数学概念 | 定义 | 物理例子 |
映射(Map) | \(f:\ X\rightarrow Y\), 其中\(X,Y\)是集合 | (1)相空间上的函数\(H(p,q)\): \(H: M\to \mathbb{R}\); (2)波函数\(\varphi: x\to\mathbb{C}^{N}\); (3)电磁场\(\vec{E}(\vec{x}), \vec{B}(\vec{x}): x\to \mathbb{R}^{3}\); (4)\(H_{k}=e^{-i\vec{k}\cdot\vec{x}}He^{i\vec{k}\cdot\vec{x}}\); (5)\(H_{k}: k\to \text{Hilbert space/Matrix}\) |
单射(Injective Map) | \(\forall x,x' \in X\), 若有 \(f(x) = f(x') \), 则等号当且仅当\(x = x' \)时成立. | |
满射(Surjective Map) | \(\forall y \in Y \) 至少存在一个\(x\in X\)有\(y = f(x)\). | |
双射(bijection) | 既是单射又是满射的映射(存在逆映射\(f^{-1}\)) | |
常数映射(Const Map) | \( C:X\rightarrow Y\) 其中\(C(x) = y_0 \) | |
包含映射(Inclusion Map) | \(i:A\rightarrow X\) 其中 \(A\subset X\) 记为 \( A \hookrightarrow X\) | |
恒等映射(Identical Map) | \(id_x: X \rightarrow X \) 且有\(id_x(x) = x \) | |
复合映射(composite map) | \( A \stackrel{f}{\longrightarrow} X \stackrel{g}{\longrightarrow} Z \), 则有 \( z = h(x) = g(f(x))\) 记为 \(h = g\circ f \) | |
等价关系(Equivalence relation) | (a)\(a\sim a\)(reflective); (b)\( a\sim b \Longrightarrow b\sim a\)(symmetric); (c)\( a\sim b,b\sim c \Longrightarrow a\sim c\)(transitive). 其目的是: 用于分类 | (1)\(\int f\mathrm{d}x=\int\left(f+\frac{\partial g}{\partial x}\right)\mathrm{d}x\)(2)陪集, 商群(3)零秩定理(4)伴随表示\(g^{-1}hg\) |
等价类(Equivalence class) | \([a]=\{x\in X|x\sim a\}\) | (1)Bloch能带: \(|k|\leq \frac{\pi}{a}\)第一Brillouin区, \(k\)与\(k+G\)是等价的; (2)Stokes定理: 所有同一边界流形上的积分完全相同; (3)磁场中的规范势\(\vec{A}^{\prime}=\vec{A}+\nabla\phi\)给出相同的可观测量\(\vec{B}=\nabla\times\vec{A}^{\prime}=\nabla\times\vec{A}\); (4)不同的等价类可以与不同的相联系起来(普适类, 拓扑相) |
数学概念 | 定义 | 物理例子 |
生成元的自由集(Free set of generators) | 如果将群\(G\)中任何元素\(g\in G-\{e\}\)可以唯一地写为\(g=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}\), 则群\(G\)的子集\(X=\{x_{j}\}\)被称为\(G\)的生成元自由集. | |
自由群(Free group) | 如果\(G\)具有生成元自由集, 则称为自由群 | |
拓扑群(Topological group) |
数学概念 | 定义 | 物理例子 |
空间(Space) | 空间是一些点的集合(set) | (1)Euclid空间;(2)Brillouin zone;(3)Hibert空间 |
拓扑空间(Topological space) | (a)\(\varnothing \)和\(X \)是\(T\)中的元素; (b)\(T\)中任意元素的并集仍然是\(T\)中的元素; (c).\(T\)中有限元素的交集仍然是\(T\)中的元素 | (1)数学上关于函数在某点连续性的两种定义: (a).epsilon-delta语言:\(\forall \epsilon>0, \exists \delta>0,\left|x-x_{0}\right|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\) (b).开集语言:\(\forall G^{\prime} \in T\left(f\left(x_{0}\right) \in G^{\prime}\right), \exists G \in T\left(x_{0} \in G\right), \forall x \in G, f(x) \in G^{\prime}\) (2)物理中所讨论的空间一般都是拓扑空间 |
邻域(Neighborhood) | 若\(N \)是点\(x\in X\)的邻域,则其应是拓扑空间\((X,T)\)上\(X\)的子集,且应包含至少一个含有\(x\)的开集。\(N\)不一定属于\(T\),但若\( N\)恰好属于\(T\),我们称呼其为开邻域。 | |
Housdroff空间 | 对于空间上任意点\(a,b\)存在邻域\(U_a,U_b\)使得\(U_a \cap U_b = 0 \).只有近邻的信息,没有距离的信息。 | |
覆盖(Covering)以及开覆盖(Open Covering) | 拓扑空间\( X \)上的一些子集组成的族\( \{A_i\}\)满足\( \cup_i A_i = X \),则我们称这个族\(\{A_i\}\)是空间\(X\)的一个覆盖. 而若\(\{A_i\}\)中的所有元素恰好都是\(T\)中的元素,我们称之为一个开覆盖.覆盖可以找出奇点 | Yang-Wu monopole构造方法 |
紧致性(Compact) | 对于任意的开覆盖\(\{U_i|i\in I\}\),都存在一个\(I\)的有限子集\(J\)使得\(\{U_j|j\in J\} \)也是\(X\)的一个覆盖.紧致性是拓扑不变量(映射中间不变) | (1)开区间(...)不紧致(2)闭区间[...]紧致(3)\(S^{n}\)紧致 |
单点紧致化(One-Point Compactification) | \(R^{d} \cup \{\infty \} \simeq S^{d}\) | 本来是\(\mathbb{R}^{n}\)空间的\(k\)空间, 单点紧致化后变成\(S^{n-1}\), 这在拓扑场论中很有用. |
连通性(Connectedness) | 如果一个拓扑空间不能被写为\(X_1\cup X_2 = X \)且其中\(X_1 \cap X_2 = \varnothing\),则该拓扑空间被称为连通的. | |
同胚(Homeomorphism) | 如果存在连续的映射\(f:X\longrightarrow Y\)以及连续的逆映射\(Y\longrightarrow X\),则拓扑空间\(X,Y\)是同胚的. | |
商空间(quotient space) | \(\{[x]\} = X/\sim \) | (1)\(R/Z\simeq S^{1}\); (2)Brillouin zone: \(\sim S^{1}\)(1d); \(\sim T^{2}= S^{1}\times S^{1}\) |
数学概念 | 定义 | 物理例子 |
道路(Path) | 令\(X\)是拓扑空间, \(I=[0,1]\). 将以\(x_{0}\)为起始点和\(x_{1}\)为终止点(\(\alpha(0)=x_{0}, \alpha(1)=x_{1}\))的连续映射 \(\alpha: I\to X\)称为道路. | |
回路(Loop) | 起始点和终止点相同的道路称为以\(x_{0}\)为基点的回路 | |
道路同伦(Path homotopy) | 令\(\alpha,\beta: I\to X\)为\(x_{0}\)的回路. 若存在连续映射\(F: I\times I\to X\)使\(F(s,0)=\alpha(s), F(s,1)=\beta(s), \forall s \in I\); \(F(0, t)=F(1, t)=x_{0}, \forall t \in I\), 称\(\alpha\)和\(\beta\)是道路同伦的, 记为\(\alpha\sim\beta\), 连续映射\(F\)称为\(\alpha\)和\(\beta\)之间的道路同伦. | |
同伦类(Homotopy class) | 回路的等价类由\([\alpha]\)表示, 称为\(\alpha\)的同伦类. | |
基本群(Fundamental group)/第一同伦群(First homotopy group) | 令\(X\)为拓扑空间, \(x_{0}\in X\)处的回路同伦类的集合由\(\pi_{1}(X,x_{0})\)表示, 并称为\(x_{0}\)处\(X\)的基本群(或第一同伦群), 记为\(\pi_{1}(X,x_{0})\). 可定义同伦类乘法\([\alpha]*[\beta]=[\alpha*\beta]\), 可以验证结合律、单位元和逆元的存在. | |
同伦(Homotopy) | 令\(f,g: X\to Y\)为连续映射. 如果存在一个连续映射\(F: X\times I\to Y\)使得\(F(x,0)=f(x)\)并且\(F(x,1)=g(x)\), 则称\(f\)与\(g\)是同伦的, 表示为\(f\sim g\). 映射\(F\)被称为\(f\)和\(g\)之间的同伦. | |
同伦型(Homotopy type), 同伦等价(homotopy equivalence) | 令\(X\)和\(Y\)为拓扑空间. 如果存在连续映射\(f: X\to Y\)和\(g: Y\to X\), 使得\(f\circ g \sim \mathrm{id}_{Y}\)和\(g\circ f \sim \mathrm{id}_{X}\), 则称\(X\)和\(Y\)具有相同的同伦型, 记作\(X\simeq Y\). 映射\(f\)与其同伦逆\(g\)同伦等价. | |
缩回(Retract) | 令\(R(=\varnothing)\)为\(X\)的子空间. 如果存在连续映射\(f: X\to R\)使得\(f|_{R}=\mathrm{id}_{R}\), 则\(R\)称为\(X\)的缩回. | |
形变缩回(Deformation retract) | 令\(R\)为\(X\)的子空间. 如果存在一个连续映射\(H: X\times I\to X\): 对于任意\(x\in X\), \(H(x,0)=x, H(x,1)\in R\)O; 对于任何\(x\in R\)和任何\(t\in I\), \(H(x,t)=x\). 空间\(R\)称为\(X\)的形变缩回. | |
可收缩的(Contractible) | 如果点\(a\in X\)是\(X\)的形变收缩, 则称\(X\)是可收缩的. | |
收缩(Contraction) | 令\(c_{a}: X\to\{a\}\)为常数映射. 如果\(X\)是可收缩的, 则存在同伦\(H: X\times I\to X\), 使得对于任何\(x\in X\)有\(H(x,0)=c_{a}(x)=a\)和\(H(x,1)=\mathrm{id}_{X}(x)=x\), 对于任何\(t\in I\)有\(H(a,t)=a\). 同伦\(H\)被称为收缩. | |
\(n\)阶道路同伦(n-th path homotopy) | 设\(X\)为拓扑空间, \(\alpha, \beta: I^{n}\to X\)为\(x_{0}\in X\)处的n-回路. 如果存在连续映射\(F: I^{n}\times I\to X\)使得(a)\(F(s_{1},\dots, s_{n},0)=\alpha(s_{1},\dots,s_{n})\); (b)\(F(s_{1},\dots,s_{n},1)=\beta(s_{1},\dots,s_{n})\);(c)对于\(\ (s_{1},\dots,s_{n})\in \partial I^{n}, t\in I\), 有\(F(s_{1},\dots,s_{n},t)=x_{0}\). 则称映射\(\alpha\)与\(\beta\)是同伦的, 记作\(\alpha\sim\beta\), \(F\)被称为\(\alpha\)和\(\beta\)之间的同伦. | |
\(n\)阶同伦群(n-th homotopy group) | 设\(X\)为拓扑空间, 在\(x_{0}\in X\)处的n-回路\( (n \geq 1)\)的同伦类的集合由\(\pi_{n}(X,x_{0})\)表示, 并称为在\(x_{0}\)处的n阶同伦群. | Shankar's monopoles in superfluid \({3}^\mathrm{He}\), instantons |
覆叠空间(covering space) | 设\(X\)和\(\tilde{X}\)是连通拓扑空间. 如果存在连续映射\(p: \tilde{X}\to X\), 使得: (a)\(p\)是满射(onto); (2)对于每个\(x\in X\), 存在一个包含\(x\)的连通开集\(U\subset X\), 使得\(p^{-1}(U)\)是\(\tilde{X}\)中开集的不交并集, 每个都由\(p\)同胚映射到\(U\)上. 则\(\tilde{X}\)称为\(X\)的覆叠空间. | |
万有覆叠空间(universal covering space) | 特别地, 如果\(\tilde{X}\)是单连通的, 则\( (\tilde{X},p)\)称为\(X\)的万有覆叠空间. | |
(万有)覆叠群((universal) covering group) | 如果连通拓扑空间\(X\)和\(\tilde{X}\)恰好是拓扑群, \(p: \tilde{X}\to X\)是群同态, 则(万有)覆叠空间称为(万有)覆叠群. | \(\mathrm{SO}(n)\)的万有覆叠群\(\mathrm{Spin}(n)\)称为自旋群(spin group) |
映射度(mapping degree) | 设\(f: M\to N\)是连续映射, 其中\(M, N\)都是可定向的连通\(n\)维闭流形(均已定向), \(\omega\)是\(n\)次微分形式. \[\int_{M} f^{*}\omega = \operatorname{deg}(f)\int_{N}\omega.\] 其中\(\operatorname{deg}(f)\)称为\(f\)的映射度. \(f\)的映射度只与\(f\)的同伦类有关, 且映射度一定是整数. 如果\(f\)是光滑同胚, 则有 \[\int_{M} f^{*}\omega = \pm \int_{N}\omega.\] 在换元积分公式中有应用. 其中\(\pm\)涉及定向问题. | (1)单位圆周——单位圆周:\(f: S^{1}\to S^{1}, f(e^{it})=e^{i\varphi(t)}\) 其中\(\varphi(t)\)是光滑函数, 而且存在整数\(m\), 使得对任何\(t\), 有 \[\varphi(t+2\pi)=\varphi(t)+2m\pi\] 取\(\omega=\frac{\mathrm{d}\pi}{2\pi}\), \(\theta=\varphi(t)\), 则\(f^{*}\omega=\frac{1}{2\pi}\varphi^{\prime}(t)\mathrm{d}t\). 计算两个积分 \[\int_{S^{1}}\omega=\int_{0}^{2\pi}\frac{\mathrm{d}\theta}{2\pi}=1\] \[\int_{S^{1}}f^{*}\omega=\frac{1}{2\pi}\int_{0}^{2\pi}\varphi^{\prime}(t)\mathrm{d}t=\frac{1}{2\pi}[\varphi(2\pi)-\varphi(0)]=m\] 即\(f\)的映射度为\(m\). (2)复变函数中的winding number 在上例中 \[\varphi^{\prime}(t)\mathrm{d}t=\mathrm{d}\varphi=\frac{1}{i}\mathrm{d}[\ln(e^{i\varphi})]=\frac{1}{i}e^{-i\varphi}\mathrm{d}e^{i\varphi}\] 若记\(z=e^{i\varphi}\), 那么 \[m=\frac{1}{2\pi}\int_{0}^{2\pi}\varphi^{\prime}(t)\mathrm{d}t=\frac{1}{2\pi i}\oint_{\gamma}\frac{\mathrm{d}z}{z}\] 其中, \(\gamma: [0,2\pi]\to \mathbb{C}\), \(\gamma(t)=e^{i\theta(t)}\). 这正是表示\(\gamma\)关于复数0的winding number的公式. (3)代数基本定理的证明(4)研究环链数 |
数学概念 | 定义 | 物理例子 |
单形(Simplex) | \(r\)-单形\(\sigma_{r}=\langle p_{0},\dots,p_{r}\rangle\)可以表示为\(\sigma^{r}=\left\{x\in\mathbb{R}^{n} | x=\sum_{i=0}^{r}c_{i}p_{i}, c_{i}\geq 0, \sum_{i=0}^{r}c_{i}=1 \right\}\). | |
单复形(Simplicial complex) | 令\(K\)为\(\mathbb{R}^{m}\)中有限单形的集合. 如果这些单形很好地拟合在一起, 即: (i)\(K\)单形的任意面都属于\(K\), 也就是说, 如果\(\sigma\in K\), \(\sigma^{\prime}\leq\sigma\), 则\(\sigma^{\prime}\in K\); (ii)如果\(\sigma\)和\(\sigma^{\prime}\)是\(K\)的两个单形, 则交点\(\sigma\cup\sigma^{\prime}\)为空或为\(\sigma\)和\(\sigma^{\prime}\)的公共面. 即, 如果\(\sigma,\sigma^{\prime}\in K\)则\(\sigma\cup\sigma^{\prime} =\varnothing\)或\(\sigma\cup\sigma^{\prime}\leq\sigma\)和\(\sigma\cup\sigma^{\prime}\leq\sigma^{\prime}\). 则\(K\)被称为单复形. | |
三角剖分(Triangulation) | 令X为拓扑空间, 如果存在一个单复形\(K\)和一个同胚\(f: |K|\to X\), \(X\)称为是可三角剖分的, 并且\((K,f)\)称为\(X\)的三角剖分. 注意给定拓扑空间\(X\), 其三角剖分非唯一. | |
定向\(r\)-单形(Oriented \(r\)-simplex) | ||
\(r\)-链群(\(r\)-chain group) | 单复形\(K\)的\(r\)-链群\(C_{r}(K)\)是由\(K\)的定向\(r\)-单形生成的自由阿贝尔群. 如果\(r>\mathrm{dim}K\), 则将\(C_{r}(K)\)定义为0. \(C_{r}(K)\)的元素被称为\(r\)-链. | |
边缘算符(Boundary operator) | \(\partial_{r}: C_{r}(K)\to C_{r-1}(K)\), \(\partial_{r}\)称为边缘算符. | 如球体的边界为低一维的球面 |
链复形(\(r\)-chain group) | \[0\stackrel{i}{\longrightarrow}C_{n}(K)\stackrel{\partial_{n}}{\longrightarrow}C_{n-1}(K)\stackrel{\partial_{n-1}}{\longrightarrow}\cdots\stackrel{\partial_{2}}{\longrightarrow}C_{1}(K)\stackrel{\partial_{1}}{\longrightarrow}C_{0}(K)\stackrel{\partial_{0}}{\longrightarrow}0\] | |
\(r\)-闭链群(\(r\)-cycle group) | 如果\(c\in C_{r}(K)\)满足\(\partial_{r}c=0\), \(c\)称为\(r\)-闭链. \(r\)-闭链\(Z_{r}(K)\)的集合是\(C_{r}(K)\)的子群, 称为\(r\)-闭链群. 注意\(Z_{r}(K)=\mathrm{ker}\partial_{r}\). | |
\(r\)-边缘链群(\(r\)-boundary group) | 令\(K\)为\(n\)维单复形, \(c\in C_{r}(K)\). 如果存在满足\(c=\partial_{r+1}d\)的元素\(d\in C_{r+1}(K)\), 则\(c\)称为\(r\)-边缘链. \(r\)-边缘链集\(B_{r}(K)\)是\(C_{r}(K)\)的子群, 称为\(r\)-边缘链群. 注意, \(B_{r}(K)=\mathrm{im}\partial_{r+1}\). | |
\(r\)-同调群(\(r\)-homology group) | 令\(K\)为\(n\)维单复形. \(r\)-阶同伦群\(H_{r}(K), 0\leq r\leq n\)定义为\(H_{r}(K)=Z_{r}(K)/B_{r}(K)\). | |
Betti数(Betti number) | 令\(K\)为单复形. 第\(r\)阶Betti数定义为\(b_{r}(K)\equiv \mathrm{dim}H_{r}(K;\mathbb{R})\). 换句话说, \(b_{r}(K)\)是\(H_{r}(K;\mathbb{Z})\)自由阿贝尔部分的阶数. | \(b_{0}(T^{2})=1, b_{1}(T^{2})=2, b_{2}(T^{2})=1\).\(b_{0}(S^{2})=1, b_{1}(S^{2})=0, b_{2}(S^{2})=1\) |
胞腔/闭胞腔(Cell/Closed cell) | 拓扑空间\(Y\)称为一个\(q\)维闭胞腔, 如果它同胚于\(q\)维实心球\(D^{q}\).拓扑空间\(Y\)称为一个\(q\)维胞腔, 如果它同胚于\(q\)维开实心球\(\mathrm{Int}D^{q}:=D^{q}-S^{q-1}\). | 单形 |
胞腔剖分/CW剖分 | 定义一:Hausdorff空间\(X\)上的一个胞腔剖分或CW剖分,是指把\(X\)分解为互不相交的子集\(\{e_{i}^{q}\}\)的并集(对于每个维数\(q\geq 0\)), 使得:每个\(e_{i}^{q}\)是一个\(q\)维胞腔,且存在连续映射\(\varphi_{i}^{q}: D^{q} \rightarrow X\)把\(\mathrm{Int}D^{q}\)同胚地映成\(e_{i}^{q}\), 这\(\varphi_{i}^{q}\)称为\(e_{i}^{q}\)的\textbf{特征映射}, 只要求存在, 不要求唯一;(2)胞腔\(e_{i}^{q}\)的边缘\(\dot{e}_{i}^{q}:=\bar{e}_{i}^{q}-e_{i}^{q}\)的每一点都属于低于\(q\)维的胞腔.如果胞腔个数是无限的,则还需要满足两个条件:(3)(闭包有限-Closure finite)每个胞腔\(e_{i}^{q}\)的闭包只与有限多个胞腔相交;(4)(弱拓扑-Weak topology)\(X\)的任意子集\(F\)是闭集当且仅当对于每个胞腔\(e_{i}^{q}\), 交集\(F \cap \bar{e}_{i}^{q}\)都是紧的.后两个条件是CW名称的由来. 取定了胞腔划分的空间, 称为胞腔复形或CW复形. 其胞腔的最大维数称为该胞腔复形的维数;如果没有最大的维数,就说它是无限维的。如果胞腔个数是有限的,就说它是有限胞腔复形,这时\(X\)是紧的Hausdorff空间. 定义二(归纳的定义)拓扑空间\(X\)上的一个胞腔剖分或CW剖分,是指在\(X\)中取定了一个闭子空间上升阶梯\[\emptyset=X^{-1} \subset X^{0} \subset X^{1} \subset \cdots \subset X^{q-1} \subset X^{q} \subset \cdots, \quad \bigcup_{q=0}^{\infty} X^{q}=X\], \(X^{q}\)称为\(X\)的\(q\)维骨架,使得:(1)\(X^{0}\)是具有离散拓扑的集合, 其元素称为\(0\)维胞腔;(2)从\(X^{q-1}\)构造\(X^{q}\):将任意多个\(q\)维胞腔粘合到\(X^{q-1}\)上,其过程为,将\(q\)维圆盘\(D^{q}\)通过粘合映射\(\varphi: \partial D^{q}\to X^{q-1}\)粘到\(X^{q-1}\)上,从而\(X^{q}\)是拓扑和\(X^{q-1} \sqcup D^{q}\)的商空间,其等价关系\(\sim\)为\(\forall x \in \partial D^{q}, x \sim \varphi(x)\);(3)每个胞腔的闭包,只与有限多个胞腔相交;(4)(弱拓扑)\(X\)的任意子集\(F\)是闭集当且仅当对于每个维数\(q\), 交集\(F\cap X^{q}\)都是\(X^{q}\)中的闭集. 这两种定义其实是等价的 | (1)0维的胞腔复形是离散的拓扑空间(2)单纯复形可以自然地看成胞腔复形,其胞腔是开单形(3)\(n\)维球面\(S^{n}\)可以剖分成只有两个胞腔,一个是0维的,另一个是\(n\)维的,后者的粘接映射是常值映射\(S^{n-1}\to \mathrm{pt}\). 这显示胞腔剖分比单纯剖分/三角剖分更灵活、更经济 |
几何体 | 三角剖分形式 |
球面(sphere) \(S^{2}\) | |
平环(annulus) | |
环面(torus) \(T^{2}\) | |
Mobius带(Mobius strip) | |
Klein瓶(Klein bottle) | |
射影平面(projective plane) |
几何体 | 胞腔剖分 | 正则胞腔复形 | 单纯剖分 |
环面(torus) \(T^{2}\) |
数学概念 | 定义 | 物理例子 |
标准复形(standard simplex) | \[\bar{\sigma}_{r}=\left\{\left(x^{1}, \ldots, x^{r}\right) \in \mathbb{R}^{r} \mid x^{\mu} \geq 0, \sum_{\mu=1}^{r} x^{\mu} \leq 1\right\}\]. | |
奇异\(r\)-复形(singular \(r\)-simplex) | 令\(\sigma_{r}\)是\(\mathbb{R}^{r}\)中的\(r\)-单纯形,令\(f: \sigma_{r}\to M\)是光滑映射. 这里\(f\)不需要可逆. 我们用\(s_{r}\)表示\(M\)中\(\sigma_{r}\)的像,并将其称为\(M\)中的奇异\(r\)-单形. 即单复形从Euclidean空间映射到其他空间变成奇异复形 | |
Stokes定理(Stokes' theorem) | 令\(\omega\in \Omega^{r-1}(M)\)和\(c\in C_{r}(M)\). \[\int_{c}\mathrm{d}\omega=\int_{\partial c}\omega\]. | Gauss定理: \(\int_{V}\mathrm{div}\psi\ \mathrm{d}V=\oint_{S}\psi\cdot \mathrm{d}\mathbf{S}\)Stokes定理: \(\int_{S}\mathrm{curl}\omega\cdot\mathrm{d}\mathbf{S}=\oint_{C}\omega\cdot \mathrm{d}\mathbf{S}\) |
上闭链群(cocycle group) | 令\(M\)为\(m\)维可微流形. 闭\(r\)形式的集合称为r阶上闭链群, 表示为\(Z_{r}(M)\). | |
上边缘链群(coboundary group) | 令\(M\)为\(m\)维可微流形. 正合\(r\)形式的集合称为r阶上边缘链群, 表示为\(B_{r}(M)\). | |
de Rham上同调(de Rham cohomology group) | \[H^{r}(M;\mathbb{R})\equiv Z^{r}(M)/B^{r}(M).\] 当同调群\(H_{k}(M,G)\)的系数群\(G\)为域时, \(H_{r}(M,G)\)本身形成域\(G\)上线性空间, 这时其对偶的线性空间即上同调群\(H^{r}(M,G)\). | |
de Rham定理(de Rham's theorem) | 如果\(M\)是一个紧致流形, \(H_{r}(M)\)和\(H^{r}(M)\)是有限维的. 而且映射 \[\Lambda: H_{r}(M)\times H^{r}(M)\to \mathbb{R}\] 是双线性且非简并的. 因此, \(H^{r}(M)\)是\(H_{r}(M)\)的对偶向量空间. | |
Poincar´e引理(Poincar´e’s lemma) | 如果流形\(M\)的坐标邻域\(U\)可收缩到点\(p_{0}\in M\), 则\(U\)上的任何闭\(r\)-形式也是正合的. | |
Poincar´e对偶(Poincar´e’s duality) | \[H^{r}(M)\cong H^{m-r}(M)\] |
数学概念 | 定义 | 物理例子 |
线性空间 | 加法: (1)\(\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}\); (2)\((\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})\); (3)存在零矢量\(\mathbf{v}+\mathbf{0}=\mathbf{v}\); (4)逆矢量\(\mathbf{u}+(-\mathbf{u})=0\);数乘: (5)\(c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}\); (6)\((c+d)\mathbf{u}=c\mathbf{u}+d\mathbf{v}\); (7)\((cd)\mathbf{u}=c(d\mathbf{u})\); (8)单位元\(1\mathbf{u}=\mathbf{u}\).强调:线性空间针对加法是一个群(在同调论中有所应用),有零秩定理(本质是群同态-同构基本定理) | |
线性映射(Linear Map) | 如果一个映射\(f: V\longrightarrow W \)满足 \(f(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = a_1 f(\mathbf{v}_1)) + a_2 f(\mathbf{v}_2) \)则其被称为线性映射. | |
像(image) | 对于一个映射\(f: V\longrightarrow W \) ,它的像定义为\(f(V) \subset W \). | |
核(kernels) | 对于一个映射\(f: V\longrightarrow W \) ,它的核定义为\(\{ v\in V|f(v)=0\} \)其中\(0\)代表零矢量. | |
对偶矢量空间(dual vector space) | ||
内积(inner product) | 对偶矢量\( f = f_i e^{*i}\)作用在矢量\(\mathbf{v}\)上,我们将之称为内积\(f(\mathbf{v}) =f_i v^{j}e^{*i}(\mathbf{e}_j) =f_i v^{i} \) | |
伴随(adjiont)映射 | 令\(V\)是一个基矢为\(\{\mathbf{e_i} \} \)的矢量空间,且该矢量空间具有同构映射\(g:W\longrightarrow W^{*} \)。对于一个映射\(f: V\longrightarrow W \) ,它的伴随定义为\( \tilde{f} \) \(G(\mathbf{w},f \mathbf{v}) = g(\mathbf{v},\tilde{f}\mathbf{w})\) | |
Toy index theorem | 令\(V\)是一个基矢为\(\{\mathbf{e_i} \} \)的矢量空间,且该矢量空间具有同构映射\(g:W\longrightarrow W^{*} \)。对于一个映射\(f: V\longrightarrow W \) ,它的伴随定义为\( \tilde{f} \) \(G(\mathbf{w},f \mathbf{v}) = g(\mathbf{v},\tilde{f}\mathbf{w})\) |
数学概念 | 定义 | 物理例子 |
微分流形(differentiable manifold) | (i)\(M\)是一个拓扑空间; (ii)\(M\)上有一组\(\{(U_{i},\varphi_{i})\}\); (iii)\(\{U_{i}\}\)是可以覆盖\(M\)的开集族, 即\(\cup_{i}U_{i}=M\). \(\varphi_{i}\)是从\(U_{i}\)到\(\mathbb{R}_{m}\)的开子集\(U_{i}^{\prime}\)的同胚; (iv)给定\(U_{i}\)和\(U_{j}\)使得\(U_{i}\cap U_{j}=\varnothing\), 从\(\varphi_{j}(U_{i}\cap U_{j})\)到\(\varphi_{i}(U_{i}\cap U_{j})\)的映射\(\psi_{ij}=\varphi_{i}\circ \varphi_{j}^{-1}\)是无限可微的. 满足以上条件的\(M\)是\(m\)-维微分流形. 其中\((U_{i},\varphi_{i})\)称为图(chart), \(\{(U_{i},\varphi_{i})\}\)称为图册(atlas), 子集\(U_{i}\)称为坐标邻域(coordinate neighbourhood), \(\varphi_{i}\)为坐标(coordinate). | |
微分同胚(diffeomorphism) | 令\(f: M\to N\)为同胚, \(\psi\)和\(\varphi\)为坐标函数. 如果\(\psi\circ f\circ \varphi^{-1}\)是可逆的(即, 存在一个映射\(\varphi\circ f^{-1}\circ \psi^{-1}\)), 并且\(y=\psi\circ f\circ \varphi^{-1}(x)\)和\(x=\varphi\circ f^{-1}\circ \psi^{−1}(y)\)为\(C^{\infty}\), \(f\)被称为微分同胚, 表示为\(M\equiv N\). | |
Lie导数(Lie derivatives) | 沿着\(X\)的流\(\sigma\)的矢量场\(Y\)的Lie导数定义为: \[\mathcal{L}_{X}Y=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}[(\sigma_{-\varepsilon})_{*}Y|_{\sigma_{\varepsilon}(x)}-Y|_{x}]\] | |
微分\(r-\)形式(\(p\)-form) | 微分\(r-\)形式是\((0,r)\)型全反对称张量. | (a). 1-form: \( w = \sum_i f_i dx^{i} \), 对应于线. 经典力学中的例子: \(dH = \sum_i \dot{q}_i dp_i - \dot{p}_i dq_i \) 统计力学中的例子: \(dU = PdV - TdS + \mu dN \) (b). 2-form: \( w = \sum_{ij} f_{ij} dx^{i}\wedge dx^{j} \), 对应于面. 磁通量: \( \oint \mathbf{B} \cdot \mathbf{dS} = \oint \left( B_x dy\wedge dz + \dots \right) \) (c). 3-form: \( w = \sum_{ijk} f_{ijk} dx^{i}\wedge dx^{j}\wedge dx^{k} \) . 对应于体 |
楔积(wedge product) | \[\mathrm{d}x^{\mu_{1}}\wedge\mathrm{d}x^{\mu_{2}}\wedge\dots\wedge\mathrm{d}x^{\mu_{r}}=\sum_{P\in S_{r}}\mathrm{sgn}(P)\mathrm{d}x^{\mu_{P(1)}}\wedge\mathrm{d}x^{\mu_{P(2)}}\wedge\dots\wedge\mathrm{d}x^{\mu_{P(r)}}\] | |
外积(exterior product) | \[\Omega_{p}^{q}(M)\times\Omega_{p}^{r}(M)\longrightarrow\Omega_{p}^{q+r}(M)\] | |
外导数(exterior derivative) | 外导数\(\mathrm{d}_{r}\)是映射\(\Omega^{r}(M)\longrightarrow\Omega^{r+1}(M)\), 它对\(r\)-形式\(\omega=\frac{1}{r!}\omega_{\mu_{1}\dots\mu_{r}}\mathrm{d}x^{\mu_{1}}\wedge\dots\wedge\mathrm{d}x^{\mu_{r}}\)的作用形式为: \[\mathrm{d}_{r}\omega=\frac{1}{r!}\left(\frac{\partial}{\partial x^{\nu}}\omega_{\mu_{1}\dots\mu_{r}}\right)\mathrm{d}x^{\nu}\wedge\mathrm{d}x^{\mu_{1}}\wedge\dots\wedge\mathrm{d}x^{\mu_{r}}\] | 在Hamiltonian力学中可以定义辛2-form: \(\omega=\mathrm{d}p_{\mu}\wedge\mathrm{d}q^{\mu}\), 可以表示为one-form: \(\theta=q^{\mu}\mathrm{d}p_{\mu}\)的外导数 \[\omega=\mathrm{d}\theta\] |
内积(interior product) | \(\mathrm{i}_{X}: \Omega^{r}(M)\longrightarrow \Omega^{r-1}(M)\), 对于\(\omega\in\Omega^{r}(M)\) \[\mathrm{i}_{X}\omega(X_{1},\dots,X_{r-1})\equiv\omega(X,X_{1},\dots,X_{r-1})\] 有\(\mathcal{L}_{X}\omega-(\mathrm{d}\mathrm{i}_{X}+\mathrm{i}_{X}\mathrm{d})\omega\) | |
可定向的(orientation) | 令\(M\)为由\(\{U_{i}\}\)覆盖的连通流形. 如果对于任何重叠的图册\(U_{i}\)和\(U_{j}\), \(U_{i}\)存在局部坐标\(\{x^{\mu}\}\), 对于\(U_{j}\)存在\(\{y^{\alpha}\}\), 使得\(J=\det(\partial x^{\mu}/\partial y^{\alpha})>0\), 则流形\(M\)是可定向的. | |
单位分解(partition of unity) | 取\(M\)的一个开覆盖\(\{U_{i}\}\), 使\(M\)的每个点都覆盖着有限数量的\(U_{i}\)(这种情况的\(M\)称为paracompact). 如果一族微分函数\(\varepsilon_{i}(p)\)满足(i)\(0\leq\varepsilon_{i}(p)\leq 1\)(ii)如果\(p\notin U_{i}\), \(\varepsilon_{i}(p)=0\)(iii)对\(p\in M\)的任意点, \(\varepsilon_{1}(p)+\varepsilon_{2}(p)+\dots=1\)族\(\{\varepsilon(p)\}\)称为从属于覆盖\(\{U_{i}\}\)的单位分解 |
数学概念 | 定义 | 物理例子 |
Lie群(Lie group) | Lie群\(G\)是可微流形, 且具有群结构, 使得群操作(i)\(\cdot: G\times G\to G, (g_{1},g_{2})\mapsto g_{1}\cdot g_{2}\)(2)\({}^{-1}: G\to G, g\mapsto g^{-1}\)是可微的. | 一般线性群\(\mathrm{GL}(n,\mathbb{R})\), 正交群\(\mathrm{O}(n)\), 特殊线性群\(\mathrm{SL}(n,\mathbb{R})\), 特殊正交群\(\mathrm{SO}(n)\)一般线性群\(\mathrm{GL}(n,\mathbb{C})\), 幺正群\(\mathrm{U}(n)\), 特殊线性群\(\mathrm{SL}(n,\mathbb{C})\), 特殊幺正群\(\mathrm{SU}(n)\) |
左平移(left-translation)右平移(right-translation) | 令\(a\)和\(g\)为Lie群\(G\)中的元素右平移\(R_{a}: G\to G, R_{a}g=ga\)左平移\(L_{a}: G\to G, L_{a}g=ag\) | |
左不变向量场(left-invariant vector field) | 令\(X\)为Lie群\(G\)上的向量场. 如果\(L_{a*}X|_{g}=X|_{ag}\), 则称\(X\)为左不变向量场. | |
Lie代数(Lie algebra) | 具有Lie括号\([\ ,\ ]: \mathfrak{g}\times \mathfrak{g}\to \mathfrak{g}\)的左不变矢量场\(\mathfrak{g}\)的集合称为Lie群\(G\)的Lie代数. | |
单参子群(one-parameter subgroup) | 满足\(\phi(t)\phi(s)=\phi(t+s)\)条件的曲线\(\phi: \mathbb{R}\to G\)称为\(G\)的单参子群. | |
指数映射(exponential map) | 令\(G\)为一个Lie群, \(V\in T_{e}G\). 指数映射\(\exp: T_{e}G\to G\)由下式定义: \[\exp V\equiv \phi_{V}(1)\] 其中, \(\phi_{V}\)是由左不变向量场\(X_{V}|_{g}=L_{g*}V\)生成的\(G\)的一个参数子集. | |
结构常数(structure constant) | \[X_{\mu},X_{\nu}=c_{\mu\nu}{}^{\lambda}X_{\lambda}\] 其中\(c_{\mu\nu}{}^{\lambda}\)称为Lie群\(G\)的结构常数. | |
Lie群的作用(action) | 令\(G\)为一个Lie群, \(M\)为一个流形. \(G\)对\(M\)的作用是可满足以下条件的可微映射\(\sigma: G\times M\to M\): (i)\(\sigma(e,p)=p, \text{for any} p\in M\)(ii)\(\sigma(g_{1},\sigma(g_{2},p))=\sigma(g_{1}g_{2},p)\) | |
作用是传递的(transitive), 自由(free), 有效(effective) | 令\(G\)为通过\(\sigma: G\times M\to M\)作用于流形\(M\)的Lie群. 作用\(\sigma\)被认为是 (a)传递的. 如果对于任何一个\(p_{1}, p_{2}\in M\), 存在一个元素\(g\in G\)使得\(\sigma(g, p_{1})=p_{2}\); (b)自由的. 如果\(G\)中的每个非平凡元素\(g\neq e\)在\(M\)中没有不动点, 也就是说, 如果存在元素\(p\in M\)使得\(\sigma(g, p)=p\), 则\(g\)必须是单位元\(e\); (c)有效的. 如果单位元\(e\in G\)是定义在\(M\)的平庸作用的唯一元素, 即如果对于所有\(p\in M\)有\(\sigma(g,p)=p\), 则g必须是单位元\(e\). | |
迷向群(isotropy group)/小群(little group)/稳定子(stabilizer) | 令\(G\)为作用在流形\(M\)上的Lie群. \(p\in M\)的迷向群为G的子群, 定义为 \[H(p)=\{g\in G|\sigma(g,p)=p\}\] 也称为\(p\)的小群或稳定子 | Goldstone定理:\(\pi_{d}(G/H)\)代表nontrivial-出现简并。也可以用在topological defects, 如instanton上 |
伴随表示(adjoint representation) | 取任意\(a\in G\)并定义一个同态\(\mathrm{ad}_{a}: G\to G\) \[\mathrm{ad}_{a}: g\mapsto aga^{-1}\] 该同态称为\(G\)的伴随表示. |
数学概念 | 定义 | 物理例子 |
切丛(tangent bundle) | \(m\)维流形\(M\)上的切丛\(TM\)是\(M\)上所有切空间的集合: \(TM\equiv \bigcup_{p\in M} T_{p}M\), \(M\)为基空间. | 经典力学中速度场与实空间构成切丛 |
纤维丛(fibre bundle) | 纤维丛\((E,\pi,M,F,G)\)包含以上元素: (i)微分流形\(E\)称为全空间(total space);(ii)微分流形\(M\)称为基空间(base space);(iii)微分流形\(F\)称为纤维(fibre)或典型纤维(typical fibre);(iv)满射\(\pi: E\to M\)称为投影映射(projection), 其逆像\(\pi^{-1}(p)=F_{p}\cong F\)称为\(p\)处的纤维;(v)Lie群\(G\)称为结构群(structure group), 左作用于\(F\);(vi)\(M\)的一组开覆盖\( \{U_{i}\}\)具有微分同胚\(\phi_{i}: U_{i}\times F\to \pi^{-1}(U_{i})\), 使得\(\pi\circ\phi_{i}(p,f)=p\). 映射\(\phi_{i}\)被称为局部平凡化(local trivialization), 因为\(\phi_{i}^{-1}\)将\(\pi^{-1}(U_{i})\)映射到直积\(U_{i}\times F\); (vii)如果写出\(\phi_{i}(p,f)=\phi_{i,p}(f)\), 则映射\(\phi_{i,p}: F\to F_{p}\)是一个微分同胚. 当\(U_{i}\cap U_{j}\neq\varnothing\)上, 要求\(t_{ij}(p)\equiv \phi_{i,p}^{-1}\circ \phi_{j,p}: F\to F\)是\(G\)的元素. 然后\(\phi_{i}\)和\(\phi_{j}\)由光滑映射\(t_{ij}: U_{i}\cap U_{j}\to G\)联系起来: \[\phi_{j}(p,f)=\phi_{i}(p,t_{ij}(p)f)\] 映射\(t_{ij}\)称为转移函数(transition functions). | |
截面(section, or cross section) | 令\(E\stackrel{\pi}{\longrightarrow}M\)为纤维丛. 截面\(s: M\to E\)是满足\(\pi\circ s=\mathrm{id}_{M}\)的光滑映射. | |
丛映射(bundle map) | 令\(E \stackrel{\pi}{\longrightarrow} M\)和\(E^{\prime} \stackrel{\pi^{\prime}}{\longrightarrow} M^{\prime}\)为纤维丛. 将光滑映射\(\bar{f}: E^{\prime} \rightarrow E\)称为丛映射, 如果它将\(E^{\prime}\)上的每条纤维\(F_{p}^{\prime}\)映射到\(E\)上的\(F_{q}\)上. \(\bar{f}\)自然产生一个平滑映射\(f: M^{\prime} \to M\)使得\(f(p)= q\). 可交换 | |
等价丛(Equivalent bundle) | 如果存在一个丛映射\(\bar{f}: E^{\prime} \rightarrow E\)使得\(f: M\to M\)是恒等映射并且\(\bar{f}\)是一个微分同胚, 则两个丛\(E^{\prime} \stackrel{\pi^{\prime}}{\longrightarrow} M\)和\(E \stackrel{\pi}{\longrightarrow} M\)是等价的. | |
拖回丛(Pullback bundle) | 令\(E \stackrel{\pi}{\longrightarrow} M\)为具有典型纤维\(F\)的纤维丛. 如果给出映射\(f: N\to M\), 则pair \((E,f)\)在具有相同纤维\(F\)的\(N\)上定义新的纤维丛. 令\(f^{*}E\)是\(N\times E\)的子空间, 它由点\((p,u)\)组成, 使得\(f(p)=\pi(u)\). \(f^{*} E \equiv\{(p, u) \in N \times E \mid f(p)=\pi(u)\}\)称为\(E\)上\(f\)的拉回. \(f^{*}E\)的纤维\(F_{p}\)只是\(E\)的纤维\(F_{f(p)}\)的一个拷贝. 如果我们用\(\pi_{1}:(p, u) \mapsto p\)定义\(f^{*} E \stackrel{\pi_{1}}{\longrightarrow} N\), 用\(\pi_{2}:(p, u) \mapsto u\)定义\(f^{*} E \stackrel{\pi_{2}}{\longrightarrow} E\), 可以使拉回\(f^{*}E\)具有纤维丛的结构, 我们得到以下丛映射. | |
向量丛(vector bundle) | 向量丛\(E \stackrel{\pi}{\longrightarrow} M\)是纤维为向量空间的纤维丛. 令\(F\)为\(\mathbb{R}^{k}\), \(M\)为\(m\)-维流形. 尽管全空间\(E\)为\(m+k\)维, 但通常将\(k\)称为纤维维度, 并用\(\mathrm{dim} E\)表示. 转移函数属于\(\mathrm{GL}(k,\mathbb{R})\), 因为它将向量空间同构地映射到相同维数的另一个向量空间上. 如果\(F\)是复向量空间\(\mathbb{C}^{k}\), 则结构群为\(\mathbb{GL}(k,\mathbb{C})\). | 线丛(line bundle): 纤维为一维\((F=\mathbb{R} \text{or} \mathbb{C})\)的向量丛称为线丛. |
标架(frame) | 令\(E \stackrel{\pi}{\rightarrow} M\)为向量丛, 其纤维为\(\mathbb{R}^{k}\)(或\(\mathbb{C}^{k}\)). 在图册\(U_{i}\)上, \(\pi^{-1}(U_{i})\)是平凡的, \(\pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{R}^{k}\), 我们可以选择\(k\)个线性独立的\(U_{i}\)上的截面\(\left\{e_{1}(p), \ldots, e_{k}(p)\right\}\). 这些截面定义了\(U_{i}\)上的标架. | 在切丛\(TM\)上, 每根纤维都具有由图册\(U_{i}\)上的坐标系\(x^{\mu}\)给出的自然基\(\left\{\partial / \partial x^{\mu}\right\}\). 如果\(M\)被赋予度量, 我们也可以使用正交基\(\left\{\hat{e}_{\alpha}\right\}\). \(\partial / \partial x^{\mu}\)或\(\left\{\hat{e}_{\alpha}\right\}\)是\(U_{i}\)上的向量场, 集合\(\left\{\partial / \partial x^{\mu}\right\}\)或\(\left\{\hat{e}_{\alpha}\right\}\)在\(U_{i}\)上形成线性独立的向量场. 总是可以在\(U_{i}\)上选择\(m\)个线性独立的切向量, 但是在\(M\)上不一定是这种情况. 根据定义, 基向量的分量是 \[\begin{array}{c} \partial / \partial x^{\mu}=(0,\quad \ldots, \quad 0, \quad 1, \quad 0, \quad \ldots, \quad 0) \\ \qquad\qquad \mu \end{array}\] 或 \[\begin{array}{c} \hat{e}_{\alpha}=(0, \quad \ldots, \quad 0, \quad 1, \quad 0, \quad \ldots, \quad 0). \\ \qquad \alpha \end{array}\] |
余切丛(cotangent bundle) | 余切丛\(T^{*} M \equiv \bigcup_{p \in M} T_{p}^{*} M\)的定义与切丛类似. 在坐标为\(x^{\mu}\)的图册\(U_{i}\)上, 将\(T_{p}^{*} M\)的基取为\(\left\{\mathrm{d} x^{1}, \ldots, \mathrm{d} x^{m}\right\}\), 它是\(\left\{\partial / \partial x^{\mu}\right\}\)的对偶. 设\(y^{\mu}\)为\(U_{j}\)的坐标, 以使\(U_{i} \cap U_{j} \neq \emptyset\). 对于\(p \in U_{i} \cap U_{j}\), 有变换, \[\mathrm{d} y^{\mu}=\mathrm{d} x^{\nu}\left(\frac{\partial y^{\mu}}{\partial x^{\nu}}\right)_{p}.\] 1-形式\(\omega\)在所有坐标系中都可以表示为 \[\omega=\omega_{\mu} \mathrm{d} x^{\mu}=\tilde{\omega}_{\mu} \mathrm{d} y^{\mu}\] 可见 \[\tilde{\omega}_{\mu}=G_{\mu}^{v}(p) \omega_{\nu}\] 其中\(G_{\mu}^{\nu}(p) \equiv\left(\partial x^{\nu} / \partial y^{\mu}\right)_{p}\)对应于转换函数\(t_{ji}(p)\). | |
乘积丛(product bundle) | 令\(E \stackrel{\pi}{\rightarrow} M\)和\(E^{\prime} \stackrel{\pi^{\prime}}{\rightarrow} M^{\prime}\)为向量丛, 其纤维分别为\(F\)和\(F^{\prime}\). 乘积丛 \[E \times E^{\prime} \stackrel{\pi \times \pi^{\prime}}{\longrightarrow} M \times M^{\prime}\] 是典型纤维是\(F \oplus F^{\prime}\)的纤维丛. 相应地, \(F \oplus F^{\prime}\)上的向量可以写为 \[\left(\begin{array}{c} V \\ W \end{array}\right) \quad \text { where } V \in F \text { and } W \in F^{\prime}\] 向量加法和标量乘法定义为 \[\left(\begin{array}{c} V \\ W \end{array}\right)+\left(\begin{array}{c} V^{\prime} \\ W^{\prime} \end{array}\right)=\left(\begin{array}{c} V+V^{\prime} \\ W+W^{\prime} \end{array}\right), \qquad \lambda\left(\begin{array}{c} V \\ W \end{array}\right)=\left(\begin{array}{c} \lambda V \\ \lambda W \end{array}\right) \] | |
Whitney和丛(Whitney sum bundle) | 令\(E \stackrel{\pi}{\rightarrow} M\)和\(E^{\prime} \stackrel{\pi^{\prime}}{\rightarrow} M\)是向量丛, 分别具有纤维\(F\)和\(F^{\prime}\). Whitney和丛\(E \oplus E^{\prime}\)是\(E\times E^{\prime}\)在\(f: M\to M\times M\)的拖回丛, \(f\)定义为\(f(p)=(p,p)\) 因此, \(E \oplus E^{\prime}=\left\{\left(u, u^{\prime}\right) \in E \times E^{\prime} \mid \pi \times \pi^{\prime}\left(u, u^{\prime}\right)=(p, p)\right\}\). Whitney和丛的纤维是\(F \oplus F^{\prime}\). | |
张量积丛(tensor product bundle) | 令\(E \stackrel{\pi}{\rightarrow} M\)和\(E^{\prime} \stackrel{\pi^{\prime}}{\rightarrow} M\)是\(M\)上的向量丛. 通过将纤维张量积\(F_{p} \otimes F_{p}^{\prime}\)分配给每个点\(p\in M\)来获得张量积丛\(E \otimes E^{\prime}\). 如果\(\{e_{\alpha}\}\)和\(\{f_{\beta}\}\)是\(F\)和\(F^{\prime}\)的基, 则\(F \otimes F^{\prime}\)由\(\left\{e_{\alpha} \otimes f_{\beta}\right\}\) spanned, 因此\(\operatorname{dim}\left(E \otimes E^{\prime}\right)=\operatorname{dim} E \times \operatorname{dim} E^{\prime}\). | |
主丛(principal bundle) | 主束具有与结构群\(G\)相同的纤维\(F\). 主丛\(P \stackrel{\pi}{\longrightarrow} M\)也由\(P(M,G)\)表示, 通常也称为\(M\)之上的\(G\)-丛. | 令\(P\)为具有纤维\(\mathrm{U}(1)=S^{1}\), 底空间\(S^{2}\)的主丛 —— magnetic monopole \(\mathrm{SU}(2)\) instanton |
伴丛(associated bundle) | 给定主纤维丛\(P(M,G)\), 可以定义伴纤维丛. 令\(G\)左作用于流形\(F\). 定义\(g\in G\)作用于\(P\times F\)为 \[(u, f) \rightarrow\left(u g, g^{-1} f\right)\] 其中\(u\in P\), \(f\in F\). 伴纤维丛\((E, \pi, M, G, F, P)\)为等价类\(P\times F/G\), 两点\((u,f)\)和\((ug,g^{-1}f)\)是等效的. | 标架丛(frame bundle)自旋丛(spin bundle) |
联络(connection) | 令\(P(M,G)\)为主丛. 在\(P\)上的联络是一种唯一的分离: 将切空间\(T_{u}P\)唯一地分离为垂直子空间\(V_{u}P\)和水平子空间\(H_{u}P\), 使得 (i)\(T_{u} P=H_{u} P \oplus V_{u} P\). (ii)\(P\)上的光滑向量场\(X\)被分离为光滑向量场\(X^{H} \in H_{u} P\)和\(X^{V} \in V_{u} P\), 且\(X=X^{H}+X^{V}\). (iii)对于任意\(u \in P\)和\(g \in G\), 有\(H_{u g} P=R_{g *} H_{u} P\). | |
联络1-形式(connection one-form) | 联络1-form \(\omega\in \mathfrak{g}\otimes T^{*}P\)是\(T_{u}P\)在垂直分量\(V_{u}P\simeq \mathfrak{g}\)上的投影. 投影属性归纳为以下要求, (i) \(\omega\left(A^{\#}\right)=A\), \(A \in \mathfrak{g}\) (ii) \(R_{g}^{*}\omega=\mathrm{Ad}_{g^{-1}}\omega\) 因此, 对于\(X\in T_{u}P\), \[R_{g}^{*}\omega_{ug}(X)=\omega_{ug}(R_{g*}X)=g^{-1}\omega_{u}(X)g.\] | Ehresmann联络 |
规范势(gauge potential) | \(\mathrm{U}(1)\)规范理论, Dirac磁单极子, Aharonov-Bohm效应, Yang-Mills理论, 瞬子(instanton), Berry相 | |
规范变换(gauge transformation) | ||
水平提升(horizontal lift) | 令\(P(M,G)\)为\(G\)丛, 设\(\gamma: [0,1]\to M\)为\(M\)中的曲线. 曲线\(\tilde{\gamma}: [0,1]\to P\)被称为\(\gamma\)的水平提升, 如果\(\pi \circ \tilde{\gamma}=\gamma\), 且\(\tilde{\gamma}(t)\)的切向量始终属于\(H_{\tilde{\gamma}(t)} P\). | |
平行输运(parallel transport) | 令\(\gamma: [0,1]\to M\)为曲线. 取点\(u_{0}\in \pi^{-1}(\gamma(0))\). 经过\(u_{0}\)存在\(\gamma(t)\)的唯一水平提升\(\tilde{\gamma}(t)\), 因此有唯一点\(u_{1}=\tilde{\gamma}(1)\in \pi^{-1}(\gamma(1))\). \(u_{1}\)点称为\(u_{0}\)沿着曲线\(\gamma\)的平行输运. | |
和乐群(parallel transport) | 取点\(u\in P\)满足\(\pi(u)=p\), 并考虑在\(p\)处的回路集合\(C_{p}(M)\): \(C_{p}(M)\equiv\{\gamma: [0,1]\to M|\gamma(0)=\gamma(1)=p\}\). 元素集合 \[\Phi_{u}\equiv \{g\in G|\tau_{\gamma}(u)=ug, \gamma\in C_{p}(M)\}\] 是结构群\(G\)的子群, 并称为\(u\)点的和乐群. | |
协变导数(covariant derivative) | 令\(\phi \in \Omega^{r}(P) \otimes V\), \(X_{1}, \ldots, X_{r+1} \in T_{u} P\). \(\phi\)的协变导数定义为 \[\mathrm{D} \phi\left(X_{1}, \ldots, X_{r+1}\right) \equiv \mathrm{d}_{P} \phi\left(X_{1}^{H}, \ldots, X_{r+1}^{H}\right)\] 其中\(\mathrm{d}_{P} \phi \equiv \mathrm{d}_{P} \phi^{\alpha} \otimes e_{\alpha}\). | |
曲率张量(curvature tensor) | 协变导数一般不对易, \[[D_{\mu}, D_{\nu}]=-F_{\mu\nu}^{a}\tilde{V}_{a}\] 其中\(F_{\mu\nu}^{a}=\partial_{\mu}A_{\nu}^{a}-\partial_{\nu}A_{\mu}^{a}+f_{bc}^{a}A_{\mu}^{b}A_{\nu}^{c}\)称为曲率张量 | Yang-Mills场强 |
曲率2-形式(curvature two-form) | 曲率2-形式\(\Omega\)是联络1-形式\(\omega\)的协变导数, \[\Omega \equiv \mathrm{D} \omega \in \Omega^{2}(P) \otimes \mathfrak{g}\] | Yang-Mills场强 |
Cartan结构方程(Cartan's structure equation) | 令\(X, Y \in T_{u} P\). \(\Omega\)和\(\omega\)之间满足Cartan结构方程 \[\Omega(X, Y)=\mathrm{d}_{P} \omega(X, Y)+[\omega(X), \omega(Y)]\] 或者写为 \[\Omega=\mathrm{d}_{P}\omega+\omega\wedge\omega.\] | |
Ambrose–Singer定理(Ambrose–Singer theorem) | 令\(P(M,G)\)是连通流形\(M\)上的\(G\)丛. 点\(u_{0}\in P\)的和乐群\(\Phi_{u_{0}}\)的Lie代数\(\mathfrak{h}\)与有如下形式的元素张成的\(\mathfrak{g}\)子代数一致 \[\Omega_{u}(X, Y) \qquad X, Y \in H_{u} P\] 其中\(a\in P\)是与\(u_{0}\)在相同水平提升上的点. | |
曲率的局域形式(local form of the curvature) | 曲率\(\Omega\)的局域形式\(\mathcal{F}\)定义为 \[\mathcal{F} \equiv \sigma^{*} \Omega\] 其中\(\sigma\)是定义在流形\(M\)的图册\(U\)上的局域截面(\(\mathcal{A}=\sigma^{*} \omega\)). \(\mathcal{F}\)可以用规范势\(\mathcal{A}\)表示为 \[\mathcal{F}=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}\] 其中, \(\mathrm{d}\)是\(M\)上的外导数. | |
Bianchi恒等式(Bianchi identity) | \[\mathrm{D}\Omega=0\]. | |
对称迹(symmetrized trace) | \[\begin{aligned} \tilde{P}\left(A_{1}, A_{2}, \ldots, A_{r}\right) &=\operatorname{str}\left(A_{1}, A_{2}, \ldots, A_{r}\right) \\ & \equiv \frac{1}{r !} \sum_{P} \operatorname{tr}\left(A_{P(1)}, A_{P(2)}, \ldots, A_{P(r)}\right) \end{aligned}\] | |
陈-Weil定理(Chern-Weil theorem) | 令\(P\)是不变多项式. \(P(\mathcal{F})\)满足 (a)\(\mathrm{d} P(\mathcal{F})=0\). (b)令\(\mathcal{F}\)和\(\mathcal{F}^{\prime}\)为分别对应于不同的联络\(\mathcal{A}\)和\(\mathcal{A}^{\prime}\)曲率2-形式. \(P(\mathcal{F^{\prime}})-P(\mathcal{F})\)的差是正合的. | |
示性类(characteristic class) | 不变多项式是封闭的, 并且通常是不平凡的. 因此, 它定义了\(M\)的上同调类. 陈-Weil定理(b)确保该同调类与所选的规范势无关. 这样定义的同调类称为示性类. 由不变多项式\(P\)定义的示性类由\(\chi_{E}(P)\)表示, 其中\(E\)是定义联络和曲率的纤维丛. | |
Weil同态(Weil homomorphism) | 令\(P\)是\(I^{*}(G)\)中的不变多项式, \(E\)是在\(M\)上具有结构群\(G\)的纤维丛, (a)\(P\to \chi_{E}(P)\)映射\(P\to \chi_{E}(P)\) \[\chi_{E}: I^{*}(G) \rightarrow H^{*}(M)\] 是一个同态(Weil同态). (b)令\(f: N\to M\)为可微映射. 对于\(E\)的拖回丛\(f^{*}E\), 我们有naturality \[\chi_{f^{*} E}=f^{*} \chi_{E}\]. | |
Chern类(Chern class) | 令\(E \stackrel{\pi}{\longrightarrow} M\)为复向量丛, 其纤维为\(\mathbb{C}^{k}\). 结构群\(G\)是\(\mathrm{GL}(k,\mathbb{C})\)的子群, 并且规范势\(\mathcal{A}\)和场强\(\mathcal{F}\)在\(\mathfrak{g}\)取值. 定义总Chern类: \[c(\mathcal{F}) \equiv \operatorname{det}\left(I+\frac{\mathrm{i} \mathcal{F}}{2 \pi}\right)\] 因为\(\mathcal{F}\)是2-形式, \(c(\mathcal{F})\)是偶数形式的直接求和 \[c(\mathcal{F})=1+c_{1}(\mathcal{F})+c_{2}(\mathcal{F})+\cdots\] 其中\(c_{j}(\mathcal{F}) \in \Omega^{2 j}(M)\)被称为\(j\)阶陈类. | |
分裂原理(splitting principle) | 令\(E\)是\(n\)复线丛的Whitney和, \[E=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n}\]. 利用\(c(E \oplus F)=c(E) \wedge c(F)\), 有 \[c\left(L_{i}\right)=1+c_{1}\left(L_{i}\right) \equiv 1+x_{i}\] 因此 \[c(E)=\prod_{i=1}^{n}\left(1+x_{i}\right)\]. \(n\)-维向量丛\(E\)的Chern类与\(n\)个复线丛的Whitney和的类相同. 这被称为分裂原理. | |
万有丛(universal bundles) | ||
分类空间(classifying space) | ||
Chern特征标(Chern character) | 总Chern特征标定义为 \[\operatorname{ch}(\mathcal{F}) \equiv \operatorname{tr} \exp \left(\frac{\mathrm{i} \mathcal{F}}{2 \pi}\right)=\sum_{j=1} \frac{1}{j !} \operatorname{tr}\left(\frac{\mathrm{i} \mathcal{F}}{2 \pi}\right)^{j}\] \(j\)阶Chern特征标\(\operatorname{ch}_{j}(\mathcal{F})\)定义为 \[\operatorname{ch}_{j}(\mathcal{F}) \equiv \frac{1}{j !} \operatorname{tr}\left(\frac{\mathrm{i} \mathcal{F}}{2 \pi}\right)^{j}\]. | |
Todd类(Todd class) | 复向量丛对应的另一个有用的示性类——Todd类定义为 \[\operatorname{Td}(\mathcal{F})=\prod_{j} \frac{x_{j}}{1-\mathrm{e}^{-x_{j}}}\] 其中已经包括了分裂原理. 如果用\(x_{j}\)的幂次展开 \[\begin{aligned} \operatorname{Td}(\mathcal{F}) &=\prod_{j}\left(1+\frac{1}{2} x_{j}+\sum_{k \geq 1}(-1)^{k-1} \frac{B_{k}}{(2 k) !} x_{j}^{2 k}\right) \\ &=1+\frac{1}{2} \sum_{j} x_{j}+\frac{1}{12} \sum_{j} x_{j}^{2}+\frac{1}{4} \sum_{ j < k } x_{j} x_{k}+\cdots \\ &=1+\frac{1}{2} c_{1}(\mathcal{F})+\frac{1}{12}\left[c_{1}(\mathcal{F})^{2}+c_{2}(\mathcal{F})\right]+\cdots \end{aligned}\] 其中\(B_{k}\)是Bernoulli数 \[B_{1}=\frac{1}{6} \quad B_{2}=\frac{1}{30} \quad B_{3}=\frac{1}{42} \quad B_{4}=\frac{1}{30} \quad B_{5}=\frac{5}{66} \ldots \] | |
Pontrjagin类(Pontrjagin class) | 总Pontrjagin类定义为 \[p(\mathcal{F}) \equiv \operatorname{det}\left(I+\frac{\mathcal{F}}{2 \pi}\right).\] \(p(\mathcal{F})\)的生成函数为 \[p(\mathcal{F})=\operatorname{det}(I+A)=\prod_{i=1}^{[k / 2]}\left(1+x_{i}^{2}\right), \qquad [k / 2]=\rightarrow\left\{\begin{array}{ll} k / 2 & \text { if } k \text { is even } \\ (k-1) / 2 & \text { if } k \text { is odd. } \end{array}\right.\] 每个Pontrjain类为 \[p_{j}(\mathcal{F})=\sum_{i_{1} < i_{2} < \ldots < i_{j} }^{[k / 2]} x_{i_{1}}^{2} x_{i_{2}}^{2} \ldots x_{i_{j}}^{2}.\] | |
普法夫型(Pfaffian) | 一般地, \(2l\times 2l\)斜对称矩阵\(A\)的行列式是多项式Pfaffian \(\operatorname{Pf}(A)\)的平方 \[\operatorname{det} A=\operatorname{Pf}(A)^{2}\] | Euler类(Euler class)\(M\)的Euler类\(e\)由4\(l\)-形式\(p_{l}\)的开方根定义为 \[e(A) e(A)=p_{l}(A)\] |
Chern-Simons形式(Chern-Simons form) | 令\(P_{j}(\mathcal{F})\)是任意\(2j\)-形式的示性类. 因为\(P_{j}(\mathcal{F})\)是闭的, 通过Poincare引理局域地写成正合形式 \[P_{j}(\mathcal{F})=\mathrm{d} Q_{2 j-1}(\mathcal{A}, \mathcal{F})\] 其中\(Q_{2 j-1}(\mathcal{A}, \mathcal{F}) \in \mathfrak{g} \otimes \Omega^{2 j-1}(M)\). 该\(2j-1\)形式\(Q_{2 j-1}(\mathcal{A}, \mathcal{F})\)称为\(P_{j}(\mathcal{F})\)的Chern-Simons形式. | Chern特征标\(\operatorname{ch}_{j}(\mathcal{F})\)的Chern-Simons形式 \[Q_{2 j-1}(\mathcal{A}, \mathcal{F})=\frac{1}{(j-1) !}\left(\frac{\mathrm{i}}{2 \pi}\right)^{j} \int_{0}^{1} \mathrm{~d}t\ \operatorname{str}\left(\mathcal{A}, \mathcal{F}_{t}^{j-1}\right)\] 例如 \[\begin{aligned} Q_{1}(\mathcal{A}, \mathcal{F}) &=\frac{\mathrm{i}}{2 \pi} \int_{0}^{1} \mathrm{~d} t \operatorname{tr} \mathcal{A}=\frac{\mathrm{i}}{2 \pi} \operatorname{tr} \mathcal{A} \\ Q_{3}(\mathcal{A}, \mathcal{F}) &=\left(\frac{\mathrm{i}}{2 \pi}\right)^{2} \int_{0}^{1} \mathrm{~d} t \operatorname{str}\left(\mathcal{A}, t \mathrm{~d} \mathcal{A}+t^{2} \mathcal{A}^{2}\right) \\ &=\frac{1}{2}\left(\frac{\mathrm{i}}{2 \pi}\right)^{2} \operatorname{tr}\left(\mathcal{A} \mathrm{d} \mathcal{A}+\frac{2}{3} \mathcal{A}^{3}\right) . \\ Q_{5}(\mathcal{A}, \mathcal{F}) &=\frac{1}{2}\left(\frac{\mathrm{i}}{2 \pi}\right)^{3} \int_{0}^{1} \mathrm{~d} t \operatorname{str}\left[\mathcal{A},\left(t \mathrm{~d} \mathcal{A}+t^{2} \mathcal{A}^{2}\right)^{2}\right] \\ &=\frac{1}{6}\left(\frac{\mathrm{i}}{2 \pi}\right)^{3} \operatorname{tr}\left[\mathcal{A}(\mathrm{d} \mathcal{A})^{2}+\frac{3}{2} \mathcal{A}^{3} \mathrm{~d} \mathcal{A}+\frac{3}{5} \mathcal{A}^{5}\right] \end{aligned}\] |
同伦算子(homotopy operator) | 对于\(\mathcal{A}\)和\(\mathcal{F}\)的任何多项式\(S(\mathcal{A}, \mathcal{F})\), 得到 \[\left(\mathrm{d} l_{t}+l_{t} \mathrm{~d}\right) S\left(\mathcal{A}_{t}, \mathcal{F}_{t}\right)=\delta t \frac{\partial}{\partial t} S\left(\mathcal{A}_{t}, \mathcal{F}_{t}\right)\]. 在\([0,1]\)上积分, 得到Cartan的同伦公式 \[S\left(\mathcal{A}_{1}, \mathcal{F}_{1}\right)-S\left(\mathcal{A}_{0}, \mathcal{F}_{0}\right)=\left(\mathrm{d} k_{01}+k_{01} \mathrm{~d}\right) S\left(\mathcal{A}_{t}, \mathcal{F}_{t}\right)\] 其中同伦算符\(k_{01}\)定义为 \[k_{01} S\left(\mathcal{A}_{t}, \mathcal{F}_{t}\right) \equiv \int_{0}^{1} \delta t\ l_{t} S\left(\mathcal{A}_{t}, \mathcal{F}_{t}\right)\] | |
Cech上同调群(Cech cohomology group) | 令\(\mathbb{Z}_{2}\)为乘法群\(\{-1, +1\}\). Cech \(r\)-上链是在\(U_{i_{0}} \cap U_{i_{1}} \cap \ldots \cap U_{i_{r}} \neq \emptyset\)上定义的函数\(f\left(i_{0}, i_{1}, \ldots, i_{r}\right) \in \mathbb{Z}_{2}\), 在任意排列\(P\)下完全对称, \[f\left(i_{P(0)}, \ldots, i_{P(r)}\right)=f\left(i_{0}, \ldots, i_{r}\right).\] 令\(C^{r}\left(M, \mathbb{Z}_{2}\right)\)为Cech \(r\)-上链的乘法群. 我们定义上边界算符\(\delta: C^{r}\left(M ; \mathbb{Z}_{2}\right) \rightarrow C^{r+1}\left(M ; \mathbb{Z}_{2}\right)\) \[(\delta f)\left(i_{0}, \ldots, i_{r+1}\right)=\prod_{j=0}^{r+1} f\left(i_{0}, \ldots, \hat{i}_{j}, \ldots, i_{r+1}\right)\] 其中省略了\(\hat{}\)以下的变量. 可以证明, 对于任何Cech \(r\)-上链 \(f\), 有\ \[\delta^{2} f=1.\] 上闭链群\(Z^{r}\left(M ; \mathbb{Z}_{2}\right)\)和上边界群\(B^{r}\left(M ; \mathbb{Z}_{2}\right)\)定义为 \[Z^{r}\left(M ; \mathbb{Z}_{2}\right)=\left\{f \in C^{r}\left(M ; \mathbb{Z}_{2}\right) \mid \delta f=1\right\}\] \[B^{r}\left(M ; \mathbb{Z}_{2}\right)=\left\{f \in C^{r}\left(M ; \mathbb{Z}_{2}\right) \mid f=\delta f^{\prime}, f^{\prime} \in C^{r-1}\left(M ; \mathbb{Z}_{2}\right)\right.\] 将\(r\)阶Cech上同调群\(H^{r}\left(M ; \mathbb{Z}_{2}\right)\)定义为 \[H^{r}\left(M ; \mathbb{Z}_{2}\right)=\operatorname{ker} \delta_{r} / \mathrm{im} \delta_{r-1}=Z^{r}\left(M ; \mathbb{Z}_{2}\right) / B^{r}\left(M ; \mathbb{Z}_{2}\right).\] | |
Stiefel-Whitney类(Stiefel-Whitney class) | Stiefel-Whitney类\(w_{r}\)是一个示性类, 在\(H^{r}(M;\mathbb{Z}_{2})\)中取值. | 第一Stiefel-Whitney类\(w_{1}(M) \equiv[f] \in H^{1}\left(M ; \mathbb{Z}_{2}\right)\), 是可定向性的障碍(obstruction to the orientability) 第二Stiefel-Whitney类\(w_{2}(M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)\) |
Fiber bundle | Classical mechanics |
base manifold | \(\mathbb{R}^{3}\) |
fiber | velocity tangent space |
section | velocity field |
Fiber bundle | Classical electromagnetism |
base manifold | \(\mathbb{R}^{3}\otimes\mathbb{R}\) |
fiber | |
section | electromagnetic field |
section | electromagnetic field |
structure group | \(\mathrm{U}(1)\) |
connection | vector potential \(A_{\mu}\) |
curvature | electromagnetic tensor \(F_{\mu\nu}\) |
Field source | |
connection on the \(\mathrm{U}(1)\) bundle | electromagnetism |
classification of \(\mathrm{U}(1)\) bundle according to first Chern class | Dirac’s monopole quantization |
connection on a trivial \(\mathrm{U}(1)\) bundle | Electromagnetism without monopole |
connection on a nontrivial \(\mathrm{U}(1)\) bundle | Electromagnetism with monopole |
Fiber bundle | topological insulator |
principal fiber bundle \(\{E,M,\pi,G,F\}\) | \(d\)-dimension non-interacting insulator \(\{E,T^{d}(k),\pi,\mathrm{U}(n),P(k)\}\) |
base manifold | \(k\)-space: \(T^{d}\) or \(S^{d}\) |
fiber | effective Hilbert space: \(\mathcal{H}_{k}\) |
product bundle(trivial) | Bloch bundle: \(T^{d}\times C^{m}\)(trivial) |
2 well-defined sub-bundles(nontrivial) | \[\left\{\begin{array}{l} \text{valence bundles(filled states): occupied states/projector} P(\vec{k}) \\ \text{conduction bundle(empty states)} \end{array}\right.\] |
connection | Berry connection: \[\mathcal{A}^{\hat{a} \hat{b}}(k):= \mathcal{A}_{\mu}^{\hat{a} \hat{b}}(k)dk_{\mu}=\left\langle \phi_{\hat{a}}^{-}(k) | \phi_{\hat{b}}^{-}(k) \right\rangle\] |
curvature | Berry curvature \[\mathcal{F}^{\hat{a}\hat{b}}:= d\mathcal{A}^{\hat{a}\hat{b}}(k)+(\mathcal{A}^{2})^{\hat{a}\hat{b}}=\frac{1}{2}\mathcal{F}_{\mu\nu}^{\hat{a}\hat{b}}(k)dk_{\mu}\wedge dk_{\nu}\] |
structure group classification | topological insulator classification |
Fiber bundle | Gauge theory |
principal bundlefibersectionconnectioncurvature | gauge type?gauge choicegauge potential \(A\)gauge field intensity \(F\) |
adjoint vector bundlefibersectionconnectioncurvature | ??matter field?? |
transfer function \(g_{\alpha\beta}\) | gauge transformation \(g\) |
parallel displacement | phase factor \(\Phi\) |
structure group | ? |
connection on the \(\mathrm{U}(1)\) bundle | electromagnetism |
connection on the \(\mathrm{SU}(2)\) bundle | Isospin gauge field |
tangent field’s holonomy group on \(S^{2}\) | Berry phase |
nontrivial U(1) holonomy group on \(S^{2}\) | Dirac’s monopole |