

2. Likewise,

{A C[-00,00] | f7*(A) is pu-measurable}
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is a o-algebra containing [—oo,a) for each a € R, and therefore con-
taining the Borel subsets of R.

3. Let h:= (f,g). Then
{ACR"™™ | h='(A) is p-measurable}

is a o-algebra containing all open sets of the form U x V', where U C R"
and V C R™ are open. O

Measurable functions inherit the good properties of measurable
sets:

THEOREM 1.11 (Properties of measurable functions).
(i) If f,g: X — [—o0,00] are pu-measurable, then so are

f+g, fg, |f], min(f,g) and max(f,g).

The function 5 is also p-measurable, provided g # 0 on X.

(ii) If the functions fr : X — [—o00,00] are p-measurable (k =
1,2,...), then

inf fr, sup fg, liminf fi, and limsup fx
k>1 k>1 k—o0 k—o00

are also p-measurable.

Proof. 1. As noted above, f : X — [—00,00] is p-measurable if and
only if f~![—o0,a] is u-measurable for each a € R.

2. Suppose f,g: X — R are u-measurable, Then

(f+9) (—o0a) = |J  (f'(=o0,r) g7 (=00,5)),
r,s rational

r+s<a

and so f 4+ g is p-measurable. Since

(f) " (—00,a) = f 7} (~00,a?) — 7} (~00,~a

N

I,

for a > 0, f? is p-measurable. Consequently,

fo =5+~ 1>~ )
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is p-measurable as well. Next observe that if g # 0,

g Ya"1,0) ifa<0
-1
<%> (—o0,a) = ¢ g~ (—00,0) ifa=0
g H(=00,0)Ug (a1 00) ifa>0;
thus % and so also 5 are p-measurable.

3. Finally,

7= X psey = max(f,0), f7=—fx,, = max(—f,0)

are p-measurable, and consequently so are

lfl=Ff"+f,
max(f,g9) = (f —9)" + g,
min(f,g) = —(f—9)” +g

4. Suppose next the functions fx: X — [—oo0,00] (k=1,2,...) are
p-measurable. Then

-1 00
Qgh)[ﬂmd—gpfkwﬂ)
and

71 o0
@mgrmm—ﬂﬁh
k=1

E>1
Therefore
Igﬁ fr,s sup fr
are p- measurable.

5. We complete the proof by noting that

liminf f; = sup klnf fr, imsup fr = 1nf sup fx. O

k—o0 m>1 k— o0 Tg>m

Next is an elegant and quite useful way to rewrite a nonnegative
measurable function.
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THEOREM 1.12 (Decomposition of nonnegative measurable
functions). Assume that f : X — [0,00] is p-measurable. Then there
exist pi-measurable sets { A}, in X such that

— 1
k=1
Observe that the sets {Ay}72; need not be disjoint and that this

assertion is valid even if f is not a simple function.

Proof. Set
Ay ={re X | f(z) > 1},

and inductively define for &k = 2,3,. ..

T
L

Ay =RzeX | f(z)>

+

<.

ﬂl

(Y QN
>
}

S

An induction argument shows that
m 1
23 bxa (m= 1)
k=1
and therefore
=1
[z Z 7 XAk
k=1

If f(x) = oo, then x € Ay, for all k. If instead 0 < f(z) < oo, then for
infinitely many n, x ¢ A,,. Hence for infinitely many n,

1

3
I

0< f(z)— . O

XA, <

bl
Il
o
| =
S|

1.2 Lusin’s and Egoroff’s Theorems

THEOREM 1.13 (Extending continuous functions). Suppose
K CR" is compact and f: K — R™ is continuous. Then there exists
a continuous mapping f : R™ — R™ such that

f=fonK.
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Remark. Extension theorems preserving more of the structure of f
will be presented in Sections 3.1, 4.4, 5.4, and 6.5. O

Proof. 1. The assertion for m > 1 follows easily from the case m =1,
and so we may assume f: K — R.

Let U:=R" — K. For x € U and s € K, set

|z — s
() = p I el N § O
us () max{ dist(z, )"

Then
x — ug(x) is continuous on U,

0 < us(z) <1,
us(x) = 0 if | — s| > 2dist(z, K).

Now let {s;}32; be a countable dense subset of K, and define
o(x) = ZQ_jusj(x) forz € U.
j=1

Observe 0 < o(x) <1 for z € U. Next, set

27k, ()
AT
for x € U, k = 1,2,.... The functions {v;}?2, form a partition of
unity on U. Define
f(zx) ifre K

fa) = ka(:ﬂ)f(sk.) ifxeU’
k=1

According to the Weierstrass M-test, f is continuous on U.

2. We must show

lim_f(z) = f(a)

r—a,xcU

for each a € K. Fix € > 0. There exists § > 0 such that

[f(a) = f(sk)] <e



1.2 Lusin’s and Egoroff’s Theorems 21
for all s such that |a — sg| < J. Suppose z € U with |z — a| < g. If
la — sk| > 9, then

)
d<l|a—sgl <l|a—z|+ |z —si < Z—Hx—sk\,
so that 3
|z — si| > 16 > 2|z — a| > 2dist(z, K).

Thus, vgx(z) = 0 whenever |z — a| < 2 and |a — s;| > §. Since

> wil(x) =
k=1

if z € U, we calculate for |z — a| < %, x € U, that

£ ( |<ka Wi(sk) — f(z)] <e 0

We now show that a measurable function can measure theoretically
approximated by a continuous function.

THEOREM 1.14 (Lusin’s Theorem). Let p be a Borel regular
measure on R™ and f : R” — R™ be u-measurable. Assume that A C
R™ is pu-measurable and p(A) < oo. Fiz e > 0.

Then there exists a compact set K C A such that
(i) w(A—K) <e, and
(ii) flx is continuous.

Proof. 1. For each positive integer ¢, let BUJ 1 € R™ be disjoint

Borel sets such that R™ = U;?‘;IBU- and diam B;; < % Define A;; =
AN f7Y(B;;).Then A;; is y-measurable and A = U‘j?';lAij.

2. Write v := p L A;v is a Radon measure. Theorem 1.8 implies
the existence of a compact set K;; C A;; with v(A;; — Kij) < 557
Then

— [OJ Kij =v|A- [j K”
j=1 =1
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U Aij — U K;;
j=1 j=1

o €
U - Kyy) | < 50

Since limpy 00 (A — U§V:1Kij) = U (A — U‘]?‘;lKij) , there exists a
number N (i) such that

N (@)

UKZJ <£

3.Set D; := UN(l)K”, then D; is compact. For each i and j, we fix
b;j € B;; and we then define g; : D; — R™ by setting g;(x) = b;; for
xr € Ki; (j < N(i)). Since Ky, ..., K;n(;) are compact, disjoint sets,
and thus are a positive distance apart, g; is continuous. Furthermore,
|f(z) —gi(z)| < % for all z € D;. Set K := N2, D;. Then K is compact

and -
—K)gZM(A—Di)<e

Since |f(x) — gi(x)| < % for each = € D;, we see g; — f uniformly
on K. Thus f|x is contlnuous, as required. O

THEOREM 1.15 (Approximation by continuous functions).
Let p be a Borel reqular measure on R™ and suppose that f : R™ — R™
is p-measurable. Assume A C R™ is p-measurable and u(A) < co. Fix
e > 0.

Then there exists a continuous function f : R™ — R™ such that

p({z € Al f(z) # f(2)}) <e

Proof. According to Lusin’s Theorem, there exists a compact set K C
Asuch that i(A—K) < e and f|k is continuous. Then by Theorem 1.13
there exists a continuous function f : R™ — R™ such that f|x = f|x

and
e Al f(z) # f0)} < w(A-K) <. O
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Remark. Compare this with Whitney’s Extension Theorem 6.10,
which identifies conditions ensuring the existence of a C! extension
f. O

NOTATION The expression

p-a.e.

means “almost everywhere with respect the measure u,” that is, except
possibly on a set A with p(A) = 0.

THEOREM 1.16 (Egoroff’s Theorem). Let i be a measure on R™
and suppose fr : R — R™ (k = 1,2,...) are u-measurable. Assume
also A C R™ is p-measurable, with u(A) < oo, and

fie = f p-a.e. on A.

Then for each € > 0 there exists a p-measurable set B C A such
that

(i) u(A—B) <€, and
(ii) fx — f uniformly on B.
Proof. For i,5 =1,2,... define

Cij == ULz | 1fu(e) = fz)| > 27"},
k=]

Then C; j+1 € C;; for all ¢, j; and so, since pu(A) < oo,

]E}Iglo ,UJ(AQ CZ]) = U Aﬂ]q C,’j = 0.

Hence there exists an integer N (i) such that p(ANC; ye)) < €27
Let B := A —U2,C; n(i)- Then

p(A—B) < Z,U (ANCinw) <e
i=1

Then for each i, each € B, and all n > N(i), we have |f,,(z)— f(z)] <
2~*. Consequently f,, — f uniformly on B. O



24 General Measure Theory

1.3 Integrals and limit theorems

Now we want to extend calculus to the measure theoretic setting.
This section presents integration theory; differentiation theory is harder
and will be set forth later in Section 1.6.

NOTATION f* =max(f,0), f~ = max(—f,0),
f=fr-f.
Let u be a measure on a nonempty set X.

DEFINITION 1.11. A function g : X — [—00, 00| is called a simple
function if the image of g is countable.

DEFINITION 1.12.

(i) If g is a nonnegative, simple, p-measurable function, we define
its integral

/gdu:— > (g H{yd).

0<y<oo

(ii) If g is a simple p-measurable function and either [ g% dp < oo or
[ g~ du < oo, we call g a p-integrable simple function and

define
/gduzz/fdu—/g‘du-

This expression may equal +oo.

Thus if ¢ is a p-integrable simple function,

/gdurz >yl Hyh).

—oo<y<oo
DEFINITION 1.13.

(i) Let f: X — [—o0, oo|. We define the upper integral

/*fduiz

inf {/gd,u | g p-integrable, simple, g > f ,u-a.e.}
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and the lower integral

Afdu:—

sup{/gd,u | g p-integrable, simple, g < f ,u-a.e.}.

(ii) A p-measurable function f : X — [—o0,00] is called p-
integrable if f* fdp= [, f du, in which case we write

/fdu:—/*fdu—/*fdu-

Warning: Our use of the term “integrable” differs from most texts.
For us, a function is “integrable” provided it has an integral, even if
this integral equals 400 or —oo.

Note that a nonnegative p-measurable function is always pu-
integrable. U

We assume the reader to be familiar with all the usual properties of
integrals.

DEFINITION 1.14.

(i) A function f : X — [—o00, 0] is p-summable if f is p-integrable
and

/ |fldp < oo
(ii) We say a function f : R™ — [—o0, oo] is locally p-summable

if fli is p-summable for each compact set K C R™.

DEFINITION 1.15. We say v is a signed measure on R" if there
exists a Radon measure p on R™ and a locally p-summable function
f:R™ = [—o0, o] such that

V(K)—/deu (*)

for all compact sets K C R™.
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NOTATION

(i) We write
v=upulLf

provided (%) holds for all compact sets K. Note that therefore
plLA=pl xa.
(ii) We denote by
LY(X, )
the set of all y-summable functions on X, and
Lioe (R, 1)
the set of all locally pu-summable functions.
(iii) Likewise, if 1 < p < oo,
LP(X, p)

denotes the set of all y-measurable functions f on X such that
|f|P is p-summable , and

Lilnoc (Rn7 ,u)

the set of p-measurable functions f such that |f[P is locally -
summable.

(iv) We do not identify two LP (or Lt ) functions that agree u-a.e.

loc

The following three limit theorems for integrals are among the most
important assertions in all of analysis.

THEOREM 1.17 (Fatou’s Lemma). Let fi : X — [0,00] be p-
measurable for k =1,.... Then

/lim inf fr du < lim inf/fk dpt.
k—o0 k—o0
Proof. Take g := Z;i1 a;Xa; to be a nonnegative simple function less

than or equal to lim infy_,~ fx. Suppose the p-measurable sets {A; }‘;’;1
are disjoint and a; > 0 for j =1,....
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Fix 0 <t < 1. Then

A= Bj,
k=1
where
B = A;n{z | fi(z) > ta; for all | > k}.
Note
Aj D) Bj’kJrl D) Bj,k (k‘ =1,... )
Thus

/fkduz Z/ fedu > Z/ fedp >t aju(Bj);
j=1"4; j=17Bijx j=1
and so -
lggg/fmmZtEQ%MAﬁzt/gmh
]:

This inequality holds for each 0 < ¢ < 1 and each simple function g
less than or equal to liminfx ., fr. Consequently,

liminf/fk du > /liminf fedu = /liminffk du. O
k—s00 « k—oo k—o0

THEOREM 1.18 (Monotone Convergence Theorem). Let f :
X — [0,00] be pu-measurable (k=1,...), with

A< filfimai <.

Then
lim /fkd,u—/ lim fi du.
k—o0 k— o0
Proof. Clearly,

[fdus [ fudn G=1..0)

and therefore
lim /fkd,ug/ lim fx dp.
k—o00 k— o0

The opposite inequality follows from Fatou’s Lemma. O
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THEOREM 1.19 (Dominated Convergence Theorem). Assume
g > 0 is p-summable and f,{fr}32, are p-measurable. Suppose

fe = f p-ae.
as k — oo, and
[fel<g (k=1,...).
Then
tin [ 1fe = 7l =o.

Proof. By Fatou’s Lemma,
/2gdu = /liminf(2g —|f = fel) dp < liminf/2g —|f = frldp;
k—o0 k—o0

whence
limsup/|f—fk\du§O. O

k—o0

THEOREM 1.20 (Variant of Dominated Convergence The-
orem). Assume g,{gr}7>, are p-summable and f,{fr}?>, are pu-
measurable.

Suppose fr — [ p-a.e. and

el <o (B=1,...),

If also
Jgr — g p-a.e.
and
klijgo/gkdu— /gdu,
then

i 15— fldu=0.
k—o0
Proof. Similar to proof of the Dominated Convergence Theorem. []

It is easy to see that limy_, [ |fx — f| dp = 0 does not necessarily
imply fir — f p-a.e. But if we pass to an appropriate subsequence, we
can obtain a.e. convergence.
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THEOREM 1.21 (Almost everywhere convergent subse-
quence). Assume f,{fi}3>, are p-summable and

i [ 1~ Sl du=0.
k—o0
Then there exists a subsequence { fi;}32, for which

Je, = [ p-ae.

Proof. We select a subsequence {fx;}32; of the functions {fx}2,

satisfying
> [ 16, fldn < .
j=1

In view of the Monotone Convergence Theorem, this implies

[ 315 = Al <o,
j=1

and thus -
S olfe, = fl< oo prace.
j=1
Consequently, fx, — f at p-a.e. point. O

1.4 Product measures, Fubini’s Theorem, Lebesgue
measure

Let X and Y be nonempty sets.

DEFINITION 1.16. Let u be a measure on X and v a measure on
Y. We define the measure i x v : 2X*Y — [0, 00] by setting

(1% V)(S) = int {Zu<A,->u<Bi>} ,

for each S C X XY, where the infimum is taken over all collections of
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wu-measurable sets A; C X and v-measurable sets B; C Y (i = 1,...)
such that

o

=1

The measure p X v is called the product measure of y and v.

DEFINITION 1.17.

(i) A subset A C X is o-finite with respect to p if we can write

i n
k=1

where each By, is pu-measurable and p(By) < oo for k=1,2,....

(ii) A function f: X — [—o0,00] is o-finite with respect to p if f is
pu-measurable and {x | f(x) # 0} is o-finite with respect to p.

THEOREM 1.22 (Fubini’s Theorem). Let p be a measure on X
and v a measure on Y.

(i) Then p x v is a reqular measure on X XY, even if u and v are
not reqular.

(ii) If A C X is p-measurable and B C'Y is v-measurable, then Ax B
is (1 X v)-measurable and

(nx v)(Ax B) = u(A)v(B).

(iii) If S € X x Y 1is o-finite with respect to p x v, then the cross
section
Sy = {z | (x,y) € 5}

is p-measurable for v-a.e. vy,
Sz =A{y | (z,y) € §}

is v-measurable for p-a.e. x, p(Sy) is v-integrable, and v(Sg) is
u-integrable. Moreover,

(o 0)(8) = [ u(S,)dvw) = [ (5. dta).
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(iv) If f is (u X v)-integrable and f is o-finite with respect to p X v
(in particular, if f is (pu X v)-summable), then the mapping

y / [z, y) du(z)
X
is v-integrable, the mapping
o [ fawvy)
Y

s p-integrable, and

/Xxyfd(“ xu)—/y [/Xf(x,y)du(x)] dv(y)

= /X [ /Y f(%y)dl/(y)] dp().

Remark. We will later study the coarea formula (Theorem 3.10),
which is a kind of “curvilinear” version of Fubini’s Theorem. O

Proof. 1. Let F denote the collection of all sets S C X x Y for which
the mapping
x = xs(x,y)

is p-integrable for each y € Y and the mapping
y— / xs(@,y) du(z)
b'e

is v-integrable. If S € F, we write

o) o= [ | [ xsten) duto)] aviy),

2. Define
Po := {A x B | A p-measurable, B v-measurable} ,
Pr={U52, 815 €Py(j=1,...)},
Py:={N52,8;1S,€P (j=1,...)}.

Note Py C F and
p(Ax B) = u(A)v(B)
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when A x B € Py. If Ay x By, Ay x By € Py, then
(A1 X B1) N (As x Bg) = (A1 NAs) x (B1 N By) € Py,
and
(A1 X By) — (A3 x By) = ((A1 — A2) x B1) U ((A1 N A3) x (By — B3))

is a disjoint union of members of Py. It follows that each set in Py is a
countable disjoint union of sets in Py. Hence Py C F.

3. Claim #1: For each S C X x Y,
(uxv)(S)=1inf{p(R)| SC R € P1}.

Proof of claim: First we note that if S C R = U2, (A; x B;), then

p(R) <> p(Ai x By) =Y u(A:)v(B;).
i=1 i=1

Thus
inf{p(R) | S C R e P1} < (uxv)(S).

Moreover, there exists a disjoint collection of sets {A; X BJ‘ }‘]";1 in Py
such that

Thus

4. Fix A x B € Py. Then
(uxv)(Ax B) < u(A)v(B) = p(A x B) < p(R)
for all R € Py such that A x B C R. Thus Claim #1 implies
(1% V)(A x B) = p(A)v(B).
5. Next we must prove A X B is (i X v)-measurable. So suppose

TCXxYandTCReP;. Then R— (A x B)and RN (A x B) are
disjoint and belong to P;. Consequently,
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(1% ¥)(T = (A x B)) + (1 x v)(T 1 (4 x B))
< p(R— (A x B))+ p(RN (A x B))
= p(R),
and so, according to Claim #1,
(1% V)(T = (A x B)) + (ux v)(T N (A x B)) < (ux v)(T).

Thus (A X B) is (u X v)-measurable. This proves (ii).

6. Claim #2: For each S C X x Y there is a set R € Py such that
S C R and

p(R) = (1 x v)(S).

Proof of claim: If (u x v)(S) =00, set R=X x Y. If (u x v)(5) < o0,
then for each j = 1,2,... there is according to Claim #1 a set R; € P,
such that S C R; and

p(Rs) < (1 x¥)(5) + .

Define ~
R:= () R; € P,

j=1
Then R € F, and by the Dominated Convergence Theorem,

(> v)(8) < p(R) = lim p(M_1R;) < (ux v)(S).

7. From (ii) we see that every member of Py is (i X v)-measurable
and thus (i) follows from Claim #2.

8. If S C X xY and (u x v)(S) = 0, then there is a set R € Ps
such that S C R and p(R) = 0; thus S € F and p(S) = 0.

Now suppose that S C X xY is (uxv)-measurable and (uxv)(S) <
00. Then there is a R € Py such that S C R and

(uxv)(R—=5)=0;

hence

p(R—S8)=0.
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Thus
n({z | (z,y) € S}) = p({z | (z,y) € R})

for v-a.e. y €Y, and

(1 x 1)(S) = p(R) = / (x| (2,y) € SY) duly).

Assertion (iii) follows, provided (u x v)(S) < oco. If S is o-finite with
respect to p X v, we decompose S into countably many sets with finite
measure.

9. Assertion (iv) reduces to (iii) when f = xg. If f is (u X v)-
integrable, is nonnegative and is o-finite with respect to u x v, we use

Theorem 1.12 to write
=1
f=27xa
k=1

Then assertion (iv) follows for f from the Monotone Convergence The-
orem. Finally, for general f we write

f=r—=f,

to deduce (iv) in general. O

DEFINITION 1.18.

(i) One-dimensional Lebesgue measure on R! is
LY(A) := inf {ZdiamCi lAclJa,cic R}
i=1 i=1
for all A CR.

(ii) We inductively define n-dimensional Lebesgue measure L
on R™ by

Lr=Lr"tx L =L x o x LY (n times)
THEOREM 1.23 (Another characterization of Lebesgue mea-

sure). We have

L =L r ot
for each k € {1,...,n—1}.
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Proof. Let @ := [—L, L]" denote a closed cube with sides parallel to
the coordinate axes and define

p=LrLQ, v= (L FxLhHLQ.

Then p(R) = v(R) < oo for each “rectangle” R := {z | —o0 < a; <
x; <b;<oo(i=1,...,n)}. According then to Theorem 1.5, p and v
agree on all Borel sets.

This conclusion is valid for each cube @) as above, and thus £"
and L% x £* agree on Borel subsets of R™. Since both are Radon
measures, they thus agree on all subsets of R"™. O

We hereafter assume the reader’s familiarity with all the usual facts
about L.

NOTATION We will write “dX,” “dy,” etc. rather than “dL™” in
integrals taken with respect to L£".

We also write L'(R™) for L'(R", L"), etc.

1.5 Covering theorems

We present in this section the fundamental covering theorems of
Vitali and of Besicovitch. Vitali’s Covering Theorem is easier and is
most useful for investigating £™ on R"™. Besicovitch’s Covering Theo-
rem is much harder to prove, but it is necessary for studying arbitrary
Radon measures on R™. The crucial geometric difference is that Vitali’s
Covering Theorem provides a cover of enlarged balls, whereas Besicov-
itch’s Covering Theorem yields a cover out of the original balls, at the
price of a certain controlled amount of overlap.

These covering theorems will be employed throughout the rest of
this book, the first and most important applications being the differ-
entiation theorems in Section 1.6.

1.5.1 Vitali’s Covering Theorem

NOTATION If B = B(xz,r) is a closed ball in R™, we write
B = B(z,5r)

to denote the concentric closed ball with radius 5 times the radius of
B.
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DEFINITION 1.19.
(i) A collection F of closed balls in R™ is a cover of a set A C R"

if
AQLJB

BeF
(ii) F is a fine cover of A if, in addition,
inf{diamB |z € BB F} =0
for each x € A.
THEOREM 1.24 (Vitali’s Covering Theorem). Let F be any

collection of nondegenerate closed balls in R™ with

sup{diam B | B € F} < 0.
Then there exists a countable family G of disjoint balls in F such that

U Bc B

BeF Beg

Proof. 1. Write D := sup{diam B | B € F}. Set
D D1
We define G; C F; as follows:

(a) Let G; be any maximal disjoint collection of balls in Fj.

(b) Assuming G; ..., Gk_1 have been selected, we choose Gy, to be any
maximal disjoint subcollection of

{BeFi|BNB =0foral B'€UjZ{G;}.

Finally, define
Clearly G is a collection of disjoint balls and G C F.

2. Claim: For each ball B € F, there exists a ball B’ € G such that
BNB #0and BC B'.

Proof of claim: Fix B € F. There then exists an index j such that
B € Fj. By the maximality of G;, there exists a ball B’ € Uf;zlgk
with BN B’ # (. But diam B’ > % and diam B < Qj%; so that
diam B < 2diam B’. Thus B C B’, as claimed. O
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A technical consequence we will need later is this:

THEOREM 1.25 (Variant of Vitali Covering Theorem). As-
sume that F is a fine cover of A by closed balls and

sup{diam B | B € F} < oc.

Then there ezists a countable family G of disjoint balls in F such that
for each finite subset {By,...,By} C F, we have

m
“Umc U B
k=1

BeG—{Bi,....Bm}
Proof. Choose G as in the proof of the Vitali Covering Theorem and
select {By,...,B,,} C F.

If A C U, By, we are done. Otherwise, let x € A — U}, By. Since
the balls in F are closed and F is a fine cover, there exists B € F with
x € Band BNB;, =0 for k=1,...,m. But then, from the claim in
the proof above, there exists a ball B’ € G such that BN B’ # () and
so BC B'. O

Next we show we can measure and theoretically “fill up” an arbi-
trary open set with many countably disjoint closed balls.

THEOREM 1.26 (Filling open sets with balls). Let U C R™ be
open, & > 0. There exists a countable collection G of disjoint closed
balls in U such that diam B < ¢ for all B € G and

cr (U —~ BLngB) = 0.

Proof. 1. Fix 1 — 2 < 6 < 1. Assume first L"(U) < oc.

2. Claim: There exists a finite collection {B;}M of disjoint closed
balls in U such that diam B; < ¢ for i =1,..., My, and

( UB><9£” U). (%)
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Proof of claim: Let F, := {B C U | diam B < 4}. By the Vitali
Covering Theorem there exists a countable disjoint family G; C F;
such that

and consequently

Lr (U - BLngl B) < <1 - 5%) LrU).

Since G, is countable and since 1 — & < # < 1, there exist finitely

571
many balls By,..., By, in G; satisfying (%) .

1

3. Now let
My
UQ = U — U Bi,
i=1
Fo = {B | B C U,,diam B < (5},
and, as above, find finitely many disjoint balls By, 41,..., B, in Fa
such that

Mo Mo
0l 3.0
=1 1=M;+1

4. Continue this process to obtain a countable collection of disjoint
balls such that

< 9L™(Us) < 02L7(U).

( UB) <ok LrU) (k=1,...).

Since 6% — 0, the theorem is proved if £™(U) < oco.
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Should £™(U) = oo, we apply the above construction to each of the
open sets

Up ={zeU|m<|z|<m+1} (m=0,1,...). O

Remark. See also Theorem 1.28 in the next section, which replaces
L™ in the preceding proof by an arbitrary Radon measure. O

1.5.2 Besicovitch’s Covering Theorem

If p is an arbitrary Radon measure on R™, there is no systematic

way to control p(B) in terms of u(B). Vitali’'s Covering Theorem is
consequently not so useful for studying such a measure; we need instead
a covering theorem that does not require us to enlarge balls.

THEOREM 1.27 (Besicovitch’s Covering Theorem).
There exists a constant N,, depending only on the dimension n,
with the following property:

If F is any collection of nondegenerate closed balls in R™ with
sup{diam B | B € F} < c©

and if A is the set of centers of balls in F, then there exist N,, countable
collections Gy, ...,Gn, of disjoint balls in F such that

Proof. 1. First suppose that A is bounded. Write
D :=sup{diam B | B € F}.

Choose any ball By = B(ay, 1) € F such that 7y > %%. Inductively
choose B; for j > 2, as follows. Let A; := A — Ug;lBi. If A; =0, stop
and set J := j — 1. If A; # (), choose B; = B(a;,r;) € F such that
a; € Aj and

3
rj > Zsup{r | B(a,r) € F,a € Aj}.
If A; # 0 for all j, set J := oo.
2 Claim #1: If j > 4, then r; < %ri.



40 General Measure Theory

Proof of claim: Suppose j > i. Then a; € A; and so

r; > Zsup{r | B(A,r) € F,a € A} > Zr]

3. Claim #2: The balls {B(a;, %)};/_, are disjoint.

Proof of claim: Let j > i. Then a; ¢ B;; hence

4. Claim #3: If J = oo, then lim;_,r; = 0.
Proof of claim: By Claim #2 the balls { B(a;, %) }7_, are disjoint. Since
a; € A and A is bounded, 7; — 0.

5. Claim #4: A C UleBj.
Proof of claim: If J < oo, this is trivial. Suppose J = co. If a € A, there

exists an 7 > 0 such that B(a,r) € F. Then by Claim #3, there exists
an r; with r; < %T, a contradiction to the choice of 7, if a ¢ Uf;llBi.

6. Fix k >1andlet [:={j|1<j <k, BjnDBy# 0} We need to
estimate the cardinality of I. Set

K:=In{j|r; <3r}.
7. Claim #5: Card(K) < 20™.

Proof of claim: Let j € K. Then B; N By, # 0 and r; < 3rj. Choose
any « € B(aj,%). Then

-
o = ax] < lo = a5l +a; —ar] < 5+ 4
4
= grj+rk§4rk+rk.:5rk.

Thus B(aj, %) € B(ag,bry). Recall from Claim #2 that the balls
B(a;, ) are disjoint. Thus Claim #1 implies

a(n)b™ry = L™(B(ay, 571)) Z L" ( (CLJ, _))

jeEK

S (3)" > S (%)

jeK jEK
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Consequently,

1
5" > Card(K) 1.

8. We must now estimate Card(I — K).

Let i,7 € I — K, with 4 # j. Then 1 < i,j < k, B;N By, # 0,
B;N By # 0, r; > 3ry, and r; > 3ry. For simplicity of notation, we
assume a; = 0.

Let 0 < 0 < 7 be the angle between the vectors a; and a;. We want
to find a lower bound on 6, and to this end we first assemble some
geometric facts:

Since 4,7 < k,0 = ay, ¢ B; UB;. Thus r; < |a;| and r; < |a;|. Since
B;N By # 0 and B;N By # 0, |a;| < r; +ry and |a;| < rj +ry. Finally,
without loss of generality we can assume |a;| < |a;|. In summary,

3r <y < lai| <1+
3re <rj <laj| <141

|ail < la].

9. Claim #6a: If cos 0 > %, then a; € B;.
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Proof of claim: Suppose |a; — a;| > |a;|; then the law of cosines gives

lai)? + |a; > — |a; — a|? lai)> g

cosf = < =
2|asl|a;] 2|aillag|  2[a;]

< 1 < )

—2 6
Suppose instead that |a; — a;| < |a;| and a; ¢ B;. Then r; < |a; — a;|
and

jail* + a;|* — |ai — a;?

cosf =
2|aillas]

_ ail  (ayl = lai = aj))(la] + |ai — a;])
2|ay| 2|aillas]
1 (laj| = la; — ay])(2]a;])

2 2|a;l|a|
I rj+rp—r; 1 r 5
ST ML, S R WAL it

- 2 + T 2 + T - 6

10. Claim #6b: If a; € Bj, then
0 < a; — aj] + |ai| — [a;] < |as|e(),

for g
e(0) := 5(1 —cos ).

Proof of claim: Since a; € Bj, we must have i < j; hence a; ¢ B; and
so |a; — a;| > r;. Thus

la; — a;| + |a;| — |ay]

0<
|a;|
|ai — aj| +|ai| — |aj| la;i — aj| — |ai| + |a;|
- |CLJ'| |ai_aj|
o=yl = (lay] = [as)?
|ajlai — a;]

_ ail® + |a;” — 2lailla | cos Olai|* — |a;|* + 2|as|a;]
|aj|la; — a;l

~ 2|a;|(1 — cos®)

a; — aj
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2(r; + i) (1 — cos )
LK

2(14 2)r;(1 — cos®)

i

IN

= €(0).

11. Clavm #6¢: If a; € By, then cosf < %.
Proof of claim: Since a; € B; and a; ¢ B;, we have r; < |a; — a;| < ;.
Since 7 < j,r; < %ri. Therefore,

|ai — aj] + lai| = laj[ = ri +ri —rj =71

3
257“]'—7“]‘—7%

1 1

=37 Tk > =T

Then, by Claim #6b,
1
glail < lai = ajl +lail = laj| < as|e(®).

Hence cos < %.

12. Claim #6: For all i,j € [ — K with i #£ j, let # denote the angle
between a; — a, and a; — a;. Then

61
6 > — =:0 .
_arccosG4 o >0

This follows from Claims #6a—c.

13. Claim #7: There exists a constant L,, depending only on n such
that Card(I — K) < L,,.
Proof of claim: First, fix ro > 0 such that if x € 9B(1) and y,z €
B(z,70), then the angle between y and z is less than the constant 6
from Claim #6. Choose L,, so that 0B(1) can be covered by L, balls
with radius rg and centers on dB(1), but cannot be covered by L,, — 1
such balls.
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Then 0By can be covered by L, balls of radius rorg, with centers
on 0By. By Claim #6, if ¢, j € I — K with i # j, then the angle between
a; —aj and a; — ay exceeds 0. Thus by the construction of ry, the rays
a; — a and a; — aj cannot both go through the same ball on 0By.
Consequently, Card(I — K) < L,.

14. Finally, set M,, := 20" + L,, + 1. Then by Claims #5 and #7,

Card(I) = Card(K) + Card(I — K) < 20" + L,, < M,,.

15. We next define the families of disjoint balls Gi,...,Gar,, -
First, we define o : {1,2,...} = {1,..., M, }:
(a) Let o(i) =i for 1 <i < M,,.
(b) For k > M,, inductively define o(k + 1) as follows. According to
the calculations above,
Card{j |1 <j <k,BjNByy1 #0} < M,,
so there exists [ € {1,...,M,} such that By N B; = 0 for all j
such that o(j) =1 (j=1,...,k). Set o(k+1) = 1.
Now, let
Gj ={Bi|o(i) =j}
for 1 < j < M,. From the definition of o(i) it follows that each G,

consists of disjoint balls from F. Moreover, each B; is in some Gj; so
that

J M,,
AC U B; = U U B
1=1 i=1 Be€g;

16. Next, we extend the result to unbounded sets A.

For I > 1,let Ay = An{z | 3D(l —1) < |z| < 3DIl} and set
Fl:={B(a,r) € F | a € A;}. Then by Step 15, there exist countable
collections GI, ..., G}, of disjoint closed balls in F! such that

Mn
AlgU UB.

i=1 Beg!
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Let
o0
G =Jg"" for1<j<M,
=1
o0
Gisnt, =G for1<j < M,
=1
Set N, := 2M,,. O

We now see as a consequence of Besicovitch’s Theorem that we can
“fill up” an arbitrary open set with a countable collection of disjoint
balls in such a way that the remainder has p-measure zero.

THEOREM 1.28 (More on filling open sets with balls). Let
w be a Borel measure on R™, and F any collection of nondegenerate
closed balls. Let A denote the set of centers of the balls in F. Assume

pu(A) < oo
and
inf{r | B(a,r) € F} =0

for each a € A.
Then for each open set U C R™, there exists a countable collection
G of disjoint balls in F such that

U BCU
Beg
and
(AmU U B) =0.
Beg

Remark. The set A need not be p-measurable here. Compare this
assertion with Theorem 1.26 based on Vitali’s Covering Theorem,
above. O

Proof. 1. Fix 1 — z- <6 < 1.
Claim: There exists a finite collection {Bj,... By} of disjoint
closed balls in U such that
M,

M ((AmU) — UBZ) <Ou(ANU). (%)

i=1
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Proof of claim: Let F; = {B € F | diam B < 1,B C U}. By Bescov-

itch’s Theorem there exist families Gy,...,Gy, of disjoint balls in F;
such that
Ny,
AnvclJ U B
i=1 B€G;
Thus
Nn
wANU) Z <AmUm U B).
i=1 Beg;

Consequently, there exists an integer j between 1 and N,, for which

By Theorem 1.6, there exist balls By,..., By, € G; such that

My
u(AﬂUﬂUB,-) > (1-0)u(ANU).

i=1
But
M1 Ml
M(AQU)_M<AQUQUBZ‘> —i—,u((AﬂU)— UBl)’
i=1 i=1
since Uf\ill B; is p-measurable. Therefore (%) holds.

2. Now let Uy = U — U \B; and F» = {B | B €
F,diam B < 1,B C Us}. As above we find finitely many disjoint
balls B, +1, - .., By, such that

Mo Mo
u((AﬂU)—UBZ) :;L((Ang)— U Bi>

i=1 i=M;+1
< Ou(ANU>)
<OPu(ANT).

3. Continue this process to obtain a countable collection of disjoint
balls from F' and within U such that

(AﬁU UB) <O*u(ANU).

Since #¥ — 0 and p(A) < oo, the theorem is proved. O
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1.6 Differentiation of Radon measures

We now utilize the covering theorems of the previous section to
study the differentiation of Radon measures on R”.

1.6.1 Derivatives

Let u and v be Radon measures on R".

DEFINITION 1.20. For each point x € R™, define

3 o V(B(ﬂj', T)) .
Dla) = { e u(Blar)) @)= 0 Jorally =0
00 if w(B(xz,7)) =0 for somer >0
and
D,va) = { R P u(B(an) > 0 for all >0
oo if W(B(x,7)) =0 for some r > 0.

DEFINITION 1.21. If D,v(x) = D, v(z) < 400, we say v is dif-
ferentiable with respect to p at x and write

D,v(z) := D,v(z) = D, v(z).

D,v is the derivative of v with respect to p. We also call D,v the
density of v with respect to p.

Our goals are to learn when D,,v exists and when v can be recovered
by integrating D, v.

LEMMA 1.2. Fiz 0 < a < 0o. Then
(i) AC{z eR"|D,v(z) < a} implies v(A) < au(A).
(ii)) AC{z eR"|D,v(z) > a} implies v(A) > au(A).

Remark. The set A need not be p- nor v-measurable here. O
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Proof. We may assume pu(R™), v(R"™) < oo, since we could otherwise
consider p and v restricted to compact subsets of R™.

Fix € > 0. Let U be open, A C U, where A satisfies the hypothesis
of (i). Set

F:={B|B=DB(a,r),ac A,BCU,v(B) <(a+e)u(B)}.

Then inf{r | B(a,r) € F} = 0 for each a € A, and so Theorem 1.28
provides us with a countable collection G of disjoint balls in F such

that
v (A — U B) =0.
Beg

v(A) < Z v(B) < (a+e€) Z u(B) < (a+e)u(U).

Beg BeG

Then

This estimate is valid for each open set U O A, and hence Theorem
1.8 implies v(A) < (o + €)u(A). This proves (i). The proof of (ii) is
similar. O

THEOREM 1.29 (Differentiating measures). Let pu and v be
Radon measures on R™. Then

(i) D,v exists and is finite p-a.e., and
(ii) Dy is p-measurable.

Proof. We may assume v(R"), u(R™) < oo, as we could otherwise
consider p and v restricted to compact subsets of R™.
1. Clatm #1: D, v exists and is finite p-a.e.

Proof of claim: Let I := {x | D,v(z) = +oo}. Observe that for each
a>0,I C{x|D,v(xr) > a}. Thus by Lemma 1.2,

p(l) < —v(I).

QI+

Send o — 0o to conclude p(I) = 0, and so D,v is finite p-a.e.

For each 0 < a < b, define

R(a,b) :={z | D,v(x) <a<b< Dyv(zr) < oo}.
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Again using Lemma 1.2, we see that

bu(R(a,b)) < v(R(a,b)) < au(R(a,b));
whence pu(R(a,b)) = 0, since b > a. Furthermore,

{z|D,v(x) <Dyv(z)<oc}= | Rla,b);

0<a<b
a,b rational

and consequently D, v exists and is finite p-a.e.

2. Claim #2: For each x € R™ and r > 0,

limsup pu(B(y,r)) < p(B(z,7)).

Yy—x

A similar assertion holds for v.
Proof of claim: Choose yy € R™ with yp — x. Set fr := XxB(y,, and

f = XB(a,r)- Then
limsup f < f

k—o0

and so
liminf(1 — fx) > (1 — f).

k—o0

Thus by Fatou’s Lemma,

/ (1— f)du < / liminf(1 — fy) dps
B(z,2r)

B(z,2r) k>

k—o0

< liminf/ (1= fi) dp;
B(z,2r)
that is,

u(B(x,2r)) — p(B(z,r)) < liminf(u(B(z,2r)) — n(B(yk,7)))-

k—o0
Now since p is a Radon measure, pu(B(z,2r)) < oo; the claim follows.

3. Claim #3: D,v is p-measurable.
Proof of claim: According to Claim #2, for all » > 0, the functions
x — uw(B(x,r)) and z — v(B(xz,r)) are upper semicontinuous and
thus Borel measurable. Consequently, for every r > 0,

fr(z) = :Egg;;g if p(B(z,r)) >0
' oo if w(B(z,7)) =0
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is p-measurable. But
D,v= gll)% fr= kh_)ngo f% p-a.e.

and so D,v is py-measurable. O

1.6.2 Integration of derivatives; Lebesgue decomposition

DEFINITION 1.22. Assume  and v are Borel measures on R"™.

(i) The measure v is absolutely continuous with respect to p, writ-
ten
v << 4,

provided u(A) = 0 implies v(A) =0 for all A C R™.
(ii) The measures v and p are mutually singular, written
v Lo,
if there exists a Borel subset B C R"™ such that

uw(R™ = B) =v(B) =0.

THEOREM 1.30 (Differentiation of Radon measures). Let v, i
be Radon measures on R™, with v << u. Then

v(A) = /A D,vdu

for all p-measurable sets A C R™.

Remark. This is a version of the Radon—Nikodym Theorem. Ob-
serve we prove not only that v has a density with respect to u, but also
that this density D,v can be computed by “differentiating” v with re-
spect to . These assertions comprise in effect the fundamental theorem
of calculus for Radon measures on R™. O

Proof. 1. Let A be y-measurable. Then there exists a Borel set B with
AC B,u(B—A)=0. Thus ¥v(B — A) = 0 and so A is v-measurable.
Hence each p-measurable set is also v-measurable.

2. Set

Z:={z € R" | Dy(z) =0}, I := {z € R" | D,v(z) = +oo};
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Z and I are p-measurable. By Theorem 1.29, (1) = 0 and so v(I) = 0.
Also, Lemma 1.2 implies v(Z) < au(Z) for all a > 0; thus v(Z) = 0.
Hence

v(Z)=0= / D,vdu
z
and

v(I)=0= /Duud,u.
I

3. Now let A be p-measurable and fix 1 < ¢ < oco. Define for each
integer m

Ap = AN{z e R" | t" < D,v(z) < t™1}.

Then A,, is p-measurable, and so also v-measurable. Moreover,

A— G Am € ZUIU{z | Dyv(z) # D, v(x)}:
(o 0 a)e

and hence

m=—0o0

Consequently, Lemma 1.2 implies

[ee]

(A) = 3 ) < 34y

=t t"u(Ap) < t/ADuud,u.

Similarly, Lemma 1.2 gives

=ty " (Ay) >t Z/A D,vdu

—tl/A D,vdpu.

Thus } [, Dyvdp < v(A) <t [, Dyvdp for all 1 < ¢ < co. Now
send t — 1. O



52 General Measure Theory

THEOREM 1.31 (Lebesgue Decomposition Theorem). Let v
and p be Radon measures on R™.

(i) Then

V = Vac + Vs,
where Vye, Vs are Radon measures on R™ with
Vae << b, Vg L p.
(ii) Furthermore,
D,v=D,vVa, Dywvs=0 p-a.e;
and consequently

A) = /A D,vdp + vg(A)

for each Borel set A C R"™.

DEFINITION 1.23. We call v, the absolutely continuous part
and vs the singular part of v with respect to p.

Proof. 1. As before, we may as well assume p(R™), v(R") < oo
Define
E:={ACR" | ABorel, u(R"— A) =0},

and choose By, € £ such that

V(Bk)giréfgy(A)—i—% (k=1...).

Write B := N2, By. Since

Z“ — By) =0.

we have B € £, and so

v(B) = }lréf:g v(A). (%)

Define
Vac :=v L B, vs:=v L (R" - B);

these are Radon measures according to Theorem 1.7.
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3. Now suppose A C B, A is a Borel set, u(A) = 0, but v(A) > 0.
Then B — A € € and v(B — A) < v(B), a contradiction to (x) .
Consequently, v, << p. On the other hand, u(R™ — B) = 0, and thus
Vs L p.

Finally, fix o > 0 and set
C:={x € B|Dyvs(x) > a}.
According to Lemma 1.2,
ap(C) < u(C) =0,
and therefore D, vs = 0 p-a.e. This implies

D,voe = Dyv  p-ae. l

1.7 Lebesgue points, approximate continuity
1.7.1 Differentiation Theorem
NOTATION We denote the average of f over the set E with respect

p by .
][Efdu = @/Efdu,

provided 0 < p(E) < oo and the integral is defined.

THEOREM 1.32 (Lebesgue—Besicovitch Differentiation The-
orem).
Let y1 be a Radon measure on R™ and f € Li (R™, u). Then

loc

lim fdu= f(x
r—0 B(x,r) ( )

for p-a.e. x € R™.

Proof. For Borel sets B C R", define v*(B) := [ f*dp, and for
arbitrary A C R", let v*(A) := inf{v*(B) | A C B, B Borel}. Then
vT and v~ are Radon measures, and so, according to Theorem 1.30,

u*(A):/ADHy“Ldu:/Af*du
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and

v ()= [ D du= [ £

for all y-measurable A. Thus DNVjE = f* p-a.e. Consequently,

lim fdu = lim _

=0 ) B(a,r) r—0 u(B(z,1))
=D, (z) — D, ()

= [T(2) = [ () = f(=)

for p-a.e. point x. O

v (B(x,r)) — v~ (B(,r))]

THEOREM 1.33 (Lebesgue points for Radon measures). Let
p be a Radon measure on R™, and suppose f € L} (R", u) for some
1 <p<oo. Then

lim = f@)Pdu=0 (%)
r—0 B(:C,'f')
for p-a.e. point x.

DEFINITION 1.24. A point x for which (%) holds is called a
Lebesgue point of f with respect to u.

Proof. Let {r;}$2, be a countable dense subset of R. By the Lebesgue—
Besicovitch Differentiation Theorem 1.32,

lim |f = ril” dp = |f(2) = ril”
r—0 B(:C,'f')

for p-a.e. x and i = 1,2,.... Thus there exists a set A C R™ such that
u(A) =0, for which z € R™ — A implies

lim |f = ril” dp = |f () = ril”
r—0 B(:C,'f')

for all i. Fix x € R"—A and € > 0. Choose r; such that | f(z)—r;|? < 5.
Then

r—0

lim sup ][ f — f@)Pdu
B(z,r)

r—0

< or-! llimsup][ |f —riP du
B(z,r)
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- —rifPd
][B(w)\f(a:) i u]
— i) — P 1 f@) - <e. O

For the case p = L", this stronger assertion holds:

THEOREM 1.34 (Differentiation with noncentered balls). As-
sume that f € LY = for some 1 < p < co. Then

lim ][ — f(x)|Pdy =0 for L™-a.e. x.,
Jim o [f = f@)P iy =0 f

where the limit is taken over all closed balls B containing z, as
diam B — 0.

The point is that the balls need not be centered at z.

Proof. We show that for each sequence of closed balls { By}, with
x € By and dj, := diam B — 0,

][ I~ f@)Pdy =0
By

as k — oo, at each Lebesgue point of f.

Choose balls {By}72, as above. Then By, C B(z,dy), and conse-
quently,

f|f—f<x>|pdys2"][ 1~ F@)P dy.
By, B(z,dy)

The right-hand side goes to zero if x is a Lebesgue point. O

THEOREM 1.35 (Points of density 1 and density 0). Let E C
R"™ be L™-measurable. Then
lim L"(B(xz,r)NE)
r=0 Lr(B(x,7))

=1 forL'-ae x€FE

and (B 5
LBl N E)

= "_a.e. R" — E.
=B ) 0 for L™-a.e.x €

Proof. Set f = xg, 4 = L™ in the Lebesgue—Besicovitch Differentia-
tion Theorem. O
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DEFINITION 1.25. Let E C R™. A point x € R"™ is a point of
density 1 for E if

LM B(x,r)NE)

li =1
0 L (B,n)

and a point of density 0 for E if
lim L"(B(z,r)NE) _o.

r=0  L(B(z,7))

Remark. We regard the set of points of density 1 of E as comprising
the measure theoretic interior of E; according to Theorem 1.35, L™-
a.e. point in an L£L"-measurable set E belongs to its measure theoretic
interior. Similarly, the points of density 0 for £ make up the measure
theoretic exterior of E. In Section 5.8 we will define and investigate
the measure theoretic boundary of certain sets F. O

DEFINITION 1.26. Assume f € L .(R™). Then

. lim ][ fdy if this limit exists
f (.%') = r—=0 B(z,r)

0 otherwise

is the precise representative of f.

Remark. Note that if f,g € L} _(R"), with f = g L"-a.e., then
f* = g* for all points x € R™. In view of the Lebesgue—Besicovitch
Differentiation Theorem with pu = L", limTﬁgjfB(xm)f dy exists L"-
a.e. In Chapters 4 and 5, we will prove that if f is a Sobolev or BV
function, then f* = f, except possibly on a “very small” set of appro-

priate capacity or Hausdorff measure zero.

Observe also that it is possible for the above limit to exist even if
x is not a Lebesgue point of f; cf. Theorem 5.19 in Section 5.9. O

1.7.2 Approximate limits, approximate continuity

DEFINITION 1.27. Let f : R* — R™. We say | € R™ s the
approximate limit of f as y — x, written

aplim f(y) =1,
y—T
if for each € > 0,
o £MBE 0 (]~ 2 o)

r—0 L(B(x,r)) =0
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So if [ is the approximate limit of f at x, then for each € > 0 the
set {|f — 1| > €} has density 0 at .

THEOREM 1.36 (Uniqueness of approximate limits). An ap-

proximate limit, if it exists, is unique.
Proof. Assume for each € > 0 that both
Lr(B(x,r) N {[f — 1| = €})

cBen) ™
. £ (Bl 0 {1f 11> )
"(B(x,r —l'|>¢€

cBen) o)

as v — 0. Then if [ # I, we set € := “31/' and observe for each

y € B(z,r) that
Be= 1=V <|f(y) =l +I[fy) =TI

Thus
B(a,r) C{lf =l 2 e U{|f =V = €}
Therefore
LM(B(z,r)) < LY(B(x,r) N{|f — 1] = €})
+ LBz, r) N A{[f = U] = €}),
a contradiction to (%), (%*) . O

DEFINITION 1.28. Let f : R™ — R.
(i) We sayl is the approximate lim sup of f as y — z, written

aplimsup f(y) =,

y—)l’
if 1 is the infimum of the real numbers t such that

lim L™ B(z,r) N {f >t})
r—0 Lr(B(x,r))

=0.

(ii) Similarly, | is the approximate lim inf of f as y — z, written

apliminf f(y) =,

Yy—x
if | is the supremum of the real numbers t such that

LBl )0 {f <)
r—0 Lr(B(x,r))

=0.
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DEFINITION 1.29. We say f : R* — R™ is approximately con-
tinuous at r € R" if
aplim f(y) = f(z).
y—)l’
THEOREM 1.37 (Measurability and approximate continu-

ity). Suppose that f : R™ — R™ is L™-measurable.
Then f is approzimately continuous L™-a.e.

Remark. Thus a measurable function is “practically continuous at
practically every point.” The converse is also true; see Federer [F, Sec-
tion 2.9.13]. O

Proof. 1. Claim: There exist disjoint, compact sets {K;}5°, C R"
such that

L (R" — (U2, K;)) =0
and for each i = 1,2,..., f|k, is continuous.
Proof of claim: For each positive integer m, set B,,, := B(m). By Lusin’s
Theorem, there exists a compact set Ky C Bj such that £"(B; —
K1) <1 and f|k, is continuous. Assuming now Kj, ..., K, have been
constructed, there exists a compact set

K1 € Bpp1 — UL K

such that )
L" (Bpyr — UMK < 1
and f|K,,+1 is continuous.
2. For L™-a.e. ¢ € K;,
n — .
lim £B@ N =K (%)

r=0  Lr(B(z,r))

Define A := {z | z € K; for some i, and (%) holds}; then £™"(R™ —
A) = 0. Let z € A, so that z € K; and (%) holds for some fixed i.
Fix € > 0. There exists s > 0 such that y € K; and |z — y| < s imply

[f(z) = fy)l <e
Then if 0 <r < s,B(z,r)N{y | |f(y) — f(x)| > ¢} C B(x,r) — K;.
In view of (x) , we see that therefore

aplim f(y) = f(z). L

Yy—x
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Remark. If f € L _(R"), the proof is much easier. Indeed, for each
e>0

L"(B(x,r)N — flx)] >¢€ 1
Blen) 0l =Sl d) 1 g
E (B(x7r)) € B(Iﬂ")
and the right-hand side goes to zero for L"-a.e. x. In particular a
Lebesgue point is a point of approrimate continuity. l

In Section 5.9 we will define and discuss the related notion of ap-
proximate differentiability.

1.8 Riesz Representation Theorem

In this book there will be two primary sources of measures to which
we will apply the foregoing abstract theory. These are (a) Hausdorff
measures, constructed in Chapter 2, and (b) Radon measures charac-
terizing certain linear functionals. These arise as follows:

THEOREM 1.38 (Riesz Representation Theorem). Let
L:C.(R"R™) - R
be a linear functional satisfying
sup{L(f) | | € CoR™R™),[f| < L,spt(f) C K} <00 (%)

for each compact set K C R™. Then there exists a Radon measure p
on R™ and a p-measurable function o : R™ — R™ such that

lo(z)| =1 for p-a.e. z,
and
L(f)=[ [-odu
RTL

for all f € C.(R™;R™).

DEFINITION 1.30. We call i1 the variation measure associated
with L. It is defined for each open set V.C R™ by

p(V) :=sup{L(f) | f € Cc(R™;R™),[f[ < 1,spt(f) € V}.
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Proof. 1. Define i on open sets V' as above and then set
p(A) :=inf{u(V)| ACV open}

for arbitrary A C R".

2. Claim #1: p is a measure.
Proof of claim: Let V', {V;}72, be open subsets of R”, with V' C U2, V;.
Choose g € C.(R"™;R™) such that |g| < 1 and spt(g) C V. Since spt(g)
is compact, there exists an index k such that spt(g) C Ué?:le.

Let {Cj}le be a finite sequence of smooth nonnegative functions
such that spt(; C V; for 1 < j < k and Z?Zlgj =1 on sptg. Then

g= 25:1 9¢j, and so
k [eS)
IL(g)| <> IL(g¢) <> (V).
j=1 Jj=1

Taking the supremum over g, we find p(V) < Z;’;l w(Vj).

Now let {A;}32, be arbitrary sets with A C U2, 4;. Fix € > 0.
Choose open sets V; such that A; C V; and u(A;) + 57 > u(V;). Then

o

<[ UV | <30 <3 ) +e

Jj=1

3. Claim #2: p is a Radon measure.

Proof of claim: Let Uy and Us be open sets with dist(Uy,Us) > 0. Then
w(Uy UUy) = u(Uy) + u(Us) by definition of p. Hence if A1, Ay C R"™
and dist(Aq, A2) > 0, then p(A; U Az) = pu(Ar) + p(Asz). According to
Caratheodory’s criterion (Theorem 1.9), u is a Borel measure.

Furthermore, by its definition, i is Borel regular; indeed, given A C
R", there exist open sets Vj such that A C Vi and p(Vy) < p(A) + 1
for all k. Thus p(A) = (N2, V%) . Finally, the boundedness condition
(%) implies u(K) < oo for all compact K.

4. Now, let CHR™) :={f € C.(R™) | f > 0}; and for f € CH(R"™),
set

A(f) = sup{|L(9)| | g € C.(R™;R™), |g| < f}.
Observe that for all fi, fo € CHR™), f1 < fo implies A(f1) < A(f2).
Also Mef) = cA(f) for all ¢ > 0 and f € CH(R™).
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5. Claim #3: For all f1, f» € CF(R™), A\(f1 + f2) = A(f1) + A(f2).

Proof of claim: If g1, g2 € Ce(R™;R™) with [g1| < f1 and |g2] < f2,
then |g1 + g2| < f1 + fo. We can furthermore assume L(g1), L(g2) > 0.
Therefore,

IL(g1)| + [L(g2)| = L(g1 + g2) = |L(g1 + g2)| < A(f1 + f2).
Taking suprema over g; and go with g1, g2 € C.(R™;R™) gives
A(f1) + A(f2) S A(f1+ fa)-
Now fix g € C.(R™;R™), with |g| < f1 + f2. Set
%&{ﬁ% if fi+f2>0
0 if fi+fo=0

for i = 1,2. Then ¢1,92 € C.(R";R™) and g = g1 + g2. Moreover,
lg:| < fi.(i =1,2); and consequently

IL(g)| < [L(g1)] + [L(g2)] < A(f1) + A(f2)-

Hence,

A1+ f2) S A(f1) + A(fa).

6. Claim #4: MN(f) = [gn [ dp for all f e CFH(R™).

Proof of claim: Let ¢ > 0. Choose 0 = tg < t; < -+ < ty such that
tn = 2||fHL<>O,0 <t;—t;i_1 <e, and ,u(f’l{ti}) =0fori= 1,...,N.
Set U; = f~1((tj—1,t;)); then U; is open and u(U;) < occ.

By Theorem 1.8, there exist compact sets K; such that K; C Uj
and pw(U; — K;) < ~ for j = 1,2,...,N. Furthermore there exist
functions g; € C.(R™;R™) with |g;| < 1, spt(g;) C Uj, and |L(g;)| >
w(U;) — & Note also that there exist functions h; € CF(R™) such that
spt(h;) CU;, 0 < hj <1, and h; =1 on the compact set K; Uspt(g;).
Then ¢

Ahy) 2 |L(g;)l 2 n(Uj) —
and
A(h;) =sup{|L(g)| | g € Cc(R™;R™), |g| < Ry}
< sup{|L(g)| | g € Cc(R™;R™),[g| < 1,spt(g) € U;}
= u(Uj);

whence p(U;) — & < A(hy) < u(Uj).
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Define

={z 15 (1= San@) > o},

Then A is open and
p(A) = p (U (U; = {h; = 1})) <D (U - K;) <e.
Therefore
A(F - 1Sn)
= sup {|L(9)| | g € CuRR™), gl < f = F ) 15
<sup{|L(9)| | g € Cc(R";R™), |g| < [ fllLeexa}
= || fllze sup{L(g) | g € C.(R";R™),|g] < xa}

= [flleei(A)
< el fllzee-

Hence

MO = A (F =) + A ()0 1)
N N
< ellfllee + Y Afhy) <ellflloe + > t;u(U;)
j=1 =1

and

ﬁ: ﬁ: —1 (M(Uy‘) - %) > Z]j:tjl,uz(Uj) — tye.

Finally, since

N

> tiauU;) < /fdu<ztm

j=1 j=1

we have

N
)= [ £ < 35— to0u@;) + il + ety

j=1
< eu(spt(f)) + 3¢l fll =
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7. Claim #5: There exists a u-measurable function ¢ : R® — R™
satisfying assertion (ii).
Proof of claim: Fix e € R™, |e| = 1. Define A\.(f) := L(fe) for f €
C.(R™). Then A, is linear and

Ae(f)] = |L(fe)|
<sup{|L(g)| | g € Cc(R™;R™), |g|

=0 = [ 1flds

IN

|f1}

thus we can extend ). to a bounded linear functional on L'(R"™;p).
Hence there exists 0. € L>(p) such that

)‘e(f) = foedp
Rn

for f € C.(R™)).
Let e1,...,e, be the standard basis for R™ and define o :=
> jLy0e;ej. Then if f € C.(R™;R™), we have

L(f):ZL (f-ej)e;) Z/f €;)oe; di = /f o du.
Jj=1
8. Claim #6: |o| = 1 p-a.e.
Proof of claim: Let U C R™ be open, u(U) < co. By definition,
wU) =
swp{ [0 e Camimm.I < L U} )

Now take fr € C.(R™;R™) such that |fx| < 1,spt(fx) C U, and fr-0 —
|o| p-a.e.; such functions exist according to Theorem 1.15. Then

[ Joldu=jim [ i odu<pw)
U k—o00

by (%*) .
On the other hand, if f € C.(R™;R™) with |f| <1 and spt f C U,

then
[#-oduz [ loldn.
U
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Consequently (xx) implies

u(v) < [ Joldn
U
Thus u(U) = [;; lo|dp for all open U C R"; hence |o] =1 p-a.e. O
An immediate and very useful application is the following charac-
terization of nonnegative linear functionals.
THEOREM 1.39 (Nonnegative linear functionals). Assume
L:C*[R")—>R
1s linear and nonnegative; that is,
L(f) >0 forall f € C(R™), f > 0. (%)

Then there exists a Radon measure p on R™ such that
L(f)= [ fdu
RTL

for all f € C(R™).

Proof. Choose any compact set K C R"”, and select a smooth function
¢ such that ¢ has compact support, (=1 on K, and 0 < < 1.

For any f € C°(R™) with spt f C K, set g := ||f|r~¢ — f > 0.
Then (%) implies

0< L(g) = [Ifll=L(C) = L(f),

and so
L(f) < C|lfllz=

for C' := L(¢). Replacing f with —f, we deduce that
LA <Ol fll o

The functional L thus extends to a linear mapping from C.(R")
into R, satisfying the hypothesis of the Riesz Representation Theorem.
Hence there exist u, o as above so that

L(f) = /n fodu

for f € C*(R™)), with ¢ = +1 p-a.e. But then (%) implies 0 = 1
U-a.e. ]
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1.9 Weak convergence
1.9.1 Weak convergence of measures

We introduce next a notion of weak convergence for measures.

THEOREM 1.40 (Weak convergence of measures). Let
wypr (k= 1,2,...) be Radon measures on R™. The following three
statements are equivalent:

(i) limg— o0 fR" fdu, = fRn fdu for all f € C.(R™).

(ii) limsupy_, o pk(K) < u(K) for each compact set K C R™ and
p(U) <liminfy_, oo pi(U) for each open set U C R™.

(iii) limg—yeo pi(B) = p(B) for each bounded Borel set B C R™ with
u(0B) = 0.

DEFINITION 1.31. If (i)-(iii) hold, we say the measures {juy}5>,
converge weakly to the measure p, written

Be — M-

Proof. 1. Assume (i) holds and fix € > 0. Let U C R™ be open and
choose a compact set K C U. Next, choose f € C.(R"™) such that
sptfCU,0< f<1, f=1on K. Then

pE) < [ fdu= lim [ fdu, < liminf u(U).
R" — 00 Rn k—o0

Thus
w(U) = sup{u(K) | K compact, K CU} < ligninf e (U).
— 00

This proves the second part of (ii); the proof of the other part is similar.

2. Suppose now (ii) holds, B C R™ is a bounded Borel set, u(0B) =
0. Let BY denote the interior of B. Then

p(B) = p(B°) < liminf ju(B°) < limsup ux(B) < p(B) = p(B).

3. Finally, assume (iii) holds. Fix € > 0, f € C(R"). Let R > 0 be
such that spt(f) € B(0, R) and u(0B(R)) = 0. Choose 0 =ty < t1,<
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- <ty such that ty := 2||fHL<>o 0<t;—t;_1 <e, and ,u(ffl{ti}) =0
fori=1,...,N.Set B; = f~(t;_1,t;); then,u(@B)fOfori:Z....
Now

th 11k (B / fdup, < th,u«k ) +tiuk(B(R))

and
N
S tian(B) < [ fn< Zw )+ tn(B(R)
i=2

so (iii) implies

lim sup
k— o0

fdpg —/ fdu' < 2eu(B(R)). O
R” R”

The great advantage of weak convergence of measures is that com-
pactness is had relatively easily.

THEOREM 1.41 (Weak compactness for measures). Let
{pr}2 be a sequence of Radon measures on R™ satisfying

sup ui(K) < oo for each compact set K C R™.
k

Then there exists a subsequence {jiy,}52, and a Radon measure p such
that

Br; — M-

Proof. 1. Assume first

sup ug(R™) < 0. (%)
k

2. Let { f}72, be a countable dense subset of C.(R™). As (x) implies
{[ f1dp;} is bounded, we can find a subsequence {u}}52; and a; € R

such that
/fl d,u,; — aj.

Continuing, we choose a subsequence { ,uf L of { ,uk > anda; € R
such that

/fk d,u? — af.
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Set v; := u; then

/fk de — Gk
for all £ > 1.

Define L(fx) = a, and note that L is linear, with |L(fz)] <
| fxlloeM by (%), for M := sup ux(R™). Thus L can be uniquely
extended to a bounded linear functional L on C.(R™). Then according
to the Riesz Representation Theorem, there exists a Radon measure p
on R™ such that

L) = [ £
for all f € C.(R™).

3. Choose any f € C.(R™). The denseness of {f}72, implies the
existence of a subsequence {f;}72; such that f; — f uniformly. Fix
€ > 0 and then choose i so large that

€

| f = filloe < 1M

Next choose J so that for all j > J

‘/fide—/fidﬂ‘ < %
Then for j > J

‘/fduj—/fdu‘s‘/f—fiduj +‘/f—fidu‘
+'/fid1/j—/fidy‘

€
<OMIIf = fillie + 5 <

4. In the general case that (%) fails to hold, but

sup pu, (K) < 00
k

for each compact set K C R", we apply the reasoning above to the
measures
phoo= e LB(l) (k,1=1,2,...)

and use a diagonal argument. O
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1.9.2 Weak convergence of functions
Assume now that U C R" is open, 1 < p < oo.

DEFINITION 1.32. A sequence {fr}3e, C LP(U) converges
weakly to a function f € LP(U), written

fe—f inLP(U),

provided
lim frgdx = / fgdx
k—o0 U

for each g € LY(U), where

1 1
-—+-=1 (1<qg<o).
P q
THEOREM 1.42 (Weak compactness in LP). Suppose 1 < p <
oo. Let {fi}22, be a sequence of functions in LP(U) satisfying
sup [ fll Loy < o0 (%)

Then there exists a subsequence {fy,}52, and a function f € LP(U)
such that

Remark. This assertion is in general false for p = 1, but see Section
1.9.3 below. D

Proof. 1. If U # R", we extend each function fj to all of R™ by setting
it equal to zero on R™ —U. This done, we may with no loss of generality
assume U = R". Furthermore, we may as well suppose

fe=>0 L"ae;

for we could otherwise apply the following analysis to f,;" and f, .

2. Define the Radon measures
ME ‘= £n|_fk (k‘ = 1,2,...).

Then for each compact set K C R",

uk(K)z/kad:cg </Kf,fdx>;£”(K)1%
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and so
sup pi(K) < oo.
k

Accordingly, we may apply Theorem 1.41, to find a Radon measure p
on R™ and a subsequence py; — p.

3. Claim #1: p << L™
Proof of claim: Let A C R™ be bounded, £L"(A) = 0. Fix ¢ > 0 and
choose an open, bounded set V' O A such that £"(V) < e. Then

u(V) < hmlnf e, (V)

—hmlnf/ Jr,; dz

J—r0o0

< lim inf </ 7 d:v) T L)
Jj—o0 v J
< Ce 5.
Thus pu(A) = 0.

4. In view of Theorem 1.30, there exists a function f € L{ _ satis-

fying
—/fdx
A

for all Borel sets A C R".

5. Claim #2: f € LP(R").
Proof of claim: Let ¢ € C.(R™). Then
ofda= [ odp=tm [ odu,
Rn n R’VL

= lim ¢>fk dx < sup I fellze || @l L

]—)OO

< CHéHLq’

Where%+%:1,1<q<oo.Thus

| fller = sup of dv < .
$€C.(R™) JRn
lollra <1

6. Claim #3: fr; — f in LP(R™).
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Proof of claim: As noted above,
[ foodes [ gods
n RTL

for all ¢ € C.(R™). Given g € LY(R"™), we fix ¢ > 0 and then choose
¢ € C.(R™) with

lg — ¢lla@n) < e
Then

/n(fkj - flgdzx :/ (fx, —f)¢>d:v+/Rn(fkj — (g — ¢)dz.

Rn

The first term on the right goes to zero, and the last term is estimated
by
I fe; = fllzellg = @lle < Ce. -

1.9.3 Weak convergence in L?!

The LP weak compactness Theorem 1.42 fails for L', since its dual
space L™ is not separable. We need more information to find weakly
convergent sequences in L':

THEOREM 1.43 (Uniform integrability and weak conver-
gence). Assume U is bounded and let { fi}32, be a sequence of func-
tions in LY(U) satisfying

sup | frllr vy < o0 ()
Suppose also
lim sup/ | fr| dz = 0. (%x)
ook Sz

Then there exist a subsequence {fy,}32, and f € L'(U) such that
fo, = f in L' (U).
Remark. We call condition (x*) uniform integrability. O

Proof. 1. Claim #1: For each € > 0, there exists 6 > 0 such that
L"(E) <6 implies sup/ |frldx < €
k JE

for each L£L™-measurable set £ C U.
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Proof of claim: For each j =1,...,

/ |fj|d33—/ |fj|d3«“+/ | f5] da
E En{|f;|=1} En{|f;|<}

< sup/ |fr| dz + L™ (E)
ko J{ =t}

<€,

provided we employ (xx) to fix [ so large that

sup/ | fi] dx < <
DR ED! 2

and then let 6 = %

2. As in the proof of Theorem 1.42, we may assume f; > 0 and
define the Radon measures

M = £n|_fk (k:1,2,...).

Then
sup ug(U) < 0.
k

We invoke Theorem 1.41, to find a Radon measure p on R™ and a
subsequence py;, — p. We can use Claim #1 to prove that u <<
L" L U; and consequently, according to Theorem 1.30, there exists a
function f € L'(U) satisfying

w(E) = /Efdw

for each Borel set £ C R™.
3. Claim #2: fr, — f in L(U).
Proof of claim: Select any function g € L>°(U); we must show that

/Ufkjgdx%/Ufgd:v.

Using mollifiers (see Theorem 4.1 later) we obtain a sequence {g;}52; of
bounded, continuous functions that converge to g L™-a.e. Fix ¢ > 0 and
select the corresponding § given by Claim #1. According the Egoroft’s
Theorem, there exists a measurable set £ C U such that

gi — ¢ uniformly on U — E, L"(E) < 4.
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Then

/<fkj—f>gdx s/ Fis — fllg — g1l de
U U

" ' | = Dacaa

g/ |fkj—f||g—gi|d:c+/ Fr — fllg — gl do
FE U—-F

_l’_

U

sc/\fkj\+|f|dx+0sup 19— gi] +
E U—-F

/ (fr, — Paida
U

Y

< Ce+C sup g —gi| +
U-E

/ (s, — g de
U

according to Claim #1. We fix i so large that the second term is smaller
than €, and then send k; — oo, to deduce that

/Ufkjgd:c—/Ufgdx

If a sequence bounded in L' fails to satisfy the uniform integrability
condition (xx) from Theorem 1.43, we can nevertheless still find a sub-
sequence weakly convergent off a set of arbitrarily small £" measure,
a tiny “bite” taken from U:

lim sup < Ce. U

Jj—o00

THEOREM 1.44 (Biting Lemma). Assume U is bounded and let
{fe}32, be a sequence of functions in L'(U) satisfying

Sl}iprkHLl(U) < oo0. ()

There exists a subsequence { fi, }521 and a function f € LY(U) such

that for each & > 0 there exists an L™-measurable set E C U with
LYE)<§

and
fo, = f in LY (U - E).

Proof. 1. For K =1,... and integers [ > 0, define

1) := dx.
#all) /{Ifk|21}|fk| ’
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Then the mapping [ — ¢ (l) is nonincreasing for each k and the func-
tions {¢y}72,; are uniformly bounded on Z™.

Using the standard diagonal argument, we can find a subsequence
kj — oo such that the limits

a(l) = lim g, (1)

J—00

exist for all integers = 0,1, .... Furthermore, [ — «(l) is nonincreasing
and consequently the limit

O = lim  «(l)
l— o0
| integer

exists.

2. Case 1: ag = 0. In this situation,

lim sup/ | fr,|dz =0,
oo {1203

and hence the L' weak convergence Theorem 1.43 applies. Conse-
quently, passing if necessary to a further subsequence and reindexing,
we have

fi, = f in LY(U)
and so we can take E = ().

3. Case 2: as > 0. We must construct a small set E off which a
further subsequence converges weakly.

4. Claim #1: There exists a sequence {l;}32, of integers such that
lj =00, ¢r,;(lj) = Coo-
Proof of claim: Define
L = max{l € Z* | 65, (1) > an — 1:

the maximum exists since lim;_, o, ¢ (l) = 0 for each k. Also, if sup; I;
is finite, then for I’ > sup, [; we would have

¢kj (l/) < Ao — ll/

for all j. Then a(l') < a — 7+, a contradiction since I — a(l) is nonin-
creasing. Hence, passing if necessary to a subsequence and reindexing,
we may assume l; — oo.
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Now fix a positive integer m. Then for large enough j,
oo = 1 < i, (1) < iy (m)

and so
Qoo < liminf ¢y, (1;) < limsup ¢y, (1;) < a(m).
1

o0 j—o0
Letting m — oo, we deduce that lim;_, o ¢k, (l;) = Qoo.
5. Claim #2: We have

lim sup/ | fi,| dz = 0.
Mmoo g {m<Ifi; 1<15}

Proof of claim: Select any € > 0 and then mqy € Z* such that a(mg) <
Qo + €. Next, pick jo so that j > jo implies
¢kj (m()) < Oé(mo) + €, ¢kj (l]) > Qoo — €.

Then
br; (mo) — ¢, (1j) < a(mg) — oo + 2€ < 3e.

Hence if m; > max{mg, maxo<j<j, l;}, we have

j 2y lj>m

sup / filde = sup {d;(m1) — dn,(1;)} < 3e.
{ma<|fi;1<1;) :

6. Given now ¢ > 0, pass to a further subsequence if necessary to
guarantee that

j=1
Define -
E = [ J{Ifu;| = 1;}
j=1
Then

£1(E) < L {Ik| = L)
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and

lim sup/ | fr;| d
MG Ml fey|2m}—E

< lim sup/ | fx;| dz =0,
MG J{m<|fi 11}

owing to Claim #2. We now apply Theorem 1.43 to extract a further
subsequence weakly convergent in L'(U — E).

7. Repeating this construction for § = 1, %, ey 2%, ... and rein-

dexing, we obtain the desired subsequence. O

1.9.4 Measures of oscillation

Let u be a finite Radon measure on R"™™,

DEFINITION 1.33. The projection of o onto R™ is the measure
o defined by
o(A) == u(AxR™)

for A CR™.

THEOREM 1.45 (Slicing measures). For o-a.e. point © € R”
there exists a Radon measure v, on R™ such that

v,(R™) =1 o-ae.;

and for each bounded continuous function f : R™ x R™ — R, the
mapping x — [ f(x,y) dve(y) is o-measurable and

[ gan= [ ([ ran)an “

Proof. 1. Let {f;}72, be a countable, dense subset of C.(R™). For
each k = 1,..., define the signed measure v* by

M= [ fw)de (ABorel AC R,
AxR™
Then v* << o. Hence Theorems 1.29 and 1.30 imply that for k =1, ...

the limits L
B
Da’)/k(x) -— lim Y ( (l’,T))

r—0 o(B(x,7)) (%)



76 General Measure Theory

exist for o-a.e. x; the mappings = +— D,7* are o-measurable and
bounded; and we can write

/ Fely) du =+ (4) = / Dot do (5% %)
AxXR™ A

for k=1,... and Borel sets A C R".

2. Since

P (Bla,r) A B
o(B(w,7)) cr(B(:E,r))‘S nax | fi — il

we have
|Don*(z) — Dor' ()] < max |fi — fi

at any point x where (%*) holds.

Given a function f € C.(R™), select a subsequence {fi,;}52; C
{fr}3Z, such that f, — f uniformly as j — co. Then

Ay (f) == lim D,~%i(z)
j—o0

exists for each point z satisfying (x%) and is independent of the partic-
ular choice of the subsequence fi, — f.

3. For such points z, the mapping f — A, (f) is linear, with
Aa(F) < max]f

for each f € C.(R™). According to the Riesz Representation Theorem,
there exists a Radon measure v, such that

A (f) = fdv,.
RTYL

Passing to limits in (% x ) as k = k; — 0o, we deduce that

/Amef(y)du—/A</mfdvm> do.

An approximation now shows that

[ s@itan= [ o ([ ran)a

for continuous functions f and g. Putting f = 1 shows that v, (R™) = 1.
A further approximation gives the integration formula (x). O
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A weakly convergent sequence fr — f need not converge almost
everywhere, even if we pass to a subsequence. It is possible for example
that the functions f; may oscillate more and more rapidly as k£ — oo.
We can however introduce measures v, to “record” these oscillations
near almost every point z.

THEOREM 1.46 (Weak limits and Young measures). Suppose
that U is bounded and the sequence { fi}3>, is bounded in L>°(U;R™).

Then there exist a subsequence { fi;}32; C {fx}32, and, for L"-a.e.
xz € U, a Radon measure v, on R™ such that

v, (R™) =1
and

m

F(fi,) = F = / Fy) dv,
weakly in L2(U) for each continuous function F on R™.

DEFINITION 1.34. We call {v, },cv Young measures associated
with the subsegence { fx;}32;.

Remark. In fact F(fy,) — F weakly in LP(U) for each 1 < p < oo. If
fr = f L"-a.e., then v, = d(,) almost everywhere. O

Proof. 1. For each Borel set A C R"™™_ define
pe(4) = [ Xl fule) da
U

According to Theorem 1.10,(iii), the integrand is £"-measurable. We
extend py to a Radon measure on R™T™ and observe that

sup g (R™™) < oo.
k

Consequently, there exists a subsequence {14, }32; and a finite Radon
measure g such that

pr; — p weakly on R™T™,

2. Claim: The projection of y onto R™" is o := L" L U.
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Proof of claim: Let V C U be open. Then

o(V) = pu(V x R™) <liminf pg, (V x R™) = L"(V).
J—00

Thus ¢ < L™ L U. Now let K C U be compact. There exists a closed
ball B(R) C R™ such that spt(u),spt(ux,) C U x B(R) for j =1,....
Therefore
o(K) = p(K x R™) = u(K x B(R))
> limsup pu,; (K x B(R)) = L"(K);

j—o0
and consequently o > L™ L U.

3. According therefore to Theorem 1.45, we have

/anfdu:/rj</mfdur> dz

for each f € C(R™*™). Let f(z,y) = g(x)F(y), where g € C.(U) and
F € C(R™). Then

lim gF (fr,;)dr = lim [ dpg,;
U

j*)OO J—0 Rn+m

= /an fdu
()
:Aﬁm

This is valid for each g € C.(U) and thus for each g € L?(U). Conse-
quently F(fy,) — F weakly in L*(U). O

1.10 References and notes

This long chapter mostly follows Federer [F|, with additional ma-
terial from Simon [S, Chapter 1] and Hardt [H].

Theorems 1.1-1.6 in Section 1.1 are from [F, Sections 2.1.3, 2.1.5].
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The 7-A Theorem is from Durrett [D] and Stroock [Sk]. Lemma 1.1
is [F, Section 2.2.2] and Theorem 1.8 is [F, Section 2.2.5]. Theorem
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3.1.13, 3.1.14]. Lusin’s and Egoroff’s theorems are in [F, Sections 2.3.5,
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2.4]; see in particular [F, Sections 2.4.6, 2.4.7, 2.4.9] for Fatou’s Lemma,
the Monotone Convergence Theorem, and the Dominated Convergence
Theorem. Our treatment of product measure and Fubini’s Theorem is
taken directly from [F, Section 2.6]. The 7m-A Theorem provides an
alternative approach to assertion (iii) of Fubini’s Theorem; see Durrett
[D] or Stroock [Sk].

We relied heavily on Simon [S] for Vitali’s Covering Theorem and
Hardt [H] for Besicovitch’s Covering Theorem. Consult also [F, Sec-
tions 2.9.12, 2.9.13]. Furedi and Loeb [F-L] discuss the best constant
for Besicovitch’s Theorem. The differentiation theory in Section 1.6 is
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imate continuity are in [F, Sections 2.9.12, 2.9.13].

We took the proof of the Riesz Representation Theorem from [S,
Sections 4.1, 4.2] (cf. [F, Section 2.5]). A. Damlamian showed us the
proof of Theorem 1.39 in Section 1.8. See Giusti [G, Appendix A]
for Theorem 1.41 in Section 1.9. Theorem 1.43 is sometimes called
the Dunford—Pettis Theorem. The Biting Lemma appears in Brooks—
Chacon [B-C] and our proof follows Ball-Murat [B-M]. L. Tartar intro-
duced Young measure methods for PDE theory; see for instance [T].
The proofs for Theorems 1.45 and 1.46 are from [E1].

There are many good introductory measure theory books. We rec-
ommend especially DiBenedetto [DB], Fitzpatrick—-Royden [F-R], Fol-
land [Fo] and Wheeden—Zygmund [W-Z]. Krantz—Parks [K-P] and Lin—
Yang [L-Y] are two very good more advanced texts. Oxtoby [O] pro-
vides a fascinating discussion of measure theory versus Baire category
for characterizing “negligible” sets.






Chapter 2

Hausdorff Measures

We introduce next certain “lower dimensional” measures on R™, which
allow us to measure certain “very small” subsets of R™. These are the
Hausdorff measures H?*, defined in terms of the diameters of various
efficient coverings. The idea is that A is an “s-dimensional subset” of
R™ if 0 < H*(A) < oo, even if A is very complicated geometrically.

Section 2.1 provides the definitions and basic properties of Haus-
dorff measures. In Section 2.2 we prove n-dimensional Lebesgue and
n-dimensional Hausdorff measure agree on R™. Density theorems for
lower dimensional Hausdorff measures are established in Section 2.3.
Section 2.4 records for later use some easy facts concerning the Haus-
dorff dimension of graphs and the sets where a summable function is
large.

2.1 Definitions and elementary properties

DEFINITION 2.1.

(i) Let ACR™,0<s<00,0<d<o00. We write

inf Za(s)<M> \Ag UCj,diaijS(S ,

J=1

(ii) For A and s as above, define
H(A) := lim H3(A) = sup H3(A).
6—0

6>0

81
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We call H® s-dimensional Hausdorff measure on R".

Remarks.

(i) Our requiring 6 — 0 forces the coverings to “follow the local
geometry” of the set A.

(ii) In the definition, T'(s) := [Ce 2 1dx (0 < s < 00) is the
gamma function. Observe that

L"(B(z,r)) = a(n)r™

for balls B(x,r) C R™. We will see later in Chapter 3 that if s = k is
an integer, H* agrees with ordinary “k-dimensional surface area” on
nice sets; this is the reason we include the normalizing constant a(s)
in the definition. O

THEOREM 2.1 (Hausdorff measures are Borel). For all 0 <
s < 0o H?® is a Borel reqular measure in R™.

Warning: H® is not a Radon measure if 0 < s < n, since R™ is not
o-finite with respect to H*.

Proof. 1. Claim #1: Hj is a measure.
Proof of claim: Choose {A}72, € R™ and suppose A C u;glcj’?,
diam C¥ < 4. Then {C’k}J .1 covers Up® | Ay, Thus

(04) 50 (259)

Taking infima, we find

2. Claim #2: H? is a measure.
Proof of claim: Select {Ax}72; C R™. Then

Let 6 — 0.
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3. Claim #3: H? is a Borel measure.

Proof of claim: Choose A, B C R™ with dist(A4, B) > 0. Select
0<o< %dist(A, B). Suppose AU B C U2, C}, and diam Cy, < 4.

Write A := {C; | C; N A # 0}, and let B := {C; | C; N B # 0}.
Then A C UCjGACj and, B C UCjeBCj7 g;NC; = 0if C; € A, C;eB.
Hence

n Z o <d1amC>

C,eB
> H;(A) + Hi(B).

Taking the infimum over all such sets {C;}52,, we find H5(AUB) >
H3(A)+H;3(B), provided 0 < 40 < dist(A, B). Letting 6 — 0, we obtain
H* (AU B) > H*(A) + H*(B). Consequently,

(AU B) = H*(A) + H*(B)

for all A, B C R™ with dist(A, B) > 0. Hence Caratheodory’s criterion
implies H? is a Borel measure.

4. Claim #4;H?® is a Borel regular measure.
Proof of claim: Note that diam C = diam C for all C; hence

H3(A) =
inf ia(s) diam G ‘ AC U Cj,diam C; < 6,C; closed
j=1 2 .

Choose A C R™ such that H*(A) < oo; then Hj(A) < oo for all § > 0.
For each k£ > 1, choose closed sets {C]’“};‘;l so that diam C'J’-C < 4,
AC U;?‘;IC]’?, and
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Let Ay := U‘]?‘;lcf, B =N A;; B is Borel. Also A C Ay, for each &,
and so A C B, Furthermore,

<30 (%

Letting k — oo, we discover H*(B) < H*(A). But A C B, and thus
H*(A) = H*(B). O

THEOREM 2.2 (Properties of Hausdorff measure).

diam C’ k

’ 1
) < H%(A) e

(i) HO is counting measure.

)
(ii) H' = L' on R
(i) H* =0 on R™ for all s > n.
(iv) HS(AA) = ANH5(A) for all A > 0, A C R™,

) H5(L(A)) = H*(A) for each affine isometry L : R™ — R", A C

R™.

(v

Proof. 1. Statements (iv) and (v) are easy.

2. First observe a(0) = 1. Thus obviously H°({a}) = 1 for all
a € R", and (i) follows.

3. Choose A C R! and § > 0. Then

L1(A) = inf {ZdiamC’j | AC U C'j}

=1 j=1

< inf {Zdiaij |AC | Cj diamC; < 5}

Jj=1 J=1

since I'(3) = 4 and thus a(1) = 2. Hence £*(A4) < H(A).

On the other hand, set I}, := [kd, (k+1)d] for k € Z. Then diam(C;N
I;) <6 and

> diam(C; N I;,) < diam C.

k=—oc0
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Hence

L1(A) = inf Zdiaij | AC U C
j=1 j=1

> inf i i diam(C; N 1I) | A C [j C;
j=1

j=1lk=—o0
> Hj(A).
Thus £!' = H} for all § > 0, and so £! = H! on R'.

4. Fix an integer m > 1 The unit cube @ in R™ can be decomposed

into m™ cubes with side E and diameter £ Therefore

n

A= @ ia ( )S—a(s)n%m“;

=1
and the last term goes to zero as m — oo, if s > n. Hence H*(Q) = 0,
and so H*(R™) = 0. O
A convenient way to verify that H® vanishes on a set is the following:

LEMMA 2.1. Suppose A C R™ and Hj(A) =0 for some 0 < § < oo.
Then H*(A) = 0.

Proof. The conclusion is obvious for s= 0, and so we may assume
s> 0.

Fix € > 0. There then exist sets {C;}52; such that A C U32,Cj,

and
> <d1amC’ )
Za <e.
Jj=1

In particular for each ¢,

diam C; < 2 <a€8)> = 8(c).

Hence
Hj(A) < e

Since d(e) — 0 as € — 0, we see that H*(A) = 0. O
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Next we define the Hausdorff dimension of a subset of R”.
LEMMA 2.2. Let ACR" and 0 < s <t < o0.
(i) If H*(A) < oo, then H'(A) = 0.
(i) If H'(A) > 0, then H®(A) = +co.

Proof. Let H*(A) < oo and 6 > 0. Then there exist sets {C};}32; such
that diam C; <6, A C U2, C; and

Y als) (dlamc ) < HI(A)+1 < HY(A) + 1.
Jj=1

Consequently,
HL(A) < ia(t) <d1ar;cj>
j=1
= z(—z))Zs_tJf;a(s) <diar;1 C]>S (diam C;)"~*
< %2”5”(%8(14) +1)

We send 6 — 0 to conclude H'(A) = 0. This proves assertion (i).
Assertion (ii) follows at once from (i). O

DEFINITION 2.2. The Hausdorff dimension of a set A CR" is
Haim(A) = inf{0 < 5 < 00 | H7(4) = 0}.

Remark. Observe Hgim(A) < n. Let s = Hgym(A). Then H!(A) = 0
for all t > s and H!(A) = +oo for all t < s;H*(A) may be any number
between 0 and oo, inclusive.

Furthermore, Hgim (A) need not be an integer. Even if Hygip, (A) = k
is an integer and 0 < H¥(A) < oo, A need not be a “k-dimensional
surface” in any sense; see Falconer [Fal|, [Fa2] or Federer [F| for ex-
amples of extremely complicated Cantor-like subsets A of R™, with
0 < H*(A) < . O
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2.2 Isodiametric inequality, H™ = L™

Our goal in this section is to prove H" = L™ on R". This is not
obvious, since L" is defined as the n-fold product of one-dimensional
Lebesgue measure £ and therefore

L7(A) =inf{d L™"(Q;) | Qs cubes, A C U2, Q;}.
=1

On the other hand, H"(A) is computed in terms of arbitrary coverings
of small diameter.

LEMMA 2.3. Let f : R™ — [0, 00] be L™-measurable. Then the region
“under the graph of f”

A:={(z,y) |z eR"yeR 0<y < f(z)},
is L -measurable.
Proof. Set
9(z,y) = f(x) —y
for x € R™ and y € R. Then g is £ !-measurable and thus
A={(z,y) [y =0} {(z,y) | g(x,y) = 0}
is LT l-measurable. O
NOTATION Fix a,b € R™, with |a| = 1. We define
yi={b+ta]|t e R},
the line through b in the direction a, and
P,:={zeR" |z -a=0},
the plane through the origin perpendicular to a.

DEFINITION 2.3. Choose a € R™ with |a| =1, and let A C R™. We
define the Steiner symmetrization of A with respect to the plane P,
to be the set

1
Sa(4):= {b+ta||t|§§7{1(AﬂL‘g)}.
beP,
ANLy#0
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Sa(A)

Pa

THEOREM 2.3 (Properties of Steiner symmetrization).
(i) diamS,(A) < diam A.
(ii) If A is L™-measurable, then so is S,(A); and

L"(5a(4)) = L"(A).

Proof. 1. Statement (i) is trivial if diam A = oo; assume therefore
diam A < oo. We may also suppose A is closed. Fix € > 0 and select
x,y € Su(A) such that

diam S, (A) < |z —y| +e.
Write b:=x — (z-a)a and ¢ =y — (y - a)a; then b, c € P,. Set
r:=inf{t |b+ta € A},
s:=sup{t | b+ta € A},
u:=inf{t | c+ta € A},
v:=sup{t | c+ta € A}.
Without loss of generality, we may assume v — r > s — u. Then

1 1
v—rzi(v—r)—i-ﬁ(s—u)
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1 1

25(3—7‘)4'5(”—“)
> %Hl(Ang‘) + %%%Amg).

Now |z -a| < SHY(ANLY) and |y - a| < 2H (AN LY). Consequently
v—r>lr-al+ly-al>lr-a—y-al
Therefore

(diam S, (4) =€) < |o —yf*
=lb—c+|r-a—y-al?
<|b—cP+(v—r)?
= |(b+ra) — (c+va)|?
< (diam A)?,
since A is closed and so b+ra,c+wva € A. It follows that diam S,(A) —
e < diam A. This establishes (i).

2. As L™ is rotation invariant, we may assume a = e,, = (0,...,0,1).
Then P, = P., = R"! Since £! = H! on R!, Fubini’'s Theorem
implies the map f: R"~! — R defined by f(b) = H'(ANLE) is L1
measurable and £"(A) = [gn-1 f(b) db. Hence

—f(b) f(b)

sy = { 0.y | L <y < IO o ozgna-o)

is L"-measurable by Lemma 1, and

() = [ o= () =

Remark. In proving H" = L™ below, observe we only use statement
(ii) above in the special case that a is a standard coordinate vector.
Since H™ is obviously rotation invariant, we therefore in fact prove £"
is rotation invariant. O

THEOREM 2.4 (Isodiametric inequality). For all sets A CR",

diam A) "

£ < ao) (1
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Remark. This is interesting since it is not necessarily the case that A
is contained in a ball whose diameter is diam A. O

Proof. 1. If diam A = oo, this is trivial; let us therefore suppose
diam A < oo. Let {ej,...,e,} be the standard basis for R™. Define
Ay =8¢ (A), Ay =S¢, (A1),..., Ay =S, (Ap—1). Write A* = A,,.

2. Claim #1: A* is symmetric with respect to the origin.

Proof of claim: Clearly A; is symmetric with respect to P,.,. Let 1
< k < n and suppose Ay is symmetric with respect to P.,,... P,

€L

Clearly Apy1 = Se,.,(Ax) is symmetric with respect to P, , Fix 1

k+1

<j < kandlet S;:R" — R" be reflection through P . Let b € P,
Since S;(Ax) = Ag,

k+1°

HH (A N L) = HH (AN LG,
consequently
{t ‘ b+ texs1 € Ak+1} = {t ‘ Sjb +tert1 € Ak+1}.

Thus Sj(Agt+1) = Agy1; that is, Apyq is symmetric with respect to
P,. Thus A* = A, is symmetric with respect to P,,..., P, and so
with respect to the origin.

3. Claim #2: L(A*) < a(n) <%)“

Proof of claim: Choose z € A*. Then —x € A* by Claim #1, and so
diam A* > 2|z|. Thus A* C B(0, %) and consequently

ey < 20 (5(058)) < o (B’

4. Claim #3: L"(A) < a(n) (Sama)"

Proof of claim: A is £L™-measurable, and thus Lemma 2 implies
L"((A)*) = L"(A), diam(A)* < diam A.

Hence Claim # 2 lets us compute

£7(A) < £7(A) = £7((A (dlamz )
A

> = a(n) <dla;n‘4>n. O
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THEOREM 2.5 (n-dimensional Hausdorff and Lebesgue mea-
sures). We have

H" =L"  onR"™
Proof. 1. Claim #1: L"(A) < H"(A) for all A C R".
Proof of claim: Fix § > 0. Choose sets {C;}32; such that A C U2, C;
and diam C; < 6. Then by the isodiametric inequality,

o0

i ;a <d1amC>

Taking infima, we find £"(A) < H}(A), and thus L"(A) < H"(A).

2. Now, from the definition of £™ as £ x --- x L', we see that for
all ACR"™ and 6 > 0,

=1

= inf {ZE" ) | Qi cubes, A C U Q;,diam Q; < 5}

Here and afterwards we consider only cubes parallel to the coordinate
axes in R"™.

3. Claim #2: H™ is absolutely continuous with respect to L£™.
Proof of claim: Set C,, = a(n)(@)". Then for each cube @) C R",

o) (229) — (@)

2
Thus
Hy (A)
< inf ia(n) <M>n | AC G Q;,diam Q; < ¢
i=1 2 =1

=CL,L"(A),
where in the second line the Q; are cubes. Let § — 0.
4. Claim #3: H"(A) < L"(A) for all A CR™.

Proof of claim: Fix 6 > 0,e > 0. We can select cubes {Q;}5°,, such
that A C U2, Q;, diam Q; < J, and

Zﬁ" ) < LM(A) 4 e
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According to Theorem 1.26, for each i there exist disjoint closed balls
{B;}%°, contained in Q¢ (= interior of Q;) such that

s s (0= Uni) e (- U)o
k=1 k=1

By Claim #2, H"(Q; — U2, B;) = 0. Thus

HE) < S Q) = S (U B,z) <SS )
=1 =1 k=1 i=1 k=1

Let 9, — 0. O

2.3 Densities
We proved in Section 1.7 that

I L"(B(z,r)NE) )1 for LT-ae. x€EE
7’12% a(n)rn 0 for L™a.e. xeR" - E,
provided £ C R”™ is L™-measurable. This section develops some analo-
gous statements for lower dimensional Hausdorff measures. We assume
throughout
0<s<n.

THEOREM 2.6 (Density at points not in E). Assume E C R", E
is H*-measurable, and H*(F) < oo. Then

lim H*(B(z,r) N E)

r—0 a(s)rs =0

for H-a.e. x € R® — F.
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Proof. Fix t > 0 and define

A, = {x €R" — F | limsup H(Blx,r) O E) > t} )
—s0 a(s)rs

Now H*L E is a Radon measure, and so given ¢ > 0, there exists a
compact set K C E such that

HI(E - K)<e (%)

Set U := R"™ — K; then U is open and A; C U. Fix § > 0 and consider
the family of balls

F = {B(:E,T) | B(z,r) CU,0 <71 <9, H*(Ble,r) N E) > t}.

a(s)rs

By the Vitali Covering Theorem, there exists a countable disjoint fam-
ily of balls {B;}:2, in F such that

c|JB
i=1
Write B; = B(x;, ;). Then
Hios(Ar) <) a(s)(5ry)* < —ZH (B;NE)
=1 =1
5S 5% 5%

t?—t (UNE) = H (E—K)gTE,

by (%). Let 6 — 0 to find H*(A4;) < 5%t~ Le. Therefore H*(A;) = 0 for
each t > 0, and the theorem follows. O

THEOREM 2.7 (Density bounds for points in E). Assume E C
R"™, E is H®-measurable, and H*(E) < co. Then

1 < lim sup H*(B(z,r) N E)

<1
2s r—s0 a(s)rs -

for H?-a.e. x € E.
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Remark. It is possible to have

lim sup <1
r—0 a(s)rs
and H3 (B E
liminf 7L B@NNE)
=0 a(s)rs
for H%-a.e. z € E, even if 0 < H*(E) < oc. O

Proof. 1. Claim #1: limsup,._,, HAB@)E) < 1 for Ho-ae. x € E.

a(s)rs

Proof of claim: Fix € > 0,t > 1 and define

B, = {a; € F | limsup

H*(B(z,r) N E) - t} .

r—0 a(s)rs

Since H®L FE is a Radon measure according to Theorem 1.7, there exists
an open set U containing B; with

Define

F = {B(a;,r) | B(z,r) CU,0 <r <9,

HI(UNE) <H(B) +e. (%)

H¥(B(z,r) N E) - t} .

a(s)rs

According to Theorem 1.25, there exists a countable disjoint family of
balls {B;}72, in F such that

for each m =1, 2,

BthBu U B;

1=m-+1

. Write B; = B(z;,r;). Then

Hios(By) <> als)r + Z )(573)°
=1 i=m+1
<1§:7-l3(3-mE)+f i H*(B;NE)
=7 i . i
=1 i=m+1
<

—%S(UOE + %( U BﬂE)

i=m-+1
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This estimate is valid for m = 1,...; and thus our sending m to infinity
yields the estimate

Hios(By) < 711 (U M E) < 1 (By) + o
by (x) . Let § — 0 and then ¢ — 0:
H(By) < t7"H (By).

Since H®*(B;) < H*(E) < oo, this implies H*(B;) = 0 for each t > 1.
Mo (B(z,r)NE) > L for H5-a

a(s)rs = 25

2. Claim #2: We have limsup,._,,
e k.
Proof of claim: For § > 0,1 > 7 > 0, denote by E(d, ) the set of points
x € F such that

H(C N E) < ra(s) <diamc>s

2

whenever C C R", x € C, diam C < §. Then if {C;}$°, are subsets of
R™ with diam C; < §, E(6,7) C U2, C;, and C; N E(,7) # ), we have

H3(E(5,7)) < Y HF(CiN E(,7))
i=1

<> M CinE)

i=1

g (dmm(]) '

Hence H3(E(d,7)) < T7H5(E(S,7)). Consequently H5(E(4,7)) = 0,
since 0 < 7 < 1 and H§(E(S, 7)) < H(E) < H*(E) < oo. In par-
ticular,

H¥(E(5,1—6))=0. (%)
Now if x € E and

lim su < —
1nr1:0p a(s)rs 2s’

there exists § > 0 such that

Hi (B(x,r)NE) < 1-9
a(s)rs - 2

()
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for all 0 < r < 6. Thus if x € C and diam C < 4, we have
H:(CNE)=H (CNE)
< H: (B(z,diamC)NE)

< (1-dja(s) (L)

by (**); consequently = € E(4,1 — 0). But then

{erUimsupHgo(B(“mE) < 1}@ GE(I 1—1>,

0 a(s)rs 2s k’ k

and so (x) finishes the proof of Claim #2.

3. Since H*(B(z,r) N E) > H5 (B(z,r) N E), Claim #2 at once
implies the lower estimate in the statement of the theorem. O

2.4 Functions and Hausdorfl measure

In this section we record for later use some simple properties relat-
ing the behavior of functions and Hausdorff measure.

2.4.1 Hausdorff measure and Lipschitz mappings

DEFINITION 2.4.

(i) A function f : R™ — R™ is called Lipschitz continuous if there
exists a constant C such that

[f(@) = fW)l < Cle—y| forallz, y €R™ (%)

(ii) The smallest constant C' such that (x) holds for all z, y is the
Lipschitz constant for f, denoted

[f(z) = f(y)l

Lmﬁ%=$m{ P—

!%yGRﬂw#y}

We will sometimes refer to a Lipschitz continuous function as a
“Lipschitz function”.
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THEOREM 2.8 (Hausdorff measure under Lipschitz maps).

(i) Let f: R™ — R™ be Lipschitz continuous, A CR™ and 0 < s <
co. Then

H(f(A)) < (Lip(f))*H>(A).

(ii) Suppose n > k and let P : R* — R* denote the projection.
Assume A CR"™ and 0 < s < oo. Then

H*(P(A)) < H*(A).

Proof. 1.Fix ¢ > 0 and choose sets {C;}52; C R" such that diam C; <
J, A C UX,C;. Then diam f(C;) < Lip(f)diamC; < Lip(f)d and
f(A) C U, f(Ci). Thus

Hisppa( () = 3 a(s) (210

=1

< (Lip(f SZQ <d1amC’> .

=1

Taking infima over all such sets {C;}52,, we find

Hiip()s(f(4) < (Lip(f)) H5(A).
Send § — 0 to finish the proof of (i).
2. Assertion (ii) follows at once, since Lip(P) = 1. O

2.4.2 Graphs of Lipschitz functions
DEFINITION 2.5. For f:R"™ — R™ and A C R", write

G(f; A) = {(x, f(x)) |z € A} CR" x R™ = R"*"™;
G(f; A) is the graph of f over A.

THEOREM 2.9 (Hausdorff dimension of graphs). Assume that
f:R* = R™ and L"(A) > 0.

(i) Then Haim(G(f;A)) >n
(ii) If f is Lipschitz continuous, Haim (G(f;A)) =
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Remark. We thus see the graph of a Lipschitz continuous function
f has the expected Hausdorff dimension. We will later discover from
the area formula in Section 3.3 that H"(G(f; A)) can be computed
according to the usual rules of calculus. O

Proof. 1. Let P : R"™™ — R" be the standard projection. Then
H™(G(f;A)) > H™(A) > 0 and thus Hain (G(f; A)) > n.

2. Let @ denote any cube in R” of side length 1. Subdivide @ into
k™ subcubes of side length % Call these subcubes Q1,...,Qr~». Note

diam Q; = % Define

a’ := min fi(z), b’ := max fi(x
fori=1,...,m; j=1,...,k™ Since f is Lipschitz continuous,
vn

b5 — a’] < Lip(f) diam Q; = Lip(f)T-

Next, let C; := Q; x [[;~, (a},b}). Then

{(z, f(2))lz e Q;NA} C C

and diam C; < % Since G(f; ANQ) C U?;Cj, we have

k™ . n
1y (G 40 Q) < Y a() (5

"o(n) <%>n — a(n) <%>n

Then, letting & — oo, we find H"(G(f; AN Q)) < oo, and so
Hyim (G(f; AN Q)) < n. This estimate is valid for each cube @ in
R™ of side length 1, and consequently Hgim (G(f; A)) < n. O

IN
NA

2.4.3 Integrals over balls

If a function is locally summable, we can estimate the Hausdorff
measure of the set where it is locally large.
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THEOREM 2.10 (Hausdorff measure and integrals over
balls). Let f € L (R"), suppose 0 < s < n, and define

loc

1
AS:—{xeR”‘limsup—/ \f\dy>0}.
r—0 r B(l’,’l”)

1o (Ay) = 0.

Then

Proof. 1. We may as well assume f € L'(R™). According to the
Lebesgue—Besicovitch Differentiation Theorem,

lim [fldy = |f ()],

r—0 B(x,r)

and thus )

lim—s/ fldy = 0
=07 JB(z,r)

for L™-a.e. z, since 0 < s < n. Hence
L"(As) = 0.
2. Now fix e > 0,0 > 0,0 > 0. As f is L"-summable, there exists

n > 0 such that £"(U) < n implies [, |f|dz < 0.
Define

1
AS = xER”‘lim—s/ |fldy >€p;
r—0r B(w,r)

LM(AS) =0
There thus exists an open subset U with U D AS, £L™"(U) < 7. Define

then

F o=

{B(x,r) |z € AS,0<r <§,B(x,r) CU,
B(z,r)

|f|dy>e7’s}.

By the Vitali Covering Theorem, there exist disjoint balls {B;}:°; in
F such that

AS C G B;.
=1
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Hence, writing r; for the radius of B;, we compute
Hios(AS) < D als)(5rs)°

a(s)5®
; ;/B fldy

a(s)b®
d
< /U fldy
o

<

IN

Send § — 0, and then ¢ — 0, to discover
HP(AS) = 0.

This holds for all € > 0 and hence H*(A;) = 0. d

2.5 References and notes

Again, our primary source is Federer [F], especially [F, Section 2.10].
Steiner symmetrization may be found in [F, Sections 2.10.30, 2.10.31].
We closely follow Hardt [H| for the proof of the isodiametric inequality,
but incorporated a simplification due to L-F Tam, who noted that we
need to symmetrize only in coordinate directions. R. Hardt told us
about Tam’s observation.

The proof that H"™ = L™ is from Hardt [H] and Simon [S, Sections
2.3-2.6]. We consulted [S, Section 3] for the density theorems in Section
2.3.

Falconer [Fal, Fa2] and Morgan [Mo] provide nice introductions to
Hausdorff measure. A good advanced text is Mattila [Ma].



Chapter 3

Area and Coarea Formulas

In this chapter we study Lipschitz continuous mappings

f:R®" > R™
and derive corresponding change of variables formulas. There are two
essentially different cases depending on the relative size of n and m.

If m > n, the area formula asserts that the n-dimensional measure
of f(A), counting multiplicity, can be calculated by integrating the
appropriate Jacobian of f over A.

If m < n, the coarea formula states that the integral of the n —
m dimensional measure of the level sets of f can be computed by
integrating the Jacobin. This assertion is a far-reaching generalization
of Fubini’s Theorem. (The word “coarea” is pronounced, and often
spelled, “co-area.”)

We begin in Section 3.1 with a detailed study of the differentiability
properties of Lipschitz continuous functions and prove Rademacher’s
Theorem. In Section 3.2 we discuss linear maps from R" to R™ and
introduce Jacobians. The area formula is proved in Section 3.3, the
coarea formula in Section 3.4.

3.1 Lipschitz functions, Rademacher’s Theorem
3.1.1 Lipschitz continuous functions

We recall and extend slightly some terminology from Section 2.4.
DEFINITION 3.1.

(i) Let A C R™. A function f : A — R™ is called Lipschitz con-
tinuous provided

[f(z) = f(y)| < Cla -y (%)

for some constant C and all z, y € A.

101
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(ii) The smallest constant C such that (%) holds for all z, y is denoted

[f(z) = f(y)

Lip(f):—sup{ P |\ 7y€Ax7éy}

Thus
|f(z) = f(y)| < Lip(f)lz —yl (z,y € A).

(iii) A function f : A — R™ is called locally Lipschitz continuous
if for each compact K C A, there exists a constant C'x such that

[f(z) = f(y)] < Cklz -y
forallz,y € K.

THEOREM 3.1 (Extension of Lipschitz mappings). Assume
ACR" andlet f: A— R™ be Lipschitz continuous.

Then there exists a Lipschitz continuous function f : R — R™
such that

(i) f=fonA,
(i) Lip(f) < v/mLip(f).
Proof. 1. First assume f : A — R. Define
f(x) = inf {f(a) + Lip(f)le —al} (z €R").
If b € A, then we have f(b) = f(b).This follows since for all a € A,
f(a) +Lip(f)|b—a| = f(b);
whereas obviously f(b) < f(b). If z,y € R™, then
f() < inf {f(a) +Lip(f)(ly — al + = = y])}
= f(y) + Lip(f)|z — y|.

Likewise

fy) < f(z) + Lip(f)|z — yl.

2. In the general case that f : A — R™, f = (f1,..., f™), we define
f=(f'..,f™). Then

|f(2) Zlf (9)* < m(Lip(f))2z —y. O

Remark. Kirszbraun’s Theorem ([F, Section 2.10.43]) asserts that
there in fact exists an extension f with Lip(f) = Lip(f). O
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3.1.2 Rademacher’s Theorem

We next prove Rademacher’s remarkable theorem that a Lipschitz
continuous function is differentiable £™-a.e. This is surprising since the
inequality

|f(z) = f(y)| < Lip(f)|z —y|

apparently says nothing about the possibility of locally approximating
f by a linear map. (In Section 6.4 we prove Aleksandrov’s Theorem,
stating that a convex function is twice differentiable-a.e.)

DEFINITION 3.2. The function f : R™ — R™ is differentiable at
x € R™ if there exists a linear mapping

L:R" —-R™
such that
i FW) — f(@) —L(y—2)]

y—a |z — y

= 0’
or, equivalently,

fly)=fl@)+Lly—=z)+o(ly—=z|) asy— z.

NOTATION If such a linear mapping L exists, it is clearly unique,
and we write

Df(z)
for L We call D f(x) the derivative of f at x.

THEOREM 3.2 (Rademacher’s Theorem). Assume that f :
R™ — R™ is a locally Lipschitz continuous function.

Then f is differentiable L™-a.e.

Proof. 1. We may assume m = 1. Since differentiability is a local
property, we may as well also suppose f is Lipschitz continuous.

Fix any v € R™ with |v| = 1, and define

D, f(z) = lim flz+ tut) — f(z)

(z € R"),

provided this limit exists.

2. Claim #1: D, f(x) exists for L™-a.e. x.
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Proof of claim: Since f is continuous,

t—0
= lim sup f(.%' + tv) B f(.%‘)
k=00 o< ft|< L t

t rational

is Borel measurable, as is

D, f(x) := liminf o+ tv) = f(x)

t—0 t

Thus

A, ={z € R" | D, f(x) does not exist}
={z €R" | D,f(2) < Dyf(2)}

is Borel measurable.

For each z,v € R"™ with |v| =1, define ¢ : R — R by
o(t) == f(z+tv) (teR).

Then ¢ is Lipschitz continuous, thus absolutely continuous, and thus
differentiable £!-a.e. Hence

HY (A,NL)=0
for each line L parallel to v. Fubini’s Theorem then implies

L"(A,) = 0.

3. As a consequence of Claim #1, we see that

grad f(z) := (fo, (%), ..., fo, (z))
exists for L™-a.e. point .

Claim #2:

D,f(z) =v-grad f(z) for L™-a.e. x.
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Proof of claim: Write v = (vy,...,v,). Let ¢ € C°(R™). Then

/ [f(f“rtv)—f(fﬂ)

t

] ¢(z) dw

[ [«x)—ct(x—w) .

Put t = % in the above equality and observe

1 < Lip(f)[v[ = Lip(f)-

‘f(x—i—%v) — f(x)

k

Thus the Dominated Convergence Theorem implies

Dyf(x)¢(x)de = — | f(z)Du((x) dx

R7 R7

= /n(v ~grad f(z))((z) dz,

where we used Fubini’s Theorem and the absolute continuity of f on
lines. The above equality holding for each ¢ € C.(R™) implies D, f =
v-grad f L"-a.e.

4. Now choose {v;}72, to be a countable, dense subset of 0B(1).
Set for k=1,2,...

Ak =
{z e R" | D, f(z),grad f(x) exist, D,, f(z) = vy - grad f(z)},
and define -
A=) A
k=1
Observe
LM R" — A) =0.

5. Claim #3: f is differentiable at each point z € A.
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Proof of claim: Fix any x € A. Choose v € dB(1),t € R, t # 0, and

write
flz+tv) — f(z)

Then if ' € 0B(1), we have

|Q($,’U,t) —Q(IL',U/,t)|
< flx+tv) — flz+t)

—v-grad f(z).

+ (v —0') - grad f ()]

- t
< Lip(f)lv — | + [ grad f(z)|lv — /|
< (Vn+1)Lip(f)lv —'|. (%)
Now fix € > 0, and choose N so large that if v € 9B(1), then
o — vl < E (%)
7 2(yn D Lip, ()
for some k € {1,...,N}.
Now
lim Q(z, v, t) =0 (k=1,...,N),
t—0
and thus there exists 4 > 0 so that
|Q($,’L)k,t)|<§ forall 0 < |t| <d,k=1,...,N. (% * %)

Consequently, for each v € 9B(1), there exists k € {1,..., N} such
that

|Q(z,v,t)| <|Q(z, vk, t)| + |Q(x,v,t) — Qx, vk, t)| < €

if 0 < [t| < 4§, according to (x) — (%% *). Note the same § > 0 works for
all v € 0B(1).

Now choose any y € R™, y # x. Write v := ‘ |,sothaty—x+tv
for t := |z — y|. Then

fly) — f(z) —grad f(z) - (y — x) = f(z +tv) — f(x) — tv - grad f(z)
= o(t)

=o(lx—y|) asy— .
Hence f is differentiable at x, with

Df(z) = grad f(z). O
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Remark. See Theorem 6.6 for another proof of Rademacher’s Theorem
and Theorem 6.5 for a generalization. O

We next record some technical facts for use later.
THEOREM 3.3 (Differentiability on level sets).

(i) Let f:R™ — R™ be locally Lipschitz continuous, and
Z :={xeR"| f(z) =0}.
Then Df(z) =0 for L™-a.e. x € Z.
(ii) Let f,g:R™ — R™ be locally Lipschitz continuous, and
V= {z € R" | g(f(x)) = z}.

Then
Dg(f(z))Df(z)=1 for L"-a.e. x €Y.

Proof. 1. We may assume m = 1 in assertion (i).

Choose x € Z so that D f(z) exists, and

. LYZnNB(x,r)
M LBy %)
L™-a.e. point x € Z will do. Then

fly)=Df(z) - (y—=z)+o(ly—=z|) asy— = ()

Assume a := D f(z) # 0, and set
1
S = {’L)E@B(l) ‘ a-v> §|a|}
For each v € S and t > 0, put y = z + tv in (*):
tlal
flz+tv) =a-tv+o|tv]) > 5 +o(t) ast—0.
Hence there exists tg > 0 such that

flx+tv) >0 for 0<t<ty,veS,

a contradiction to (*). This proves assertion (i).
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2. To prove assertion (ii), first define

A:={x | Df(x) exists}, B:={x | Dg(z) exists}.

Let
X:=YNnAnfYB).
Then
Y-XC(R"—A)Ug(R" - B). (% * %)

This follows since

reY — f1(B)
implies

f(x) € Rn - Ba
and so

z=g(f(x)) € g(R" — B).

According to (* * x) and Rademacher’s Theorem,
LY —X)=0.
Now if z € X, then Dg(f(x)) and D f(z) exist; and consequently
Dg(f(#))Df(x) = D(go f)(z)
exists. Since (go f)(x) —x =0 on Y, assertion (i) implies

D(gof)=1 L"-ae.onY. O

3.2 Linear maps and Jacobians

We next review some linear algebra. Our goal thereafter will be to
define the Jacobian of a map f: R™ — R™.

3.2.1 Linear mappings
DEFINITION 3.3.
(i) A linear map O : R™ — R™ is orthogonal if
(Ox)-(Oy) =z -y
for all x,y € R™.
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(ii) A linear map S : R™ — R"™ is symmetric if
z-(Sy) = (Sz) -y
for all x,y € R™.

(iii) A linear map D : R™ — R"™ is diagonal if there exist dy, ..., d, €
R such that
Dx = (dyzy,...,dyzy)

for all x € R™.

(iv) Let A:R™ — R™ be linear. The adjoint of A is the linear map
A* :R™ — R"™ defined by

z-(A%y) = (Az) -y
for all x € R™,y € R™.

First we record some standard facts from linear algebra.

THEOREM 3.4 (Linear algebra).

() A =

(ii)) (Ao B)* = B* o A*.

(iii) O Lif O : R™ — R" is orthogonal.

(iv) S* =8 if S: R™ — R" is symmetric.

(v) If S : R™ — R™ is symmetric, there exists an orthogonal map

O :R"™ — R™ and a diagonal map D : R™ — R™ such that

S=00DoO™ %

(vi) If O : R™ — R™ is orthogonal, then n < m and

O*cO=1 onR"
OocO*=1 onR™

THEOREM 3.5 (Polar decomposition).
Let L : R™ — R™ be a linear mapping.
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(i) If n < m, there exists a symmetric map S : R — R™ and an
orthogonal map O : R™ — R™ such that

L=00oS5.

(ii) If n > m, there ezists a symmetric map S : R™ — R™ and an
orthogonal map O : R™ — R™ such that

L=S00".

Proof. 1. First suppose n < m. Define C := L*oL; then C : R — R".
Now

and also
(Cz)-x=Lx-Lx > 0.

Thus C is symmetric, nonnegative definite. Hence there exist
K15 .-, [y > 0 and an orthogonal basis {z}7_,; of R™ such that

Crxp = uxr (k=1,...,n).

Write g, := A2, A\ >0 (k=1,...,n).

2. Claim: There exists an orthonormal set {z;}7_; in R™ such that
L$k = )\k.zk (k? = 1,... ,TL).

Proof of claim: If A\, # 0, define

1
Then if g, \; # 0,
1 1 A2 Ak
vy = ——Laxp - Loy = —(Caxp) -1 = —% cxp = 226,
2k 2 WY xy - Ly )\Ml( xy) - X >\k>\lxk x e

Thus the set {2z | Ay # 0} is orthogonal. If A, = 0, define z;, to be any
unit vector such that {z}}_; is orthonormal.

3. Now define S : R — R" by

ka:)\ka}k (k:1,...,n)
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and O : R" — R™ by
Oxp =z, (k=1,...,n).
Then O o Sz, = A\;Ox = Mgz, = Lz, and so
L=00oS5.

The mapping S is clearly symmetric, and O is orthogonal since

O$k . Ol’l = Zk 2 = 5kl-

4. Assertion (ii) follows from our applying (i) to L : R™ — R™.
DEFINITION 3.4. Assume L :R™ — R™ is linear.

111

O

(i) If n < m, we write L = O oS as above, and we define the

Jacobian of L to be
[L] =|detS|.

(ii) If n > m, we write L = S o O* as above, and we define the

Jacobian of L to be
[L] =|detS|.

Remark. It follows from Theorem 3.6 below that the definition of [ L]
is independent of the particular choices of O and S. Observe also that

[LT=1L7T.
THEOREM 3.6 (Jacobians and adjoints).

(i) If n < m,
[L]? =det(L*o L).

(ii) If n > m,
[L]? = det(L o L*).

Proof. Assume n < m and write
L=00oS, L*=500%

then
L*oL=8500*0008 =52,

since O is orthogonal, and thus O* o O = I. Hence
det(L* o L) = (det S)> = [L]?.

The proof of (ii) is similar.

g
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Theorem 3.6 provides us with a useful method for computing [ L],
which we augment with the Binet—Cauchy formula below.

DEFINITION 3.5.
(i) If n < m, we define
Alm,n) ={X:{1,...,n} = {1,...,m} | X is increasing}.
(ii) For each A € A(m,n), we define P\ : R™ — R" by
Py(z1,...,2m) = (Ta(1), -+ Ta(n))-
(iii) For each A € A(m,n), define the n-dimensional subspace
Sy = span{ex(),-..,exm)} € R™.

Then Py, is the projection of R™ onto S).

THEOREM 3.7 (Binet—Cauchy formula). Assume that n < m
and L : R"™ — R™ 45 linear. Then

[LTP= > (det(Pyo L))

AEA(m, n)

Remark. Thus to calculate [ L ]]2, we compute the sums of the squares
of the determinants of each (n x m)-submatrix of the (m x n)-matrix
representing L (with respect to the standard bases of R” and R™).

In view of Lemma 3.1 below, this is a higher dimensional general-
ization of the Pythagorean Theorem. O

Proof. 1. Identifying linear maps with their matrices with respect to
the standard bases of R™ and R™, we write

L = ((lig))mxns A = L 0 L= (ai7))ncn

so that "
Qij = Zlkilk]‘ (i,7=1,...,n).
k=1

2. Then .
[L]* =det A= sgn(o) [ aion)
i=1

oEX
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¥ denoting the set of all permutations of {1,...,n}. Thus

[Z]* =) sen(o Hzlkilka(i)
oEX i=1k=1
n
= sen(0) Y [Tlswilswrow,
oen pedi=1
® denoting the set of all one-to-one mappings of {1,...,n} into

{1,...,m}.

3. For each ¢ € @, we can uniquely write ¢ = Ao, where § € X
and A € A(m,n). Consequently,

[[L]]Q = Z sgn(o) Z Z Hl)\OG(i),il/\oe(i),a(i)

ogeY AEA(M,n) ey i=1
= sen(o) Y D T @ia.een-1a)
oeY. AEA(m,n) 0eX =1

= > > > seu HlM)e()lA(),aoe()

AEA(m,n) 0EX oD i=1
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= Z ZZSgn(e)Sgn(lO)HZA(i),G(i)l)\(i),p(i)
=1

AeA(m,n) pEX OED

n 2
= Y <ZSgn(0)HlA(i),€(i)>

AEA(m,n) \PEX
= ) (det(PyoL))?
AEA(m,n)
where we set p =0 0. 0

3.2.2 Jacobians

Now let f : R™ — R™ be Lipschitz continuous. By Rademacher’s
Theorem, f is differentiable £"-a.e., and therefore D f(x) exists, and

can be regarded as a linear mapping from R™ into R™, for L™-a.e.
z € R™

NOTATION If f: R" = R™, f=(f,...,f™), we write the gradi-
ent matrix

1. 1
Xy Tn
Df =
m DY m
r1 In/ mXn

at each point where D f exists.
DEFINITION 3.6. For L™ a.e point x, we define the Jacobian of
f to be

Jf(x):=[Df(x)].

3.3 The area formula
Through this section, we assume
n<m.
3.3.1 Preliminaries
LEMMA 3.1. Suppose L : R™ — R™ is linear, n < m. Then
H(L(A)) = [L] £"(A)
for all A C R"™.
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Proof. 1. Write L =0 o0 S as in Section 3.2; [ L] = |det S|.

2.If [L] =0, then dim S(R™) < n — 1 and so dim L(R™) <n — 1.
Consequently, H"(L(R™)) = 0.

If [L] >0, then
H"(L(B(x,r)) L"(O*o L(B(z,r)) L"(O*o0OoS(B(z,1))

Lr(B(z,r)) Lr(B(x,r)) N Lr(B(x,r))
LM(S(Bar) _ LYS(BO))
Lr(B(z,r)) a(n)
=|detS|=[L].

3. Define v(A) := H™(L(A)) for all A C R™. Then v is a Radon
measure, v << L™, and

Dnv(a) = lim % =[I].

Thus for all Borel sets B C R™, Theorem 1.30 implies
H"(L(B)) = [ L] £"(B).

Since v and L™ are Radon measures, the same formula holds for all
sets A C R™. O

Henceforth we assume f : R™ — R™ is Lipschitz continuous.
LEMMA 3.2. Let A CR" be L™-measurable. Then
(i) f(A) is H™-measurable,
(ii) the mapping y — HO (AN f~1 {y}) is H"-measurable on R™, and
(i)
| Han s ah an < L)y e ().

DEFINITION 3.7. The mapping y — H°(AN f~{y}) is the mul-
tiplicity function.
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Proof. 1. We may assume with no loss of generality that A is bounded.
By Theorem 1.8, there exist compact sets K; C A such that

LMK > L7 (A) — % G=1,...).

As L"(A) < oo and A is L"-measurable, £L"(A — K;) < 1. Since

K2
f is continuous, f(K;) is compact and thus H™-measurable. Hence

fUR,K;) = U2, f(K;) is H™-measurable. Furthermore.

e fns(Qm) e (rfa-Or))
i=1 1=1
< (Lip(f))"L" (A -U K> ~0.
i=1
Thus f(A) is H™-measurable, and this proves (i).
2. Let

<BkZ:

{Q‘Q_(alabl]X"'X(anabn]aai_?ybi_ 7Ci€Z}7

and note that

R"= | J @

QEDBy
Now

gk =D Xf(AnQ)
QEBy

is H™-measurable by (i), and
gr(y) = number of cubes Q € By such that f~{y} N (ANQ) # 0.

Thus as k — oo,
gr(y) = H (AN f~H{y})

for each y € R™; and so y — H(A N f~{y}) is H"-measurable.
3. By the Monotone Convergence Theorem,

HO(AN fFHy}) dH™ = klim gk dH"
—

Rm X JRm
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= lim Y H'(f(ANQ))

QEBy

<limsup »  (Lip(f))"L"(ANQ)

k— o0 QEB,

= (Lip(f))"L"(A). O
LEMMA 3.3. Lett > 1 and
B :={xz | Df(x) exists, J f(xz) > 0}.

Then there is a countable collection {Ey}32 | of Borel subsets of R™
such that

(i) B =UpZ, Ex;
(i) f|g, is one-to-one (k=1,2,...); and

(iii) for each k = 1,2,..., there exists a symmetric automorphism
T : R™ — R™ such that

Llp((f‘Ek) o Tk_l) <t Lip(Tk o (f‘Ek)il) <t,
tin‘detTM < Jf|Ek < t”|detTk|.

Proof. 1. Fix € > 0 so that
tTl4e<l<t—e

Let C be a countable dense subset of B and let S be a countable dense
subset of symmetric automorphisms of R™.

2. For each ¢ € C,T € S, and ¢« = 1,2,..., define E(c,T,i) to be
the set of all b € BN B(c, 1) satisfying

(t~" +€) [Tv] < [Df(b)o| < (t— )T (%)
for all v € R™ and
|f(a) = f(b) = Df(b) - (a —b)| < €[T'(a—b)| (%)

for all a € B(b, 2). Note that E(c,T, i) is a Borel set since D f is Borel
measurable. From (%) and (xx) follows the estimate

7T (a = b)l < |f(a) = f(b)] < t|T(a )| (x %)
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for b € E(c,T,i),a € B(b,2).
3. Claim: If b € E(c,T,1i), then

(t '+ €)' [det T| < JF(b) < (t —e)"| det T.
Proof of claim: Write Df(b) = L = O o S, as above;
Jf(b) =[Df(b)] = |det S].
According to (%) ,
(£ + ) [Tv] < (00 S)o] = |50] < (¢t = )T
for v € R™, and so

(T +e) v <[(SoT Mol <(t—¢€)v| (veR™).

Thus
(SoT™H)(B(1) C B(t - ¢);
whence
[det(S o T~ Y]a(n) < L7(B(t— ) = aln)(t — )",
and hence

|det S| < (t—€)"|detT).
The proof of the other inequality is similar.

4. Relabel the countable collection {E(c,T,i)|lc € C,T € S,i =
1,2,...} as {Eg}2,. Select any b € B, write D f(b) = O oS as above,
and choose T' € S such that

Lip(ToS ) < (t ' +¢) ", Lip(SoT ) <t—e

Now select i € {1,2,...} and ¢ € C so that |[b— ¢ < 1,

[f(a) = f(b) = Df(b) - (a =) la — b < €[T(a—0)

€
< _
< T

for all a € B(b,2). Then b € E(c,T, ). As this conclusion holds for all
b € B, statement (i) is proved.

5. Next choose any set Ej, which is of the form E(e¢, T, i) for some
ceC,TeS,i=1,2,... Let T =T. According to (% * %),

7! Tu(a = b)| < |f(a) = f(b)| < t|Ti(a — )|
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= f(A)

Rm

for all b € Ey,a € B(b,2). As E, C B(c,1) C B(b,2), we thus have
t=HTi(a = b)| < [f(a) = F(b)] < t|Ti(a— b)l (%% % %)

for all a,b € Ej; hence f|g, is one-to-one. Finally, notice the above
implies
Llp((f‘Ek ° Tlgl) <t Lip(Tk o (f‘Ek)il) <t

whereas the claim provides the estimate
t_n| detTk| S Jf|Ek S tn| detTk|.

Assertion (iii) is proved. O

3.3.2 Proof of the area formula

THEOREM 3.8 (Area formula). Let f : R® — R™ be Lipschitz
continuous, n < m. There for each L™-measurable subset A C R",

/ Jfde= [ HO(AN Yy} dH ().
A Rm™

Remark. The area formula tells us that the H"-measure of the image

f(A) C R™, counting multiplicity, can be computed by integrating the
Jacobian Jf over A.

We also see that f~!{y} is at most countable for H"-a.e. y € R™.

O
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Proof. 1. In view of Rademacher’s Theorem, we may as well assume
D f(z) and J f(x) exist for all z € A. We may also suppose L"(A) < oo.

2. Case 1: A C {Jf > 0}. Fix t > 1 and choose Borel sets { £} }?° ,
as in Lemma 3.3. We may assume the sets { E} }32, are disjoint. Define
By, as in the proof of Lemma 3.2. Set

F}Z:EjﬂQiﬂA (QiGBk,j:1,2,...).

Then the sets F; are disjoint and A = Uff}lef-
3. Claim #1:

i D ) = | wean s aane

Proof of claim: Let
(o]
o= Xf(ED;
i,j=1

so that gi(y) is the number of the sets {F;} such that Fj N f~'{y} #
0. Then g(y) — H°(AN f~Yy}) as k — oo. Apply the Monotone
Convergence Theorem.

4. Note

H(F(E)) = H"(flg, o T; ' o Ty(F})) < t"L™(Ty(F}))

and
LT3 (F]) = W (T o (fl,) ™" o F(F) < O (F(F)
by Lemma 3.3. Thus
CTHS(E)) < LT
= 17" det T3 £ (F})

< Jfdx

F]
< t"|det Ty|L™(F))
= t"L"(T;(F}))
< H(f(F)),
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where we repeatedly used Lemmas 3.1 and 3.3. Now sum on ¢ and j:
S W) < [ Irde< £ ST HE)).
ij=1 A i,j=1

Now let k — oo and recall Claim #1:

g2 HO(Amf—l{y})dH”g/dex
A

Rm™

<t [ HNANfTHyY) dH"

Rm
Finally, send t — 1T.
5. Case 2. A C{Jf =0}. Fix 0 < e < 1. We factor

f=poy,
where g : R” — R” x R" is the mapping
9(z) = (f(x), ex),
and p: R™ x R"™ — R™ is the projection

p(y,2) =y.

6. Claim #2: There exists a constant C' such that
0< Jg(x) < Ce

for x € A.
Proof of claim: Write g = (f1,..., f™, ex1,...,exy,); then

Dy(a) = (D / }“)) o

Since Jg(z)® equals the sum of the squares of the (n x n)-
subdeterminants of Dg(z), according to the Binet—Cauchy formula,
we have Jg(x)? > €™ > 0. Furthermore, since |D f| < Lip(f) < oo, we
may also employ the Binet—Cauchy formula to compute

2

involving at least one €

To(e)’ = Tf() + {

m of I f term h
sum of squares of terms, eac }gceg
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for each z € A.

7. Since p : R™ x R™ — R™ is a projection, we can compute, using
Case 1 above,

H"(f(A)) <H"(9(A))

< / HO(AN gy, 2))dH" (3, 2)
R7z+m

:/ Jg(x)dx
A
< eCL"(A).

Let € — 0 to conclude H"(f(A)) =0, and thus
[ eans whane —o
Rn
since spt HO(A N f~H{y}) C f(A). But then

HO(Amfl{y})dH“—o—/ Jfdx.
R™ A

8. In the general case, we write A = A; U Ay with A; C {Jf > 0},
Ay C{Jf =0}, and apply Cases 1 and 2 above. O

3.3.3 Change of variables formula

THEOREM 3.9 (Changing variables). Let f : R" — R™ be
Lipschitz continuous, n < m. Then for each L™-summable function
g:R*” - R,

| s@it@ar= [ |3 o) @)

zef~1{y}

Proof. 1. Case 1. g > 0. According to Theorem 1.12, we can write

9=y %XAZ-
=1
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for appropriate £"-measurable sets {A4;}°,.Then the Monotone Con-
vergence Theorem implies

1
/Rnngde;/RnxAidex
:Z /dea?
=37 [, wen s e

—/Z > e i)

2. Case 2. g is any L"-summable function. Write g = g* — ¢~ and
apply Case 1. O

3.3.4 Applications

A. Length of a curve. (n = 1,m > 1). Assume f : R — R™ is
Lipschitz continuous and one-to-one. Write

f:(flaafm)a Df:(flaafm) (:%)a

so that .
Jf=Dfl=Ifl.
For —oo < a < b < 00, define the curve C := f([a,b]) C R™. Then

b
H'(C) = length of C —/ | f]| dt.
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a b

\

e

Rm

B. Surface area of a graph (n > 1,m =n+1). Assume g : R" - R
is Lipschitz continuous and define f : R” — R"*! by

f(@) = (z,9(x)).

Then
1 0
Df=|: ,
0o --- 1
Gzr = Yo (n+1)xn
consequently,

(Jf)?* = sum of squares of n x n subdeterminants = 1+ |Dg|?.
For each open set U C R", define the graph of g over U,
G =G(g;U) = {(z,9(x)) |z € U} CR" .

Then
H" (G) = surface area of G = / (1+ |Dg|2)% dx.
U

O

C. Surface area of a parametric hypersurface (n > 1,m =n+1).
Suppose f : R® — R"*! is Lipschitz continuous and one-to-one. Write

F=r i,
1L

Df = : : :

n+l .. n+1
fml fmn (n+1)xn
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\

Rn+1

so that

(Jf)? = sum of squares of n x n subdeterminants

_”z+:1|: fklfk+1..7fn+1)2

x1,...,Tp)
For each open set U C R", write
S:= f(U) C R,
Then
H"(S) = n-dimensional surface area of S

B n+1 8(]01"”7fk71’fk+1"”’fn+1) 2 %
_/U <Z [ O(x1,...,zp) ] dr.

k=1

O

D. Submanifolds. Let M C R™ be a Lipschitz continuous, n-
dimensional embedded submanifold. Suppose that U C R"™ and f :
U — M is a chart for M. Let A C f(U), where A is Borel, and set

B = f71(A).

Define
9ij = fo,  fo, (,5=1,...,n).
Then
(Df)*eDf = ((gz]))
and so

Jf=g? forg:= det((gij))-
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Therefore
H"(A) = volume of A in M = / g7 dz.
B

3.4 The coarea formula

Throughout this section we assume

n>m.

3.4.1 Preliminaries

LEMMA 3.4. Suppose L : R™ — R™ is linear and A C R™ is L"-
measurable. Then

(i) the mapping y — H""™(AN L~Yy}) is L™-measurable, and

(i)
A H M ANLT {y}) dy = [L] £™(A).
Proof. 1. Case 1. dim L(R™) < m.

Then for L™-a.e. y € R™, we have AN L~!{y} = () and conse-
quently H"~™ (AN L~Y{y}) = 0. Also, if we write L = S o O* as in
the Polar Decomposition Theorem 3.5, we have L(R™) = S(R™). Thus
dim S(R™) < m and hence [ L] = |det S| = 0.

2. Case 2. L = P = orthogonal projection of R™ onto R™.

Then for each y € R™, P~'{y} is an (n — m) -dimensional affine
subspace of R", a translate of P~1{0}. By Fubini’s Theorem,

y—= H""(AN P {y}) is L™ measurable

and

W (AN P dy = £7(A). (%)

Rm™

3. Case 3. L : R™ — R™ dim L(R"™) = m.
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Using the Polar Decomposition Theorem, we can write

L=S500"
where
S :R™ — R™ is symmetric,
O :R™ — R" is orthogonal,
and

[L] =]|detS| > 0.

4. Claim: We can write O* = P o (), where P is the orthogonal
projection of R™ onto R™ and @) : R™ — R"™ is orthogonal.

Proof of claim : Let (Q be any orthogonal map of R™ onto R" such that
Q" (z1,.. ., xm,0,...,0) =0(x1,...,Tm)
for all z € R™. Note
P*(x1,...,xm) = (x1,...,Zm,0,...,0) € R"

for all x € R™. Thus O = Q* o P* and hence O* = Po Q.

5. L=1{0} is an (n — m) -dimensional subspace of R” and L~{y}
is a translate of L=1{0} for each y € R™. Thus by Fubini’s Theorem,
y— H"(AN L Yy}) is L™-measurable, and we may calculate

LM(A) = L™(Q(A))
= | AN Py dy by (%)

= [ HTmAn@ e P ) dy

Now set z = Sy, to compute using Theorem 3.9 that
| det S|£7(A) —/ H (AN Q) o P~ o S1{2))) dz.
Rm
But L=S00*=S0Po(@, and so

[L]L™(A) = /Rm H (AN L 2}) dz. O

Henceforth we assume f : R™ — R™ is Lipschitz continuous.
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LEMMA 3.5. Let A CR" be L™-measurable, n > m. Then

(i) AN f~Y{y} is H* "™ -measurable for L™-a.e. y,
(ii) the mapping y — H" ™(AN f~{y}) is L™-measurable, and
(i)
n —m)a(m)

(AN £ () dy <
- an)

(Lip f)™ L™ (A).

Proof. 1. For each j = 1,2,..., there exist closed balls {BZ o2, such
that

AC UBZ, diam B/ S;, ZE (BlY< L (A)"‘;'

i=1 i=1
Define

j diam Bg e
gi = a(n—m) 9 Xy (Bl

gf is L™ -measurable. Note also for all y € R™,
H™MANFHyh) <D gl ().
! i=1

Thus, using Fatou’s Lemma and the isodiametric inequality (Section
2.2), we compute

*

H (AN fHy)) dy

Rm™

_ / " lim (AN ) dy
R

m]—>00 J
w .
< lim inf 7 d
_/Rm min ;gl y
0 .
< limi J
< brgérole/mgz dy
1=1
oo

diam BJ\" ~
= lijrggéf;a(n—m) (%) L™(f(B]))
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[e%¢) d B] n—m
iam B
< lim inf — RE—
<liminf) aln m>< > )

a(m) (diam 2f(Bg) )

Lip f)™ liminf Yy  £"(B!
(Lip /) ggg}% (B)

1=

a(n —m)a(m)

IN

IN

Thus

a(n —m)a(m)

[owrman s g < (Lip /Y™™ (A). ()

a(n)
This will prove (iii) once we establish (ii).

2. Case 1: A compact.

Fix t > 0, and for each positive integer 7, let U; denote the points
y € R™ for which there exist finitely many open sets S, ...,S; such
that
Anf~Hy} C Ui, S;,

diamS; <1 (j=1,....1),

Y yatn—m) (S2)" T <et

&L=

3. Claim #1: U, is open.
Proof of claim: Assume y € U;, AN f~1 {y} C U;ZlSj, as above. Then,
since f is continuous and A is compact,

l
Anf 1S,

j=1
for all z sufficiently close to y.

4. Claim #2.

fy | H=™ (AN F ) <t} = (Vs

i=1

and hence the set on the left is Borel.
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Proof of claim: If H"~™ (AN f~1{y}) < t, then for each § > 0,

HE ANl < ¢

Given 4, choose § € (0,1). Then there exist sets {S;}721 such that

An f~Hy} CUE,S;,
diam S; <6 < %,

00 diam S; \" ™" 1

We may assume the S; are open. Since AN f~'{y} is compact, a finite
subcollection {Si,...,S;} covers AN f~1{y}; and hence y € U;. Thus

{ylH™ANfHyh) <t} S (U

i=1
On the other hand, if y € N$2,U;, then for each i,
1
HIAN T ) <t <

and so

HMAN Ty <t
Thus -
U Sy H ™ (AN Hy)) <)
=1

5. According to Claim #2, for compact A the mapping
y— H"(AN Ty

is a Borel function.

6. Case 2: A is open. There exist compact sets K1 C Ky C ---

such that -
A=|J K
i=1
Hence for each y € R™,

MY AN [ y)) = Jim MG 0 T )

cA
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and therefore the mapping
y = HTAN Ty

is Borel measurable.

7. Case 3: L™"(A) < oo. There exist open sets V3 D Vo D --- D A
such that
lim £*(V; — A) =0, L"(V1) < 0.

11— 00

Now

H ™ (Vin f~H{y})
<HYANF YY) + 1 ((V — A) 0y

and thus by (x) ,

Jim sup / RV T ) = AN £ ) dy

1—00

< limsup /* H ™ (Vi—A) N fHyldy

11— 00 n

a(n —m)a(m)

< limsup (Lip f)™L™(V; — A) = 0.

i—00 a(n)
Consequently,
H T (Vin fTHyE) = 1T AN )
L™-a.e.. According then to Case 2, it follows that
y = HT AN Ty

is £L™-measurable. In addition, we see H"~"((V; — A) N f~{y}) = 0
L™-a.e. and so AN f~Hy} is H" ™-measurable for L™-a.e. y.

8. Case4. L™ (A) = oco. Write A as a union of an increasing sequence
of bounded £™-measurable sets and apply Case 3 to prove AN f~1{y}
is H™~"™-measurable for £L™-a.e. y, and

y = HT ANy

is £™-measurable. This proves (i) and (ii), and (iii) follows from (*).
U
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Remark. A proof similar to that of (iii) shows

[ wrans o an < S i peeia

for each A C R™; see Federer [F, Sections 2.10.25 and 2.10.26]. O

LEMMA 3.6. Lett > 1, assume h : R™ — R" 4s Lipschitz continuous,
and set

B = {x | Dh(x) exists, Jh(x) > 0}.

Then there exists a countable collection {Dy}32, of Borel subsets
of R™ such that

(i) £"(B =L, Dk) = 0;
(ii) h|p, is one-to-one for k=1,2,...; and

(iii) for each k = 1,2,..., there exists a symmetric automorphism
Sk : R™ — R"™ such that

Lip(S; ' o (h|p,)) < t, Lip((hlp,) "o Sk) <t,
t_n| det Sk| S Jh|Dk S tn| det Sk|

Proof. 1. Apply Lemma 3.3 with h in place of f, to find Borel sets
{Er}72, and symmetric automorphisms 7}, : R™ — R™ such that

(a) B=U  EL,

(b) h|g, is one-to—one,

(c) For k=1,2,...

Llp((h‘Ek) o Tk_l) <t Lip(Tk o (h‘Ek)_l) <t
tin‘detTM < Jh|Ek S t”\detTk.

According to (c), (h|g,) ! is Lipschitz continuous and thus by The-
orem 3.1, there exists a Lipschitz continuous mapping hr : R® — R”
such that hy, = (h|g,)~" on h(Ey).

2. Claim #1: Jhy > 0 L"-a.e. on h(E}).
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Proof of claim: Since hy o h(x) = = for x € Fj, Theorem 3.3 implies
Dhy(h(z)) o Dh(x) =1 L"-a.e. on Ey,
and so
Jhi(h(z))Jh(z)=1 L"-a.e. on FE.

In view of (c), this implies Jhy(h(z)) > 0 for L™-a.e. © € Ej, and the
claim follows since h is Lipschitz continuous.

3. Now apply Lemma 3.3. There exist Borel sets {F’ f 1521 and sym-
metric automorphisms {R;c }321 such that

(d) £ (h(Ex) — UjZ, FF) = 0;
(e) hg|pris one-to-one;
(f) For k=1,2,...
Lip((hk|pr) o (R})™1) < t, Lip(Rf o (hy|pe) ™) <t
t7"|det RY| < Thi|pr < t" det RY|.
Set

Df:=E,nh™'(FF), Sk .= (RN (k=1,2,...).

4. Claim #2: £" (B - UF,_,D¥) = 0.
Proof of claim: Note that

hi (W(Ey) — U2, FF) = b1 (h(Eg) — U2, FF) = By, — U2, DY,
Thus, according to (d),
L (Ey—U, DMy =0 (k=1,...).

Now recall (a).
5. Clearly (b) implies A D} is one-to-one.

6. Claim #3: For k,j =1,2,..., we have

Lip((S5) ™" o (hlpr)) <, Lip((hlpr) "o 8}) <t
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Proof of claim:
Lip((S7)~" o (hlpr)) = Lin(R} o (h|pr))
< Lip(R} o (hu|pr) ™) <t
by (f); similarly,
Lip((h|ps) ™" o SF = Lip((hlpr) ™" o (RF) ™)
< Lip((hel ) o (RE) ™) < .
Furthermore, as noted above,
Jhi(h(z))Jh(z)=1 L"-a.e. on Df.
Thus (f) implies

t~"|det S¥| = ¢~ "|det RY| ™!

< Jhlpr < t"| det RY| ™" = t"| det SF|.

3.4.2 Proof of the coarea formula

THEOREM 3.10 (Coarea formula). Let f : R™ — R™ be Lipschitz
continuous, n > m. Then for each L™ -measurable set A C R"™,

/A Jfdx = /m H AN Yy} dy

Observe that the coarea formula is a kind of “curvilinear” general-

ization of Fubini’s Theorem.

Remark. Applying the coarea formula to A = {Jf = 0}, we discover

H T {Jf=0kn Ty} =0

for L™-a.e. y € R™. This is a weak variant of the Morse—Sard The-

orem, which asserts
{(Jf=01nf"Hy}p=0
for £™-a.e. y, provided f € C*(R™;R™) for
k=1+n—m

Note however (%) only requires that f be Lipschitz continuous.
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Rm

Proof. 1.In view of Lemma 3.5, we may assume that D f(z), and thus
Jf(x), exist for all x € A and that £"(A) < co.

2. Case 1. A C {Jf > 0}. For each X\ € A(n,n —m), write

f = qoh)\a
where hy : R® — R™ x R"™™ and ¢ : R™ x R"™™ — R™ are the

functions

ha(z) == (f(z), Px(z)) (2 €R")
qy,2z) =y (yeR™ zeR"™™),

and P, is the projection defined in Section 3.2. Set

Ay :={x € A|det Dhy # 0}
={x € A| Plpf(2)]-1(0) is injective}.
Now A = Uxea(n,n—m)Ax; therefore we may as well for simplicity as-
sume A = A, for some \ € A(n,n —m).

3. Fix t > 1 and apply Lemma 3.6 to h = h) to obtain disjoint
Borel sets {Dj}72, and symmetric automorphisms {Sj }?2 ; satisfying
assertions (i)—(iii) in Lemma 3. Set G, := AN Dy.

4. Claim #1: t7"[qo Sk < Jfla, <t"[qo Sk].

Proof of claim: Since f = q o h, we have L™-a.e.

Df =qoDh



136 Area and Coarea Formulas

ZQOSkOS,;loDh
=qoS,oD(S; oh)

— qoSpoC,
where C' := D(S, ' o h).
By Lemma 3,
t~1 < Lip(S; ' oh) =Lip(C) <t on Gy. (%)
Now write

Df=S500% qoS,=ToP*

for symmetric S,7T : R™ — R™ and orthogonal O, P : R™ — R".
We have then
SoO0*=ToP*oC. (%x)

Consequently,
S=ToP*oCoO.

As Gy, CAC{Jf>0},detS # 0 and so det T # 0.

Therefore if v € R™,

Tt o Sv| = |P*oC o0y

< |C o Ov|
< t|0v| by (%)
= t|v|.
Therefore
(T™1 o S)(B(1)) € B(1),
and so

Jf=|detS| <t"|detT|=1t"[qoSk].

Similarly, if v € R™, we have from (%) and (xx) that

IS™ o Tw| = |0* o C~ 1o Py
< |C_1 o P
< t|Pv|
= tlv|.

Thus
[qoSk] = |detT| < t"|det S| =t"Jf.
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5. Now calculate:

g3t [y (G n oy dy
Rm

_ 4 3ntm . H* (RN (h(GE) N g~ Hy})) dy

< ¢2n 5 H (S (WGr) Ng™Hy))) dy

=" /m H* (S, o h(Gr) N (g0 Sk) ™ H{y}) dy

=t"2"[qoS,]L"(S,; ' oh(Gy)) (by Lemma 3.4)
<" [go 5] L(Gh)

Jfd
S/Gk fda
<t"[qoSk] L"(Gk)

<" [qo S ] L™ (S o h(Gy))
— 2" /m H* (S, o h(Gr) N (g o Sk) ™ {y}) dy

< on—m / R (RGN D) dy

— t3nfm anm(Gk N fﬁl{y}) dy.

RrRm

Since
LM (A—U,Gr) =0,

we can sum on k, use Lemma 3.5, and let t — 17 to conclude

H AN Hy)) dy = /A Jf dz.

R
6. Case 2. A C {Jf =0}. Fix 0 < e <1 and define
9(z,y) := f(x) + ey, p(z,y) ==y
for x € R”, y € R™. Then

Dg = (-Df7 6I)m><(n+m)7

and
" <Jg=[Dg]=[Dg"] <Ce

137
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7. Observe

H (AN fHy)) dy

Rm™

= H (AN fHy —ew})dy for all w € R™
Rm

H (AN fFHy — ew}) dyduw.

m

B(1)

8. Claim #2: Fixy € R™ w € R™ and set B := Ax B(1) C R"*"™.
Then

Bng Hy}n p~H{w}
B {(2) if w ¢ B(1)
(AN fHy—ew}) x {w} if we B(1).
Proof of claim: We have (x,z) € BN g~ '{y} Nnp~{w} if and only if
reAzeBQ), f(x)+ez=y,z=uw;
if any only if
xeAz=we BQ), f(x)=y— ew;
if and only if
w e B(1), (z,2) € (AN fHy — ew}) x {w}.

9. Now use Claim #2 to continue the calculation from Step 7:
[ owmans by
1
— n—m(p -1 -1 dwd
o [ g w0 ) dudy

M W (BN g ) dy
a(n Rm

= / Jgdxdz

a(n a(n) )L’”(A) sup Jg

< Ce.
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The third line above follows from the Remark on page 132. Let ¢ — 0,
to obtain

HM (AN F Yy )dy = 0 = /A Jfdz.

Rm

10. In the general case we write A = A;UAs where A1 C {Jf > 0},
Ay C{Jf =0}, and apply Cases 1 and 2 above. O

3.4.3 Change of variables formula

THEOREM 3.11 (Integration over level sets). Let f : R™ — R™
be Lipschiz, n > m. Then for each L™-summable function g : R™ — R,

(i) glp-1gyy is H"™™ summable for L™-a.e. y, and

(i)
/n gJfder= /m [/fl{y}gd}["m] dy.

Remark. For each y € R™, f~'{y} is closed and thus H" ™-
measurable. O

Proof. 1. Case 1. g > 0. Write g = Y o0, zXA for appropriate L£L"-

measurable sets {4;}:°,; this is possible according to Theorem 1.12.
Then the Monotone Convergence Theorem implies

/nngdx— /dex

—Z H (A0 f g} dy

Rm™

- S Beemain 1 ) ay
=1

- [ / d%] "
n =y}

2. Case 2. g is any L"-summable function. Write g = g* — ¢~ and
use Case 1. O
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3.4.4 Applications

A. Integrals over balls.

THEOREM 3.12 (Polar coordinates). Let g : R” — R be L"-
summable. Then

/ gdx:/ (/ gd?—[”_1> dr.
n 0 9B(r)

/ gda;) —/ gdH" !
B(r) OB(r)

Proof. Set f(x) = |z|; then for  # 0 we have

In particular,

for L'-a.e. 7 > 0.

B. Integration over level sets.

THEOREM 3.13 (Integration over level sets). Assume f : R" —
R is Lipschitz continuous.

(i) Then .
[ psldz= [ wiqr =
R" —00

(ii) Assume also
essinf |Df| > 0,

and suppose g : R — R is L™ -summable. Then

> g n—1
gdr = / / ——dH ds.
/{f>t} ¢ ( (r=sy 1D

(iii) In particular,

i\ Jyn 7™
— gdr | = — ——dH"
dt ( {f>t} ) {f=t} |Df|

for L1-a.e. t.
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Remark. Compare (i) with the coarea formula for BV functions,
proved later in Theorem 5.9. O

Proof. 1. To prove (i), observe that Jf = |Df|.
2. Write Ey := {f > t} and use Theorem 3.11 to calculate

/{f>t}gd:£:/ XEt\Df|dex
= [ ([ s
(Lo

This gives (ii), and (iii) follows. O

C. Distance functions.

THEOREM 3.14 (Level sets of distance functions). Assume
K C R” is a nonempty compact set and write

d(z) = dist(z, K) (ze€R").

Then for each 0 < a < b we have

/bﬂnl({d =t})dt = L"({a < d < b}).

Proof. 1. Given z € R", select ¢ € K so that d(z) = |x — ¢|. Then for
any other point y € R", we have
dly) —d(z) <[y —cf — |z — ] < o —y].
Interchanging = and y, we see that |d(y) —d(z)| < |z —y|; consequently,
Lip(d) < 1.

Rademacher’s Theorem therefore implies that the distance function is
differentiable £™-a.e..
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2. Select any point z € R"™ — K at which Dd(z) exists. Then
|Dd(z)| < 1, since Lip(d) < 1. As above, select ¢ € K so that
d(z) = |z — ¢|. Then

d(tx 4+ (1 —t)c) =tz — ¢|
for all 0 <t < 1; and therefore
|z — ¢| = Dd(x) - (x — ¢) < |Dd(x)||x — ¢|.

Thus |Dd(z)| > 1.
3. It follows that

|Dd| =1 L"-a.e. in R" — K.

We may consequently invoke Theorem 3.13 to finish the proof. O

3.5 References and notes

The primary reference is again Federer [F, Chapters 1 and 3|. The-
orem 3.1 is from Simon [S, Section 5.1]. The proof of Rademacher’s
Theorem, which we took from [S, Section 5.2], is due to Morrey (cf.
[My, p. 65]). Theorem 3.3 in Section 3.1 is [F, Section 3.2.8]. See Clarke
[C] for more on calculus for Lipschitz continuous functions.

The discussion of linear maps and Jacobians in Section 3.2 is
strongly based on Hardt [H]. S. Antman helped us with the proof of
the Polar Decomposition Theorem, and A. Damlamian provided the
calculations for the Binet—Cauchy formula. See also Gantmacher [Ga,
pages 9-12, 276-278|.

The proof of the area formula in Section 3.3, originating with [F,
Sections 3.2.2-3.2.5], follows Hardt’s exposition in [H]. Our proof in
Section 3.4 of the coarea formula also closely follows [H|, and is in turn
based on [F, Sections 3.2.8-3.2.13]. Theorem 3.14 is from [F, Section
3.2.34].



Chapter 4

Sobolev Functions

In this chapter we study Sobolev functions on R", functions with
weak first partial derivatives belonging to some LP space. The vari-
ous Sobolev spaces have good completeness and compactness proper-
ties and consequently are often the proper settings for applications of
functional analysis to, for instance, linear and nonlinear PDE theory.

Now, as we will see, by definition, integration-by-parts is valid for
Sobolev functions. It is, however, far less obvious to what extent the
other rules of calculus are valid. We intend to investigate this general
question, with particular emphasis on pointwise properties of Sobolev
functions.

Section 4.1 provides basic definitions. In Section 4.2 we derive vari-
ous ways of approximating Sobolev functions by smooth functions. Sec-
tion 4.3 interprets boundary values of Sobolev functions using traces,
and Section 4.4 discusses extending such functions off Lipschitz con-
tinuous domains. We prove the fundamental Sobolev-type inequalities
in Section 4.5, an immediate application of which is the compactness
theorem in Section 4.6. The key to understanding the fine properties
of Sobolev functions is capacity, introduced in Section 4.7 and utilized
in Sections 4.8 and 4.9.

4.1 Definitions and elementary properties
Throughout this chapter, U denotes an open subset of R”.

DEFINITION 4.1. Assume f € L. (U) and i € {1,...,n}. We say
gi € L%OC(U) is the weak partial derivative of f with respect to z; in

U if
/U Fbuy d = /U gipde (%)

for all ¢ € CHU).

143
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NOTATION 1t is easy to check that the weak partial derivative with
respect to x;, if it exists, is uniquely defined £™-a.e. We write

fmi =G (Z:Lan)

and

Df = (fxlﬂ""fl’n)’

provided the weak derivatives f,,,..., fz, exist.
DEFINITION 4.2. Let 1 < p < 0.

(i) The function f belongs to the Sobolev space
whP(U)

if f € LP(U) and if fori =1,...,n the weak partial derivatives
fz, exist and belong to LP(U).

(ii) The function f belongs to
Wiod (U)

if f € WYP(V) for each open set V CC U.

(ili) We say f is a Sobolev function if f € Wli’cp(U) for some 1 <
p < 00.

(iv) We do not identify two Sobolev functions that agree L™-a.e.

Remark. So if f is a Sobolev function, then by definition the
integration-by-parts formula

/Uf% dr = —/Ufmbdx

is valid for all ¢ € C}(U) and i = 1,...n. O
NOTATION If f € W'P(U), define

P

1w = ( [+ IDfI”dﬂs>
U
for 1 < p < o0, and

£ llw.oe ) = esssup(lf| + [Df]).
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DEFINITION 4.3.

(i) We say
fo = in WHP(U)

provided
I fr — fllwrw @) — 0.

(ii) Similarly,
fro— | in Wigl(U)
provided
1 fr = fllwreqry =0

for each open set V CC U.

4.2 Approximation

4.2.1 Approximation by smooth functions

NOTATION
(i) If € > 0, we write

Ue:={z €U |dist(z,0U) > €}.

ii) Define the C'*°-function 1 : R® — R by
n

1
cexp | ———| ifjz| <1
H(w) = (w71
0 if 2] > 1,

the constant ¢ > 0 adjusted so that

/n n(x)dx = 1.

(iii) Write 1 sz
Ne(z) = ol <€) (e >0,z € R");
7e is called the standard mollifier.
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(iv) If f € L _(U), define
fe = Me x f;
that is,

fo(@) == /U ne(z— ) fw)dy (zeU.).

Mollification provides us with a systematic technique for approxi-
mating Sobolev functions by C*° functions.

THEOREM 4.1 (Properties of mollifiers).
(i) For each e >0, f¢ € C>=(U,).

i) If fe C(U), th
(i) If f € C(U), then o

uniformly on compact subsets of U.
(iif) If f € LY. (U) for some 1 < p < oo, then
fe—=f in Lt (U).

loc

(iv) Furthermore, f(z) — f(z) if © is a Lebesgue point of f; in
particular,
fe—=f L'-a.e
(v) If f € Wli)’Cp(U) for some 1 < p < oo, then

o =Ne* fo, (i=1,...,n)

on U,.

(vi) In particular, if f € Wl’p(U) for some 1 < p < oo, then

loc

fe— fin WhP(U).
Proof. 1. Fix any point = € U, and choose i € {1,...,n}. We let e;
denote the i-th coordinate vector (0,...,1,...,0). Then for |h| small
enough, x + he; € U,, and thus
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for some V' CC U. The difference quotient converges as h — 0 to

1 T —y n
e = €"ez, (T — )

€

for each y € V. Furthermore, the absolute value of the integrand is
bounded by

1
“IDylself € LH(V).
Hence the Dominated Convergence Theorem implies

v fwthey) — fo(x)
o:(7) = Jimy h

exists and equals
| s = ) )

A similar argument demonstrates that the partial derivatives of f€ of
all orders exist and are continuous at each point of Uy; this proves (i).

2. Given V CcC U, we choose V. CC W CcC U. Then for x € V,

f(x) = L n <x—y> fly)dy = /B(l)n(z)f(x—ez) dz.

€" JB(x,e) €

Thus, since fB(l) n(z)dz = 1, we have

|f(x) = f(z)| < / n(2)|f(x —ez) — f(z)| dz.
B(1)

If f is uniformly continuous on W, we conclude from this estimate that

f¢— f uniformly on V. Assertion (ii) follows.

3. Assume 1 < p<ooand f € LY (U). Then for V.CC W cC U,

loc
xz € V, and € > 0 small enough, we calculate in the case 1 < p < o

that

f@) < [ n) )| f(z - )| dz
B(1)

-7 >
< ( / e dz) < /| RO dz)
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Hence for 1 < p < oo we find

/|f |pd$</31) </ |f(x — ez |pd:5>
< /Wlf(y)lpdy (%)

for € > 0 small enough.

Now fix § > 0. Since f € LP(W), there exists g € C(W) such that
If = gllew) < 0.
This implies, according to estimate (x), that
If€ =g lleevy <6.
Consequently,
£ = fllervy <20 +11g° = gllLevy < 36

provided € > 0 is small enough, owing to assertion (ii). Assertion (iii)
is proved.

4. To prove (iv), let us suppose f € Ll (U) and assume z € U is a
Lebesgue point of f. Then, by the calculation above, we see

() — 1 T
74(@) ()|<—6n/B(x’€)77<
a(n)llnlle][B( )If — [(@)|dy

=o0(l) ase—0.

y) () - F@)|dy

5. Now assume f € W’éf(U) for some 1 < p < oo. Consequently,
as computed above,

< (2) = /U Hewws (2 — ) f (4) dy = — /U e (& — ) F(y) dy
= /Une(ar — ) fo, (y) dy = (e * fo,) ()

for z € U,. This establishes assertion (v), and (vi) follows at once from
(ii). O



4.2 Approximation 149

THEOREM 4.2 (Local approximation by smooth functions).
Assume that f € WHP(U) for some 1 < p < oo. Then there ezists a
sequence {fi,}3, C WHP(U) N C*(U) such that

fe — f in WhHP(U).
Note that we do not assert f € C>(U), but see Theorem 4.3 below.
Proof. 1. Fix € > 0 and define Uy := () and
Uy = {a: e U | dist(z,0U) > %} NB°0,k) (k=1,2,...).

Set )
Vk = Uk—l—l — Uk—l (k? = 1,2,...),

and let {(x}52, be a sequence of smooth functions such that

G €CX(Vi), 0< (<1, (k=1,2,...),
ZCkzlon U.
k=1

For each k = 1,2,..., f ¢ € WYP(U), with spt(f¢x) C Vi. Hence
there exists € > 0 such that

Spt(nﬁk * (ka)) - Vk
(o Iner * (FG) = FGulP da)? < & %)
(Jys 17, # (D(F¢k) = D(fG)IP dz) 7 < .

=

Define

ka (f)-

In some neighborhood of each point x € U, there are only finitely many
nonzero terms in this sum; hence

foe C=(U).

2. Since

F=> G,
k=1
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u(y)

(%) implies

fe = fllr@w)y < (/ e * (FCr) — kalpdx> Y
k=1 WU
and

IDfe— DfllLr )

sij( [ o+ 06 - DUrGIPar) <

Consequently f. € WHP(U) and
fe—f i W'P(U)

as € — 0. O

Our intention next is to approximate a Sobolev function by func-
tions smooth all the way up to the boundary. This necessitates some
hypothesis on the geometric behavior of 9U.

DEFINITION 4.4. We say the boundary OU is Lipschitz if for each
point x € OU, there exist r > 0 and a Lipschitz continuous mapping -y:
R™ 1 — R such that, upon our rotating and relabeling the coordinate
azes if necessary, we have

UnQx,r) ={y 1 v(y1,- - ¥n-1) < Yn} N Q(,7),

where
Qz,r) ={y ||y —xi| <ri=1,...,n}.
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In other words, near each point « € OU, the boundary is the graph
of a Lipschitz continuous function.

Remark. By Rademacher’s Theorem, the outer unit normal v(y) to
U exists for H" t-a.e. y € OU. O

THEOREM 4.3 (Global approximation by smooth functions).
Assume U is bounded and QU is Lipschitz.

(i) If f € W'P(U) for some 1 < p < oo, there exists a sequence
{fu}2, SWLP(U)NC>®(U) such that

fr = f in WhHP(U).

(i) If in addition f € C(U), then

fe = f  uniformly.

Proof. 1. Forz € U, taker > 0 and v : R®~! — R as in the definition
above. Also write @ := Q(z,1),Q" = Q(=, %)

2. Suppose first f vanishes near 0Q'NU. For y € UNQ', e > 0 and
a > 0, we define

Y=y + eae,.

Observe B(y¢,e) C UNQ for all e sufficiently small, provided « is large
enough, say « := Lip(y) + 2.
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3. We define
1 z .
= [0 (2) sty =2)a:
1 _
=— 77<y w+aen> f(w) dw
€ B(y¢,e) €

for y € UNQ'. As in the proof of Theorem 4.1, we check
fee C=(UNQ)
and
fe—f mW"(UNQ).

Furthermore, since f = 0 near Q' N U, we have f. = 0 near 0Q' N U
for sufficiently small € > 0; we can thus extend f. to be 0 on U — @Q’.

4. Since QU is compact, we can cover QU with finitely many cubes
Qi = Q(x;,3)(i=1,2,...,N), as above. Let {¢ Y, be a sequence of
smooth functions such that

0<¢ <1, spt(¢o) CU
Zi]\iogzl on U

and set '

fl::fgi (Z:0a152a>N)
Fix § > 0. Construct as in Step 3 functions ¢* = (f?)., € C=(U)
satisfying

7 7 i i 5
spt(g") CUNQ;, llg" — f HleP(UmQ) < N

for i = 1,...,N. Mollify f° as in proof of Theorem 4.2 to produce
g® € C°(U) such that

0
19° = FOllwrrw) < 3
Finally, set

N
g:=Y g'eC>(U)
1=0

and compute
N

lg = Flwrew) < 19° = Fllwrewy + 319" = Fllwrewngy < 6. O
=1

The construction shows that if f € WHP(U) N C(U), then f, — f
uniformly on U as well.
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4.2.2 Product and chain rules

In view of Section 4.2 we can approximate Sobolev functions by
smooth functions, and consequently we can now verify that many of
the usual calculus rules hold for weak derivatives.

Assume 1 < p < oo.
THEOREM 4.4 (Calculus rules for Sobolev functions).
(i) If f,g € WEP(U) N L>(U), then
fg € W (U) N L=(U)

and
(f9ai = fo,;9+ [9u; L"-a.e

fori=1,2,...,n.
(ii) If f e WEP(U) and F € CY(R), F' € L=(R), F(0) = 0, then
F(f) e WHE(U)

and
F(f)e, = F'(f)fs, L"-a.c.

fori=1,2,...,n.
(iii) If f€ WYP(U), then f+,f=,|f| € WHP(U) and

D+ — Df L"™-a.e. on{f >0}
o L"-a.e. on {f <0},

Df— {0 L"-a.e. on {f >0}
—Df L"™-a.e. on{f <0},
Df  L"-a.e. on{f >0}
Dif|=40 L"-a.e. on {f =0}
—Df L"-a.e. on{f <0}.
(iv) Df =0 L™-a.e. on {f =0}.

Remark. If £™(U) < oo, the condition F'(0) = 0 for (ii) is unnecessary.
Assertion (iv) generalizes Theorem 3.3,(i) in Section 3.1. O



154 Sobolev Functions

Proof. 1. To establish (i), choose ¢ € C}(U) with spt¢p C V CC U.
Let f€:=n.* f,g° := n. * g as in Section 4.2. Then

LM%M—AM%M
— 1t [ f o ds
1%

e—0

- _elgr(l) \74 ( ;ige +f6-g<69$z) ¢d$

——/}hg+f%»¢m
=—1/<fmg+fym)¢da
U

according to Theorem 4.1.

2. To prove (ii), choose ¢, V, and f€ as above. Then

| Fonide = [ F(f16rda

= lim [ F(f)és,dz
e—0 v

— —lim [ F'(f9)f,¢da

e—0 Vv

—— [ P fusis

\%

=—/iWﬁnﬂm,
U

where again we have repeatedly used Theorem 4.1.

3. Fix € > 0 and define

(r24 ez —¢ ifr>0
0 if r < 0.

Then F. € CY(R),F! € L>®(R), and so assertion (ii) implies for ¢ €
C:(U)

/UFE(f)‘z’xi du = —/UFé(f)fmdx.
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Now let € — 0 to find

%ﬂ*%wx——Z%“wym¢m.

This proves the first part of (iii), and the other assertions follow from
the formulas

=N =+ 1

Assertion (iv) is a consequence of (iii), since

Df=Df* -~ Df". O

4.2.3 W11 and Lipschitz continuous functions

THEOREM 4.5 (Lipschitz continuity and W1°°). Assume f :
U — R. Then

fis locally Lipschitz continuous in U

if and only if
f € WR(U).

loc
Proof. 1. First suppose f is locally Lipschitz continuous. Fix i €
{1,...,n}. Then for each V.CC W CC U, pick 0 < h < dist(V,0W),

and define .
glh(:v) = flz+ e}z) — f@) (zeV).

Now
sup |g/'| < Lip(flw) < oo
h>0

Then according to Theorem 1.42 there is a sequence h; — 0 and a
function g; € LS. (U) such that

th — g; weakly in LV (U)

for all 1 < p < co. But if ¢ € CX(V), we have

/ o o(x + he; ) P(z) dr = —/Ug?(CE)QS(:E + he;) da.

We set h = h; and let j — oo:

Lémmmz—ém¢m
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Hence g; is the weak partial derivative of f with respect to z; for
t=1,...,n, and thus f € T/Vli)’coo(U).

2. Conversely, suppose [ € Wl’oo(U). Let B CC U be any closed

loc

ball contained in U. Then by Theorem 4.1 we know

sup ||Df|[re(B)y < 00
0<6<60

for € sufficiently small, where f€ := n. * f is the usual mollification.
Since f€is C'°°, we have

f(@) = f(y) = /01 Df(y+t(x —y))dt- (z —y)
for x,y € B; whence
1/ (z) = f (W)l <Clz—yl,
the constant C' independent of e. Thus
[f(@) = f)| <Clz—y| (z,y € B).

Hence f|p is Lipschitz continuous for each ball B CC U, and so f is
locally Lipschitz continuous in U. O

4.3 Traces

THEOREM 4.6 (Traces of Sobolev functions). Assume U is
bounded, OU is Lipschitz, 1 < p < 0.

(i) There exists a bounded linear operator
T: WY (U) — LP(OU; H" 1)

such that
Tf=f onoU

for all f € WHP(U)N C(U).
(ii) PFurthermore, for all $ € C1(R™;R™) and f € W1P(U),
1 — — . . n—1
/dew(;Sda:— /UDf ¢d:£+/6U(¢ v)TfdH" ",

v denoting the unit outer normal to OU .
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DEFINITION 4.5. The function T f, which is uniquely defined up
to sets of H" 1L OU measure zero, is called the trace of f on OU.

We interpret T'f as providing the “boundary values” of f on OU.
Remark. We will see in Section 5.3 that for H" '-a.e. point x € 9U,

lim |f =Tf(z)|dy =0,
r—0 B(z,r)NU

and so
Tf(z) = lim fdy.
r—0 B(z,r)NU
O

Proof. 1. Assume first f € C1(U). Since QU is Lipschitz continuous,
we can for any point x € OU find r > 0 and a Lipschitz continuous
function v: R"~! — R such that, upon rotating and relabeling the
coordinate axes if necessary,

UNnQ(z,r) =4y [ YW1, s Yn-1) < yn} NQ(x,r).

Write @ := Q(z,r) and suppose temporarily f =0 on U — Q). Observe

—en-v> (14 (Lip('y))Q)*% >0 H" tae onQNAU. (%)

2. Fix € > 0, set
Be(t) = (2 + €22 —€ (teR),

and compute using the Gauss—Green Theorem that
spaw = [ ppan
QMU

<C Be(f)(—ep - v) dH™ 1
QNOU

- ¢ /Q (B

oU

<C 1Be(NID 1 dy
QNU

<c / Df| dy,
U
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since || < 1. Now send € — 0, to discover
[ intawr < [ pgiay ()
oU U

3. We have established (xx) under the assumption that f = 0 on
U — @ for some cube Q = Q(z,7),x € OU. In the general case, we can
cover U by a finite number of such cubes and use a partition of unity
as in the proof of Theorem 4.3 to obtain

/ flann? sc/ Df| +f]dy
oU U

for all f € CY(U). For 1 < p < oo, we apply this estimate with |f[P
replacing | f], to obtain

/ fPanrt < / DFIIFI 1P dy
oU U
<c /U DSP + |f1P dy (x4 %)

for all f € CY(U).
4. Thus if we define
Tf:= flov

for f € CY(U), we see from (%**), Theorem 4.3 that 7" uniquely extends
to a bounded linear operator from WP (U) to LP(OU; H" 1), with

Tf= flov

for all f € WIP(U) N C(U). This proves assertion (i); assertion (ii)
follows from an approximation argument using the Gauss—Green The-
orem. O

4.4 Extensions

THEOREM 4.7 (Extending Sobolev functions). Assume U is
bounded, OU is Lipschitz, and 1 < p < co. Let U CC V. There exists
a bounded linear operator

E:W'P(U) — WhP(R™)
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such that
Ef=f onU

and
spt(Ef) CcV

for all f € WHP(U).
DEFINITION 4.6. Ef is called an extension of f to R™.
Proof. 1. First we introduce some notation:
(a) Given z = (z1,...,x,) € R™, let us write
x=(2',2,)
for 2’ = (x1,...,7,_1) € R*" ! 2, € R. Similarly, we write y =
', yn)-
(b) Given z € R™, and r, h > 0, define the open cylinder

C(z,r,h) ={y e R" | |y —2'| <7, |yn — zn| < h}.

Since QU is Lipschitz continuous, for each z € QU there exist, upon
our rotating and relabeling the coordinate axes if necessary, r,h > 0
and a Lipschitz continuous function 7 : R"~! — R such that

maxiz —y/|<r |’7(y/) - $n| < %a
UnC(z,rh) ={y ||z’ —y'| <r,v(y) <yn <zn + h},
C(z,r,h) CV.

Fix z € OU and with r, h,y as above, write

C :=C(x,r,h), C":=C(x, ga g)

Ut.=C'nU, U :=C"-U.

2. Let f € C*(U) and suppose for the moment spt f C C' N U. Set

fHy) = f(y) ifyeUT,
W) =fW,2vy) —yn) ifyeU-.
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C

This is an “extension by reflection”. Note that f~ = f™ on OU N C".

3. Claim #1: |[f~|lwre@w-) < Cllfllwrr@)-

Proof of claim: Let ¢ € CH({U™) and let {y%}3°, be a sequence of
C° functions such that

Yk >, Yk — 7y uniformly
Dyy — Dy L l-ae., supy [|[Dyi||ne < oo.

Then, for i =1,...,n —1,
f™ by dy
.
= /U_ FW29(Y) = yn)dy.dy

= lim FW'29%(Y") — yn) by dy
— 00 U-—
= — lim (fu: W 2% (Y') — yn)
— 00 U-
+2f, (W 2% (Y') — Yn) Vi, (W) P dy
= —/U_(fyi (¥,27(") = yn)
+2fy5, (W, 29(Y) = yn) vy, () D dy.

Similarly,

[~ by, dy = /U_ fon W 29(Y) — yn) P dy.

U-
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Now recall
Dy < o0,

and thus
/ DSy, 2 — ya)P dy < C / IDSIP dy < o
- U

by the change of variables formula (Theorem 3.9).
4. Define

and note f is continuous on R™.

5. Claim #2: E(f) € WLP(R"), spt E(f) C C' C V, and
||E(f)HleP(R") < CHfHWl,p(U).

Proof of claim: Let ¢ € CL(C"). For 1 <i<n
Foudy= [ 1% oudy+ [ £ 6,y
cr U+ U-

— + _ —
o L R
+ [ @) =T e an
oU

161

by Theorem 4.6. But T'(f*) = T(f~) = flou, and so the last term

vanishes.

This calculation and Claim #1 complete the proof in case f is C,

with support in C’' N U.

6. Now assume f € C*(U), but drop the restriction on its support.
Since QU is compact, we can cover OU with finitely many cylinders
Cyx = C(xg, i, h)(k=1,...,N) for which assertions analogous to the
foregoing hold. Let {{)}1_, be a partition of unity as in the proof of

Theorem 4.3, define E((;f)(k=1,2,...,N) as above, and set

N

Ef =Y  E(Cf)+ Cof-

k=1
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7. Finally, if f € WYP(U), we approximate f by functions f, €
WP(U) N CHU) and set

Ef = lim Efy. O
k—o0

4.5 Sobolev inequalities
4.5.1 Gagliardo—Nirenberg—Sobolev inequality

We prove next that if f € WHP(R") for some 1 < p < n, then in
fact f € LP" (R") where p* > p.

DEFINITION 4.7. For 1 < p < n, define

. _np
p = )
n—p

*

p* is called the Sobolev conjugate of p.

Note that
1 1 1
P p n
THEOREM 4.8 (Gagliardo—Nirenberg—Sobolev inequality).
Assume
1<p<n.

There exists a constant C1, depending only on p and n, such that

([ e daz)ﬁ <o/ IDf\”dx>;

for all f € WHP(R™).

Proof. 1. According to Theorem 4.2 , we may assume f € Cl(R").
Then fori=1,...,n

f(,l?l,...,,l?i,...,ﬂj'n) :/ fml(ﬂj'l,,tl,,fn)dtz
—00
and so

— 00
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Thus

T <H</ IDfI( xl,...,tz,...,xn)dti>n .

Integrate with respect to z1:

[ e s ([T ippan)
/Oo ﬁ (/oo \Dfldti>nlldx1
—00 =g \J o0

([ ora)”
<]‘[2/ / |Df|d:v1dt>

Next integrate with respect to a2 to find

[
< </OO /OO |Df|dx1dt2> </ / |Df|dt1dx2> ~
><H</ / / |Df|dx1dx2dt> 71.

We continue, and eventually discover

. n o] o] ﬁ
/|f|1 da;g]'[</ / \Df|dx1...dti...da;n>
R™ i=1 — 00 —0o0
—</ \Df|dx> .
Rn

This immediately gives

“d)l* Df|dz,
([ )" < [ psiae ()

1
n—1
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and so proves the theorem for p =1.

2. If1 <p<n,set g=|f|]" with v > 0 as selected below. Applying
(%) to g, we find

n—1

(/Rn\f\%dx) '

<+ / FP DS de

m( | dx) ’ ( / |Df|pdx)”

Choose 7 so that

Then

Thus

([ )™ <c([ara)” ([ oma)

and so )

(/R I dx)"_* < C(/R \Df|pda:)p

where C depends only on n and p. O

4.5.2 Poincaré’s inequality on balls

Our goal next is deriving a local version of the preceding inequality.
For this we will need the following technical calculation:

LEMMA 4.1. For each 1 < p < oo there exists a constant C, depend-
ing only on n and p, such that

/ ) — F)P dy < Crotr) / DF()Ply — 2" dy
B(z,r)

B(z,r)

for all B(z,r) C R", f € CY(B(z,r)) and z € B(z,r).
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Proof. If y,z € B(x,r), then
1
f0) = £G) = [ GGty =)

1
—/0 Df(z+t(y — 2))dt - (y - 2),
and so
1
F@) = FEP < |y — 2P / IDFIP(z+ t(y — 2)) dt.
Thus for s > 0,
/ ) — F2)P dH™ (y)
B(z,r)N0B(z,s)

1
<5 / / IDFP (= + ty — ) dH" () dt
0 JB(z,r)NOB(z,s)

1
1
Ssp/ tnl/ D f (w)|P dH" (w)dt
0 B(z,r)NdB(z,ts)

1
_ gnipet / / Df(w)Plw — 2|
0 JB(z,r)NOB(z,ts)
dH" (w)dt

_ s"+p2/ D F(w)|Pw — 2" duw.
B(z,r)NB(z,s)

We integrate in s from 0 to 2r and use Theorem 3.12 to deduce
/ [f(y) = ()P dy < Cr"“"l/ D f(w)|Plw— 2™ dw. O
B(z,r) B(z,r)

THEOREM 4.9 (Poincaré’s inequality on balls). For each 1 <
p < n there exists a constant Cy, depending only on p and n, such that

1

— =

<][ f = (Pl dy) < Caor <][ |DfIP dy)
B(z,r) B(z,r)

for all B(z,r) CR", f € WHP(B(x,7)).
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Recall
(f):c,r - ][ fdy
B(z,r)

Proof. 1. Approximating if necessary, we may assume that f €
CY(B(z,r)). We recall Lemma 4.1 to compute

- xrpd = _ d
oo fimebas=f -G

— pd d
< ][B(x’r) ][B(le(y) F(2)|P dzdy

<cf [ gy - o sy
B(z,r) B(z,r)

p
dy

< C’rp][ |Df|P dz. (%)
B(xz,r)

2. Claim: There exists a constant C' = C(n,p) such that

1
p* P
( ][ g7 dy> <c ( ][ Dgl? dy + ][ gl? dy>
B(x,r) B(x,r) B(x,r)

for all g € WHP(BY(z,r)).

Proof of claim: First observe that, upon replacing g(y) by %g(ry) if
necessary, we may assume r = 1. Similarly we may suppose x = 0. We
next employ Theorem 4.7 to extend g to g € WHP(R") satisfying

gllwrr@®ny < Cllgllwieso(o,1))-
Then Theorem 4.8 implies

L 1

(/ |g|p*dy> s(/ |g|p*dy)
B(l) n
1
< (/ |Dg|pdy)
gc( / \Dg|p+|g|pdy>
B(1)

3. We use (x) and the Claim with g := f — ()4, to complete the
proof. O

T =
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4.5.3 Morrey’s inequality

DEFINITION 4.8. Let 0 < o < 1. A function f : R™ — R is Hélder
continuous with exponent o provided

z,yeR™ |$ - y|a
TFy

THEOREM 4.10 (Morrey’s inequality).

(i) For each n < p < oo there exists a constant Cs, depending only
on p and n, such that

P

B(z,r)

|f(y) = f(2)| < Csr (][ |Df|pdw>

for all B(x,7) C R*, f € WY(B%x,r)), and L™-a.e. y,z €
B(z,r).

(ii) In particular, if f € WHP(R™), then the limit

lm (f)z,r =: f*(x)

r—0

exists for all x € R™, and f* is Hélder continuous with exponent
a=1-2.
p

Remark. See Theorem 4.5 for the case p = oo. O

Proof. 1. First assume f is C!' and use Lemma 4.1 with p = 1 to
calculate

) — F(2)] < ][ F) = F(w)| + | f(w) — £(2)] dw

B(z,r)

<C IDf(w)l(ly —w|'™" + |z — w['") dw
B(z,r)

SC(/ (Jy — w|*™ + |z — w|* )" dw)
B(z,r)

( / \Dflpdw>
B(z,r)

p—1

P

B =
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< Opln—tn-n)z27) 22 </ |Df|pdw>
B(z,r)

1

=Cr'e (/ \Df|pdw> .
B(z,r)

2. By approximation, we see that if f € W1P(B%(x,r)), the same
estimate holds for £"-a.e. y,z € B(x,r). This proves (i).

=

3. Now suppose f € W1P(R™). Then for £"-a.e. z,y we can apply
the estimate of (i) with » = |x — y| to obtain

P

(z,r)

1f(y) = f@)| < Cle—y|'"? (/ \Df|Pdw>
B
< CIDflzr@mylz —yl' 7.

Thus f is equal L"-a.e. to a Holder-continuous function f. Clearly
f* = f everywhere in R". O

4.6 Compactness

THEOREM 4.11 (Compactness and W?Y'P). Assume U is
bounded, OU is Lipschitz, 1 < p < n. Suppose {fr}72, is a sequence in
WLP(U) satisfying.

Sup | frllwe oy < oc.

Then there exists a subsequence {fy;}52, and a function f € WHP(U)
such that
fkj — f m Lq(U)

for each
1<qg<p”.

Proof. 1. Fix a bounded open set V' such that U CC V' and extend
each fi, to fr € WHP(R™), spt fr C V,

Sup 1 fillwan ey < Csup | fellwr o) < oo (%)
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2. Let ff := nc* fx be the usual mollification, as described in Section
4.2.

Claim #1: || f£ = fillzo®n) < Ce, uniformly in k.

Proof of claim: First suppose the functions fj, are smooth, and
calculate

Fe(@) — Ful)| < / 0(2) | Fele — e2) — fila)) d

B(1)

= /3(1) n(z)

1
< E/B(l) n(z)/o |D fi(x — etz)| dtdz.

L
/0 afk(a:—tez)dt dz

Thus

Hf_lg - kaip(Rn)

1
< CeP /B(l) 77(2)/0 (/n |D fr.(z — etz)|P d:z:) dtdz

< C| fillyrn )

< Cé.
according to (x) . The general case follows by approximation.

3. Claim #2: For each € > 0, the sequence {f£}2° , is bounded and
equicontinuous on R".

Proof of claim: We calculate

i) s/B( =)l dy

< Ce 7| fill Lo @n)
<Ce v

and

i@ [ [Due -yl < 0 F

B(xz,€)

4. Claim #3: For each § > 0 there exists a subsequence {fkj };';1 C
{fi}32, such that

llmSup ||fk1 - fk?j HLP(U) S 5

1,]—> 00
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Proof of claim: Recalling Claim #1, we choose € > 0 so small that

_ ~ 1)
E_ » " < _.
Sl}ip”fk fellLr@ny < 3

Next we use Claim #2 and the Arzela—Ascoli Theorem to find a sub-
sequence { f,gj 2, which converges uniformly on R™. Then

j=1
| fr, = fr.

Loy < N Fry = FrilllLo ey
< | fr; = fi,llLe@ny + 1, — f5,
+ 11 f5, = fr; e @my
20

<5+ 1fe, = felloeny <6

Lr(R")

for ¢, j large enough.

5. We use a diagonal argument and Claim #3 with 6 = 1, %, i,

etc. to obtain a subsequence, also denoted { f, };?‘;1, converging to f
in LP(U). We observe also for 1 < ¢ < p*,

1y = Flzawy < Wfiy = Pl 2oy = FI5E 0

where % = % + 1};9 and hence # > 0. Since {fx}72, is bounded in

LY (U), we see

lim || fx;, = fllpaqy =0
j—o0

for each 1 < ¢ < p* Since p > 1, it follows from Theorem 1.42 that
fewtr(U). O

Remark. The compactness assertion is false for the endpoint case
that ¢ = p*. In case p = 1, the above argument shows that there is a
subsequence {fy,}72; and f € LY (U) such that

lim || fe; = fllaqy =0

Jj—o00

for each 1 < ¢ < 1*. It follows from Theorem 5.2 that f € BV(U). O

4.7 Capacity

We next introduce capacity as a way to study certain “small” sub-
sets of R™. We will later see that in fact capacity is precisely suited for
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characterizing the fine properties of Sobolev functions. For this section,
fix
1<p<n.

4.7.1 Definitions and elementary properties
DEFINITION 4.9.
KP:={f:R"=R|f>0,feLP(R"),Df € LP(R";R")}.

DEFINITION 4.10. If A C R", set

Cap, (4) = inf{/ IDffPde| feKP,AC{f> 1}0}.

We call Cap,(A) the p-capacity of A.
Remarks.

(i) Note carefully the requirement that A must lie within the region
{f > 119, the interior of the set {f > 1}.

(ii) Using regularization, we see

Cap,(K) = inf{/ |IDfIPdx | f € C(R"), f> XK}
for each compact set K C R™.
(iii) Clearly, A C B implies

Cap,(A) < Cap,(B).

THEOREM 4.12 (Approximation in KP).

(i) If f € KP for some 1 < p < n, there exists a sequence {fi}3>; C
WLP(R™) such that

1f = fill o= (gny = 0

and

as k — 0.
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(ii) If f € KP, then
[ £l o= ny < C1lDf || Lo @nys

where C is the constant from the Gagliardo—Nirenberg—Sobolev
inequality.

Proof. Select ¢ € C}(R") so that
0<(¢<1,(=1on B(1), spt¢ C B(2), |D¢| <2.

For each k =1,2,..., set (x(z) := ((%).
Given f € KP, write f, := f(x. Then fr € WHP(R"),

/ = Sl dy < / P dy,
n R"— B(k)

and

/Rn IDf — D" dy
<o { [ 1a-psr+ \chk\pdy}
.

2p
< or-1 / D dy + = / 1P dy
"B (k) kP JB(2k)—B(k)

17
<c DIP dy + C (/ G dy>
R — B(k) R — B(k)

This proves assertion (i). Assertion (ii) follows from (i) and the
Gagliardo—Nirenberg—Sobolev inequality (Theorem 4.8). O

3

THEOREM 4.13 (Properties of KP).
(i) Assume f,g € KP. Then

h :=max{f,g} € K?

and
Df L"-a.e. on{f>g}

Dg L"-a.e. on {f <g}.

Dh =

An analogous assertion holds for min {f,g}.
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(ii) If f € KP and t > 0, then

h :=min{f,t} € KP.
(iii) Given a sequence {fr}3>, C KP, define

g:= sup fi, h:= sup [Dfl.
1<k<o0 1<k<oo

If h € LP(R™), then g € KP and

|Dg| <h L"-a.e.

Proof. 1. To prove (i) we note
h=max{f, g} =f+(g— /)"
Hence Theorem 4.4 implies
Df L"-a.e. on{f>g}
Dg L"-a.e. on{f<g}.

Dh =

Thus Dh € LP. Since 0 < h < f 4+ g, we have h € LP" as well.

2. The proof of (ii) is similar; we need only observe
0 < h=min{f,t} < f,

and so h € LP".

3. To prove (iii) let us set

g1 = sup fi.
1<k<I

Using assertion (i), we see g; € K? and

|Dgi| < sup |Dfi| < h.
1<k<li

Since g; — g monotonically, we can use Theorem 4.12 to calculate that

9l o= mny = Jim lgill o* (e
< Cl lim inf ||DngLp(Rn)
l—o00

S CthHLP(Rn).
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Thus g € LP". Now, for each ¢ € C}(R™;R"),
/ g divedy = lim g div o dy
n =00 Jpn

= — lim ¢ Dg;dy

l— o0 R”

< [ Iomdy.
Rn
It follows that the linear functional L defined by

L) = [ gdivody  (0€ CHRUERY)
has a unique extension L to C.(R™;R"™) such that

L¢) < [ |y,

for ¢ € C.(R™;R™). We apply Riesz Representation Theorem 1.38 and
note the measure y constructed in its proof satisfies

n(A) < /Ahdy

for each Lebesgue measurable set A C R"™. It follows that

L(g)= | ¢-kdy
R’VL
where k € LP(R™;R"™) and |k| < h L™-a.e. Thus g € K? and |Dyg| =
|k| < h LM-ae. O

THEOREM 4.14 (Capacity as measure). Cap,, is a measure on
R™.

Warning: Cap, is not a Borel measure. In fact, if A C R" and
0 < Cap,(4) < oo, then A is not Cap,-measurable. Remember also
that what we call a measure in these notes is usually called an “outer
measure” in other texts.

Proof. Assume A C |J—; Ak, >y Cap,(Ax) < oco. Fix € > 0. For
each kK =1,..., choose fr € KP so that

Ap C{fr =1}
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and
€
/Rn |D fr|? do < Cap, (Ay) + ok

Define g := sup; <y fr- Then A C {g > 1}°,g € K? by Theorem
4.13, and

/ |Dg\pda:§/ sup |Dfi|? dx
R" R

n 1<k<oo

<> [ 1DfPds
k=1"7R"

Thus o
Cap,(4) < Z Cap,(Ax) + e O

THEOREM 4.15 (Properties of capacity). Assume A, B C R".
(i) Cap,(A) = inf{Cap,(U) | U open ,A C U}.
(ii) Cap,(AA) = A\""PCap,(4) (A>0).
(iii) Cap,(L(A)) = Cap,(A) for each affine isometry L : R™ — R".
(iv) Cap,(B(a.r)) = " ~*Cap, (B(1).
)

(v) Cap,(A) < CH""P(A), for some constant C depending only on
p and n.

(vi) L"(A) < C’Capp(A)nT_iP for some constant C' depending only on
p and n.

(vii) Cap,(AU B) + Cap,(AN B) < Cap,(A) + Cap,(B).
(Vlll) If A1 Q e Ak Q Ak+1 ey then
kl;rgo Cap,(Ag) = Cap, (kL_Jl Ak> .

(ix) If Ay D ... A D Agy1 ... are compact, then

kl;rgo Cap,(Ag) = Cap, <p1 Ak> .



176 Sobolev Functions

Remark. Assertion (ix) may be false if the sets { A}, are not com-
pact. See Theorem 4.16 for an improvement of (v). O

Proof. 1. Clearly Cap,(A) < inf{Cap,(U) | U open,U D A}. On the
other hand, for each € > 0, there exists f € K? such that A C {f >
1}° =: U and

/ |Df|P dv < Cap,(A) + ¢
Rn
But then

Cap, (U) < / \DFIP da,

and so statement (i) holds.

2. Fix € > 0 and choose f € K? as above. Let g(z) := f(5). Then
g€ KPAAC {g>1}° and

/ |Dg\7’dx—)\"p/ \DFPP da.
R R™

Thus Cap,(AA) < A"7P(Cap,(A) + ¢€). The other inequality is similar,
and so (ii) is verified.

3. Assertion (iii) is clear, and statement (iv) is a consequence of
(i), (iii).

4. To prove (v), fix 6 > 0 and suppose

oo
U 'Ika’rk

where 21, <6 (k=1,...). Then

Cap, (4 ZCapp (ax,72)) = Capy(B(1) Yy _rp ™"

Hence

Cap,(A4) < CH" P(A).

Choose € > 0, f € KP as in Part 1 of the proof. Then by Theorem
4.12

Lr(A)7 < < 7 d:v)p
RTL
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<o ( / IDf\pdw> p
Rn

< C1(Cap,(A) +€)r.

=

Consequently,
£7(4) < CCap,(A)'s
this is (vi).

5. Fix € > 0, select f € KP as above, and choose also g € KP? so
that

BClo= 1) [ |Dgpde < Cap,(B) + .
Then max{f, ¢}, min{f, g} € K? and
D(max{f,g})|” + [D(min{f,g})P = DI + Dyl L -ae.
according to Theorem 4.13. Furthermore,
AUB C {max{f,g} > 1},
AN B C {min{f,g} > 1}°.
Thus
Cap,(AUB) + Cap, (AN B) < [ | D(max{f.g))P
+D(min{ [, )" da
= [ 117 +IDglrda
< Cap,(4) + Cap,(B) + 2¢

and assertion (vii) is proved.

6. We will prove statement (viii) for the case 1 < p < n only; see
Federer and Ziemer [FZ] for p = 1. Assume limg_,, Cap,(4x) < oo
and € > 0. Then for each kK =1,2,..., choose fi € KP such that

A C{z | fu(z) > 1}°

and

€
/n |D fi|P dz < Cap,(Ay) + o
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Define
By = max{fr |1 <k <m}, hg:=0

and notice from Theorem 4.13 that h,,, = max(h,,—1, fm) € KP and
A1 C{a | min(hp—1, fm) > 1}3°.

We compute
[ 1D de+ Capy(An) < [ DGmax(in, f)I? do
+ [ IDmingh o, f)l? do
—/ \Dho 1| + | D fn? da
Rn

< / |Dhyy 1P dx + Cap, (Ar,)
+ g

Consequently,

/ |Dhm\pda;—/ \Dhyy 1P da
R™ R™
€

< Cap,(Am) — Cap, (A1) + I

from which it follows by adding that
/ |Dhy|P dz < Cap,(Ay) +€ (m=1,2,...).

Set f:= limy,—y00hm. Then Jre; Ax C {z | f(z) > 1}°. Furthermore,

Hf”LP*(R") = W}gnoo ||hm||LP*(R")

S Cl lim inf ||DhmHLP(R")
m— oo

<C ( lim Cap,(A,) + e)% .

m—r o0

Since p > 1, a subsequence of {Dh,,}>°_; converges weakly to Df in
LP(R™) (cf. Theorem 1.42); thus f € KP?. Consequently,

Cap,, (UpZ; Ag) < HDfHLp(Rn < Tr}gnoo Cap,(Am) +e.
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7. We prove (ix) by first noting
Cap,, (M1 4k) < Jim Cap,(Ax).

On the other hand, choose any open set U with (,—, Ay C U. As
Moy Aj is compact, there exists a positive integer m such that A, C U

for £ > m. Thus
lim Cap,(Ax) < Cap,(U).

k— o0

Recall (i) to complete the proof of (ix). O

4.7.2 Capacity and Hausdorff dimension

As noted earlier, we are interested in capacity as a way of character-
izing certain “very small” subsets of R™. Obviously Hausdorff measures
provide another approach, and so it is important to understand the re-
lationships between capacity and Hausdorff measure.

We begin with a refinement of assertion (v) from Theorem 4.15:

THEOREM 4.16 (Capacity and Hausdorff measure).
Assume 1 < p < n. If H" P(A) < oo, then

Cap,(A) = 0.
Proof. 1. According to Theorem 4.15, (viii), we may assume A is com-
pact.

Claim: There exists a constant C, depending only on n and A, such
that if V' is any open set containing A, there exists an open set W and
f € KP such that

ACW C{f=1}, spt(f)CV,
Jgn IDfIPdz < C.

Proof of claim: Let V be an open set containing A and let § :=
1 dist(A,R" — V). Since H"P(A) < oo and A is compact, there ex-
ists a finite collection {B°(z;,7;)}", of open balls such that 2r; < 6,
Bz, )N A#0, ACUY, B(xi,r;), and

a(n—p)r] P <CH"P(A) + 1.
1

m

)

for some constant C.
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Now set W := ", B%(z;,r;) and define f; € K? by

1 if |z — x| <y
file) =2 -2l iy <o — ] < 21
0 if 2r; < |z — x|

Then
/ |Df@|p dx < C’r‘?_p.
Rn

Let f:=maxi<i<m fi- Then f € KP, W C {f =1}, spt(f) CV, and

/ IDFP da < Z/ DA dz < O3 ri P < C(HMP(A) + 1),
R i=1 7 R" i=1

2. Using the claim inductively, we can find open sets {V;}72; and
functions f; € KP such that

AC Vk-i-l C Vka‘_/k-i-l C {fk = 1}0’
spt(fr) € Viy Jgn [Dfil? dz < C.

Set

| =

J
Sj = Z
k=1

and

Then g; € KP, g; > 1 on V,41. Since spt |Df| C Vi — Viy1, we see
that

since p > 1. l
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THEOREM 4.17 (More on capacity and Hausdorff measure).
Assume A CR™ and 1 <p < oc. If Cap,(A) =0, then

H¥(A) =0 foralls>n—p.

Remark. We will prove later in Section 5.6 that Cap,(A) = 0 if and
only if H"~1(A) = 0. O

Proof. 1. Let Cap,(A4) = 0 and n — p < s < oo. Then for all 7 > 1,
there exists f; € K? such that A C {f; > 1}° and

1

Let g := > .2, fi- Then

(/ \Dg|pda:)p <y (/ \Dfi\pdxy < o0,
R i=1 \R?

and by the Gagliardo—Nirenberg—Sobolev inequality (Theorem 4.8),
([1orae)” <X ([ 10 as)
n Z:1 RTL

<> </ |Dfi|pd:v> < 0.
Z:l n

Thus g € K?.

2. Note A C {g > m}° for all m > 1. Fix any a € A. Then for r
small enough that B(a,r) C {g > m}", we have (g),, > m; therefore
(9)ar > 00 asr—0.

3. Claim: For each a € A,

1
lim sup — / |Dg|? dz = +o0.
B(a,r)

r—0 T

Proof of claim: Let a € A and suppose

1
lim sup —S/ |Dg|P dx < 0.
r—=0 1" JB(a,r)
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Then there exists a constant M < oo such that

1

" JB(a,r)

for all 0 < r < 1. Then for 0 < r <1,
][ 19— (9)a,r|"dx < Czr”][ |Dg|? dx < Cr?,
B(a,r) B(a,r)

where 6 := s — (n —p) > 0. Thus

Hence if k& > 7,

k k )
1 P
@age = D) < Y Maday = @) <0 3 ()

I=j+1 l=j+1

This last sum is the tail of a geometric series, and so {(g)q,2 }72; is a
72
Cauchy sequence. Thus (g), 1 # 00, a contradiction since (g)q,, — 00
2

asr — 0.
Consequently,

1
AC aGR”Uimsup—S/ |Dg|P dx = +o0
™ JB(a,r)

r—0

1
C {aER"\limsup—s/ \Dg|pdaﬁ>0} = A,.
B(a,r)

r—0 T

But since |Dg|?P is L™-summable, H*(As) = 0, according to Theorem
2.10. U
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4.8 Quasicontinuity, precise representatives of Sobolev
functions

This section studies the fine properties of Sobolev functions.

THEOREM 4.18 (Capacity estimate). Assume f € K? ande > 0.
Let
A:={z eR" | (f)s,r > € for some r > 0}.
Then o
Cap,(4) < —/ |Df|P dx, (%)
R

=

where C' depends only on n and p.
Remark. This is a capacity variant of the simple estimate
1
CaeR | f@) > D < [ 1P
O

Proof. 1. For the moment we set e = 1 and observe that if x € A and
(f)ar > 1, then

n n 1—{% p* " )
a(n)r < /B ERCECOR ( /B e, dy>

Therefore
r<cC

for some constant C.

2. According to the Besicovitch Covering Theorem 1.27, there exist

an integer INV,, and countable collections Fi, ..., Fy, of disjoint closed
balls such that N
Acly U B
i1=1 BEF;

and
N,

(f)p>1 foreach B e U]:i'

i=1
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Denote by Bg the elements of F; (i = 1,...,N,;7 = 1,...). Choose
hi; € KP? such that

hij=((f)gi — )" on B

i

and
/ |Dhij|pdx§0/_|Df|pdx (=1, Nyj=12..)
n Bi

where C' depends only on n and p. This is possible according to Theo-
rem 4.7 and Poincaré’s inequality. Note that

f+hig=(f)p =1 inB.
Hence, setting

h:=sup{h;j |i=1,...,N,,j=1,...} € K?,

we observe that

f+h>1 onA. (%x)
3. Now
N, oo
/ \D(f +h)|P de < C / |Df\7’da:+22/ \Dhi | da
" R i=1 j=1"R"

<C | |DfJrda.
Rn

Consequently, since A is open and so (%*) implies
AC{f+h=>1}",

we have

Capp(A)</ ID(f+h)Pde<C | |DfPdr.
n Rn

4.In case 0 < € # 1, we set g := e 1 f € KP; so that

A:=A{z| (f)s,r > € for some r > 0}
= {2 | (9)s,r > 1 for some r > 0}.

Thus

P

Cap,(A) <C |Dg|? dx = g/ |Df|Pdx. O
Rn R’VL
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We now study the fine structure properties of Sobolev functions,
using capacity to measure the size of the “bad” sets.

DEFINITION 4.11. A function f is p-quasicontinuous if for each
€ > 0, there exists an open set V such that

Cap,(V) < ¢

and
flrn—v is continuous.

THEOREM 4.19 (Fine properties of Sobolev functions). Sup-
pose f € WLP(R™), 1 <p<mn.

(i) There is a Borel set E C R™ such that
Cap,(E) =0
and
hm(f)x,r = f*({L')
r—0

exists for each x € R™ — E.

(ii) In addition,

lim f=f @) dy=0
i f @)

for each x € R" — E.

(iii) The precise representative f* is p-quasicontinuous.

Remark. Notice that if f is a Sobolev function and f = g L" -a.e.,
then g is also a Sobolev function. Consequently if we wish to study
the fine properties of f, we must turn our attention to the precise
representative f*, defined in Section 1.7. O

Proof. 1. Set

1
A=<z €R"|limsup — / IDfIPdy >0 .
r—0 r p B(;c,r)

By Theorem 2.10 and Theorem 4.16,

H"P(A) =0, Cap,(4) =0.
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Now, according to Poincaré’s inequality,
. o p* —
}E}% Bl lf = (farl” dy=0 (%)

for each z ¢ A. Choose functions f; € WHP(R™) N C*°(R™) such that

1 ,
/7L|Df_sz|pdy§m (Z:LQ"")’

and set
1
B; = xGR"|][ |f = fildy > 5 for some 7 >0, .
B(z.r) 2

According to Theorem 4.18,
Capp(Bz)

C
_ P
i S C - |IDf —Dfi|Pdy < o(p+1)i”

Consequently, Cap,,(B;) < 2—6; Furthermore,

|u»m—ﬁuﬂsf‘ If—U%mMy+f 1~ il dy

B(z,r) B(z,r)

s U Rl
B(z,r)
Thus (%) and the definition of B; imply

limsup | (o — file)] < 21 (x¢ AUB,). ()

r—0

Set Ej, := AU (U532, B;). Then
oo o0 1
Cap,,(Ex) < Cap,(4) + > _Cap,(B;) <C>_ 5
j=k j=k

Furthermore, if x € R® — Ey, and ¢,j > k, then

|fi() = f3(@)] <limsup |(f)a,r — fi(2)]

r—0

+limsup |(f)z,r — fi(2)]
r—0
< 1 n 1
-2t 2
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by (x*). Hence {f;}52, converges uniformly on R" — Ej, to a continuous
function g. Furthermore,

limsup [g(x) — (f)z.r| < lg(x) — fil2)| + 1imjélp |fi(z) = (f)arl;

r—0

so that (%) implies
g(.’L‘) = gl_r%(f)x,r = f*(x) (‘T ER™— Ek)

Now set E := N2, E). Then Capp(E) < limg_yeo Capp(Ek) =0 and

[ (z) = lirr(l)(f)mm exists for each x € R" — E.
r—

This proves (i).
2. To prove (ii), note A C E and so () implies for x € R™ — E that

1
lim ( oo r@r dy)
r—0 B(I,T‘)

< m [(f)e,r — f*(2)] + lim </B(x’r) [f = (Har

r—0

1*
P
p dy)

3. Finally, we prove (iii) by fixing € > 0 and then choosing k such
that Cap,(Ey) < §. According to Theorem 4.15, there exists an open
set U D Ej with Capp(U ) < e. Since the {f;}?2, converge uniformly
to f* on R™ — U, we see that f*|gn_g is continuous. O

=0.

4.9 Differentiability on lines

We will study in this section the properties of a Sobolev function
f, or more exactly its precise representative f*, restricted to lines.
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4.9.1 Sobolev functions of one variable

NOTATION If h: R — R is absolutely continuous on each compact
subinterval, we write h’ to denote its derivative (which exists £1-a.e.).

THEOREM 4.20 (Sobolev functions of one variable). Let 1 <
p < o0.

(i) If f e I/Vli)’Cp(R), its precise representative f* is absolutely contin-
uous on each compact subinterval of R and (f*)" € L? (R).

loc

(ii) Conversely, suppose f € LY (R) and f = g L'-a.e., where g
is absolutely continuous on each compact subinterval of R and
g € Li, (R). Then f € Wi(R).

Proof. 1. First assume f € W,-?(R) and let f’ denote its weak deriva-
tive. For 0 < € < 1 define f€:=n, *x f, as before. Then

Fu) =@+ [ "o . (%)

Let xg be a Lebesgue point of f and €,d € (0,1). Since
() = ()] < / (F)' (1) = (fO) (0)|dt + | f<(0) — f*(wo)]

for x € R, it follows from Theorem 4.1 that {f}c~o converges uni-
formly on compact subsets of R to a continuous function g with g = f
L'-a.e. From (x) we see

o(a) = glao) + | "yt

and hence g is locally absolutely continuous with ¢’ = f’ Ll-a.e.
Finally, since (f)z,r = (9)z,r — g(z) for each z € R, we see g = f*.
This proves (i).

2. On the other hand, assume f = g £L!-a.e., g is absolutely contin-
uous and ¢’ € L} (R). Then for each ¢ € CL(R),

/ 19 do = / o8 do = — / §'ddz,

and thus ¢’ is the weak derivative of f. Since ¢’ € LT (R), we conclude
f € WI(R). O

loc



4.9 Differentiability on lines 189

4.9.2 Differentiability on a.e. line
THEOREM 4.21 (Sobolev functions restricted to lines).

(i) If f € WLP(R™), then for each k =1,...,n the functions

C
fe@' t) = (.. o1, t, Ty, - - )

are absolutely continuous in t on compact subsets of R, for L7~ 1-
a.e. point ' = (x1,...,Tp_1,Ths1,-..,Tpn) € R* L. In addition,

(fl:)/ € Lfoc(Rn)'

(ii) Conversely, suppose f € LY. (R™) and f = g L™-a.e., where for

loc
each k=1,...,n, the functions

gk(flf,,t) = g(‘rla s 7xk717t7xk+17- .. 7xn)

are absolutely continuous in t on compact subsets of R for L7 1-

a.e. point * = (T1,...,Tk_1,Tks1,..-Tn) € R and g, €
n 13 n
LY (R™). Then f € W, ;P(R™).

Proof. 1. It suffices to prove assertion (i) for the case k = n. Define
f€:=mne* f as before, and recall

fe—= f in WLP(R™).

According to Fubini’s Theorem, for each L > 0 and £" '-a.e. 2/ =
(z1,...,Zn_1), the expression

L
/—L |f6(x,7t) - f(x,7t)‘p + |f367n (xlvt) - f:cn (xlvt)|p dt

goes to zero as € — 0. Thus the functions
folt) = f(@t) (teR)

converge in T/Vli)’Cp(R), and so locally uniformly, to a locally absolutely
continuous function f,,, with f/(t) = f, (2/,t) for Ll-a.e. t € R.

On the other hand, Theorem 4.19, Theorem 5.12 (to be proved
later), and Theorem 4.17 imply

fe— f* H" lae.
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In view of Theorem 2.8, for £" '-a.e. point 2/, we have
fat) = f7(@'1)

for all t € R Hence for £* !-a.e. 2’ and all t € R,
falt) = f7(a",1).

This proves statement (i).

2. Assume now the hypothesis of assertion (ii). Then for each ¢ €
Ce(R™),

Fou, dr = / G, dz
Rn mn

_ /R </Z g2, )¢ (2, 1) dt> da’
__ /R </Z g o, t) dt) da’
:_/>%¢m,

Thus f,, = g, L"-ae. for k£ = 1,...,n,, and consequently f €
WhP(R™). O

loc

4.10 References and notes

Our main sources for Sobolev functions are Gilbarg—Trudinger
[G-T, Chapter 7] and Federer—Ziemer [F-Z]. Many of these calculations
appear also in [E2].

See [G-T, Sections 7.2 and 7.3] for mollification and local approx-
imation by smooth functions. Theorem 4.2 is from [G-T, Section 7.6]
and Theorem 4.3 is based upon [G-T, Theorem 7.25]. The product and
chain rules are in [G-T, Section 7.4]. See also [G-T, Section 7.12] for
extensions. Various Sobolev-type inequalities are in [G-T, Section 7.7].
Lemma 4.1 in Section 4.5 is a variant of [G-T, Lemma 7.16]. Compact-
ness assertions are in [G-T, Section 7.10].
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We follow [F-Z] (cf. Maz’ja [M] and Ziemer [Z]) in our treatment of
capacity. Theorems 4.14-4.17 in Section 4.7 are from [F-Z], as are all
the results in Section 4.8.

Much more information about capacity is available in the com-
prehensive books [Z] and [M]. Maly-Ziemer [M-Z] provides applica-
tions to regularity issues for solutions of elliptic PDE. Maly—Swanson—
Ziemer [M-S-Z] discuss the coarea formula for Sobolev functions, and
Figalli [Fg| presents a fairly simple proof of the Morse-Sard Theorem
in Sobolev spaces.






Chapter 5

Functions of Bounded Variation,
Sets of Finite Perimeter

We introduce and study next functions on R" of bounded variation,
which is to say functions whose weak first partial derivatives are Radon
measures. This is essentially the weakest measure theoretic sense in
which a function can be differentiable. We also investigate sets £ having
finite perimeter, meaning that the indicator function xg is BV.

It is not so obvious that any of the usual rules of calculus apply
to functions whose first derivatives are merely measures. The principal
goal of this chapter is therefore to study this problem, investigating
in particular the extent to which a BV function is “measure theoret-
ically C'” and a set of finite perimeter has “a C! boundary measure
theoretically.”

Our study initially, in Sections 5.1 through 5.4, parallels the corre-
sponding investigation of Sobolev functions in Chapter 4. Section 5.5
extends the coarea formula to the BV setting and Section 5.6 general-
izes the Gagliardo—Nirenberg—Sobolev inequality. Sections 5.7, 5.8, and
5.11 analyze the measure theoretic boundary of a set of finite perimeter,
and most importantly establish a version of the Gauss—Green Theorem.
This investigation is carried over in Sections 5.9 and 5.10 to study the
fine, pointwise properties of BV functions.

5.1 Definitions, Structure Theorem

Throughout this chapter, U denotes an open subset of R™.

193
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DEFINITION 5.1.

(i) A function f € L'(U) has bounded variation in U if

sup{/ fdivodr | ¢ € CHU;R™), |¢| < 1} < 0.
U
We write

BV (U)

to denote the space of functions of bounded variation in U. We
do not identify two BV functions that agree L™-a.e.

(ii) An L™-measurable subset E C R™ has finite perimeter in U if

x& € BV(U).

It is convenient to introduce also local versions of these concepts:

DEFINITION 5.2.

(i) A function f € LL (U) has locally bounded variation in U if

loc

for each open set V- CC U,

sup{/ fdivedz | ¢ € CH(V;R™),|8| < 1} < 0.
1%
We write

BViee(U)

to denote the space of such functions.

(ii) An L™-measurable subset E C R™ has locally finite perimeter
n U if
XE S B‘/IOC(U)-

Some examples will be presented later, after we establish this gen-
eral structure assertion.

THEOREM 5.1 (Structure Theorem for BV}, functions). As-
sume that f € BVioc(U).

Then there exist a Radon measure p on U and a p-measurable func-
tion
o:U—=R"

such that
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(i) |o(x)]=1 p-a.e., and
(i) for all p € CH(U;R™), we have

/deivqﬁdx——/Uqﬁ-ad,u.

As we will discuss in detail later, the Structure Theorem asserts
that the weak first partial derivatives of a BV function are Radon
measures.

Proof. 1. Define the linear functional L : C}(U;R™) — R by
L(¢) := —/ fdivedr
U

for ¢ € CH(U;R™). Since f € BWo.(U), we have
sup {L(¢) | ¢ € Ce(V;R"), 9] <1} =1 C(V) < o0
for each open set V' CC U, and consequently

IL(¢)] < C(V)|| ¢l (%)
for ¢ € CL(V;R™).

2. Select any compact set K C U, and then choose an open set V'
such that K C V cC U. For each ¢ € C.(U;R"™) with spt¢ C K,
choose ¢, € CLH(V;R"™) (k = 1,...) so that ¢, — ¢ uniformly on V.
Define

L(¢) := lim L(¢x);
k— o0

according to (%) this limit exists and is independent of the choice of
the sequence {¢;}72, converging to ¢. Thus L uniquely extends to a
linear functional

L:C.(U;R") - R

and

sup {L(d)) | p € Co(U;R™), o] < 1,spt ¢ C K} < 0

for each compact set K C U. The Riesz Representation Theorem now
completes the proof. O
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NOTATION

(i) If f € BVioe(U), we will henceforth write

DA
for the measure u, and
[Df] = IDflILo.

Hence assertion (ii) in Theorem 5.1 reads

Afﬁwm——é¢vﬂWM——A¢dWﬂ
for all ¢ € CH(U;R™).

(ii) Similarly, if f = xg and F is a set of locally finite perimeter in
U, we will hereafter write

IOE]

for the measure u, and

Consequently,

/divgﬁdmz/ 6 vp d||OE|
E U

for all ¢ € CH(U;R™).
MORE NOTATION If f € BVjoc(U), we write

i = Do’ (i=1,....n)

for o = (o!,...,0™). By Lebesgue’s Decomposition Theorem 1.31, we

may further set
W= e + 105
where
pio<< L™ ol L Ln
Then ‘
Hae = L"L fi
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for functions f; € LL (U) (i =1,...,n). We write

loc

feo = fi (1=1,...,n)

Df = (forseeos fan)s

[Dflac = (faes---» 1) = L*LD,
[Dfls = (tgs- 1)

Thus
[Df] = [Dflac + [Df]s = L"LDf + [Dfls;

so that Df € L] .(U;R") is the density of the absolutely continuous
part of [Df].

Remark. Compare this with the notation for convex functions set
forth in Section 6.3. O

Remarks.

(i) |IDf|l is the variation measure of f; ||0F| is the perimeter
measure of E; and ||0E||(U) is the perimeter of E in U.

(i) If f € BVio(U) N L'(U), then f € BV(U) if and only if
IDf]|(U) < co. In this case we define

I lsvw) = IflLr @) + IDFID).

(iii) From the proof of the Riesz Representation Theorem 1.38, we see
IDsIw) =su{ [ paods | e ciovirniol <1f,
\%

0B (V) = sup{/Efdiwdx |6 € CAVIR), 9] < 1}

for each open V CC U.

O
EXAMPLE. Assume f € T/Vli)cl(U) Then for each open set V. CC U
and each ¢ € C}(V;R"), with |¢| < 1, we have

/deiwbdx——/UDf-<z§dx§/v\Df|dx<oo.
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Thus f € BV 10¢(U). Furthermore,
IDfI = L£"LIDf;
and L"-a.e. we have
o {£—§ if Df #0
0 if Df =0.

Hence
WEN(U) € BViee(U),

loc

and similarly
Wt (U) c BV(U).

In particular,

WEP(U) C BVige(U) for 1 < p < 0.

loc
Hence, each Sobolev function has locally bounded variation. O

EXAMPLE. Assume FE is a smooth, open subset of R™ and
H" 1 (OFE N K) < oo for each compact set K C U. Then for V and
¢ as above,

/ div ¢ dz = é-vdH !,
E OF

v denoting the outward unit normal along JF.
Hence

/ div ¢ dx = / ¢-vdH" P <H"HOENV) < oo
E OENV

Thus E has locally finite perimeter in U. Furthermore,
|0E|(U) =H"""(OENU)
and
vg=v H" 'ae ondENU.

Thus ||0E||(U) measures the “size” of OE in U. Since xg ¢ Wlicl(U)
(according, for instance, to Theorem 4.21), we see

Wil (U) G BVioo(U), WHH(U) G BV(U).

loc

So not every function of locally bounded variation is a Sobolev function.
O
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Remark. Indeed, if f € BVj,.(U), we can write as above
[Df] = [Dflac + [Df]s = L"LDf + [Df]s.
Consequently, f € BVj,.(U) belongs to I/Vli)Cp(U ) if and only if
fel (U), [Dfls=0, DfelLf (U).

loc loc

The study of BV functions is rather more subtle than the study of
Sobolev functions, since we must always keep track of the singular part
[Df]s of the vector measure [D f]. O

5.2 Approximation and compactness
5.2.1 Lower semicontinuity

THEOREM 5.2 (Lower semicontinuity of variation measure).
Suppose fr, € BV(U) (k=1,...) and

fr— f in Li (U).

Then
IDFIW) < Timint D).

Proof. Let ¢ € CL(U;R"), |¢| < 1. Then

/fdiquda:: lim/fkdiqudx

= Jim [ 6 crdipsi|
< liminf [ Df|(0).
Thus
IDAI) = sup{ [ fawodr| o cvirn ol <1
< liminf [ D £l (V).

5.2.2 Approximation by smooth functions

THEOREM 5.3 (Local approximation by smooth functions).
Assume f € BV (U).
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Then there exist functions { fi}3>, C BV(U)NC>®(U) such that
() fe — f in LY(U) and
(i) 1D fell(U) = [[DFI(U) as k — oc.

Remark. Compare with Theorem 4.2 in Section 4.2. Note very care-
fully that we do not assert ||D(fr — f)||(U) — 0. O

Proof. 1. Fix € > 0. Given a positive integer m, define for k =1, ...
the open sets

1
Uy := {x€U|dist(x,(9U) > k}ﬁBO(O,k‘—l—m).

Next, choose m so large that
IDfI(U = Uh) <e. (%)
Set Uy := () and define
Vi = U1 — Up_1 (k=1,...).

Let {(x}72; be a sequence of smooth functions such that

G eCT(Vi), 0< (<1 (k ZCk_l on U.

Fix the mollifier 7., as described in Section 4.2. Then for each k,
select €, > 0 so small that

Spt(775k * (f(k)) C Vi
fU |776k*(ka)_ka‘d37< 2%7 (**)
Jo new * (f D) — fDG] dx < 55

Define

ka (fCk)-

In some neighborhood of each point x € U there are only finitely many
nonzero terms in this sum; hence f. € C*>°(U).
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2. Since also -
F=>"f,
k=1

(%*) implies
Ife = Fllorw) < Z/ e * (FCr) = [kl da < e.
k=1"U

Consequently, f. — f in L'(U) as € — 0; and therefore Theorem 5.2
implies
IDFIU) < liminf [[D fe[|(U). (% % %)

3. Now let ¢ € CL(U;R™),|¢| < 1. Then
/Ufe div§ dz = kZI/Un « (o) div pdee
=S [ s divin *¢)de
>,

- ;/deiv((k(mk * @) dx

- [ DG+ (e, x ¢) da
WA

= S div (G (ne, * ¢)) da
> f o

=3 [ 0+t + (1DG) ~ £ DG do
k=1"U
=17+ I5.
Here we used the fact Y D¢, =0 in U.
4. Note that

Ge(ne, x @) <1 (k=1,...),

and that each point in U belongs to at most three of the sets {V},}72,.
Thus

11| =

/U Fdiv(C (e, * @) d + ; /U Fdiv(Cene, * 6) da
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<|DFIU) + Y IDFI(Vi)
k=2

< IDFIU) + 3D — 1)
< |Df|(U) + 3¢ by (%) .

On the other hand, (xx) implies

|I5] < e.
Therefore
/ £, divédz < |DFI|(U) + de.
U
and so
[Df|(U) < [[DfI(U) + 4e.
This estimate and (x * x) complete the proof. O

THEOREM 5.4 (Weak approximation of derivatives). For fj
in the statement of Theorem 5.3, define the (vector-valued) Radon mea-
sure

uk(B) == D fdx
BNU

for each Borel set B C R"™. Set also

n(B):= [ dpy

Then
Be — 1
weakly in the sense of (vector-valued) Radon measures on R™.

Proof. Fix ¢ € C}(R";R") and € > 0. Define U; CC U as in the
previous proof and choose a smooth cutoff function { satisfying

(=1lonU, spt(CU, 0<(<1.

Then
[ o /U¢-kadx
:/prﬁm+/u—O¢DhW (%)
U U

= [ avcosids+ [ 1= Dfid.
U U
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Since fr — f € L1 (U), the first term in (*) converges to
- [ aiworar= [ co-dipy
U U

()
— [[6-ds+ [ (¢~ i)
U U

The last term in (*x) is estimated by
[6llLe< I DFI(U = Uh) < Ce.

Using Theorem 5.3, we see that for k large enough, we control the last
term in (x) by
[@llLe= | Dfill(U = Ur) < Ce.

Hence

d»duk—/ ¢du' < Ce
R™ Rn

for all sufficiently large k. O

5.2.3 Compactness

THEOREM 5.5 (Compactness for BV functions). Let U C R”
be open and bounded, with Lipschitz boundary OU. Assume {fi}72, is
a sequence in BV (U) satisfying

sup | frll BV () < 0.

Then there exists a subsequence {fy;}321 and a function f € BV (U)
such that
fe, = f in LY(U)

as j — oo.

Proof. For k =1,2,..., choose g € C*°(U) so that

1
/ |fk.—gk|dx<g, sup/ |Dgg| dx < oo; (%)
U k U

such functions exist according to Theorem 5.3. By the remark following
Theorem 4.11 in Section 4.6 there exist f € L*(U) and a subsequence
{gr,}52, such that gp; — f in L'(U). But then (x) implies also that
fx;, = f in LY(U). According to Theorem 5.2, f € BV (U). O
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5.3 Traces

Assume for this section that U is open and bounded, with Lipschitz
boundary dU. Observe that since each part of QU is locally the graph
of a Lipschitz continuous function 7, the outer unit normal v exists
H"~! almost everywhere on U, according to Rademacher’s Theorem.

We now extend to BV functions the notion of trace, defined in
Section 4.3 for Sobolev functions.

THEOREM 5.6 (Traces of BV functions). Assume U is open and
bounded, with OU Lipschitz continuous. There exists a bounded linear

mapping
T:BV(U) — L'(OU; H™ 1)

such that
/fdivd)da:-—/d)-d[Df]Jr/ (G- TFaH™ ()
U U U

for all f € BV(U) and ¢ € C*(R™;R").
The point is that we do not now require ¢ to vanish near oU.

DEFINITION 5.3. The function T f, which is uniquely defined up
to sets of H" 1L OU measure zero, is called the trace of f on OU.

We interpret T f as the “boundary values” of f on 9U.

Remark. If f € WH1(U) c BV(U), the definition of trace above and
that from Section 4.3 agree. O

Proof. 1. First we introduce some notation:

(a) Given x = (z1,...,2,) € R", let us write x = (2/,z,,) for 2’ :=
(x1,...,2y_1) € R"71 2, € R. Similarly, we write y = (3, yn).

(b) Given z € R™ and r,h > 0, define the open cylinder

C(z,r,h) ={y e R" | |y —2'| <7, |yn — zn| < h}.
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C(x,r,h)

- >
r

Now since QU is Lipschitz continuous, for each point x € OU there
exist r, h > 0 and a Lipschitz continuous function v : R"~! — R such
that

h

/
m — < —:
\f'—g/])\(grh(y) Tp| < 1

and, upon rotation and relabeling the coordinate axes if necessary, we
have

UNnC(z,r,h) ={y ||’ =y | <rv(Y) < yn < zn+ h}.

2. Assume for the time being f € BV (U) N C*(U). Pick = € oU
and choose r, h,~, etc., as above. Write

C:=C(z,rh).
Ifo<e< % and y € OU N C, we define
fe) =W v() +e).
Let us also set
Ceo ={y € C 1)+ <yn <) +¢}

for0<d<e< %, and define C, := C, . Write C° := (CNU) — C..
Then

) - 1.0l < | e (o) + 1) dt

< /5 DY A + 1) d.
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Csﬁ

’

\
X /

Consequently, since  is Lipschitz continuous, the area formula from
Section 3.3 implies

/ s — flaHt < C / Df|dy = C|Df|(Crs).
ouncC

06,5

Therefore { f.}e~o is Cauchy in L'(0U N C;H" 1), and thus the limit
Tf:=lim f.
e—0

exists in this space. Furthermore, our passing to limits as § — 0 in the
foregoing inequality yields the bound

/ TF — £ 4™ < CIDFI(CY). (x%)
ouncC
Next fix ¢ € C1(C;R™). Then

fdivgbdy——/ ¢-Dfdy+/ feqﬁe-ud?-[”*l.
Ce Ce ounc
Let € — 0 to find
fdivgbdy——/ <;5-ad||Df||+/ Tfo-vdH" ™ . (x%*)
uncC C

unc oun

3. Since OU is compact, we can cover QU with finitely many cylin-
ders C; = C(z,7r5,hi) (i =1,...,N) for which assertions analogous to
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(%) and (% * ) hold. An argument using a partition of unity subordi-
nate to the {C;}$°, then establishes formula (x).

Observe also that (x x x) shows the definition of “T'f” to be the
same (up to sets of H" 1L AU measure zero) on any part of U that
happens to lie in two or more of the cylinders C;.

4. Now assume only f € BV(U). In this general case, choose f; €
BV({U)NC>=U)(k=1,2,...) such that

fe = fin LYU)IDfI(U) = IDFIU)

and
pe — o weakly,

where the measures {u;}72,, p are defined as in Theorem 5.4.
5. Claim: {T f.}32, is a Cauchy sequence in L'(9U; H"1).

Proof of claim: Choose a cylinder C' as in the previous part of the
proof. Fix € > 0, y € OU N C, and then define

fi=7 [ a0 +oa=> [(Erwa

Then (%*) implies

1 €
/ 15 - filant <+ / ITfi — (fi)!] dH™dt
auNC € Jo Jounc
< C|Dfil|(Ce).

Thus

/ TS — ThHldH" < / T — fe] dHr
ouncC

ouncC
+ / Tf — f]dHn!
ouncC
+ / o — fedH !
ouncC
< C(IDfill + IDAIN(C.)

C
+—/ |fr — fildy,
€ C.
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and so

lim sup / Tf, — TH|dH" < C|Df| (C. N D).
ouncC

k,l—o0

Since the quantity on the right-hand side goes to zero as ¢ — 0, the
claim is proved.

6. In view of the claim, we may define
Tf:= lim Tfy;
k—o0

this definition does not depend on the particular choice of approximat-
ing sequence. Finally, formula () holds for each f; and thus also holds
in the limit for f. U

THEOREM 5.7 (Local properties of traces). Assume U is open,
bounded, with OU Lipschitz continuous. Suppose also f € BV (U). Then
for H" t-a.e. z € OU,

lim |f =Tf(z)|dy =0,
r—0 B(z,r)NU

and so

Tf(x)= lim fdy.
r—0 B(z,r)NU

Remark. Thus in particular if f € BV(U) N C(U), then

Tf=flov H" ‘-ae.

O
Proof. 1. Claim: For H" '-a.e. x € OU,
g IDABEDOV)
r—0 rn—
Proof of claim: Fix 0 > 0, § > ¢ > 0, and let
Df||(B N
A, = {x € OU | limsup IDAIC (ai,lr)) U) > o}.
r—0 rn
Then for each x € A, there exists 0 < r < e such that
|Df][(B(z,r)NU) > 0. %)

Tn—l
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Using Vitali’s Covering Theorem, we obtain a countable collection of
disjoint balls {B(z;,7;)}:2, satisfying (%), such that

o0
U a:l, 57’Z

Then
Hig5' (Ag) < aln —1)(5r)"
i=1
C o0
< =) IIDfI(B(xi,r:) NU)
T4
< D f|(U?),
where

U :={zeU|dist(z,0U) < €}.
Send € — 0 to find H]s5' (A,) = 0 for all § > 0.
2. Now fix a point z € QU such that

o IPfI(B(z, 1) N U)

r~>0 rn—1

=0, (%)

lim ITf —Tf(z)dH" =0
r—0 B(z,r)noU

According to the claim and the Lebesgue—Besicovitch Differentia-
tion Theorem, H" '-a.e. z € OU will do. Let h = h(r) :=
2max(1,4Lip(y))r, and consider the cylinders

C(r)=C(x,rh).

Observe that for sufficiently small r, the cylinders C'(r) work in place
of the cylinder C' in the previous proof. Thus estimates similar to those
developed in that proof show

/ Tf — ] dH" 1 < C|DFI(CE) N D),
ouNncC(r)

where

fe) = W' A(W) +e <y e C(r)NaU,0 < e < @)
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Consequently, we may employ the coarea formula to estimate
/( ) T v(y)) — f(yldy < CrIDfI(C(r)NT).
B(x,»)NU

Hence we compute

C
][ ) - Tf (@) dy < -2 / ITf — Tf(x)| dH
B(z,r)NU r C(r)ndU

< TS W)~ Fw)ldy

r B(z,r)NU

< Ipficrn)

;,'-’I’L

=o0(l) asr—0

<o(l)+

by (%*). O

5.4 Extensions

THEOREM 5.8 (Extensions of BV functions). Assume U C R”
is open and bounded, with OU Lipschitz continuous. Let fi € BV (U),
f2 € BV(R™ — T).

Define
s filx) zeU
fle) = {fg(x) reR*-U.
Then
f € BV(R")
and

IDFIR™) = [IDf(U) + || D f2]|(R" = T) +/8 T f1 =T fo dH" 1.
U
Remark. In particular, under the stated assumptions on U, the ex-

tension
on U
Ef = !
0 onR*"-U
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belongs to BV (R™) provided f € BV(U) and the set U has finite
perimeter, with || OU||(R™) = H"~1(oU). O

Proof. 1. Let ¢ € C}(R",R"),|¢| < 1. Then

Rnfdivqﬁda?—/Ufldin)da:—i-/ _ fadivodx

n_0

:_/U¢-d[Df1]—/Rn_¢'d[Df2]

U
+ / (Tfy—Tfa)é-vdH"!
oU
< IDANW) + | Df||(R™ - T)
T —Tfo| dH™ L.
4 /OU\ - Tl

Thus f € BV(R") and

IDFI(R™) < [Dfi[[(U) + [ Dfol (R™ — T) +/8 T f1 =T fo dH" 1.
U
2. To show equality, observe that

- [ o-apf== [ o-apri- [ o-dpp
+/ (Tfy—Tfa)p-vdH" ! (%)
oU
for all ¢ € C}(R™;R™). Thus

= J[Dfi] onU
[Df]{[ng] on R" —U.

Consequently, (*) implies
- qs-d[Df]—/ (Tfy —Tfa)p-vdH"
oUu oU

and so

IDAIOU) = /8 Th TRl 0
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5.5 Coarea formula for BV functions

Next we relate the variation measure of f and the perimeters of its
level sets.

NOTATION For f: U — R and t € R, define
E,={zecU]| f(x) >t}
LEMMA 5.1. If f € BV(U), the mapping
t = 0E|(U) (t €R)

is L' -measurable.

Proof. The mapping
(z,t) = x&,(7)

is L x Ll-measurable; and thus for each ¢ € C}(U;R™), the function
t— diV(JSdﬂj':/XEtdiV(ﬁdﬂj
joR U

is £Ll-measurable. Let D denote any countable dense subset of C}(U :
R™). Then

t— ||OE||(U) = sup div ¢ dx
€D, |p|<1J/E,

is £!-measurable. O

THEOREM 5.9 (Coarea formula for BV functions).

(i) If f € BV(U), then E; has finite perimeter for L'-a.e. point
teR, and

Ipsiw) = [ ‘: 1OEI(U) d.
(1) Conversely, if f € L*(U) and
| sl dr <.
then f € BV (U).

Remark. Compare this with Theorem 3.13 in Section 3.4. O



5.5 Coarea formula for BV 213

Proof. 1. Let f € L*(U) and ¢ € CL(U;R"), |¢| < 1.
Claim #1: We have

/deiv¢dx—/_z </E divd)da:)dt

Proof of claim: First suppose f > 0; so that

fz) = / " (a) dt

for a.e. x € U. Thus

/fdqudx—/ </OOXEt() >divd>(x)da;

[ (] xerisotnn)

= OO ( dlvqﬁda?)
0

Similarly, if f <0,

whence

/deiv bda = /U (/OOO(XEt(x) _ 1)dt> div 6(z) do
_ / OOO ( /U (xm, () — 1) div é(2) d:f:) dt
_ /OOO (/E divd)da:) dt

For the general case, write f = fT — f~.

2. From Claim #1 we see that for all ¢ as above,

/fdiv¢dxs/°° |0E,|(U) di
U

—0Q

Hence 0
IDAIU) < / |0E||(U) dt. (%)

— o0

This proves (ii).
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2. Claim #2: Assertion (i) holds for all f € BV(U) N C*>(U).
Proof of claim: Let

m(t) = /UE |Df|dx:/{f§t} D] da.

Then the function m is nondecreasing, and thus m’ exists £!'-a.e., with

o
/ m'(t) dtﬁ/ |Df|da. (%)
—00 U
Now fix any —oo < t < 0o, r > 0, and define n: R — R this way:
0 ifs<t
n(s) =5t ift<s<t4r.
1 ifs>t+r.
Then L.
, soift<s<t+r
n(s) = . -
0 ifs<tors>t—+r.

Hence, for all ¢ € CL(U;R"),
- / n(f(x)) div 6 dz = / 0 (f(2))Df - ¢ da
U U

1
—_/EtEHTDf-qﬁdx. (% % %)

r

Now

m(t+r)—m(t) 1
) ‘F[ﬂkﬂﬁrw”““‘iA_EﬂD”d{

1

—~ [ ipflds
" JE—Eyr

1

> prod
" JE~Ey,
— [ n(r(e) divods
U
by (% % *). For those t such that m/(t) exists, we then let r — 0:

m'(t) > —/E div ¢ dz

for £L'-a.e. t. Take the supremum over all ¢ as above:

[OEI(U) < m'(2),
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and recall (xx) to find

[ 1oma@ae< [ pria = psi).

This estimate and (x) complete the proof.

3. Claim #3: Assertion (i) holds for each function f € BV (U).

Proof of claim: Fix f € BV (U) and choose { fr}3; as in Theorem 5.3.

Then
fr — f in LYU).

as k — 0o. Define
Etk ={zeU| fr(x) > t}.

Now

00 max{ f(z),fr(x)}
/ s (&) — X ()] dt = / dt = |fulx) — f()]:
0o min{ f(x),fx(z)}

consequently,

/U|fk(af)—f(a:)\da:—/_o; </U|XE§€(3?)—XEt(3?)‘d3?> dt.

Since fr — f in L'(U), there exists a subsequence which, upon rein-
dexing by k if need be, satisfies

Xgp — x5, L' (U)
for £L'-a.e. t. Then the lower semicontinuity Theorem 5.2 implies
10E:[|(U) < lim inf IOEE|I(U).
— 00

Thus Fatou’s Lemma implies

/ 0E|(U) dt < limin / |0E () dt

= lim [[Dfi[[(U) = [|DFII(U).

This calculation and (x) complete the proof. O

5.6 Isoperimetric inequalities

We now develop certain inequalities relating the £"-measure of a
set and its perimeter.
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5.6.1 Sobolev’s and Poincaré’s inequalities for BV

THEOREM 5.10 (Inequalities for BV functions).
(i) There exists a constant Cy such that

[f1lL2= @ny < CLl[DFI[(R™)

for all f € BV(R™), where

(ii) There exists a constant Co such that

1 = (Darll 1 (Bary) < C2llDFIB (2, 7))

for all balls B(x,r) C R™ and f € BVioc(R™), where

(Faw = ][B(xﬁyj)fdy-

(iii) For each 0 < a < 1, there exists a constant Cs(a) such that
£l 2 By < Ca(@)||DfII(B(,7))
for all B(z,r) CR™ and all f € BVioc(R™) satisfying

LBl N =0) |
By

Proof. 1. Choose f € C°(R™) (k=1,...) so that
fo = fin LYR™), fy = f L-ae., [Dfil(R") = [ Df(R).

Then Fatou’s Lemma and the Gagliardo—Nirenberg—Sobolev inequality
imply

11l gy < Y inf || fil] e gy
< lim Cy[|D fill L1 (rr)
k—o0
= C1|[Df|[(R™).

This proves (i).



5.6 Isoperimetric inequalities 217

2. Statement (ii) follows similarly from Poincaré’s inequality, Sec-
tion 4.5.

3. Suppose
L"(B(z,r) N {f =0})

(Bl r) >a>0. (%)

Then

1l Bz SN = (Dl By + 10zl (B
< Col|DFI(B (@, 7)) + [(f)ar (L7 (Bla,r))) 5. (%%)
But

|(f)ar| (L7 (B(z,7))) 5
1

< —1/
L™(B(x,7))7 JB(x,r)n{f+£0}

o N B ) £0pN ¢
§</B<x,r>'f' dy) (o)

< ||fHL1*(B(r,r))(1 - Ck) )

|f|dy

3=

by (x). We employ this estimate in (xx) to compute

Cy

———=  IDfI(B (z,7)). O
T P

Il (B(ar)) <

5.6.2 Isoperimetric inequalities

THEOREM 5.11 (Isoperimetric inequalities). Let E be a
bounded set of finite perimeter in R™.

(i) Then
LY(E)'™w < C1||0B||(R™),

and
(ii) for each ball B(x,r) C R™,

min {L"(B(z,r) N E), L™ (B(z,r) — E)}k%
< 205 |0E||(B° (7).
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The constants C'; and Cs are those from Theorems 4.8 and 4.9 in
Section 4.5.

Remark. Statement (i) is the isoperimetric inequality and (ii) is
the relative isoperimetric inequality. O

Proof: 1. Let f = xg in Theorem 5.10,(i) to prove (i).

2. Let f = XB(x,r)ne in Theorem 5.10,(ii), in which case

L B(z,r)NE)

Per = =B )
Thus
_ v, (LY(B(z,r) - E) . .
/B(m,r) |f (f):c,r| dy( ﬁn(B($’,r.)) > L (B( , )OE)
L' B, )N B e
+< L7 (B(, ) > £4(B(@,r) = E).

Now if L"(B(z,r)NE) < L"(B(z,r) — E), then

( / f- <f>r,r|1*dy)
B(z,r)

[L’”(B(x,r) —F)
L(B(z,r))

> S min{ £ (Bla.r) (1 B). £2(Ba.r) = E)}'~+.

1—1

n

] LY(B(z,r)NE)'™w

The other case is similar. O
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Remark. We have shown that the Gagliardo—Nirenberg—Sobolev in-
equality implies the isoperimetric inequality. In fact, the converse
1s true as well: the isoperimetric inequality implies the Gagliardo—
Nirenberg—Sobolev inequality.

To see this, assume f € CL(R"™), f > 0. We calculate
/R Df|dz = | Df||(R")
— / |0E,||(R™) dt

[e o]

1 [ .
> (BT dt.
—O/m“t) a

1

Now let

1-3
fer=min{t, f}, x(t):= < - ftl* dx) (t € R).

Then x is nondecreasing on (0, c0) and

-3
s xo) = ([ 117 as)

Also, for h > 0, we have

1—-1

0<x(t+h)—x(t) < (/ \fern — fol dﬂ?) Shﬁn(Et)k%-
Rn
Thus x is locally Lipschitz continuous, and
X(8) < L7 (B

for £L'-a.e. t. Integrate from 0 to oco:
1-1 0o
(L) "= [Tx@a
R™ 0
g/ LM(E)Y dt
0

gCl/ Df| da. 0



220 BV Functions, Sets of Finite Perimeter

5.6.3 H"! and Cap,

As a first application of the isoperimetric inequalities, we establish
this refinement of Theorem 4.17 in Section 4.7:

THEOREM 5.12 (#" 'and Cap,). Assume n > 2 and A C R"
1s compact. Then

Cap, (A) = 0 if and only if H"*(A) = 0.

Proof. According to Theorem 4.15, Cap,(A4) = 0 if H""1(A) = 0.
Now suppose Cap;(A) = 0. If f € K! and A C {f > 1}°, then by
Theorem 5.9,

1
/ 10E, | (R™) dt < / D] de,
0 RTL

where E; := {f > t}. Thus for some ¢ € (0,1),

10E||(R) < / Df|da.

Clearly A C E}; and by the isoperimetric inequality, £"(F;) < oo
Thus for each x € A, there exists » > 0 such that
LY(E;NB(z,r)) 1

a(n)rm 4

In light of the relative isoperimetric inequality, we have for each such
ball B(z,r) that

(For) " = (€ (BN BT < CloB (B n)

that is,

"1 < C|OE|(B(z,1)).
By Vitali’s Covering Theorem, there exists a disjoint collection of balls
{B(zj,75)}52, as above, with z; € A and

A - U B((IZ]‘,5T']‘).
j=1

Thus

(5r;)"1 < C||OE, | (R™) <c/ D dx.

Jj=1
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Since Cap,(A4) = 0, given € > 0, the function f can be chosen so that

/ IDf|do < e.
Rn

Thus for each j,
rj < (CllOE||(R™)7 < Cewr.

This implies H"~1(A) = 0. O

5.7 The reduced boundary

In this and the next section we study the detailed structure of sets

13

of locally finite perimeter. Our goal is to verity that such a set has “a
C'! boundary measure theoretically.”

5.7.1 Estimates

We hereafter assume
E is a set of locally finite perimeter in R™.

Recall the definitions of vg, |OE||, etc., from Section 5.1.

DEFINITION 5.4. Let x € R"*. We say x € 0*E, the reduced
boundary of E, if

(i) ||OE|(B(x,r)) >0 for allr >0,
(i)

lim vp d||OF]| = vi(z),
r—0 B(x,r)

and
(iii) |vp ()] = 1.
Remark. According to Theorem 1.32,

IOE|(R™ — &*E) = 0. O
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LEMMA 5.2. Let ¢ € C}H(R™;R"). Then for each x € R,

/ divgbdy—/ gb-uEdHaEH—i—/ ¢-vdH" !
ENB(z,r) B(z,r) ENOB(x,r)

for Ll-a.e. 7 > 0, v denoting the outward unit normal to OB (z,r).

Proof. Assume h : R™ — R is smooth; then

[E div(hgb)dy:[Eh divgbdy+/EDh-¢dy.

Thus
/ hqﬁ-yEdHaEH—/ hdivqﬁdy—i—/Dh-gbdy. (%)
Rn E E

By approximation, (%) holds also for

he(y) := ge(ly — =),

where
1 Hfo<s<r
ge(s) == r=ste jfr<s<r+e.
0 ifs>r+e
Then

1

/(s5) = 0 if0<s<rors>r+e
—= ifr<s<r+e
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and therefore
0 ifly—z|<rorly—z|>r+e

L1V fr <y —x| <7 +e

€ |ly—z|

Set h = h, in (x):

heo- v d|0B] = [ hodivody
E
1 y—a

/ ¢ dy.
€ JEn{ylr<|y—c|<r+c} Y — |

Rn

Let € — 0 and recall Theorem 3.12 in Section 3.4 to find

/ 6 vp d||9E| —/ divd)dy—/ b vdH™!
B(z,r) ENnB(z,r) ENdB(z,r)

for Ll-a.e. r > 0. O

LEMMA 5.3. There exist positive constants Aq,...,As, depending
only on n, such that for each x € 0*F,

(i) liminf, o £ BEN0E) 5 4, 5 0,

L"(B(z,r)—F)

rn

(ii) liminf, > Ay >0,
(iii) liminf, o 12ENBED) . 4, > 0,

(iv) limsup,_,, W < Ay,

PEBEIE < g

(v) limsup,_, =T
Proof. 1. Fix x € 0*E. According to Lemma 5.2, for £-a.e. r > 0
10(E N B(z, 1) |(R") < 0B (B(x,7)) + H""(ENIB(x,7)). (*)
Now choose ¢ € C}(R™;R™) such that
¢ =vg(x) on B(z,r).

Then the formula from Lemma 5.2 reads

/ vp(x) - vgpd|0E| = —/ ve(z) - vdH" (%x)
B(xz,r)

ENOB(z,r)
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Since x € 0*F,

lim vp(z) ]l v d||0E| = lvg(z)]* = 1;
B(z,r)

r—0

thus for £!-a.e. sufficiently small 7 > 0, say 0 < r < 19 = ro(z), (%)
implies

1

§H8E||(B(:E,T)) <H" Y ENJB(x,r)). (% * %)

This and (x) give
|0(E N B(z,r))||(R™) < 3H" Y(ENJB(x,r)) (% * * %)
fora.e. 0 < r <.

2. Write g(r) := L"(B(z,r) N E). Then

g(r) = / H" Y (0B(x,s) N E) ds,
0
whence g is absolutely continuous; and
g (r)=H""10B(z,r)NE) fora.e. r>0.
Using now the isoperimetric inequality and (% * xx), we compute

g(r)'=w = L£*(B(z,r) N E)'"
< Clo(B(z,r) N E)|[(R")
< CH"_I((?B(:E,T) NE)
= Clg'(r)

for a.e. r € (0,7p). Thus

1 1_ 1
o S9N = nlgF ()
1
and so ) ,
w(r) > —.
gn(r) > Cn
Then

g(T’) Z (Cln)n

for 0 < r < rg. This proves assertion (i).




5.7 Reduced boundary 225

3. Since for all ¢ € C}(R";R")

/divqﬁdx—i—/ divqsdx—/ div ¢dz =0,
E n_E n

it is easy to check that
[0E| = |0(R™ = E)||, ve = —ver—p-

Consequently, statement (ii) follows from (i).

4. According to the relative isoperimetric inequality,

10E][(B(,7))

Tn—l

rn ’

> C'min {5”<B<w> NE) £*B(x,r) - E) }—

Tn
and thus assertion (iii) follows from (i), (ii).

5. By (%% %),

10E|(B(x,r)) < 2H" Y ENOB(x,7)) <Cr"™t (0 <r < rp);
this is (iv).

6. Statement (v) is a consequence of (x) and (iv). O

5.7.2 Blow-up

DEFINITION 5.5. For each x € 0*F, define the hyperplane
H(z) :={y eR" | vp(z)- (y —z) = 0}

and the half-spaces

H*(z) :={y e R" | vg(z)- (y — ) > 0},

H(2) == {y € " | vg(a) - (y — ) < 0}.

NOTATION Fix z € 9*F, r > 0, and set
E..={yeR"|r(y—z)+ze€ E}

Observe that y € E N B(z,r) if and only if ¢.(y) € E, N B(z,1),
where g,.(y) == == + z.
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H*(x) VE

H (x)

THEOREM 5.13 (Blow-up of reduced boundary). Assume x €
O*E. Then

XE, — XH— () in Llloc(Rn)

asr — 0.

Thus for small enough r > 0, EN B(z,r) approximately equals the
half ball H~ (z) N B(x,r).

Proof. 1. First of all, we may as well assume:

x=0, vg(0) =e, =(0,...,0,1),
H(0) ={y € R" | y,, = 0},
H*(0) ={y € R" | y, > 0},
H=(0)={y € R" |y, < 0}.

2. Choose any sequence 1 — 0. It will be enough to show there
exists a subsequence {s;}32; C {ry}2, for which

XEsj — XH=(0) in Llloc(Rn)'
3. Fix L > 0 and let

Yy
D, :=E,.NB(L), g-(y) = e

Then for any ¢ € CL(R™;R"™), with |¢| < 1, we have

1
/ divgdz = — / div(¢ o g,) dy
Dr r ENB(rL)
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1
— =7 [ (690 veren dPENBL)|

< 1o(EN BrL)[|(R™)

Tn—l
<(C <o

for all r € (0, 1], according to (v) of Lemma 5.3. Consequently,
0D, [[(R") <C <o (0<r<1).
Furthermore,
Ixp, [l @ny = £"(Dr) < LY(B(L)) < oo (r>0).
Hence

Ixp.llBV@E") < C < o0
forall 0 <r < 1.

In view of this estimate and the compactness Theorem 5.5, there
exists a subsequence {s;}22; C {ry}32; and f € BV)oc(R") such that

XE; — f in Llloc(Rn)

for E; := E,,;. We may assume also xg, — f L"-a.e.. Hence f(x) €
{0,1} for L™-a.e. z and so

f = XF L -a.e.,

where F' C R" has locally finite perimeter. So if ¢ € C}(R™;R"),

[ dvody= [ o-vedjor (+)
F Ry,

for some ||OF ||-measurable function vp, with |vp| =1 ||0F|-a.e.. We
must prove F' = H~(0).
4. Claim #1: vy = e, ||OF|-a.e.
Proof of claim: Let us write v; := vg,. Then if ¢ € CH(R™;R"™), we
have
o-vidlom;| = [ divedy G=12..)
R™ Ej
Since
XE; — XF in L]iom
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we see from the above and (x) that

6 - vy dI|OE;| / ¢ vp d|OF|
R R™
as j — 0o. Thus
v 10, || — vel|oF|

weakly in the sense of Radon measures. Consequently, for each L > 0
for which ||0F|[(0B(L)) = 0, and hence for all but at most countably
many L > 0,

/ v, d|OE;|| - / ve d|OF | (5)
B(L) B(L)

On the other hand, for all ¢ as above,

1
6 v; d|OE,| = — / (60.955) - v d|]OE]
R~ S R”

J

whence
|0B; |(B°(0, L)) = = 0B (B(0, 5,1))
1 (% * %)
fB(L) v; d||OE;|| = T fB(()’st) vg d||OE)|.
Therefore
lim vj d[|0E;|| = lim v d|OE|| = ve(0) = e,
J—00 B(L) j—yo0 0,5

since 0 € O0*E. If ||0F||(0B(L)) = 0, the lower semicontinuity Theorem
5.2 implies

IOF|I(B(L)) < lim inf [|OE; | (B(L))

= lim en - vj d||OE;||

_ / en - vid||OF|,
B(L)

by (x%) . Since |vp| =1 ||0F|-a.e., the above inequality forces

vp = e, ||OF|-a.e.
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It also follows from the above inequality that

IOF[(B(L)) = lim [|0F;|[(B(L))

whenever ||0F||(0B(0,L)) = 0.

5. Claim #2. F is a half space.
Proof of claim: By Claim #1, for all ¢ € C}(R";R"),

/divgbdz: 6 e d|OF].
F R’VL

Fix € > 0 and let f€ := n. * xp, where 7. is the usual mollifier. Then
fee C*(R"), and so

fedivedz = / div(ne * ¢) dz
F

Rn
— [ e o-ea)dlor).

But also
fedivedz = — Df¢-¢dz.
R” R”
Thus
fo=0 (i=1,....,n—1), f& <.
As f¢ — xp L™a.e. as ¢ — 0, we conclude that, up to a set of L"-

measure zero,

F={yeR"|y, <~v} forsome~ecR.

6. Claim #3: F = H~(0).
Proof of claim: we must show v = 0 above. Assume instead v > 0.

Since xg, — xr in Li, (R™),

loc

a(n)y" = L"(B(0,y)NF) = lim £"(B(0,7) N E;)

Jj—o0

= lim
J—o0 S
a contradiction to Lemma 5.3,(ii).

Similarly, the case v < 0 leads to a contradiction to Lemma 5.3,(3).
O
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We can now read off more detailed information concerning the blow-
up of E around a point z € 0*E:

THEOREM 5.14 (More on blow-up of reduced boundary).
Assume that x € 0*E. Then

"(B(x,r T(x
) y BN O E0H )
(i) Tim L((B(x,r) — E)N H (x)) o,

r—0 rn

=0

ity tim 12EI(BG7)

r—0 a(n —1)rn—1 =1

DEFINITION 5.6. A unit vector vg(x) for which (i) holds (with
H?*(x) as defined above) is called the measure theoretic unit outer
normal to E at x.

Proof. 1. We have
L"(B(z,r)NENH"(z))

TTL

= £"(B(z,1)N E, N H*(2))

- LBz, )N H (z)NnH"(z)) =0

as r — 0. The limit (ii) has a similar proof.
2. Assume = = 0. By (x % ) in the proof of Theorem 5.13,
10E[(B(r))

Tn—l

= [|0E,[|(B(1)).

Since ||[0H~(0)|[(0B(1)) = H" 1(0B(1) N H(0)) = 0, Step 2 of the
proof of Theorem 5.13 implies

tim VPENBCD 55— 0)1(3(1))

r—0 pn—1 -
=H""1(B(1) N H(0))
=a(n—1). O
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5.7.3 Structure Theorem for sets of finite perimeter

LEMMA 5.4. There exists a constant C, depending only on n, such
that
H"(B) < C|0E|(B)

for all B C O*E.

Proof. Let ¢,0 > 0 and B C 9*E. Since ||0F| is a Radon measure,
there exists an open set U 2 B such that

IOE|(U) < [IOE||(B) + €.
According to Lemma 5.3, if x € 0*F, then

o IOBI (B, )

m ix o) > Az > 0.

Let
F =

{BW) |0 € B, Ble,r) CUr < - [DE(B(z,r) > A} .

According to Vitali’s Covering Theorem, there exist disjoint balls
{B(z;,7:)}32, C F such that

i=1

Since diam B(x;, 5r;) < d fori=1,...,
Hy H(B) <Y aln—1)(5r)" ' < C Y |0E|(B(wi, )
i=1 i=1
< CloE((U) < C(IOE((B) +¢).
Let € — 0 and then 6 — 0. O

Now we show that a set of locally finite perimeter has “measure
theoretically a C'' boundary.”

THEOREM 5.15 (Structure Theorem for sets of finite perime-
ter). Assume E has locally finite perimeter in R™.
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(i) Then
0"E=|J Ky UN,
k=1
where
|OE|(N) =0

and Ky, is a compact subset of a C' hypersurface Sy (k =
1,2,...).

(ii) vgls, is normal to Sy fork=1,....

(iii) Furthermore,
|OE| = H" ' LO*E.

Proof. 1. For each x € 0*FE, we have according to Theorem 5.14

L"(B(z,r)NENH'(x))

lim =0,

"0 (B )7“j E)nH(2)) ()
lim Akl ) 0.

r—0 rh

Using Egoroff’s Theorem, we see that there exist disjoint [[OE||-
measurable sets {F;}2, C 0*E such that

o] (a*E -U F) =0, 9B]|(F) < o, and
i=1
the convergence in (%) is uniform forz € F; (i =1,...) .

Then, by Lusin’s Theorem, for each ¢ there exist disjoint compact sets

(E! 724 C Fj such that

IOE|| | Fi — U E!| =0, VE|ps is continuous.
=1 z
Reindex the sets { £7 7%—1 and call them {K}}2 . Then
0*E = | J K UN, |OE||(N) =0,
k=1

the convergence in (%) is uniform on Ky,

vg|Kk,is continuous (k =1,2,...).



5.7 Reduced boundary 233

2. Define for 6 > 0

pr(0) = sup { |VE(T; —(i|_ 2 [0<|z—y|<d,z,y € Kk}
3. Claim: For each k = 1,2,..., we have pi(d) = 0 as § — 0.

Proof of claim: We may as well assume k£ = 1. Fix 0 < € < 1. By (%),
(%%) there exists 0 < § < 1 such that if z € K7 and r < 24, then

n

LYENB(z,r)NH(2)) < 2n+2a(n)r”
B 1 o . (% % %)
LY"ENB(z,r)NH (2)) > a(n) <§ - 2n+2> r’.

Assume now z,y € K, with 0 < |z — y| < 4.
Case 1. vg(x) - (y — x) > €|z — y|. Then, since € < 1,
B(y,elx —y|) € HY(z) N B(x, 2|z — y). (k% * %)

To see this, observe that if z € B(y,e|x — y|), then z = y + w, where
|w| < €|z — y|. Consequently,

vp()- (2 —2) =ve(z) (y — =) +ve(@) - w> dr —y| - [w| > 0.

On the other hand, (x x ) with z = = implies

n

L(ENB(e,2le - y)) N H (2)) < goza(m) 2z —y))"

€"a(n
= 4( )Iﬂf—yI”;

whereas (x x x) with z = y implies
LYENB(y,elz —yl)) =2 LY(ENB(y,elz —y[) N H (y))
ot ()

- 2 2n+1

€"a(n)

4

|z —y|™

However, our applying £ L E to both sides of (% ) yields an estimate
contradicting the above inequalities.
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Case 2. vg(z) - (y — ) < —€|lx — y|. This similarly leads to a con-
tradiction.

4. Now apply Whitney’s Extension Theorem (proved in Section 6.5)
with
fZO, d:I/E OIlKk.

We conclude that there exist C'-functions f;, : R® — R such that
fr =0, Dfy =vg on K.
Let .
Sk::{xeR"|fk:O,|Dﬁ|>§} (k=1,2,...).

According to the Implicit Function Theorem, Sy, is a C!, (n — 1)-
dimensional submanifold of R™. Clearly K} C Si. This proves (i) and

(ii).
5. Choose a Borel set B C 0*FE. In view of Lemma 5.4,
H* Y (BN N) < C||0E||(BNN) = 0.

Thus we may as well assume B C U2, Ky, and in fact B C K;. By
(i) there exists a C''-hypersurface S; D K. Let

V= Hn_lle.
Since S; is C*,

. v(B(x,r)) B
}11)% a(n— D1~ 1 (xzeB).
Thus Theorem 5.14,(ii) implies

i B)

W BRI B@y L @EP)

Since v and ||OF|| are Radon measures, Theorem 1.30 implies

I0E||(B) = v(B) = H"~(B). O
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5.8 Gauss—Green Theorem

As above, we continue to assume F is a set of locally finite perimeter
in R™. We next refine Theorem 1.35 in Section 1.7.

DEFINITION 5.7. Let © € R™. We say x € 0,F, the measure
theoretic boundary of E, if

L"(B(x,r)NE)

lim sup - >0
r—0 r
and (B 5
lim sup (B(z,r) — B) > 0.

r—0 ™

LEMMA 5.5. We have
(i) O*E C 0.F, and
(ii) H"~Y(0.FE — 0*E) = 0.
Proof. 1. Assertion (i) follows from Lemma 5.3 in Section 5.7.

2. Since the mapping
L"(B(xz,r)NE)

T’I’L

T

is continuous, if x € 0, F, there exist 0 < a < 1 and r; — 0 such that

L™(B(z,r;) N E)

a(n)r;‘

Thus min{L"(B(z,r;)NE), L"(B(z,7;) — E)} = min{a, 1 —a}a(n)r?,
and so the relative isoperimetric inequality implies

[0E||(B(z, 7))

Tnfl

lim sup > 0.

r—0
Since ||OE||(R™ — 0*E) = 0, standard covering arguments imply
H" Y 0.E — 0*E) = 0. O

Now we prove that if E has locally finite perimeter, then the usual
Gauss—Green formula holds, provided we consider the measure theo-
retic boundary of FE.
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THEOREM 5.16 (Gauss—Green Theorem). Suppose E C R™ has
locally finite perimeter.

(i) Then H" 1 (0. ENK) < oo for each compact set K C R™.

(ii) Furthermore, for H" '-a.e. x € 0. F, there is a unique measure
theoretic unit outer normal vg(x) such that

/ divodxr = ¢-vgdH" !
E 0.E

for all ¢ € CLHR™;R™).

Proof. By the foregoing theory,

/ diveodr = ¢ -vgd||OE||.
E RTL

But
|0E|(R" — 9 E) = 0

and, by Theorem 5.15 and Lemma 5.2,
IOE|| = H L O,.E.

Thus (ii) follows from Lemma 5.5. O

Remark. We will see in Section 5.11 below that if £ C R" is L"-
measurable and H"~1(0- ENK) < oo for all compact K C R™, then E
has locally finite perimeter. In particular, we see that the Gauss—Green
Theorem is valid for E = U, an open set with Lipschitz boundary. O

5.9 Pointwise properties of BV functions

We next extend our analysis of sets of finite perimeter to general
BV functions. The goal will be to demonstrate that a BV function
is “measure theoretically piecewise continuous,” with “jumps along a
measure theoretically C! surface.”

We hereafter assume f € BV (R™) and investigate the approximate
limits of f(y) as y approaches a typical point z € R™.
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DEFINITION 5.8. If f is L-measurable, we define

p(x) := aplimsup f(y)

Yy—x

= inf{t| tim £B@ 0O > 1) 0}

r—0 rn

and

A(z) := apliminf f(y)

y—T
(B t
:sup{t| i £ (Bla,r) 0 {f < t}) :0}‘
r—0 rn
Remark. Clearly —oo < A(z) < u(x) < oo for all z € R™. O

LEMMA 5.6. The functions A\ and p are Borel measurable.

Proof. For each t € R, the set E; := {z € R" | f(z) > t} is L™
measurable, and so for each r > 0, t € R, the mapping

L"(B(z,m) N EY)

T’I’L

X —

is continuous. This implies

pi(z) ;= limsup £1(Bz,r) N By)

r—0, r rational rr
is a Borel measurable function of x for each t € R. Now, for each s € R,
fr € R | u(e) < sh = () o €R™ |y y () = 0,
k=1

and so p is a Borel measurable function.
The proof that A is Borel measurable is similar. O

DEFINITION 5.9. Let
Ji={r e R" [ AMz) < p(2)},

denote the set of points at which the approximate limit does not exist.
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According to Theorem 1.37,
£(J) = 0.

We will see below that for H" !-a.e. point € J, f has a “measure
theoretic jump” across a hyperplane through .

THEOREM 5.17 (Approximating by hypersurfaces). There ez-
ist countably many C'-hypersurfaces { Sy}, such that

H ! (J - Sk> =0.
k=1
Proof. Define, as in Section 5.5,
E,:={zeR"| f(zx) >t}

for t € R. According to the coarea formula for BV functions (Theorem
5.9), E; is a set of finite perimeter in R™ for £!-a.e. t. Furthermore,
observe that if x € J and \(x) <t < p(z), then

L (Bla,r) O > 1)

lim sup — 0
r—0 T
and (B .
r—0 rm
Thus

{reJ|ANz) <t<p(x)} COE:. (%)

Choose D C R! to be a countable, dense set such that F; is of
finite perimeter for each t € D. For each t € D, H" '-almost all of
0, F, is contained in a countable union of C' hypersurfaces; this is a
consequence of the Structure Theorem 5.15.

Now, according to (x)

Jc | ok,

teD

and the theorem follows. O
THEOREM 5.18 (Approximate lim sup and lim inf). We have
—00 < AMz) < p(z) < +o00

for H" t-a.e. x € R™.
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Proof. 1. Claim #1: We have H" '({z | \M(z) = +o00}) = 0 and
HH({a | (@) = —oc}) = 0.
Proof of claim: We may assume spt(f) is compact. Let

Fy:={x e R" | A\(z) > t}.

Since p(z) = M(z) = f(x) L-a.e., E; and F; differ at most by a set of
L™-measure zero; whence

||8Et|| = HaFtH

Consequently, the coarea formula for BV functions implies

/ |OF,|(R™) dt = | Df||(R™) < oo,
and so
litrginf |OF:||(R™) = 0. (%)

Since spt(f) is compact, there exists d > 0 such that
1
L"(spt(f) N B(x,r)) < ga(n)r” (x € spt(f),r>d).  (%*)

Fix t > 0. By the definitions of A and F},

=1 f F;.
r—0 a(n)rr Or T E Ly

Thus for each x € F}, there exists r > 0 such that

LM B(z,r)NFy) 1
a(n)rm T4 ()

According to (xx), it follows that r < d.

We apply Vitali’s Covering Theorem to find a countable disjoint
collection {B(z;,7;)}$2, of balls satisfying (x x ) for = x; and r =
r; < d, such that

Ft Q U B($1,57’Z)
i=1

Now (% % *) and the relative isoperimetric inequality imply

(g@yﬁ<wwwg%m»

— n )
4 T
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that is,
rp Tt S CIOF(B(wiyre)  (i=1,2,...).

Thus we may calculate
o
10 d ) < Z a(n —1)(5r)"
=1

< CZ |OF|(B(x:,:))

< C||OF[|(R™).
In view of (%) ,
Mg ({z | A(z) = +oo}) =0,
and so
H" ' ({z | M(z) = +o0}) = 0.
The proof that H" 1 ({z | u(z) = —co0}) = 0 is similar.
2. Claim #2: H" ! ({z | u(z) — M(z) = 00}) = 0.
Proof of claim: By Theorem 5.17, J is o-finite with respect to H"~! in

R™, and thus {(z,t) | x € J,A(z) < t < p(x)} is o-finite with respect
to H"~ 1 x £! in R"T!. Consequently, Fubini’s Theorem implies

/_00 H LM 2) <t < p(x)})dt = / p(z) — Ax) dH™ L.

n

But by statement (%) in the proof of Theorem 5.17 and the theory
developed in Section 5.7,

/_OO WL (N () < t < px)}) dE < /OO (0, F)dt

— 00

= [ loml @

= [[Df[(R™) < o0
Consequently, H" 1 ({z | u(z) — A(z) = oc}) = 0. 0
NOTATION We hereafter write
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DEFINITION 5.10. Let v be a unit vector in R, x € R™. We define
the hyperplane

H,={yeR"|v-(y—z)=0}
and the half-spaces

Hi ={yeR"|v-(y—=z) >0},
H; ={yeR"|v-(y—=z) <0}

THEOREM 5.19 (Fine properties of BV functions). Assume
f € BV(R™).

(i) Then for H" ‘-a.e. x € R™ — J, we have

lim |f — F(x)]7-1 dy = 0.
r—0 B(:C,'f')

(ii) Furthermore, for H" '-a.e. x € J, there exists a unit vector v =
v(z) such that

lim |f = u(a)|7 T dy =0
r—0 B(z,r)NH,

and
lim |f = Ax)|7T dy = 0.

r—0 B(ac,r)l’WH,]L

(iii) In particular,

p(x) = aplim f(y), AM(z)= aplim f(y).

y—mc,yeHu+ y—z,yeH,

Remark. Thus we see that for H" l-a.e. x € J, f has a “measure
theoretic jump” across the hyperplane H, ;). O

Proof. We will prove only the second part of assertion (ii), as the
other statements follow similarly.

1. For H" !-a.e. point & € J, there exists a unit vector v such that
v is the measure theoretic exterior unit normal to E; = {f > t} at x
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for A(x) <t < pu(z). Thus for each € > 0,

LY B(z,r)N{f > Nx)+eNHS)

n " (%)
LBz, r) N {f <Ax) —¢}) _
rn ’
Hence if 0 < € < 1,
1
— |f = A@) | dy
r B(z,r)NH,S
< lamet+ L - M)y
r B(z,r)NHS N{f>\(z)+e}
1 _n_
+ |f = A=) | dy. (%)

" Bz, )NHEN{f<\(z)—e}
Now fix M > A(x) + €. Then

1 _n

— |f = Az)|»=1 dy

"7 JB(z,r)NHIN{f>A(z)+e€}

LY B(z,r)NH N{f > Az)+e€})
,,'-TL

< (M = Aa))71

1 n_
+— |f = (@) dy.
r B(z,r)N{f>M}

Similarly, if —M < A\(z) — €, we have

1 n_

porns |f = Aa)["= dy

"B (@) n{f <A (@) —e}

n LM(B(z,r) N{f < A(z) —€})

TTL

< (M 4+ A(z))™
1

+ — |f = Az) |77 dy.
" JB(z,r)n{f<—M}

We employ the two previous calculations in (xx) and then recall (%) to
compute

r—0 T

1 n
lim sup —n/ lf — Ma)|™T dy
B(x,r)NH;}

1 n
< limsup — Ilf — Ax)|»—T dy (% * %)
r—=0 T JB(z,r)n{|f|>M}
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for all sufficiently large M > 0.

2. Now

1 _n__ C _n__
— |f = A@)["Tdy < — (f = M)»—Tdy
™ JB(z,r)n{f>M} ™ JB(z,r)

T.n

If M > p(z), the second term on the right-hand side of this inequality
goes to zero as 7 — 0. Furthermore, for sufficiently small r > 0,
Lr(B(z,r) " {f > M})
Lr(B(z,r))

1
<z
-2

and hence by Theorem 5.17, (iii) we have

n—1

(fB( 7=y dy> < DG = M) (Bla ).

This estimate and the analogous one over the set {f < —M } combine
with (x % %) to prove

n—1

lim sup (J[B<x,r)nHj‘f M) dy)
|D(f — M)T||(B(z,r))

< C'limsup —
r—0 rn
D(—M — /)T |(B
+ Climsup 12 = DB or)
r—0 T

for all sufficiently large M > 0.
3. Fix € > 0, N > 0, and define

AN =

ID(f = M)*|[(B(x,7))

rnfl

r—0

{azeR"Himsup >ef0rallMZN}.
Then

HH(AY) < CID( — MR = © [ o) de
M
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for all M > N. Consequently,
Hnil(AéV) =0,

and so
|D(f = M)*||(B(x,7))

i limsup === =0
for H" l-a.e. x € J. Similarly,
D(—M — f)T||(B
lim T sup L2 f)lH( (@)
M—oo 0 rT
These estimates and (%) prove
lim If = A2)|* dy = 0. O

r—0 B(z,r)N HF

THEOREM 5.20 (BV and mollifiers).
(i) If f € BV(R™), then

fH(@) = lim (f)er = F(z)

r—0
exists for H" '-a.e. x € R™.

(ii) Furthermore, if ne is the standard mollifier and f€ := n.* f, then

£ (@) = lim f%()

for H" '-a.e. x € R".

Proof. This is a corollary of the foregoing theorem. O

5.10 Essential variation on lines

We now investigate the behavior of a BV function restricted to
lines.
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5.10.1 BYV functions of one variable

We first study BV functions of one variable. Suppose f: R — R is
L'-measurable, and —oco < a < b < oo.

DEFINITION 5.11. The essential variation of f on the interval
(a,b) is

m
ess VI L i=sup < Y [ f(tin) = f(t)] ¢,
j=1
the supremum taken over all finite partitions {a < t; < -+ < t;y1 < b}
such that each t; is a point of approrimate continuity of f.

Remark. The variation of f on (a,b) is similarly defined, but without
the proviso that each partition point ¢; be a point of approximate con-
tinuity. Since we demand that a function remain BV even after being
redefined on a set of £! measure zero, we see that essential variation
is the proper notion here.

In particular, if f = g £L'-a.e. on (a,b), then

ess VP f = essVPyg.
O

THEOREM 5.21 (BV functions of one variable). Suppose f €
L'(a,b). Then
IDfl(a,b) = ess V' f;

and thus
f € BV(a,b) if and only if ess VP f < oo.

Proof. 1. Consider first ess V' f. Fix € > 0 and let f€ := 7, * f denote
the usual smoothing of f. Choose any a +e¢ <ty < -+ <ty <b—e.
Since L!-a.e. point is a point of approximate continuity of f, t; —sis
a point of approximate continuity of f for £L'-a.e. s. Hence

P ACTOE
j=1

m €

(tjr1—s)— f(t; —s))ds

—€

/ Z (b1 — ) — F(t; — 5)] ds

<essVPf.
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It follows that
b—e m
[0 e = s § 1 (ag0) 1G] < ess V2
a-+te€ .
j=1

Thus if ¢ € Cl(a,b) and |¢| < 1, we have

b—e

b b
/ oo du = — / (FY bdr < / (/) |da < ess V2

a+e

for e sufficiently small. Let ¢ — 0 to find

b
1D f(a;b) = Sup{/ fo'da| ¢ € Co(a,b),]¢] < 1|}

< essVabf < 00-

In particular, if f ¢ BV (a,b), then ess V) f = co.

2. Now suppose f € BV (a,b) and choose a < ¢ < d < b. Then for
each ¢ € Cl(c,d), with |¢| < 1, and each small € > 0, we calculate

/C Y odn = - / "ol da
= —/Cd(ne * f)¢' dx

b
[ ooy da
< |IDf|(a,b).
Thus [*[(f€)'|da < ||Df](a,b).

3. Claim: f € L*>(a,b).
Proof of claim: Choose {f;}32; C BV (a,b) N C*(a,b) so that

fj - f in Ll(aa b)a f] — f E"—a.e.
and ,
[ 11dz = D5l @.b).

For each y, z € (a,b),

52 = 1)+ [ e

Y
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Averaging with respect to y € (a,b), we obtain

b b
552 s][ \fj\dy+/ fld,

and so
sup || fjll o= (a,p) < 00
J

Since f; — f L"-a.e., we deduce that || f| e (q,p) < 00.

4. It follows from the claim that each point of approximate conti-
nuity of f is a Lebesgue point and hence

fe) = f(t) (%)

as € — 0 for each point of approximate continuity of f. Consequently,
for each partition {a < t; < -+ < tp41 < b}, with each ¢; a point of
approximate continuity of f, we have

Z (tj+1) }_ﬁnz tjv1) — f(t))]

< hmsup/ |(f€) |dx

e—0

< [[Dfll(a,b).

Thus
ess VP f < ||Dfll(a,b) < oo. O

5.10.2 Essential variation on almost all lines
We next extend our analysis to BV functions on R™.

NOTATION Suppose f: R" — R. Then for k =1,...,n, set
= (T1,.. ., Th_1, Thy1,...Tp) € R"TL,
If t € R, write
fu(@ t) = f( . @1, t, Thg1, .- )

Thus ess V” f, means the essential variation of f as a function of ¢ €
(a,b), for each fixed z’.
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LEMMA 5.7. Assume f € LL (R"), k€ {1,...,n}, and —co < a <
b < oo. Then the mapping

z' s ess VP fy,
is LY -measurable.

Proof. According to Theorem 5.21, for £ !-a.e. 2/ € R"~!

esszfk: IID fxll(a,b)
_sup{/ fu(@ )¢ (t)dt | ¢ € CX(a,b), |¢|<1}

Take {¢;}52, to be a countable, dense subset of C(a,b) N {|¢| < 1}.

Then )
x / fr(@' 1) (L) dt

is £~ !-measurable for j = 1,... and so
b
x' + sup / fe(z!, t)d(t) dt § = ess V2 fe
J a

is £~ l-measurable. O

THEOREM 5.22 (Essential variation on lines). Assume that
f S Lloc( TL) Then f € B‘/loc(Rn) Zf and Onl’y ’I,f

/ essVlfrda' < oo (k=1,...,n)
K

for all —co < a < b < oo and all compact sets K C R~ 1.
Proof. 1. First suppose f € BVjo.(R™). Choose k, a,b, K as above. Set
C:= {17 | a <z < ba (xla"' sy Lk—1y Lh+41y-- - axn) € K}

Let f€:=mn. x f, as before. Then
lim/ |f¢— fldx =0, hmsup/ |Df€| dx < oco.
e—=0 Jo

Thus for H" !-ae. 2’ € K,

fe— fr in Ll(a, b),
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where
fe@'t) = f( . o1, t, Tpr1,. ).
Hence
ess Vab(]”/z€ < liminf ess ch’f,z
e—0

for H"'-a.e. 2’ € K. Thus Fatou’s Lemma implies
/ ess V2 fi do’ < lim inf/ ess V2 ff da’
K e—0

K
= liminf [ |f¢
im in lexkldﬂ:

< limsup/ |Df|dx < oo.
C

e—0

2. Now suppose f € L (R™) and

loc

/ ess VO fi da’ < oo
K

for all k = 1,...,n, a < b and compact sets K C R""!. Fix ¢ €
C°(R™), with |¢| < 1, and choose a, b, and k such that

spt(¢) C {x | a < xp < b}.

Then Theorem 5.21 implies

[bu, dx < / essV? fr da’ < oo,
R" K
for

K =
{z' e R" | (..., 24_1,t,2p41,...) € spt(¢) for some t € R}.
As this estimate holds for k = 1,...,n, we deduce f € BVj,.(R™). O

5.11 A criterion for finite perimeter

We conclude this chapter by establishing a relatively simple crite-
rion for a set F to have locally finite perimeter.
NOTATION We will write the point z € R™ as =z = (a/,t), for

v = (x1,...,0p1) ER" L t =12, €R.
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DEFINITION 5.12.
(i) The projection P :R"™ — R" 1 js
P(z) =1 (x = (2, 2,) € R™).
(ii) The multiplicity function is
N(P|A2):=H (AN P H2'})
for Borel sets A C R™ and ' € R,
LEMMA 5.8.
(i) The mapping ' — N(P | A,2') is L' -measurable.
(i) [ou N(P| A" da’ < H"L(A).

Proof. Assertions (i) and (ii) follow as in the proof of Lemma 3.5,
Section 3.4; see also the remark in Section 3.4. O

DEFINITION 5.13. Let E C R™ be L™-measurable. We define
Lipen =B )

;,'-’I’L

I:= {:EER” | lim
r—0

to be the measure theoretic interior of £ and

0= {xeR“ | 1im £B@ TN E) :0}
r—0

/rTL
to be the measure theoretic exterior of F.

Remark. Note 0, F = R"—(IUQO). Think of I as denoting the “inside”
and O as denoting the “outside” of E. O

LEMMA 5.9.
(i) I, O, and 0.E are Borel measurable sets.
(ii)) L"(I - E)U(E-1))=0.

Proof. 1. There exists a Borel set C' C R™ — E such that L*"(C'NT) =
L™(T — E) for all L™-measurable sets 7. Thus

I {x [ Tim L(B(z,r)nC) 0},

r—0 rn

and so is Borel measurable. The proof for O is similar.

2. Assertion (ii) follows from Theorem 1.35. O
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THEOREM 5.23 (Criterion for finite perimeter). Let E C R"
be L™-measurable. Then E has locally finite perimeter if and only if

H" N (K NO.E) < oo (%)
for each compact set K C R™.
Proof. 1. Assume first (%) holds, fix a > 0, and set

U:=(—a,a)” CR".

To simplify notation slightly, let us write z = 2’ € R*~ !, t = z,, € R.
Note from Lemma 5.8 and hypothesis () that

N(P|UNOE,2)dz <H" M (UNOE) < . (%x)
Rnfl

Define for each z € R*~1

f2() = xi(z,t) (t€R).

Select ¢ € CH(U), with |¢| < 1, and then compute

[E div(ge,) dz = /I div(ge,) dz = /I 6, dz

- [ [ rvseoal e e
S/Vesszafzdz

where
Vi=(-a,a)" ' CR"

2. For positive integers k and m, define

G(k) = {x eR" | L"(B(z,r)N0O) < aln — 1)7’" for 0 <r < é},

3n+1 k

H(k):= {:L“GR"|E”(B(:E,T)QI)§W 2

a(n_l)r” for0<r<§},
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and

Gt (k,m) := G(k)ﬁ{x\x+sen60for0<s<

G~ (k,m) := G(k)ﬁ{x\x—sen60f0r0<s<

H"(k,m) ::H(k‘)ﬂ{x|x+sen61for0<s<

Slew Slew Jlew 3w

H™ (k,m) ::H(k‘)ﬂ{x|x—sen61for0<s<

3. Claim #1: L"Y(P(G*(k,m))) = LY (P(H*(k,m))) = 0 for
k,m=1,2,....

Proof of claim: For fixed k, m, write

where

Gj:—GJr(k,m)ﬂ{a;\‘]_lan<i}.

Assume z € R"™!, 0 < r <min{}, =}, and B(z,7) N P(G;) # 0. Then
there exists a point b € G; N P~Y(B(z,7)) C G(k) such that

by, + g > sup{z, | * € G; NP Y B(x,7))}.
Thus, by the definition of G (k, m), we have
{y | by + g <y < by + 7’} N P~Y(P(G;) N B(z,7)) € O N B(b,3r).

Take the L™ measure of each side above to calculate

a(n—1)

g/j”_l(P(Gj) NB(zr) < LYONB(b,3r) <~

(37‘)”’

since b € G(k). Then

lim sup
r—0 a(n —

for all z € R*~!. This implies

LrNP(G)) =0 (j=0%1,%2,...);
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and consequently

L H(P(GF (k,m))) = 0.

Similar arguments imply
LY HP(G™ (kym))) = L H(P(H* (k,m))) = 0

for all k, m.

4. Now suppose

zeV— |J PIG"(k,m)UG (k,m)UHY (k,m)UH (k,m)
k.m=1
(% * %)
and
N(P|UNOE,z) < .

Assume —a < t; < -+ < tpy1 < a are points of approximate
continuity of f*. Notice that |f*(¢;41) — f*(¢;)] # 0 if and only if
|f#(tj+1) — f*(t;)] = 1. In the latter case we may, for definiteness,
suppose (z,t;) € I, but (z,t;41) ¢ I. Since t;41 is a point of approx-
imate continuity of f* and since R™ — (O UI) = 0, F, it follows from
the finiteness of N(P | U N0, F, z) that every neighborhood of t;;
must contain points s such that (z,s) € O and f* is approximately
continuous at s. Consequently,

essV? f*% =sup ZIfZ(tj+1)—fz(tj)| ;
=1

the supremum taken over points —a < t; < --- < t;,41 < a such that
(2,t;) € (OUI) andf* is approximately continuous at each ¢;.

5. Claim #2: 1f (z,u) € I and (z,v) € O, with v < v, then there
exists u < t < v such that (z,t) € 0.E.

Proof of claim: Suppose not; then (z,t) € (OUI) for all u <t < v. We
observe that

1c|JGk), oc|H®),
k=1 k=1
and that the sets G(k), H(k) are increasing and closed. Hence there
exists kg such that (z,u) € G(ko), (z,v) € H(ko). Now H(ko)NG (ko) =
(), and so
ug = sup{t | (z,t) € G(ko),t < v} <w.
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Set
vo = inf{t | (z,t) € H(ko),t > uo}.
Then
(z,u0) € G(ko), (z,v0) € H(ko), u<wup <vg <,
and

{(Z,t) | Uy <t < 1)0} N [H(k‘o) U G(k())] = (Z)

Next, there exist
Uy < 81 < t1 <y

with (z,s1) € I, and (z,t1) € O; this is a consequence of (* * *x).
Arguing as above, we find k1 > k¢ and numbers uq,v; such that

Uy < up < v1 < Vg, (z,ul) S G(kl), (Z,Ul) S H(k‘l),

and (z,t) ¢ H(k1) UG(k1) if ug <t <.
Continuing, we see that there exist k; — oo and sequences {u;}52,
{v;}52, such that

U <up <...,00 >0 >0V2...,

u; <wvjforall j =1,2,...,

(Zauj) € G(k_])a (Zavj) € H(k])a
(Z,t) ¢ G(k‘])UH(k‘]) if u; <t <wj.

Choose
lim u; <t < lim ;.
J—»00 J—»00
Then -
y=(zt) ¢ | [G(k;) UH(K));
j=1
hence L B(yr) N E) _ aln—1)
) "(B(y,r)N a(n —
lim sup o Z e
nd LBly.r) ~ E) _ aln-1)
o Y, r) — a(n —
lim sup " Z ~gari
Thus y € 0, FE.

6. Now, by Claim #2, if z satisfies (x x xx), then

essV? f* < Card{t| —a <t<a,(zt) €0.E}
— N(P|UNOE,z).
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Thus (% * x) implies

/ essV® f*dz g/ N(P|UNOE, z)dz
v v
<H" Y UNOE) < 0,

and analogous inequalities hold for the other coordinate directions.
According to Theorem 5.22, F therefore has locally finite perimeter.

7. The necessity of (x) was established in Theorem 5.16. O

5.12 References and notes

We principally used Giusti [G] and Federer [F, Section 4.5] for BV
theory, and also Simon [S, Section 6]. The Structure Theorem is stated,
for instance, in [S, Section 6.1]. The Lower Semicontinuity Theorem in
Section 5.2 is [G, Section 1.9], and the Local Approximation Theorem
is [G, Theorem 1.17]. (This result is due to Anzellotti and Giaquinta).
The compactness assertion in Section 5.2 follows [G, Theorem 1.19].
The discussion of traces in Section 5.3 follows [G, Chapter 2]. Our
treatment of extensions in Section 5.4 is an elaboration of [G, Remark
2.13].

The coarea formula for BV functions, due to Fleming and Rishel
[FI-R], is proved as in [G, Theorem 1.23]. For the isoperimetric in-
equalities, consult [G, Theorem 1.28 and Corollary 1.29]. The remark
in Section 5.6 is related to [F, Section 4.5.9(18)]. Theorem 5.12 is due
to Fleming; we followed [F-Z]. The results in Sections 5.7 and 5.8 on
the reduced and measure-theoretic boundaries are from [G, Chapters
3 and 4]; these assertions were originally established by De Giorgi.

Federer [F, Section 4.5.9] presents a long list of properties of BV
functions, from which we extracted the theory set forth in Section 5.9.
Essential variation occurs in [F, Section 4.5.10] and the criterion for
finite perimeter described in Section 5.11 is [F, Section 4.5.11].

L. Ambrosio and E. De Giorgi [A-DG] have introduced the class of
“special” functions of bounded variation, denoted SBV, for which the

singular part of the gradient is supported on the jump set J. See also
Ambrosio [A].






Chapter 6

Differentiability, Approximation by
C'! Functions

In this final chapter we examine more carefully the differentiability
properties of BV, Sobolev, and Lipschitz continuous functions. We will
see that such functions are differentiable in various senses for £"-a.e.
point in R™, and as a consequence are equal to C'!' functions except on
small sets.

Section 6.1 investigates differentiability £™-a.e. in certain LP-senses,
and Section 6.2 extends these ideas to show functions in WP for p > n
are in fact L£™-a.e. differentiable in the classical sense. Section 6.3 re-
counts the elementary properties of convex functions. In Section 6.4
we prove Aleksandrov’s Theorem, asserting a convex function is twice
differentiable £™-a.e. Whitney’s Extension Theorem, ensuring the exis-
tence of C'! extensions, is proved in Section 6.5 and is utilized in Section
6.6 to show that a BV or Sobolev function equals a C'' function except
on a small set.

6.1 LP differentiability, approximate differentiability
6.1.1 L' differentiability for BV

Assume f € BVjo.(R™).
NOTATION We recall from Section 5.1 the notation

[Df] = [Df]ac+[Df]s:ﬁnLDf"i_[Df]m

where Df € L (R™R™) is the density of the absolutely continuous
part [D fl.c of [Df], and [Df]s is the singular part.

We first demonstrate that near £"-a.e. point x, f can be approxi-
mated in an integral norm by a linear mapping.

257
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THEOREM 6.1 (Differentiability for BV functions). Assume
that f € BVioo(R™). Then for L™-a.e. x € R",

|~

E3

( ][ 1f(y) — f(x) — Df(z) - (y — z)|" dy) =o(r)
B(z,r)

|

asr — 0.

Proof. 1. L"-a.e. point x € R" satisfies these conditions:

(2) lim, o+ 5, 0 | (v) = f (@) dy = 0.
(b) limyof ;.| DF(y) = Df ()| dy = 0.
(c) lim,_o [RIlB@n) _ o

2. Fix such a point z; we may as well assume z = 0. Choose r > 0

and let f€ := n. x f. We write B(r) = B(0,r) and select y € B(r).
Define g(t) := f¢(ty). Then

that is,
P = 1O+ | Df(su)-yds
= f(0)+Df(0) -y +/0 [Df(sy) — Df(0)] - yds.

3. Choose any function ¢ € C}(B(r)) with |¢| < 1, multiply by ¢,
and average over B(r):
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= [, o (5)prrc s
= —/B(rs) fe(z) div (d) (;) z) dz

o /B(Ts) f)div () ) dz ase—0

— /B(rs) b (g) Df(z)-zdz+ /B(rs) ¢ (3) z-d[Dfls.

Furthermore,
|ge(s)] _ 7
< — Dfe(z)|d
ek RO
r
- Dz~ ) ) dy
S B(rs) |JR™
r

s" B(rs)

)
< / / ne(z — ) d| D] dz
S B(rs) n

)
_r / / ne(z — y) dzd| Df||

S n JB(rs)

C

C / / dzd||Df||
S'e B(r5—|—6) B(T’S)mB(y7e)

min((rs)™, &)y b FB(rs + €)

s™en
min((rs)", €*) (rs+¢)"
s™en
<C forO0<es<1.

[ = waps) a:

<

<C

<C

4. Therefore, applying the Dominated Convergence Theorem to (),
we find

][B( D) = 10) = DIO) ) dy
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! YD f]Is|(B(rs))
< C'r/o ][B(Ts)|Df(z) —Df(0)|dzds+0r/0 DAIBTs)) ;o
= o(r)

as 7 — 0. Take the supremum over all ¢ as above to find

fm)uw>—fm»—wawyWy—ow> (+)

asr — 0.

5. Finally, observe from Theorem 5.10, (ii) in Section 5.6 that

(fmgﬂw—fw%JHmwmﬁ1@>
_ DU = £0) = DFO) - IBO)

Tn—l

+cf F(y) — £(0) — DF(0) -yl dy
B(r)
— o(r)

as r — 0, according to (%*), (b), and (c). O

n—1
n

6.1.2 LP* differentiability a.e. for WP

We can improve the local approximation by tangent planes if f is
a Sobolev function.

THEOREM 6.2 (Differentiability for Sobolev functions). As-
sume that f € W,2P(R") for some

loc
1<p<n.

Then for L™-a.e. x € R",
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Proof. 1. L™-a.e. point z € R" satisfies
(a) 1, o g |F(2) = FIP dy = 0,

(b) im0y | DF (@) = D) dy = 0.

2. Fix such a point z; we may as well assume z = 0. Select ¢ €
CY(B(r)) with [|¢|lLap@y) < 1, where % + % = 1. Then, as in the
previous proof, we calculate

][B( W)~ 10~ DIO) )y

= /Olé ][B(Ts)gb (g) [Df(z) — Df(0)] - zdzds

<[ \f
0 B(rs)
Since

][B(rs)

we obtain

oGl d2> E ( f, o5 Df(O)I”dZ> s

£ 10 SOU@) = £0) = DFO) -y =o' F) a5 0.
B(r
Taking the supremum over all functions ¢ as above gives

in (/ If(y)—f(O)—Df(o).y‘pdyy —o(rh).
™ \/B)

Hence

=

<][ ( )|f(y) — f(0) = Df(0) 'y|pdy> =o(r) asr—0. ()
B(r
3. Thus Theorem 4.9,(ii) in Section 4.5 implies

< £ 15w - 70 - DSO) -y dy) p
B(r)
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<cr ( ][ Df(y) - Df(O)Ipdy>
B(r)

e ( ][ F(w) — F(0) — DF(0) -y dy>
B(r)

=o(r) asr—0,

P

T =

according to (x) and (b). O

6.1.3 Approximate differentiability

DEFINITION 6.1. Let f : R"™ — R™. We say f is approximately
differentiable at x € R" if there exists a linear mapping

L:R* —-R™
such that I
ap lim [fy) — f@) - Lly—2)| _
y—x ly — x|

(See Section 1.7 for the definition of the approximate limit.)

NOTATION As proved below, such an L, if it exists, is unique. We
write

ap D f(z)
for L and call ap D f(z) the approximate derivative of f at z.

THEOREM 6.3 (Approximate differentiability). An approxi-
mate derivative is unique and, in particular,

apDf =0 L"-a.e. on{f =0}
Proof. Suppose
[f(y) — f(z) — L(y — )|

ap lim =0
y— ly —
and I
ap lim [fy) = fl@) - L'y —2)| _,

y—x ly — x|

Then for each € > 0,

Lo (B(:E,T) N {y | \f(y)—f(r)—lL(y—r)l > 6}) iy

. ly—=
}1_r>r[1) L™(B(x,r)) ()
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and )
Ln <B(3;’,7“) N {y | |f(y)*f‘(9ﬂ)7;|L (y—z)| > 6})
lim J =0. (%)
r—0 L(B(z,r))
If L # L, set
IL—L'|| := max |(L = L) (2)] > 0.
and put
1
i L.
Consider then the sector
L—-L||ly—=
si={ullie-1)-@-a)z =T
Note (B g
(B(z,r) O )::a>0 (% % %)

Lr(B(z,r))
for all » > 0. But if y € S,

<|(L-L')(y— =)
<|f(y) = f(z) = Ly — )| +|f(y) — f(z) = L'(y — 2)|;
so that
|f(y) — f(z) — L(y — 2|
Sg{ ly — x| >€}

[f(y) — f(z) — L'(y — =)| ‘
U{ >e}

ly — |
Thus () and (%*) imply

lim LY(B(x,r)NS)
r=0  L*(B(z,r))

=0,

a contradiction to (% * x). O

THEOREM 6.4 (BV and approximate differentiability). As-
sume f € BVioo(R™). Then f is approzimately differentiable L™-a.e.
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Remark.
(i) We show in addition that
apDf=Df L"ae.,
the function on the right defined in Section 5.1.

(ii) Since WU (R™) € BVie(R") for (1 < p < oo, we see that each

loc
Sobolev function is approximately differentiable L™-a.e. and its

approximate derivative equals its weak derivative L™-a.e.

l
Proof. Choose a point z € R™ such that
Lo JH0) = 1@ = DS@) - =y =olr) ()

as r — 0; L™"-a.e. z will do according to Theorem 6.1.
Suppose

o limsup /) = F(&) = D (@) - (v = )]

> 6> 0.
y—x |y—$|

Then there exist r; — 0 and v > 0 such that

L"{y € B(z, ) |
[f(y) = f(x) = Df(x) - (y — )| > Oly — 2|}) = ya(n)ri > 0.

Hence there exists o > 0 such that

'Cn({y € B(xvrj) - B(&U, Urj) ‘

1(0) ~ £(&) ~ D) - (s~ )| > Oy ) > T2
for j = 1,2,.... Since |y — z| > or; for y € B(x,r;) — B(x,0r;), it

follows that
L"({y € B(z, rj)|[f(y) — f(z) = Df(x) - (y —x)| > bor;})

a(n)r

.3

>
— 2
(k

)
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for j = 1,... But by (%), the expression on the left-hand side of (xx)
is less than or equal to

) — oq1)

Oor;
as r; — 0, a contradiction to (x*) .
Thus
— - D Ay —
ot oy ) = £@) = Di(@) - y=a)| _
y—w ly — |
and so
ap Df(z) = Df(x). O

6.2 Differentiability a.e. for WP (p > n)
Recall from Section 3.1 the

DEFINITION 6.2. A function f : R — R™ is differentiable at
x € R" if there exists a linear mapping

L:R* - R™
such that I
i W = f@) - Llz-y)| _
y—e |z =yl

NOTATION If such a linear mapping L exists at z, it is clearly
unique, and we write

Df(x)
for L. We call D f(z) the derivative of f at x.

THEOREM 6.5 (Almost everywhere differentiability). Assume
that f € W,oP(R™) for some

n <p < oo.

Then f is differentiable L™-a.e., and its derivative equals its weak
derivative L™-a.e.
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Proof. Since Wli’COO(R”) - Wl’p(R”), we may as well assume n < p <

loc
oo. For L™a.e. x € R™, we have

lim |Df(z) — Df(x)|Pdz = 0. (%)
r—0 B(z,r)

Choose such a point z, and write

9() = fly) = f(x) = Df(z) - (y—z) (y€ B(z,1)).

Employing Morrey’s estimate from Section 4.5, we deduce

l9(y) — g(z)| < Cr (][B( )\Dg|p dz)

for r := |z — y|. Since g(z) =0 and Dg = Df — D f(z), this reads
[f(y) = f(z) = Df(x) - (y — 2)|
|y — |

<C < ][BW)IDf(Z) _Df(x)]? dz)

=o(l) asy—x

P

=

according to (x). O

As an application we have a new proof of

THEOREM 6.6 (Rademacher’s Theorem again). Let f: R" —
R be a locally Lipschitz continuous function. Then f is differentiable
L"-a.e.

Proof. According to Theorem 4.5, f € W, (R"). O

loc

6.3 Convex functions

DEFINITION 6.3. A function f: R™ — R is called convex if

fOz+ (1= Ny) <Af(x)+ (1 =N f(y)
forall0 < A< 1,z,y € R".
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THEOREM 6.7 (Properties of convex functions). Assume that
f:R™ = R is convez.

(i) Then f is locally Lipschitz continuous on R™.
(ii) Furthermore, there exists a constant C, depending only on n, such

that

sup |f| <C |f| dy
B(z,3) B(z,r)

and o
esssup |Df| < < ][ |l dy
" J B(z,r)

B(z,%)
for each ball B(xz,r) C R™.
(iii) If, in addition, f € C*(R™), then
D*f >0 onR"

that is, for each x € R™, D?f(x) is a nonnegative definite sym-
metric matriz.

Proof. 1. Let Q := [~L,L]" be a cube, with vertices V = {uv,}7_ .
We can erte any point x € ) as a convex combination of the vertices:
T = Zk 1 AUk, where 0 < Ay <1 and > A\; = 1. Hence

on

Z)\kf vg) < max flor) <

k=1

and thus M := supg, f < oo. To derive a lower bound, again select any
point & € Q) and write

0:1x+%(—x)
Then
1 1 1
f(0) < §f()+ f( r) < §f(37)+§M;
and so

f(x) = 2f(0) — M.

Therefore infg f > 2f(0) — M. These estimates are valid for each cube
(@ as above, and hence f is locally bounded.
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2. If z,y € B(r) and x # y, select u > 0 so that

z:=x+ p(y —x) € IB(2r).

Then p = ;Z:ﬂ >1landy= %z +(1- %)x Hence

1 1
F0) < £ £G) + (L= ) f(@)
— f@)+ %(f(Z) — f(@)
< f(z) + Cly — =

for C = %supB(Qr) |f|, since |z — 2| > r. Interchanging x,y, we find
that

[fy) = f@) <Cly—=z|  (z,y € B(r))
This proves assertion (i).

3. Suppose next that f € C?(R™) and is convex. Fix x € R". Then
for each y € R™ and A € (0, 1),

fle+ XMy —2) < flz) + A(f(y) — f(2)).

Thus
flz+ Ay —z)) — f(=)

3 < fly) — f(2).

Let A — 0 to obtain

fy) = fx)+ Df(z) (y —x) (%)
for all z,y € R".

4. Given now B(z,r) C R", we fix a point z € B(z, 5). Then (x)
implies

f) =2 f(z) +Df(z) (y — 2).
We integrate this inequality with respect to y over B(z, §) to find

f@éfg%ﬁ@wéCﬁMMW@ (x%)

Next choose a smooth cutoff function ¢ € C2°(R™) satisfying

0<¢<1, D¢ <E,
¢(=1on B(z,5), (=0onR" - B(z,7).
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Now (%) implies

f(2) > fy) +Df(y)- (2 —y).

Multiply this inequality by ((y) and integrate with respect to y over
B(z,r):

£(2) /B Ly /B Ty /B DI G-y
:ié()ﬂwmw—mwawu—wﬂ@

>-C |fldy.
B(z,r)

This inequality implies
)z -cf gl
B(z,r)
which estimate together with () proves
f@I<ef iy (%)
B(z,r)
5. For z as above, define

r T 1
S.i={ul§ <21 < 5.DFG) (-2 2 DAy - 41}
and observe
L£"(S,) > Cr"

where C' depends only on n. Use (x) to write

)2 1)+ DS

for all y € S,. Integrating over S, gives

DRI Tf 16~ 1) dy

r

This inequality and (% x x) complete the proof of assertion (i) for C?
convex functions f.
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6. If f is merely convex, define f€ := 7. x f, where € > 0 and 7, is
the standard mollifier.

Claim #2: f€ is convex.

Proof of claim: Fix x,y € R™, 0 < XA < 1. Then for each z € R",
fe=Az+ 1 =Ny) =f(Az—z)+ (1 -A)(z—y))
<SAM@E—2)+ (1 -Nf(z—y).
Multiply this estimate by 7.(z) > 0 and integrate over R™:

Qe+ =Ny)= [ flz—Qz+(1=XNy))ne(z) dz

R

<A f(z=z)ne(2)dz
Rn

+(1=2) - f(z = y)ne(z) dz
= Af(x) + (1= A) f(y).

7. According to the estimate proved above for smooth convex func-
tions, we have

sup (I +rDsD<Cf play
z) B(z,r)

T,5

for each ball B(z,r) C R™. Letting ¢ — 0, we obtain in the limit the
same estimates for f. This proves assertion (i).

8. To prove assertion (ii), recall from Taylor’s Theorem that

fy)=f(x)+Df(x) (y—x)
+<y—x>T-/0 (1— $)D*f(z+ s(y — 2)) ds - (y — ).
This equality and (%) yield
=) [ Q= 9)D* e+ sy =) ds- (5 - ) 2 0
0

for all z,y € R™. Thus, given any vector £, we can set y = x + t£ above
for ¢t > 0, to compute:

1
fT'/ (1—S)D2f(x+st§)d8-£20.
0

Send t — 0:
¢r-D*f(x)-£>0. O
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THEOREM 6.8 (Second derivatives as measures). Let f : R" —
R be convex.

i) There exist signed Radon measures 9 = pul* such that
g © 1%

R R

for all ¢ € C2(R™). Furthermore, the measures p* are nonnega-
tive (1=1,...,n).

(ii) Furthermore,
fr1> O afrn S BMOC(RTL)'

Proof. 1. Fix any vector £ € R", & = (&1,...,&,), with |{] = 1. Let 7.
be the standard mollifier. Write f€ := n. * f. Then f€ is smooth and

convex, whence
D% >0.

Thus for all ¢ € C(R™) with ¢ > 0,

Z /Rnfe(bmimjfifj dx = /Rn ) Z f;lxjflfj dx > 0.

i,j=1 i,5=1

Let € — 0 to conclude

L(@) = | fbuue,ti&dr>0.

ij=1"R"

Then Theorem 1.39 implies the existence of a Radon measure ;¢ such
that

L) = [ odpf

RTL
for all ¢ € C2(R™).
2. Let p* :=p% fori=1,...,n. If i # j, set £ := % Note that
then
— 1

Z (bwkxlgké-l = 5((1):171%1 + 2(25%% + (Z)xjxj)'

k=1
Thus

:cxd - T T d
[ Sordo= [ 13 bnntitede

k=1
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1

-5 |: f(z):cl:cl dx + f¢xjxj d$:|

1 , 1 .
=/ ¢du§—§/ ¢>d#“—§/ 6 du’
Rn mn Rn
— [ odu

g 1 .. 1 ..
LS -y O
p= s = ot = o

where

3. Let V.CCR", ¢ € C2(V,R"),|¢| < 1. Then for k=1,...,n,

/ for div g da = —/ FY ¢ pda
R R =1
=> " ¢du* <> pH(V) < 0.
i=1 v/ R" i=1

NOTATION By analogy with the notation introduced in Section
5.1, let us write for a convex function f:

plto i

[D*fl=| + - 1 | =IDILE,

nl nn

/1/ .. M

where ¥ : R" — M™*" is || D? f||-measurable, with |X| = 1 || D?f|-a.e.
(Recall that M"™*™ denotes the space of real n x n matrices.) We also
write

[fxlxj]:,ul] (iajzla--'an)'

By Lebesgue’s Decomposition Theorem, we may further set

pt = gl + ud,
where

Moo << L, pgd L L™

But then

Pae = L™ L fij
for some f;; € Li (R™). Set

loc

f:ci:cj = fl] (iuj:la"'un)7
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frlrl e fﬂclxn
D2f = ,

fwnwl U fxnxn
WLl

[D*fl:=| + . 1 | =L"LDY,
Pae o phe
pet el

[D*flg=1{ + -
pet o gt

Thus [D?f] = [D?flac +[D?f]s = L™ L D?f+[D?f]s. Therefore D2f €
L (R™; M™*™) is the density of the absolutely continuous part [D? f]..

loc

of [D2f].

6.4 Second derivatives a.e. for convex functions

Next we show that a convex function is twice differentiable-a.e. This
assertion is in the same spirit as Rademacher’s Theorem, but is perhaps
even more remarkable in that we have only “one-sided control” on the
second derivatives.

THEOREM 6.9 (Aleksandrov’s Theorem). Let f : R — R be
convex. Then f has second derivatives L™-a.e.
More precisely, for L™-a.e. x,

F) = F@) = Df() - (y =) = 5y —2)" - D*f(a) - (y ~ @)

=o(ly—2*) asy—a. (%)

Proof. 1. £L™-a.e. point x satisfies these conditions:
(a) Df(z) exists and limrﬁojfB(rmﬂDf(y) — Df(z)|dy = 0.
(b) lim,of i, | D*f(y) — D> f(z)| dy = 0. (%)

2
(€) Tim, o IL2LBEEE) _ g
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2. Fix such a point z; we may as well assume x = 0. Choose r > 0
and let f€ :=n * f. Fix y € B(r). By Taylor’s Theorem,

f(y) = F0)+ Df(0) -y + /01(1 —s)y" - D*f(sy) - yds.
Therefore
F() = F0) + D) -y + 34" - D*/(0) -y
+ /01(1 —s)y" - [D*f(sy) — D*f(0)] -y ds.

3. Fix any function ¢ € C?(B(r)) with |¢| < 1, multiply the equa-
tion above by ¢, and average over B(r):

f 0 SO = £70) = D) -y = 0" - D2F0) ) dy
1
= / (1-s) (][ o(y)y" - [D*f(sy) — D*f(0)] 'ydy> ds (% *x)
0 B(r)

_ ! (1-3s) Z 2 pe 2
- / = ( ][B(m;ﬁ (2)" 12 - D f(O)]-de> ds.

Now

ge(s) = /B(m) o) <§> 2T D2f(2) - zdx

N /B(rs) )

B(rs)

Z /B zlz] dpt

ij=1 (rs) S

_/jg(m)(b(s) 2T D2f(2) zdz + Z/(rs) " zizj dpl.

2,7=1

Furthermore, we can calculate

lge(s)] _ 12 / 2
<& |D7f(2)]d=
gn+2 sn B(rs)
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oy
s" B(rs) |JR®
T'2
R Y
§ B(rs) |JR™

C
</ / dz | d| D?f|
87€T JB(rs+e) B(rs)NB(y,e)

min((rs)”, €")

D*ne(z —y)f(y) dy|dz

IN

dz

< O ID*fI(B(rs + €))
< Cmin((rs)”, €")(rs +¢€)"

snen
<C

for 0 < €,5 <1 by (%*).

4. Hence we may apply the Dominated Convergence Theorem to
let € — 0 in (x % *):

6 |16) = £0) = DOy~ 3" D2£0) -5 dy
B(r)

1
2 2 12
<cr /0 ][B(M‘D f(2) = D2f(0)| dzds

2 [1[D*fls|(B(rs))
+C’T/O (1) ds

=o(r?) asr—0,

according to (%) with = 0. Take the supremum over all ¢ as above
to obtain

][ \h(y)|dy = o(r?) asr —0 (% % * %)
B(r)

for
1
h(y) = f(y) = £(0) = DF(0) -y — 5" - D*f(0) -y.
5. Claim #1: There exists a constant C' such that

c
sup \Dh|§—][ hldy +Cr  (r>0).
B() rJ e

Proof of claim: Let A := |D?f(0)|. Then g := h + %|y|2 is convex.
Apply Theorem 6.7.
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6. Claim #2: supp(r) |h| = o(r?) as r — 0.
Proof of claim: Fix 0 < e,n < 1,77 < 1. Then (%% %) implies

L'z € B(r) | |h(z)] > e} < LQ/ Ih| d=
€r B(r)

= ofr")
<nL"(B(r))
for 0 < r < 7o :=rg(e,n). Thus for each y € B(3) there exists z € B(r)

such that
h(2)] < er?

and )
ly—z| <o:=nnr.

To see this, observe that if not, then
Lz € B(r) | |h(z)] > er?}
> L"(B(y,0)) = an)nr’™ = nL"(B(r)).
Consequently,

Ih(y)| < |h(2)| + |h(y) — h(z)| < e’ + 0o ;1(11; |Dh| < er? 4+ Cnrr?

by Claim # 1 and (x % % %), provided we fix n such that Cn=» = ¢ and
then choose 0 < r < rg.

7. According to Claim #2,

sup |£(y) — £(0) = DF(O) -y — 5u" - D2F(0) -y| = ofr?)
B(3)

as 7 — 0. This proves (x) for = 0. O

6.5 Whitney’s Extension Theorem

~ We next identify conditions ensuring the existence of a C 1 extension
f of a given function f defined on a closed subset C' of R".
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Let C' C R™ be a closed set and assume f: C — R,d: C' — R" are
given functions.

NOTATION
(i)

fly) = flz) —d(z) - (y —2)
lz —y

R(y,,I) = (x¢y €Cx 75 y)

(ii) Let K C C be compact, and for § > 0 set
p(6) = sup{|R(y,z)[ | 0 < |z —y[ <0, z,y € K}.
THEOREM 6.10 (Whitney’s Extension Theorem). Assume
that f,d are continuous, and for each compact set K C C,
pr(6) -0 asd —0. (%)

Then there exists a function f : R™ — R such that

(i) fis CL.

(i) f=f, Df=donC.

The proof is a sort of “C'-version” of the proof of the extension
Theorem 1.13 in Section 1.2.

Proof. 1. Let U := R"™ — C; U is open. Define
1
r(x):= 20 min{1, dist(x, C)}.

By Vitali’s Covering Theorem, there exists a countable set {x;}2, C U
such that

U= B(=;,5r(x;))

j=1
and the balls {B(z;,7(z;))}32, are disjoint. For each = € U, define

Sy == {x; | B(z,10r(x)) N B(z;,10r(x;)) # 0}.
2. Claim #1: Card(S,;) < (129)™ and

") _

= ) S

3

W =

if S Sg.
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Proof of claim: If x; € S,, then

1
[r(z) —r(x;)] < 2—0|$ — x|

<

< 55 (100 () +r(2,))) = 5(r(x) +r(z).

Hence
r(z) < 3r(x;), r(z;) < 3r(zx).
In addition, we have

|z — x;] + r(z;) < 10(r(z) + r(z;)) + r(z;)
= 10r(x) + 11r(x;) < 43r(x);

consequently,
B(zj,r(x;)) C B(x,43r(x)).

Since the balls {B(z;,r(x;))}32, are disjoint, we have r(z;) > T(;),

r(x

Card(S;)a(n) (T)> < a(n)(43r(z))".

Therefore
Card(S;) < (129)™.

3. Now choose i : R — R such that
pelC>® 0<pu<l1, ult)y=1fort <1, u(t)=0fort > 2.

For each j =1,..., define

wie = (T8 wern

or(x;)
Then
u; € C*, 0 <u; <1,
uj =1 on B(xj,5r(z;)),
u; =0 on R" — B(z;,107(x;)).
Also

|Duj(z)| < <— ifz; e85, (%)



6.5 Whitney’s Extension Theorem 279

and
uj =0 on B(z,10r(x)), if z; ¢ S,.

)= u@) (xR

Since u; = 0 on B(z,10r(z)) if x; ¢ S, we see that
o(y) = Z uj(y) ify € B(x,10r(x)).

T; €S,

Define

By Claim #1, Card (S,) < (129)"; this and (**) imply

ceC®U), o>1onU, |Do(z)| < ﬁ (xeU).
Now for each j =1,..., define
_ u(@)

,UJ(x) - O'(.Z') (IL’ € U)

Notice Du; = Du - Ujle.
o o

Thus

Z] IUJ( ): 1

Zj L Dvj(x ) 0 (zel)

|va( )| < (x)

The functions {v;}32; are thus a smooth partition of unity in U.

4. Now for each j =1,..., choose any point s; € C' such that
|zj — s;| = dist(z;, C).
Finally, define f : R® — R this way:
f(x) iteeC

Zv] f(s;) +d(s)) - (x—s;)] ifxel.

Observe that f € COO(U) and
= > Alf(sy) +dlsy) - (z = 57)] Duj(x) + vj(2)d(s;)}

Ijesz

forzeU.
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5. Claim #2: Df(a) = d(a) for all a € C.
Proof of claim: Fix a € C and let K := C N B(a,1); K is compact.
Define
¢(0) :==sup{|R(z,y)| | z,y € K,0 < |z —y[ <&}
+sup {|d(z) — d(y)| | z,y € K, |z —y[ <5}

Since d : C' — R™ is continuous and (%) holds,
?(0) =0 asd—0. (% * *)

If z € C and |z — a| < 1, then

[f(z) = f(a) = d(a) - (z — a)| = |f(z) = f(a) — d(a) - (z — a)]
= |R(z,a)[|x — a
< o(|z — af)|z — qf

and
|d(x) — d(a)| < ¢(|z — al).

Now suppose z € U, |z — a| < %. We calculate

€Sy

< 3 w@If(s;) - f(@) +ds;) - (a—s)|
Z; €Sy

+ Y vi@)d(sy) — dla)) - (x ~a)l.
T; €S,

Now |z — a| < & implies r(z) < 55|z — a|. Thus for z; € S,,

la — s;] < la —z;] + |z; — s
< 2[a — ;|
< 2(jz — a| + |z - ;]
< 2(|z — af +10(r(z) + r(z;)))
< 2(|x — a| + 40r(x))
< 6|z — al.
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Hence the calculation above and Claim #1 show
|f(z) = fla) = d(a) - (z — a)| < C¢(6lz — al)|z — a|.

In view of (% x %), the calculations above imply that for each a € C,

(%
|[f(z) = f(a) = d(a) - (z —a)| = o(jz —al) asz—a.
Thus Df(a
6. Claim #3: f € C'(R™).
Proof of claim: Fix a € C,z € R", |z —a| < ;. If € C, then
|Df(2) — Df(a)| = |d(z) — d(a)| < ¢(Jz — al).
If x € U, choose b € C such that

) exists and equals d(a).

|z — b| = dist(x, C).
Then
|Df(x) = Df(a)| = |Df(x) — d(a)| < [Df(x) — d(b)| + |d(b) — d(a)].

Since
|b—al < |b—2x|+ |z —al <2|x—aq,

we have
|d(b) — d(a)| < ¢(2[x — al).

We thus must estimate:

|Df () — d(b)]
=| D [f(sy) +d(sy) - (& = s,)]Dvj(x) + vj(x)[d(s;) — d(b)]

T; €S,

IN

> [=F®) + £(s5) +d(s;) - (b— 5;)|Dvj(x)

T €S,

+1 D [(d(s;) = d(b) - (& = b)] Dvy(x)

Ijesz

(k% x %)
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Zqﬁ Sg|+ 2¢> iz — bl

rJESw xJESw
+ > (lb—s1).
Ijesz
Now ]
_b<lp—al <=
o=t <lo—al <.
and therefore ] 1
r(z) ==z —b < —.
20 120
If WS Sz,
1 1
< e
Hence

1
r(ag) = g5l — 851 (25 € Sa).
Accordingly, if z; € S,

b= 55| < |b—a|+ [z — ;] + |z; — 55
<207(x) + 10(r(z) + r(z;)) + 20r(x;)
< 120r(z) = 6|z — b| < 6|z — al.

Consequently (* x x ) implies
|Df(z) — d(b)| < Cp(6|z — al).
This estimate and the calculations before show

|Df(x) — Df(a)] < C(6]z — al). -

6.6 Approximation by C! functions

We now make use of Whitney’s Extension Theorem to show that
if f is a Lipschitz continuous, BV or Sobolev function, then f actually
equals a C' function f, except on a small set. In addition, Df = D,
except on a small set.
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6.6.1 Approximation of Lipschitz continuous functions

THEOREM 6.11 (Approximating Lipschitz functions). Sup-
pose f: R™ — R is Lipschitz continuous. Then for each € > 0, there
exists a C1 function f: R™ — R such that

L'({x | f(z) # f(z) or Df(z) # Df(x)}) <e.

In addition, B
sﬂgﬂp ‘Df! < C'Lip(f)

for some constant C depending only on n.

Proof. By Rademacher’s Theorem, f is differentiable on a set A C R™,
with £"(R™ — A) = 0. Using Lusin’s Theorem, we see that there exists
a closed set B C A such that D f|p is continuous and L"(R" — B) < §.
Set

d(x) == Df(x)
and

Riya) = LOID A WD)y
Define also

1
mte)i=sup { RG] |y € B.0<[o—3] < 1 |

Then ng(z) — 0 as k — oo, for all z € B. By Egoroff’s Theorem, there
exists a closed set C C B such that n; — 0 uniformly on compact
subsets of C, and

L' (B-C) < g

This implies hypothesis (x) of Whitney’s Extension Theorem.

The stated estimate on supg. | D f| follows from the construction of
f in the proof in Section 6.5, since sup |d| < Lip(f) and thus

|R| < C'Lip(f). O

6.6.2 Approximation of BV functions

THEOREM 6.12 (Approximating BV functions). Let f €
BV(R™). Then for each € > 0, there exists a Lipschitz continuous
function f: R™ — R such that

L'({z | flz) # f(2)}) < e
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Proof. 1. Define for A > 0

RA:—{xeR"‘Mg)\forallr>O}.
Tn

2. Claim #1:
a(n)b"

L"(R" ~R) < D fII(R™).

Proof of claim: According to Vitali’s Covering Theorem, there exist
disjoint balls {B(x;,r;)}$2, such that

R" — R* C | B(as,5rs)

i=1
and
IDANB ) |
L7
Thus
LMR" — RY) < 5%a(n) Y r} < 2eln) IIDfII(R”)
i=1

3. Claim #2: There exists a constant C, depending only on n, such
that

|f(2) = f(y)| < CAx —y|

for L™-a.e. x,y € R .
Proof of claim: Let x € R*, r > 0. By Poincaré’s inequality, Theorem
5.10,(ii) in Section 5.6,

Fooir=(Parday < DPIEED) o,
B(z,r) r

Thus, in particular,

Dozt = Dagel < £ 1= Dzl
B(z, iy

Szn f_ f :c,—k d

][B%)| (F)eze |y

C’)\r
i 2k .
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Since

flz) =1m(f)sr

r—0

for L™-a.e. x € R, we have
k=1

Now for x,y € R*, x # v, set r = |z — y|. Then

‘(f)x,r - (f)y,r‘
<f (P = SN +17) = (Fusld2
B(z,r)NB(y,r)

<C (][B(z,r)‘f(Z) - (f)x,r‘ dz + ][B(y,r)|f(Z) - (f)y,r| dZ)
< CAr.

We combine the inequalities above, to estimate
|f(z) = f(y)| < Cxr = CA|z — y

for L™-a.e. z,y € RN

4. Inview of Claim #2, there exists a Lipschitz continuous mapping
f:R > R such that f = f L"-a.e. on R, Now recall Theorem 3.1
and extend f to a Lipschitz continuous mapping f : R" — R. O

THEOREM 6.13 (Pointwise approximations for BV func-
tions). Let f € BV (R").Then for each e > 0 there exists a C'-function
f:R™ = R such that

L"({z | f(z) # f(z) or Df(x) # Df(2)}) <e.

Proof. According to Theorems 6.11 and 6.12, there exists f € C'(R")
such that

Lr{f# 1) <e

Furthermore, B
Df(z) = Df(x)
L"-a.e. on {f = f}, according to Theorem 6.3. O
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6.6.3 Approximation of Sobolev functions

THEOREM 6.14 (Pointwise approximations for Sobolev func-
tions I). Let f € WP (R™) for some 1 < p < 00. Then for each € > 0
there exists a Lipschitz continuous function f:R™ — R such that

Lr({x ] f(z) # f(x)}) <e
and )
If = fllwrr@ny) < e

Proof. 1. Write g := |f| + |Df|, and define for A > 0
RA:—{HZERTL|J[ gdyg)\forallr>0}.
B(z,r)

2. Claim #1: L"(R™ —R*) = o(55) as A — oo.

Proof of claim: By Vitali’s Covering Theorem, there exist disjoint balls
{B(z;,7;)}2, such that

R" — R C U B(z;,51;) (%)
i=1
and
][ gdy>X (i=1,...).
B(:Ci,’f‘i)
Hence
A< ;/ gdy
a En(B('I'L?T'L)) B(ri,ri)ﬁ{g>%}
.
+ gdy
‘Cn(B(xi”ri)) B(:ci,ri)ﬂ{ggé}
< ;/ gdy + 2
o En(B(x“Tl)) B(ri,ri)ﬁ{g>%} 2
and so

2
a(n)rl® < —

! >\ /B(xi,m)ﬁ{g>§‘}

Using (%) therefore, we see

gdy (i=1,...).

LMR" - RY) <5 a(n) Y}

i=1
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2.5"
T A e

2.5 » 1

([ ) e
{9>3}

C

AP J{f1+1Df1> 2
=o(A7P)

gdy

< [DfIP+ £ dy

as A — oo, since L {g > 3} < i—if{g>%}gpdy.

3. Claim #2: There exists a constant C, depending only on n, such
that
[f@ <A |f(@) = fy)] < CAlz — gy
for L™-a.e. z,y € R .
Proof of claim: This is almost exactly like the proof of Claim #2 in the
proof of Theorem 6.12.
4. In view of Claim #2 we may extend f using Theorem 3.1 to a

Lipschitz continuous mapping f : R" — R, with

If| <\ Lip(f) <C\, f=f L ae. on R

5. Claim #3: ||f — fllwrren = o(1) as A — oo.

Proof of claim: Since f = f on R, we have

[ ar=gpaz= [ ip-jpas

<C |f|P dz + CAPL™(R™ — RY)
Rm—RA

=o0(1) as A — oo,

according to Claim #1.
Similarly, Df = Df £L™-a.e. on R*, and so

/ |Df —DfPdz < C |Df|P dx + CAPLY(R™ — RY)
R R R

= o(1)

as A — 0o . O
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THEOREM 6.15 (Pointwise approximations for Sobolev func-
tions II). Let f € WYP(R™) for some 1 < p < co. Then for each e > 0,

there exists a C'-function f : R™ — R such that

L'({z | f(x) # [(z) or Df(x) # Df(2)}) < e

and -
If = fllwrr@gn) <€

Proof. This follows from Theorems 6.12 and 6.14. O

6.7 References and notes

The principal sources for this chapter are Federer [F], Liu [L],
Reshetnjak [R], and Stein [St]. Our treatment of LP-differentiability
utilizes ideas from [St, Section 8.1]. Approximate differentiability is
discussed in [F, Sections 3.1.2-3.1.5]. D. Adams showed us the proof of
Theorem 6.5 in Section 6.2.

We followed [R] for the proof of Aleksandrov’s Theorem, and we
took Whitney’s Extension Theorem from [F, Sections 3.1.13-3.1.14].
The approximation of Lipschitz continuous function by C! functions is
from Simon [S, Section 5.3]. See also [F, Section 3.1.15]. We relied upon
Liu [L] for the approximation of Sobolev functions. Fefferman [Ff] has
established a refined version of Whitney’s extension theorem.
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Notation

A. Set and geometric notation

R’I’L

Z

7+
Mm Xn

a(s)

a(n)
dist(A, B)
Uuv,w
VccU

n-dimensional real Euclidean space
set of integers
set of nonnegative integers
space of real m x n matrices
(0,...,1,...,0), with 1 in the ith slot
typical point in R"
(z?+ 234 +a22)2
T1Y1 + T2Y2 + - + Tpln
bilinear form szzl a;jz;y;, where z,y € R”
and A = ((a;;)) is an n X n matrix
{y € R* | |x — y| < r} = closed ball with
center x, radius r
B(0,r) = closed ball with center 0, radius r
{y € R" | |[r—y| < r} = open ball with center
x, radius r
{yeR" [y’ —2'| <r|yn — zn| < h} = open
cylinder with center z, radius r, height 2h
{y e R" | |z; —y;i| <ri=1,...,n} = open
cube with center z, side length 2r

T2
I+ D
volume of the unit ball in R"
distance between the sets A, B C R™
open sets, usually in R"
V is compactly contained in U; that is, V is
compact and V C U
compact set, usually in R™
indicator function of the set
closure of
interior of £
Steiner symmetrization of a set F; Section 2.3
topological boundary of £

(0 <s < 00)
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OE
0.E
I10E]|

Notation

reduced boundary of E; Section 5.7
measure theoretic boundary of F; Section 5.8
perimeter measure of F; Section 5.1

B. Functional notation

Fpfduor (f)e

G(f,A4)

C. Function spaces

ﬁ fEfd,u = average of f over E with re-
spect to the measure u

U(B(x,r)f dz = average of f over B(x,r) with
respect to Lebesgue measure

support of f

maX(fa O)? maX(_fa O)

precise representative of f; Section 1.7

f restricted to the set F

an extension of f; cf. Sections 1.2, 3.1, 4.4,
54, 6.5

trace of f; Sections 4.3, 5.3

derivative of f

(vector-valued) measure for gradient of f €
BYV; Section 5.1

absolutely continuous, singular parts of [D f];
Section 5.1

approximate derivative of f; Section 6.1
Jacobian of f; Section 3.2

Lipschitz constant of f; Sections 2.4, 3.1
Hessian matrix of f

(matrix-valued) measure for Hessian of con-
vex f; Section 6.3

absolutely continuous, singular parts of
[D?f]; Section 6.3

graph of f over the set A; Section 2.4

Let U C R™ be an open set.

c)
o(0)
CHU)

C(U)

{f:U — R | f continuous}

{f € C(U)| f locally uniformly continuous}
{f:U —= R| fis k-times continuously differ-
entiable }

{f € C*(U) | D*f locally uniformly continu-
ous on U for |a] < k}



]

Ce(U), Ce(
C(U;R™)
C(U;R™)
LP(U)
L=(U)

LZD

loc

(U)
LP(U; )
L(U; p)

Whe(U)

BV(U)

), etc.
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functions in C(U),C(U), etc. with compact
support

functions f : U — R™, f = {fL, f2,..., f™),
with fi € C(U) fori=1,...,m

functions f : U — R™, f = {fL, f%,..., f™),
with fi € C(U), fori=1,...,m
{f:U—>R| (fU|f|pd$)% < o0, f Lebesgue
measurable} (1 < p < c0)

{f :U — R | esssupy |f| < oo, f Lebesgue
measurable }

{f:U—=R| fe LP(V) for each open set
VccU}

{f U = R | (JylfPdp)r < oo f pr
measurable } (1 <p < o0)

{f + U — R | fispmeasurable,u —
esssupy |f| < oo}

Sobolev space; Section 4.1

{f:R* - R| f>0,fe L, Df e LP};
Section 4.7

space of functions of bounded variation; Sec-
tion 5.1

D. Measures and capacity

£TL
H;

HS

Hdim
Cap,,

E. Other notation

A
pl f

D,v
v <<

n-dimensional Lebesgue measure
approximate s-dimensional Hausdorff mea-
sure; Section 2.1

s-dimensional Hausdorff measures; Section
2.1

Hausdorff dimension; Section 2.1

p-capacity; Section 4.7

1 restricted to the set A; Section 1.1
(signed) measure with density f with respect
to p; Section 1.3

derivative of v with respect to u; Section 1.6
v is absolutely continuous with respect to u;
Section 1.6



296

viup
aplim,_,, f

aplimsup,_,, f
apliminf, , f

—\

S

O

L*

[L]
A(m,n)

5 Me

*

H,H* H-
oy A

ess VO f

Notation

v and p are mutually singular; Section 1.6
approximate limit; Section 1.7

approximate lim sup; Section 1.7
approximate lim inf; Section 1.7

weak convergence; Section 1.9

symmetric linear mapping; Section 3.2
orthogonal linear mapping; Section 3.2
adjoint of L; Section 3.2

Jacobian of linear mapping L; Section 3.2
{AN:{l,...,n} = {1,...,m} | X increasing };
Section 3.2

projection associated with A € A(m,n); Sec-
tion 3.2

mollifiers; Section 4.2

n"—_’;) = Sobolev conjugate of p; Section 4.5
hyperplane, half spaces; Section 5.7
approximate lim sup, lim inf for BV function;
Section 5.9

set of “measure theoretic jumps” for BV func-
tion; Section 5.9

essential variation; Section 5.10
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