Loading [MathJax]/jax/output/HTML-CSS/jax.js

Analysis quiz

1. 设v(n)n 维球体{x21++x2n1} 的体积,求v(n) 的最大值

Bn(a)={(x1,,xn):x21++x2n1}
易证μ(Bn(a))=Bn(a)dμ=anBn(1))dμ=anμ(Bn(1))
μ(Bn(1))=Bn(1))dμ=u2+v2dudvBn2(1u2v2)dx1dxn2=μ(Bn2(1))u2+v21(1u2v2)(n2)/2=2πnμ(Bn2(1))
V(n)最大时,n只可能取5,6,7(2πn1)

V(5)=8π215,V(6)=π26,V(7)=16π3105Vmax=V(5)=8π215

2. 设(r,θ,φ)R3 的球坐标 ,S:r=r(θ,φ)[(θ,φD)]R3 曲面方程,求该曲面面积

solution

3. 设a>b>0 ,求椭圆盘x2a2+y2b21x2b2+y2a21公共部分的面积(要求用第二型曲线积分计算)

DdS=Dxdy
S=4(arctana/b0abcos2θdθ+π2arctanb/aabcos2θdθ)=π+2ab(arctanabarctanba)

4. 设f,g R3R 一阶连续可微,且 fg,f0,g0,P0R3, f(P0)=g(P0)=0,证明在P0 附近,等值面{f=0} 与等值面 {g=0}相等

P0(x0,y0,z0),不妨设fz0P0的邻域f(P)=f(P0)=0有解z=z1(x,y)等值面r1(x,y)=(x,y,z1(x,y)),由fggz0{g=0}等值面r2(x,y)=(x,y,z2(x,y))要证z1(x,y)=z2(x,y)
z0=z1(x0,y0)r1(x0,y0)=P0z0=z2(x0,y0)r2(x0,y0)=P0z1x=fx/fzz2x=gx/gzz1x=z2x同理:z1y=z2y等值面相等