有反旋波项(\(\mathcal{P}\)) | 无反旋波项(U(1)) |
|
\(N\neq 1\) | Dicke模型\[H=\hbar \omega_{c} a^{\dagger} a+\hbar \omega_{z} \sum_{j=1}^{N} \sigma_{j}^{z}+\frac{2 \lambda}{\sqrt{N}}\left(a+a^{\dagger}\right) \sum_{j} \sigma_{j}^{x}.\] | Tavis-Cummings模型\[H=\sum_{s} \omega_{s} a_{s}^{\dagger} a_{s}+\frac{\Omega}{2} \sum_{j=1}^{N} \sigma_{j}^{z}+\frac{1}{V}\left[\left(\sum_{s} \lambda_{s}^{\prime} a_{s}\right)\left(\sum_{j}^{N} \sigma_{j}^{+}\right)+\left(\sum_{s} \lambda_{s}^{\prime} a_{s}^{\dagger}\right)\left(\sum_{j}^{N} \sigma_{j}^{-}\right)\right].\] |
\(N=1\) | Rabi模型\[H_{\text{Rabi}}=\omega a^{\dagger}a + g\left(\sigma^{\dagger}+\sigma^{-}\right)\left(b^{\dagger}+b\right)+\frac{\Omega}{2} \sigma_{z}.\] | Jaynes-Cummings模型\[\hat{H}_{\mathrm{JC}}=\hbar \omega_{c} \hat{a}^{\dagger} \hat{a}+\hbar \omega_{a} \frac{\hat{\sigma}_{z}}{2}+\frac{\hbar \Omega}{2}\left(\hat{a} \hat{\sigma}_{+}+\hat{a}^{\dagger} \hat{\sigma}_{-}\right)\] |
Dicke模型 | 最小值数量 | |
\(\lambda>\lambda_c\) | 2 | |
\(\lambda<\lambda_c\) | 1 |
Environment | Duration | Degree of freedom | Intensity of the field (normal) | Intensity of the field (superradiant) |
|
Dicke superradiance | Free space | Transient(激发态\(\to\)基态) | 内部自由度(二能级) | \(N\) | 1 |
Superradiant transition of the Dicke model | Cavity | Steady state(基态\(\to\)基态) | 外部自由度(密度分布-r/k空间) | \(N^2\) | \(N\) |