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Abstract

Quantum Phase Transitions in Random Spin Systems 

Senthil Todadri 

December 1997

A number of condensed matter systems undergo a phase transition at zero tem­

perature as some external parameter (such as pressure, magnetic field, or amount of 

dirt) is varied. Quantum effects are often crucial to the physics of this phenomenon - 

hence the name “quantum phase transitions” . This thesis is concerned with a study 

of such zero temperature phase transitions in the presence of static randomness (due 

to impurities or other frozen defects in the system). Experimentally accessible quan­

tum phase transitions often occur in the presence of strong randomness, and are very 

poorly understood. Theoretically, the description of such phenomena involving com­

petition between various kinds of potential energy of interactions, quantum effects, 

and randomness presents a challenging problem, where there are as yet few reliable 

techniques. This thesis studies simple quantum statistical models with randomness 

as a useful starting point to obtain insight into more complex, realistic systems. 

Progress is reported in understanding various simple but non-trivial models of ran­

dom quantum magnetic systems in the vicinity of a quantum phase transition. The 

results show that the effects of randommess may be quite dramatic, and lead to a 

phenomenology that is strikingly different from that of pure systems.
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C hapter 1

Introduction

Phase transitions in condensed m atter have been of major interest to physicists 

for many decades. Most research has focused on the properties of transitions that 

occur a t some finite temperature as an external parameter is varied and there now 

exists a detailed, quantitative understanding of these. An important feature of these 

finite temperature phase transitions is that a complete description of them can be 

achieved based entirely on the principles of classical statistical mechanics. While 

quantum mechanics may be important in determining the existence and properties 

of the various phases, it is absolutely correct to ignore it to understand the most 

interesting properties of the transition. In recent years however, a  number of systems 

have been studied where the phase transition occurs at zero temperature. Quantum 

mechanics plays an important role in the physics of these transitions, often being 

responsible for their very occurence. For this reason, such zero temperature phase 

transitions axe often called quantum phase transitions.

There exist many experimental systems where such transitions are seen. For 

instance, there are transitions from an insulator to a metal[l] or a  superconductor[2], 

and various magnetic-nonmagnetic transitions in heavy fermion compounds[3], high- 

Tc cuprates[4], and so on most of which axe poorly understood. Such many body 

systems on the brink of a ground state instability show an interesting phenomenology 

at finite temperature quite different from more conventional ones. On the theoretical 

side, there seem to exist many significant differences from the treatment of ordinary 

critical phenomena, especially in metallic and/or disordered systems, which make

7
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them interesting.

Most experimental systems are disordered. At sufficiently low temperatures, 

effects of both randomness and quantum mechanics must be taken into account to 

provide a proper description. These effects are often particularly important in the 

vicinity of a T  =  0 critical point separating two different phases. Such phenomena 

where randomness, quantum mechanics, and interactions all play an important role 

represent a class of problems where there are as yet few reliable techniques and are 

only beginning to be understood.

This thesis is concerned with the study of simple quantum statistical mechanical 

models with disorder. It is hoped that this will be a useful starting point to obtain 

insight into the properties of more complex, realistic quantum systems undergoing 

a T  = 0 phase transition in the presence of quenched randomness. Even the models 

considered here turn out to be considerably complicated, and as yet are fax from being 

thoroughly understood. Nevertheless, there are some situations in which it has been 

possible to make progress and obtain reliable information on universal aspects of the 

phase transition. These limited available results reveal that the critical properties 

of random quantum phase transitions may be markedly different from those of pure 

systems.

The outline of the thesis is as follows: In Chapter 2, we give a brief review of 

the salient aspects of critical phenomena associated with T  =  0 transitions in pure 

quantum systems. This will also be used as an opportunity to introduce the models 

whose random versions will be studied in later chapters. Chapter 3 is devoted 

to some general considerations on quantum transitions in random systems. We 

mention various stray results that are known, present some general arguments to 

illustrate some of the peculiar properties of random quantum systems as opposed 

to pure ones, and finally demonstrate that conventional techniques for dealing with 

critical phenomena (such as the e-expansion) are currently insufficient for the random 

quantum transitions of interest in this thesis.

The one shining exception to the almost complete absence of reliably understood 

models of random quantum transitions is the random version of the one dimensional 

Ising model in a transverse field - perhaps the simplest random quantum system.

8
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This model (or mathematically equivalent versions) have been studied extensively 

by McCoy and Wu[5], Shankar and Murthy[6], and in particular, by D.S. Fisher[7]. 

The properties were found to be very unusual as compared to phase transitions in 

pure quantum systems. One of the main points to be made in this thesis is that there 

exist a variety of other models, both in one dimension and in higher dimensions, that 

share many of the unusual properties of the random transverse field Ising chain.

In Chapter 4, we consider the critical properties of a number of random quantum 

transitions in models (such as the Potts models) with discrete symmetry in d =  1. 

We show that the techniques used by Fisher to solve the Ising problem can also be 

used to obtain the exact critical properties of all these other models. The results 

demonstrate that the peculiar properties found for the Ising model also hold for the 

other models, and hence are not just artifacts of Ising symmetry. Quite remarkably, 

it turns out that all the computable universal properties of all the models are identical 

to those of the Ising model. This is in striking contrast to the non-random situation 

where the properties of the transition (and, in certain cases, even whether it is first 

or second order) depend crucially on the particular symmetry of the model. We 

call this feature “superuniversality” as it goes well beyond the usual universality 

expected near second order phase transitions.

In Chapter 5, we address the important question of whether the novel features of 

the d = 1 results can survive in higher dimensions. We show that it is, in principle, 

possible that they do, by explicitly demonstrating a particular model which displays 

much of the unusual physics found in d =  1. The model we consider is that of 

an Ising model in a transverse field in a diluted lattice. It turns out that there is 

a non-trivial quantum transition at the percolation threshold of the lattice whose 

properties are determined largely by the geometrical properties of the percolating 

clusters, about which much is known. This enables us to make definitive statements 

about the critical properties of this transition. To our knowledge, these are the 

first reliable calculations of the detailed critical properties of a random quantum 

transition in finite dimension d > 1 .

Chapter 6 is devoted to a discussion of the situation where the randomness cou­

ples directly to the order parameter (random field models). A complete understand-

9
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ing of this problem is lacking, but we provide general scaling hypotheses in close 

analogy with the corresponding classical problem (which also is not very well under­

stood yet). In particular, we point out various similarities between quantum phase 

transitions in these random field systems, and the ones considered earlier in the 

thesis.

In Chapter 7, we discuss the critical properties of quantum spin glass models 

with infinite range interactions with the 5-state Potts model as an example. The 

critical properties can be found exactly, and hence these models are useful. It turns 

out, however, that the transition is quite conventional and does not have any of the 

unusual features found in the models studied in previous chapters. It is not clear 

yet whether these infinite range models are useful starting points to understand spin 

glass transitions in realistic models with short range interactions in finite dimensions.

Finally, in Chapter 8 , we summarize the principal conclusions of our work, specu­

late on their more general validity, and comment on their relationship with the work 

of various other authors.

10
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Chapter 2

Q uantum  P h ase Transitions in  

P ure System s

Scaling and renormalization group theory provide the general framework for un­

derstanding phase transitions. In the absence of randomness, it has often been 

possible to implement renormalization group ideas and obtain a  fairly general the­

ory of a quantum phase transition. An important and powerful approach in this 

context, which we will elaborate on below, relies on the possibility of mapping a 

d-dimensional quantum system at zero temperature to a d -f 1-dimensional classical 

statistical mechanical system at its finite temperature. One can then often use ail the 

knowledge and technology collected on classical statistical mechanical problems to 

understand the quantum problem. However, it is important to realize that there axe 

some fundamental differences between classical and quantum phase transitions. As 

is well-known, in classical statistical mechanics, static and dynamic properties can be 

treated independant of each other. This is however not true in quantum statistical 

mechanics. Thus it is necessary to treat fluctuations in space and time on an equal 

footing even to understand thermodynamic properties of a quantum system. (See 

Ref.[8 , 9] for a very clear discussion of this point). Therefore, unlike classical phase 

transitions, the static and dynamic critical behaviour are intertwined at a quantum 

phase transition. The extra dimension in the classical system to which a quantum 

system may formally be mapped indeed reflects the need to include temporal fluc­

tuations to describe the properties of the latter. As in general, the character of the

11
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fluctuations in time may be quite different from the spatial ones, the correspond­

ing classical system may well be considerably anisotropic with respect to the extra 

dimension.

In this chapter, we will outline the general theory of quantum phase transitions 

in pure systems. We will be brief as there already exist several excellent reviews[8 , 

9]. For concreteness, we will for the most part base the discussion on a single 

model - the Ising model in a transverse field. This is the prototypical example of 

a system undergoing a quantum transition, and many of its properties are quite 

generic to quantum  transitions in pure systems. We will also introduce and discuss 

the properties of other quantum models whose random versions will be studied in 

later chapters.

2.1 T h e  transverse field Is in g  m odel

Consider the system defined by the Hamiltonian

S = - J  £  (2-1)
<tj> iV y. * V— *

H o  H x

where the axe Pauli spin matrices placed on the sites i of a  d-dimensional hyper- 

cubic lattice. W hen h — 0, this is just the usual Ising H am ilton ian . In the presence 

of a non-zero h, the two terms in the Hamiltonian do not com m ute , and we get an 

Ising system with non-trivial quantum fluctuations. The first term may be consid­

ered as a potential energy of interaction between the Ising spins which tends to point 

spins at neighbouring sites along the same direction (we have assumed J  > 0). The 

second term, on the other hand, corresponds to a kinetic energy which tends to flip 

a spin pointing in the +z  direction to —z, and vice versa. Clearly the Hamiltonian 

is invariant under a Zi  symmetry: of —> —erf.

First, let us consider the ground states of the H am iltonian in some extreme 

limits. If J  h, the first term in Eqn.2.1 dominates, and we may think of the 

system perturbatively from the h =  0 limit. Exactly at h =  0, the Hamiltonian is 

trivially diagoanlized. There are two degenerate ground states- with all spins either

12
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up or down. The lowest excitation about either ground state corresponds to a single 

spin flip and costs energy ~  J. For h ^  0, bu t small, perturbation theory converges, 

and we get a  ground state with broken symmetry and LRO in az. The lowest-lying 

excitations can be roughly thought of as a band of delocalized single spin flips. The 

lowest excitation gap decreases as h increases but is nevertheless non-zero so long as 

the ground state is ordered.

Similarly, in the opposite limit, when J  h, we may think of the system per- 

turbatively from the J  =  0 point. At J  =  0, different sites decouple, and at each 

site the spin points along the +x direction. So there is no broken symmetry and 

long range order(LRO). The lowest excitations about this simple ground state  corre­

spond to flipping a single spin to the — x  direction, and cost an energy 2h. For J  ^  0 

but h, perturbation theory converges and we have a paramagnetic ground state 

with no broken symmetry and LRO. The low-lying excitations can now be roughly 

thought of as corresponding to a band of delocalized — x  spins. The lowest excitation 

gap, while smaller than 2h, is still non-zero.

Clearly these two kinds of ground states in these two extreme limits must be sep­

arated by a phase transition. As we will see, this transition is second order. Close to 

this transition, the length scales characterizing the decay of spatial correlations in 

either phase become very large and ultimately diverge at the critical point. Likewise 

the energy gap in either phase becomes very small, vanishing exactly at the critical 

point. Many properties of the system will be universal (i.e independant of micro­

scopic details) in this region, and show scaling behaviour characteristic of critical 

points.

It is useful at this point to introduce the mapping to a classical (d4- 1)-dimensional 

Ising model. Consider the partition function at a temperature T  =

Z =  T r(e~0H) (2.2)

The operator e~0H can be regarded as the evolution operator from (imaginary) time 

0 to P. Using standard techniques, we may write Z  as a sum over various possible 

(imaginary time) histories of the system:

Z  =  T r {e~tHe~fH.. .  e~‘H)  (e =  £ )
N  factors

13
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=  X : (<T?(0)|<r<'Vr(JV -  l))<fff (N  -  l) |e -« |c r f (AT -  2))
»f(r)

 <<7f(l)|e-«', |,7f(0))

where we have introduced at each time step r ,  a complete set of states crf(r). We 

take N  large so that e is very small. Then we may write

e - t H  =  e - t { H 0+ H x) ^  e - € H o e - t H i

Consider any m atrix element in the product above:

< < 7 f (r  +  l ) | e - ^ | < 7 ? ( T ) >  ~  ( o f { T  +  l ) \ e - * ' e - * ' \ o f { T ) )

„  e£ jE < iJ> «rf(r+l)o^(T+l)+&* £\<rf(T+l)«rf(T)

where tanh(h*) =  e~2th. At T  =  0, clearly we may interpret the partition function 

expressed as a sum over products of such m atrix elements as the partition function 

of a classical Ising model in (d +  l)-dimensions with bond strengths in the d-spatial 

directions equal to eJ, and the bond strength in the extra “time” direction equal to 

hm. By universality arguments, we then expect th a t the global properties of the phase 

diagram and the phase transitions of the quantum  model at T  =  0 axe the same as 

those of an isotropic classical (■d +  l)-dimensional Ising model at finite temperatures. 

In particular, universal critical properties of the quantum model close to its T  = 0 

phase transition can be directly obtained from the properties of the isotropic classical 

model near its finite temperature transition1.

2.1.1 S ca lin g  and  renorm alization  group th eory

In this section we will discuss the properties of the transverse field Ising model near 

its zero tem perature phase transition from the point of view of scaling and renor­

malization group theory. Whenever appropriate, we will also point out qualitative

1 We caution tha t this feature is a very special property of the Ising model and some other simple 

models considered later in this chapter. In general, the anisotropy between the spatial and time 

directions cannot be ignored and leads to differences in the way spatial and temporal correlations 

scale

14
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features th a t may be special to this model, and comment on the more general sit­

uation. On approaching the critical point (from either side), there is a correlation 

length £ which diverges as

£ ~  |r  — rc\~u (2.3)

where r  =  j  is the control parameter tha t needs to be timed to place the system 

at the critical point. The mapping to the classical model described in the previous 

section implies that the exponent u is the same as that of the classical Ising model 

in one higher dimension. There also is an energy scale A that vanishes as

A ~  |r  — rc\zv (2.4)

thereby defining the exponent 2 . In the particular case of the Ising model being con­

sidered here, this energy scale is just the energy gap in either phase. More generally 

in cases where one or both phases do not have an energy gap, this energy just corre­

sponds to a scale which distinguishes critical fluctuations from those characterizing 

either phase. Equivalently, 4. js the time scale below which the temporal fluctua­

tions crossover to those characteristic of the critical point. For the transverse field 

Ising model, the mapping to the classical Ising model implies that the correlation

length along the time direction diverges in exactly the same manner as the spatial

correlation length and so

Thus, the exponent 2 =  1 for the Ising model. In the general case however, no such 

simple argument is possible for the value of 2 . The important qualitative point to 

note is the fact that A vanishes as some power of f -1.

The ordered phase is characterized by a non-vanishing expectation value of the 

magnetization m  = j, Hi (erf). On approaching the transition this vanishes with 

an exponent (3 which also is the same as that of the classical Ising model in one 

higher dimension. Similarly the susceptibility to a uniform magnetic field B  along 

the 2-direction diverges (from either side) with an exponent 7  which again is that 

of the classical (d +  l)-dimensional Ising model. Right at the critical point, the 

magnetization has a power-law dependance on the field B  (for small B)\

1m  ~  B 6 

15
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with 6 =  In general, for small fields B, and deviations ( r—r c), the magnetization 

satisfies the universal scaling form

m (r  -  r e, .5) ~  F  ^ (2 .5 )

Another important quantity characterizing the ordered phase is its stiffness to 

changes in the boundary conditions. Consider the system th a t is finite, of linear 

size L. Now consider the energy cost to change the boundary conditions from pe­

riodic to antiperiodic in one of the hypercubic directions. In the ordered phase, 

this is essentially the cost of creating a domain wall and so scales as Ld~l . In the 

paramagnetic phase, there is a finite correlation length and so this energy cost is 

exponentially small for large L. Thus the quantity E =  [s

finite in the ordered phase but is zero in the paramagnetic phase. On approaching 

the transition, E vanishes with some exponent £. This can be related to u by the 

following hyperscaling argument. For large finite L, near the transition, the singular 

part of the energy density with either periodic or antiperiodic boundary conditions 

satisfies the hyperscaling relation

Eper. / an t i—per  1 -  > L ,. / g n u —p e r  -  ,Tf / ^ \
j_d £d+ z Per / a n t i—per \ ^  J

That the exponent in the prefactor is (d + z ) instead of d can be seen easily from 

the mapping to the classical problem in d +  1 dimensions, and is a consequence of 

the need to include dynamic fluctuations even to understand the thermodynamics. 

Thus the difference

L d
E a n ti-p e r  E p e r  ~  ^ d+z

In the ordered phase, as L —*• oo, the left hand side ~  E Ld l . Requiring that the 

right side have this dependance on L  for large L, we find

1
^d+z-l

P u tting  z =  1 for the Ising model, we get the exponent equality

(2 .6 )

C =  ud (2.7)

16
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Scaling forms can also be written down for various correlation functions in the 

vicinity of the transition. Most importantly, the order parameter correlation function 

in imaginary time, defined in the usual way,

G(x, t ) = {TT{a;(x, r), of (0,0))) (2.8)

satisfies (for large x, r )

G (xt r) =  — ^ 7  ( j ,  rA  j  (2.9)

The exponent 77 is related to the ones introduced earlier by 7  =  i/ ( 2 — 77).

As usual, the scaling and universality of the critical properties can be understood 

from the point of view of the renormalization group(RG). As has already been men­

tioned, the quantum nature of the problem implies that it is necessary to include 

both space and time dependant fluctuations to understand even the thermodynam­

ics. (The formulation as a (d+  l)-dimensional classical problem does this naturally). 

Thus, we imagine some RG scheme in which we integrate out fluctuations at short 

length and time scales to get an effective action for the remaining degrees of freedom, 

and then rescale lengths and times to get back a theory with the same microscopic 

cutoffs as before. If we parametrize the length rescaling factor by s, i.e x  —* x' =  

then it is natural to rescale time such that r  —► r 7 =  reflecting the possible 

anisotropy between space and time. Under this RG, the critical point is described 

by an unstable fixed point with non-trivial quantum fluctuations. The deviation 

[7* — rc| is a relevant perturbation and carries the system into the stable ordered or 

disordered fixed points. As usual the eigenvalue of this perturbation under the lin­

earized RG transformations determines the exponent u. Turning on a finite B-field 

is another relevant perturbation, and the corresponding eigenvalue determines the 

other independant exponent.

Finite temperature properties of the system in the vicinity of the quantum critical 

point can be undertood from the following observations. Consider the mapping to 

the classical (d -I- 1)-dimensional problem. A finite tem perature in the quantum 

problem corresponds to a finite size 0  =  ^  along the imaginary time direction in 

the classical problem. Thus finite temperature scaling forms for physical observables
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can be inferred from the theory of finite size scaling at classical critical points. 

In particular, it is clear that a finite tem perature is a relevant perturbation with 

eigenvalue exactly equal to the exponent z. Scaling forms at finite temperature can 

then be written down using quite standard arguments. These and other interesting 

details of the finite temperature properties near quantum critical points can be found 

in the references [9, 8].

2.2 O th er m odels

In this section, we will introduce some other simple models showing quantum phase 

transitions, and describe some of their properties in the absence of randomness. This 

will set the stage for a discussion of their random versions in later chapters.

2.2.1 D isc r e te  Sym m etry

The Ising model has a discrete symmetry group Z2. It is natural to consider general­

izations where the symmetry group is still discrete, but different from Z2. Interesting, 

well-studied examples in the classical context are the 5-state Potts and clock models. 

Here we will consider their quantum versions.

The models are defined in terms of a variable that can assume q possible states

(which we denote |0) , ] 1) ,-•-,!<? — 1)) on the sites of a d-dimensional lattice. The

classical Potts (clock) interaction in the presence of a uniform external "magnetic” 

field H  along the ‘O’ direction is

nPMt = (21°)
<i,j> i q
    O'TT 27m •

T̂ -Cint = ~ J  2cos(— (rii — n,)) — 2H  Y 'c o s    (2 -11)
<i,;> q i q

where P  and C  stand for Potts and Clock respectively. We introduce quantum 

fluctuations into these models by adding at each site a “transverse field” term that 

attempts to change the state of the variable at that site. Thus we consider the

18
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quantum Hamiltonians

7dc =  ~ h  +Hc,int

(2 . 12)

(2.13)

(We identify In* +  q) = |rii)). Note that a t H  = 0, the Hamiltonian Tip is invariant 

under a global permutation |n) —► \n') of the states at each site. For Tic, the sym-

reduce to the transverse field Ising model. For general q, just as in the Ising case, the

order due to the interaction term. Also as in the Ising case, the d-dimensional q-state 

quantum Potts (clock) model Eqn. 2.12 (2.13) at zero tem perature may be regarded 

as equivalent to a d + 1-dimensional q-state classical Potts (clock) model[12].

The mapping to the classical d -F 1-dimensional pure problem provides a rather 

complete picture of the possible phases and the transitions between them. For in­

stance (at zero H ), the ferromagnetic (i.e J  > 0, h > 0) quantum Potts chain has 

a first order transition for q > 4, and a second order transition for q < 4 (for which 

all the exponents are known exactly and depend on the value of q)[32, 13]. The 

ferromagnetic clock chains, on the other hand, have, for q > 4, a  quasi-long-range 

ordered (QLRO) phase sandwiched between a truely long-range ordered phase and 

a disordered phasefll] . For q < 4, the quasi-long-range ordered phase disappears 

and is replaced by an ordinary second order phase transition for which again all 

the exponents are known exactly[32, 11]. In dimension d > 1, the quantum Potts 

models, for any q > 2, have first order transitions. Later we will see that randomness 

drastically modifies this picture.

In Appendix A, we rewrite the Potts and Clock Hamiltonians in terms of a set 

of operators RiX) RiZ defined at each site of the lattice. This will be quite useful in 

later chapters to do calculations.

metry is a global cyclic rotation |n) —*• \n -I-1). Clearly for q = 2 , both these models

“transverse field” term plays the role of a kinetic energy that opposes the tendency to
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2.2 .2  C on tin u ou s S y m m etry

We now consider a class of models with a continuous symmetry group - the 0 (N) 

quantum rotor models. These are defined in terms of an JV-component unit vector 

fii at each site i of a d-dimensional lattice. The Hamiltonian is

t <ij>

where the Lifl are the /Tth generator of rotations of hi, and so satisfy the appropriate 

com m u ta tio n  relations. The components of hi commute with each other. Operators 

at two different sites also commute with each other. The first term  is the kinetic 

energy of a single particle moving on the surface of a sphere in JV-dimensions, while 

the second term  is a potential energy tending to orient the h  vectors a t two adjacent 

sites in the same direction. It is easy to see by using the same procedure as in the 

Ising case tha t this quantum model at T  =  0 is equivalent to the classical 0 (N)- 

model at its finite temperature.

For large in any dimension, or for any in d =  1, the ground state is 

paramagnetic with a finite excitation gap. If d > 1, then for small the ground 

state spontaneously breaks the O(iV) symmetry, and aquires LRO in h. The lowest 

lying excitations in this case are linear dispersing spin waves, and hence gapless. 

These two phases are separated by a second order transition at a critical value of 

5- As in the Ising case, the universal properties at both T  =  0 and I  ^  0 in the 

vicinity of this transition can be obtained from those of the classical 0 (A)  model.

2.3 D iscu ssion

In this chapter, we have outlined the theory of quantum phase transitions in pure 

systems, using the transverse field Ising model as the primary example. An important 

distinguishing feature of quantum transitions is the intertwining of the static and 

dynamic aspects of the critical phenomena. This implies tha t to understand the 

critical behaviour, we need to consider fluctuations in both space and time. In the 

vicinity of the phase transition, there is a cross-over from fluctuations characteristic 

of either phase to those associated with the critical point at a large length scale £ and
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a large time scale Both these scales diverge at the critical point, and generally

thereby defining the exponent 2 . In the special examples that we discussed in ths 

chapter, z =  1, but in general this is not required to be so.

In many cases, it is possible to make progress in understanding a quantum tran­

sition by mapping it to the critical point of a classical statistial mechanical model 

in one higher dimension, the extra dimension reflecting the need to include time- 

dependant fluctuations in the quantum problem. This classical model could in gen­

eral be considerably anisotropic with respect to the extra “time” dimension (corre­

sponding to the possibility of z ^  1). Finite temperature in the quantum problem 

corresponds to a finite size in the “time” direction in the classical problem. Thus 

finite temperature scaling forms near the quantum transition can be written down 

using standard ideas from the theory of finite-size scaling near classical critical points.

In the remaining chapters, we will try  to see to what extent these ideas devel­

oped in the context of quantum transitions in pure systems carry over to systems 

with quenched randomness. Is the general scaling structure preserved, perhaps with 

different exponents and scaling functions, or does randomness alter the physics in 

more fundamental ways? At the time of writing this thesis, there is no general un­

derstanding of quantum transitions in random systems, and so we will address this 

question by studying various specific models.
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