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In recent years, new advances in techniques for trapping and cooling atoms have

allowed the production of atomic gases at low-enough temperatures and high-enough

densities for collective quantum-mechanical effects to become important. This thesis

describes theoretical investigations of certain many-body physics problems motivated

by these experimental developments. It consists of two main parts.

In the first, I investigate the array of phases exhibited by degenerate mixtures

of bosons and fermions with a Feshbach resonance, a bound molecular state whose

energy can be tuned with a magnetic field. These phases are distinguished by the

presence or absence of a bosonic condensate and also by the different Luttinger

constraints that are shown to apply to the Fermi surface(s).

The second part is concerned with bosons in an optical lattice, in which a periodic

potential is produced by counterpropagating lasers. Spinless bosons are known to

exhibit a quantum phase transition between a Mott insulator and a superfluid state,

while bosons with spin have a much richer phase structure. I consider, in particu-

lar, a phase transition with a spinless order parameter, and show that the long-time

dynamics of spin-carrying excitations is governed by a nontrivial fixed point. The

corresponding anomalous exponents are found using a renormalization-group calcu-

lation.
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I am very grateful to Hans Peter Büchler, who was a coauthor of one of the

two articles, and to Krishnendu Sengupta, with whom I discussed many aspects of

the research. I also thank, amongst others, Mara Baraban, Lorentz Bartosch, Lev

Bishop, Jack Challis, Adrian Del Maestro, Tom Jackson, George Mias, and Terri Yu,

for help and encouragement during my time in the Yale physics department.

I acknowledge financial support from the National Science Foundation and the

William C. G. Ortel Fellowship in Physics.

Finally, many thanks to Michael, Judy and Shialing for their unwavering support

throughout.

vi



List of Figures

2.1 Phase boundary with detuning ν and temperature T , for fixed particle

numbers Nf/Nb = 1.11 and equal atomic masses, mf = mb. The

dashed line has vanishing coupling and has been found with a purely

classical analysis. The solid line has dimensionless coupling γ2/T0 =

2.0 × 10−2, and has been determined using the mean-field theory of

Section 2.4. For both, the condensed phase is on the left-hand side (for

lower T ) and labeled 〈b〉 &= 0, while the phase without a condensate is

labeled 〈b〉 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Phase boundary with fermion number Nf and detuning ν, for three

different temperatures. The coupling is γ2/T0 = 2.5 × 10−4 and the

atomic masses are equal. The two phases are labeled as in Fig. 2.1,

with the condensed phase favored for higher detuning, lower fermion

number and lower temperature. . . . . . . . . . . . . . . . . . . . . . 22

vii



2.3 The phase diagram at T = 0 with dimensionless couplings (a) γ2/T0 =

0, (b) γ2/T0 = 2.5 × 10−4 and (c) γ2/T0 = 2.0 × 10−2. The at-

omic masses are equal and the coupling between bosons is given by

λ2(mb)3T0 = 2 × 10−3. The three distinct phases have, respectively,

no Bose-Einstein condensate and two Fermi surfaces (labeled ‘2 FS,

no BEC’), a condensate and two Fermi surfaces (‘2 FS + BEC’), and

a condensate and a single Fermi surface (‘1 FS + BEC’). The dotted

line indicates the fermion number at which Fig. 2.4 is plotted. . . . . 24

2.4 The effective mass m! at the Fermi surface, with fermion number

Nf = 0.1Nb, coupling γ2/T0 = 2.5 × 10−4, and equal atomic masses.

As can be seen from the dotted line in Fig. 2.3, these parameters give

a phase with a single Fermi surface. This surface changes from having

a molecular character, with m! ' mψ, to having an atomic character,

m! ' mf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The Fermi wavenumbers for the two mixed species of fermions, Ψ and

F , with coupling γ2/T0 = 2.5 × 10−4 and equal atomic masses. The

solid lines have fermion number Nf = 3
2Nb, while the dashed lines have

Nf = 1
2Nb. As can be seen in Fig. 2.3, the solid line goes between all

three phases (at ν/T0 ' 0.25 and ν/T0 ' 2.9), while the dashed line

goes from the phase with a single Fermi surface to that having two

and back again (at ν/T0 ' −0.65 and ν/T0 ' 1.3). The wavenumbers

are measured in units of kf
0 , the Fermi wavenumber for free fermions

with number Nf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.6 The phase diagram in the grand canonical ensemble, with the fermion

chemical potential µf plotted on the vertical axis and the detuning ν

on the horizontal axis. The number ratio Nf/Nb is allowed to vary in

this plot. The boundary between ‘2 FS, no BEC’ and ‘1 FS + BEC’

in Fig. 2.3 expands into a new phase, labeled ‘1 FS, no BEC’, within

which there are only molecules, whose density is constant (both Nf

and Nb remain fixed in this phase). The atomic masses are equal, and

the couplings are γ2/T0 = 2.5 × 10−4 and λ2(mb)3T0 = 2 × 10−3. . . . 28

2.7 Two-loop corrections to the atom numbers, shown as a fraction of the

total numbers evaluated to lowest order, and plotted as a function of

the dimensionless coupling γ2/T0. The detuning is fixed at ν/T0 = 0.5,

the atomic masses are equal, mf = mb, and the temperature is zero.

At each value of the coupling, the parameters have been chosen to put

the system just inside the ‘2 FS, no BEC’ phase. . . . . . . . . . . . . 42

3.1 Phase diagram for the Hamiltonian in Eq. (3.1) calculated using the

mean-field theory of Section 3.3. The three phases that are included

are the spin-singlet insulator (SSI), the spin-singlet condensate (SSC),

and the polar condensate (PC). The calculation has been performed

using quantum rotors, corresponding to the canonical ensemble with

the filling factor an even integer. The horizontal and vertical axes give

the hopping strength t and the spin-dependent part of the interaction

J , both in units of the spin-independent part of the interaction, U . . 55

ix



3.2 The spectral weight ρψ in SSI, calculated up to second order in the

couplings u and v. The delta-function peak at ω = λ (which has

artificially been given a small but nonzero width) describes the stable

particle excitation of the field ψµ. For ω > 3λ, there is continuum of

three-particle excitations. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 The spectral weight ρψ in SSI near the transition to SSC, calculated

up to order g2
ψ, plotted for three different values of λΨ, the gap to

pair excitations. The coupling strength is gψ = 0.1. The peak at

ω = λ (which is present for all values of λΨ and has artificially been

given a small but nonzero width) describes the stable particle and

hole excitation of the field ψµ. For ω > λ+ λΨ, there is continuum of

excitations, corresponding physically to the conversion of a particle to

a pair plus a hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 The spectral weight ρϕ for the field ϕI
µ in SSC, near the gap λI , calcu-

lated numerically using the diagram in Eq. (3.32). As in Figs. 3.2 and

3.3, there is a delta-function peak at ω = λI (which has artificially

been given a nonzero width), corresponding to the stable particle ex-

citation. In this case, unlike in SSI, the continuum in the spectral

weight occurs immediately above the peak. This is due to the (gap-

less) Goldstone mode θ resulting from the broken phase symmetry in

SSC. The derivatives in the coupling between the Goldstone mode and

the ϕI
µ field in SSSC strongly suppress the spectral weight as ω → λI

from above; in fact, ρϕ ∼ (ω − λI)3. . . . . . . . . . . . . . . . . . . . 64

x



3.5 The spectral weight ρψ at the SSI–SSC transition in d = 2 spatial

dimensions. The delta-function peak at ω = λ has been replaced by a

continuum of excitations, with ρψ ∼ (ω−λ)−1+ηψ . The numerical value

ηψ = 0.91797 used in the plot results from a dimensional expansion in

ε = 3 − d, carried out to order ε2, Eq. (3.51), and evaluated at ε = 1. 70

3.6 The spectral weight ρψ at the SSI–SSC transition in d = 3 spatial

dimensions. The delta-function peak at ω = λ has been replaced by a

continuum of excitations, with the mean-field exponent ρψ ∼ (ω− λ)−1. 73

A.1 The spectral weight ρψ0 of the molecule in vacuum for a narrow Fesh-

bach resonance, with γ2/T0 = 2.5×10−4, for three different detunings.

(The density is zero in this plot, so T0 is an arbitrarily chosen unit

of energy.) The curves have all been evaluated at zero momentum; a

nonzero momentum k would simply shift the curves to the right by

an amount k2/(2mψ). For ν < 0, there is a delta-function peak for

negative x, which has artificially been given a finite width. For all ν,

there is a continuum for x > 0, but this is too small to be visible for

ν/T0 = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 As Fig. A.1, but for a broader resonance, γ2/T0 = 0.1. . . . . . . . . . 86

A.3 The phase diagram at T = 0, as in Fig. 2.3, with couplings γ2/T0 =

2.0× 10−2 and λ2(mb)3T0 = 2× 10−3. The other parameters, and the

labels for the three phases, are the same as in Fig. 2.3. The region

where the phase is unstable, as determined in Section A.2, is indicated. 91

xi



Chapter 1

Introduction

The behavior of physical systems with many constituent parts interacting strongly

with each other has long been a central concern in the theory of condensed matter.

It is only within roughly the past decade that it has been possible to produce gases of

atoms at sufficiently high density and low temperature that the effects of their mutual

interactions become significant. These systems, while interesting in their own right,

also provide a useful toolbox for the study of many-body physics in other contexts.

This thesis will describe theoretical studies of two examples of such systems.

The recent growth of interest in many-body phenomena in atomic systems was

started by the realization, in 1995, of a Bose-Einstein condensate (BEC) in an ‘ultra-

cold’ gas of rubidium atoms [1]. Bose-Einstein condensation, predicted in 1924 [2–4],

refers to the macroscopic occupation of a single quantum state [5, 6]. It was recog-

nized as the cause of superfluidity in liquid helium as early as 1938 [7,8], but strong

interactions in that system made quantitative comparisons with theory difficult [9].

There are several attractive features of ultracold atomic gases that have caused

them to be the focus of particular interest. An immediate advantage of the atomic

BEC was that the relatively weak interactions allowed for more direct comparison

1
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with the theory of weakly interacting bosons [10, 11].

A second advantage is the ability to observe condensation directly by probing

the momentum-space distribution of the atoms. In a typical experiment, the atoms

are trapped within a tight optical or magnetic potential [12, 13], and then suddenly

released, by rapidly switching off the potential [1]. Using the ‘sudden approxima-

tion’ [14], the atoms are projected onto momentum states, and subsequently evolve

essentially independently [15]. After a certain ‘time of flight’ has elapsed, the spatial

density profile of the cloud is measured (for example, via the optical density for ab-

sorption) which, assuming free propagation after the trap is released, gives a direct

measurement of the momentum-space distribution prior to release. Bose-Einstein

condensation is then signaled by the appearance of a sharp peak near zero momen-

tum, superimposed upon the thermal distribution [1]. It is also possible to measure

correlations in the momentum distribution, as a means to identify quantum states

with nontrivial correlations [15].

A third advantage, the extent to which their properties can be controlled and

modified in experiments, has led to the development of a vast array of new experi-

mental techniques, motivated, in large part, by the goal of simulating various systems

of interest in solid-state physics [16–19]. In the remainder of this chapter, I will give

a brief description of some of these techniques and the theoretical models that have

been used to describe them.

1.1 Feshbach resonance

The Feshbach resonance [20–22], which originated in nuclear physics and was first

demonstrated in an atomic context by Inouye et al. [23], has emerged as a useful

technique for forming bound states of neutral atoms. The term refers to a molecular
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state whose binding energy can be ‘tuned’ by varying an external parameter. For

example, by choosing a bound state with a different magnetic moment from the

unbound atoms, the relative energy of the resonance can be changed with an external

magnetic field [23, 24].

A simple model Hamiltonian can be written as [25]

H =

∫
ddx

{
∑

σ∈{1,2}

ψ†
σ

(
−

∇2

2mσ
− µσ

)
ψσ +Ψ†

[
−

∇2

2(m1 + m2)
− (µ1 + µ2) + ν

]
Ψ

+ g
(
Ψ†ψ1ψ2 + ψ†

2ψ
†
1Ψ
)}

, (1.1)

where ψσ is the field (annihilation) operator for atomic species1 σ, mσ and µσ are

the corresponding mass and chemical potential, and Ψ is the field operator for the

molecular state. The energy of the bound state relative to the two-atom continuum

is denoted ν and referred to as the detuning.

The final term in H represents the physical process where two atoms combine to

form a molecule, as well as its opposite. Interactions other than this pairing term

are assumed to be less important near resonance and have been omitted.

One effect of the Feshbach resonance is to alter the scattering properties for the

atomic species. For ν ≈ 0, the scattering length a between the two atoms is domi-

nated by the presence of the bound state Ψ [26]. Sufficiently close to the resonance,

a is inversely proportional to ν [22], so that the strength of the interaction can be

adjusted over a wide range of values, both attractive and repulsive. The enhanced

scattering near resonance can be viewed as resulting from virtual transitions into the

molecular state.

The presence of the molecular state also allows for new and interesting many-

1For bosonic atoms, the two atoms may be of the same species, in which case the index σ should
be ignored throughout.
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body phases, with various possibilities depending on the quantum statistics of the

atomic species.

If both atoms are fermions, the molecular species Ψ is a boson, and a BEC of

molecules is formed at low temperature [27–29], provided ν is not too large. For

ν , 0, where formation of molecules is unfavorable, the system crosses over into

a state of paired fermions [30], analogous to the BCS phenomenon in metals [31].

The ‘BCS–BEC crossover’ between these regimes has been the subject of particular

interest, both experimental [32,33] and theoretical [34,35]. (For a recent review, see

Ref. [36].)

The case of a Feshbach resonance between two atoms of the same species of bosons

has also been considered [37,38]. In this case, a BEC of individual atoms is possible

for ν , 0, while a BEC of molecules again forms for ν - 0. Unlike the fermionic

case, these two states cannot be connected smoothly to each other2 and a quantum

phase transition between the two occurs at some value of ν [37, 38].

The third possibility, a Feshbach resonance between a fermion and a boson, has

been observed experimentally by several groups [39–41]. Chapter 2 will consider this

case in some detail, and show that various phases are possible, distinguished by the

presence or absence of an atomic BEC, and the number of Fermi surfaces. Observing

these phases in experiment requires simultaneous degeneracy of both atomic species

[42, 43] and of the molecule. In Section 4.1, we describe some recent experimental

developments in this direction.

A purely optical Feshbach resonance has also been predicted [44] and observed

[45]. This allows rotation symmetry to be preserved and hence the manipulation of

2This can mostly easily be seen by considering the symmetries that are broken in the two cases.
There is a U(1) symmetry operation of H under which ψ → ψeiθ and Ψ → Ψe2iθ, corresponding to
the conservation of the total number of atoms. A BEC of atoms, 〈ψ〉 &= 0, breaks this symmetry
completely, whereas with only a BEC of molecules, 〈Ψ〉 &= 0, the special case of θ = π remains as
an unbroken Z2 symmetry. This distinguishes the two cases qualitatively and shows that they must
be divided by a phase transition at which the Z2 symmetry is broken [37, 38].
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multiple spin species, as described below in Section 1.3.

1.2 Optical lattices

A parallel experimental advance, of great significance from the point of view of

simulation of solid-state systems, has been the development of optical lattices [46–49].

Laser trapping uses the effective potential produced by the AC Stark effect [50]

to confine atoms, which are attracted to maxima or minima of the intensity (with

red- or blue-detuned light, respectively). By using a pair of counterpropagating

laser beams, it is possible to set up a standing light wave; using three such pairs, a

three-dimensional periodic lattice potential can be produced.

This allows for unprecedented control over the parameters of the lattice: the depth

of the potential is determined by the intensity of the light and the lattice constant by

its wavelength. By making the intensity in the three directions highly anisotropic, the

lattice can be made effectively one- or two-dimensional. Besides simple square and

cubic lattices, it is possible to produce more complicated structures by appropriate

choice of the relative phases and directions of the lasers. (See, for instance, Ref. [51],

which gives a prescription for producing a Kagomé lattice.)

The single-particle states of atoms in an optical lattice potential, like those of

electrons in a crystal, can be divided into bands, with each state assigned a crystal

momentum by Bloch’s theorem. At the low temperatures achievable in experiments,

only the lowest band is populated, and it is more convenient to choose a basis for

the states within this band that is maximally localized in position space. There is

then one such Wannier state [52, 53] for each minimum of the periodic potential.

An effective Hamiltonian can then be written in this basis, and a simple and

important example is the Hubbard model [54], originally used to describe electrons
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in a solid. In the case of spinless bosons [19, 48], it is often referred to as the Bose-

Hubbard model and the Hamiltonian can be written

H = −t
∑

〈ij〉

a†
iaj +

U

2

∑

i

ni(ni − 1) . (1.2)

Here, ai is the annihilation operator for a boson in the Wannier state localized at site

i of the lattice, and ni = a†
iai is the corresponding number operator. The first term

allows for tunneling (‘hopping’) between adjacent sites: the notation 〈ij〉 denotes

a sum over nearest-neighbor pairs of sites. The second term represents the mutual

interaction of the atoms, and has been written to give a potential-energy ‘cost’ of U

for every pair of atoms on the same site.3

The phase structure of the Bose-Hubbard model can be understood by considering

separately the two limits t/U → 0 and t/U → ∞ [55, 56]. We assume that there is

a fixed total number of atoms and that this is chosen so that the average number of

atoms per site is an integer.

For t = 0, the model consists of a set of unconnected sites and the atoms will ar-

range themselves uniformly throughout the lattice, in order to minimize their mutual

repulsion and hence the potential energy. This leads to an incompressible state, re-

ferred to as a Mott insulator. For a small nonzero t, virtual tunneling events will lead

to fluctuations in the number on each site, but the system remains an incompressible

insulator for a finite range of t/U .

In the opposite limit, where U = 0, there are no interactions between the particles

and the bosons will condense into the single-particle state with the lowest energy.

The system becomes a superfluid and remains so in the presence of a small finite U ,

but for sufficiently large U/t undergoes a transition into a Mott insulator. A simple

3Note that this simplification, which involves ignoring three-body and higher terms, is not nec-
essary for the qualitative analysis, or the mean-field theory described below.
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mean-field analysis was used in Ref. [55] to connect the two extremes and map out

the phase diagram.

The superfluid–insulator phase transition was first demonstrated using cold at-

omic gases in the work of Greiner et al. [49], which used rubidium-87 atoms in an

optical lattice. Superfluidity of (pairs of) fermions in an optical lattice has also been

reported in Ref. [57].

1.3 Atoms with spin

Another common feature of condensed-matter systems, and one that leads to a great

deal of interesting phenomena, is the presence of spin. While most of the species used

in experiments with ultracold atoms have several hyperfine (nuclear spin) states, it

required the development of purely optical trapping techniques [58] to liberate this

degree of freedom.

For bosonic atoms, where the ground state (in the absence of a lattice) is a

BEC, the condensate wavefunction has the possibility for interesting structure in

spin space [59, 60], with the number of possible phases increasing with the atomic

spin [61]. The actual ground state that is realized depends on the scattering lengths

in the channels with different total spin.

The collective modes above each of these ground states and the response to an

applied magnetic field can be determined using a semiclassical analysis of the dy-

namics of the condensate wavefunction. Also of interest is the dynamics of these

systems when driven far from equilibrium. An example is the so-called ‘spin-mixing’

dynamics [62, 63], which describes the evolution of the occupation numbers of the

different spin components when the system is initially far from its ground state.

In the presence of an optical lattice potential, there are, besides these condensed
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phases, various possible insulating phases with different types of spin order [64–68].

The phase diagram is particularly rich when the filling factor (the ratio of the number

of bosons to the number of sites in the lattice) is an even integer, in which case both

superfluids and insulators, with and without spin ordering, are possible. Chapter 3

will consider this case and focus on the transition from an insulator to a superfluid

in the absence of spin ordering.

1.4 Outline

This thesis is divided into two main parts, which address two examples of systems

that may be realized using ultracold atomic gases.

Chapter 2: Bose-Fermi mixtures

This chapter is based on Ref. [69]. It is concerned with a mixture of bosonic and

fermionic atoms coupled by a Feshbach resonance to a molecular state. The various

phases of the mixture, assuming simultaneous degeneracy of all three species, are

described. By varying the detuning, temperature and relative numbers of bosons

and fermions, several different phases are found to be possible. We show that, at

zero temperature, the phases can be distinguished by distinct Luttinger constraints

that depend on the presence or absence of a Bose-Einstein condensate and also on

the number of Fermi surfaces.

Chapter 3: Bosons with spin

This chapter, based in part on Ref. [70], describes a system of bosons with spin that

are trapped within an optical lattice. We describe a mean-field theory that allows for

the possibility of a paired condensate that does not break spin symmetry. We consider
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the behavior of the Green function corresponding to single-particle excitations in the

insulator and the paired superfluid and then show that, at the transition between

the two, the coherent quasiparticles are replaced by an incoherent continuum with a

nontrivial scaling exponent.

Chapter 4: Summary

This chapter summarizes the main results of this thesis and describes related ongoing

and potential future work.



Chapter 2

Bose-Fermi mixtures

2.1 Introduction

In this chapter, we will consider a mixture of bosonic and fermionic atoms with

a Feshbach resonance coupling the pair to a molecular state. Such a system is

analogous those described in Section 1.1, with Feshbach resonances between a pair

of fermions [30, 34–36] and a pair of bosons [37, 38].

In this case, the Feshbach resonance is a bound molecular state consisting of one

bosonic and one fermionic atom, and hence is itself a fermion. The energy of the

resonance can be tuned using an applied magnetic field, as described in Section 1.1,

and the energy difference between the bound state and the lower end of the two-atom

continuum will be referred to as the detuning ν.

Our primary result is that the mixture displays a variety of phases, distinguished

by the number of Fermi surfaces and the presence or absence of a Bose-Einstein

condensate (BEC). We will use mean-field theory to map out the phase diagram

in terms of ν, the temperature T , and the densities of the two types of atom (see

Figs. 2.1, 2.2, 2.3 and 2.6).

10
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The existence of a quantum phase transition at zero temperature can be easily

understood by considering the two limiting cases. For ν , 0, molecules are strongly

disfavored, leaving a BEC of the bosonic atoms and a Fermi surface of the fermionic

atoms. In contrast, for ν - 0, a Fermi surface of molecules will be formed. If the

number of fermionic (Nf ) and bosonic (Nb) atoms are unequal, there will also be

some residual atoms which are not in molecules, and these form their own ground

state. For Nf > Nb, the extra fermions will form a separate Fermi surface of atoms,

while for Nb > Nf , the extra bosons will form an atomic BEC.

Note that for Nf > Nb, changing the detuning takes the system between limits

with and without an atomic BEC. There must therefore be a critical detuning at

which the atomic BEC is completely depleted, and all the bosonic atoms have been

absorbed into molecules.

The number of Fermi surfaces also changes as the detuning is varied, and we will

show in Section 2.5 that the statement of Luttinger’s theorem is different in each

phase. In the absence of a BEC, there are generically two Fermi surfaces, one atomic

and one molecular, and their volumes are separately constrained. In the presence

of a BEC, there may be either one or two Fermi surfaces, but there is only a single

Luttinger constraint. In the phase with two Fermi surfaces and a BEC, the total

volume of the Fermi surfaces is fixed by the number of fermionic atoms.

We now give an outline of the contents of the rest of this chapter. First, in

Section 2.2, we define the model Hamiltonian that will be used throughout. In

Section 2.3, we consider the limit of vanishing coupling, which was also described by

the earlier work of Yabu et al. [71]. In this limit, the properties of the mixture are

described by purely thermodynamic considerations and these can be used to map

out the phase diagram.

Section 2.4 finds the phase structure for finite coupling, treating quantum effects
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using a mean-field approach. In Section 2.5, we describe our results regarding Lut-

tinger’s theorem for the system. In Section 2.6, the mean-field result of Section 2.4 is

reproduced using a field-theoretical approach, which further allows us to characterize

the critical properties of the transition.

In Section 2.7, we estimate the corrections to, and region of validity of, mean-field

theory. Finally, in the appendix, we address the physics of an isolated molecule, and

then consider the stability of the system against separation into two regions with

different densities.

2.2 Basic definitions

The system consists of bosonic atoms b and fermionic atoms f which combine to

form fermionic molecules ψ. The energy, relative to the chemical potential µ, is for

the atoms

ξf
k

= εf
k
− µf =

k2

2mf
− µf (2.1)

ξb
k = εbk − µb =

k2

2mb
− µb (2.2)

and for the molecule

ξψ
k

= εψ
k
− µψ =

k2

2mψ
− µψ + ν , (2.3)

including the detuning ν. The masses obey mψ = mf + mb and, because of the

interaction, the chemical potentials are related by µψ = µf + µb.

The grand-canonical Hamiltonian is, in momentum space,

H =

∫
d3k

(2π)3
(ξf

k
f †
k
fk + ξb

kb
†
k
bk + ξψ

k
ψ†

k
ψk) + Hint , (2.4)

where fk, bk and ψk are annihilation operators for the three species, at momentum k.
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We assume that the fermions’ spins are polarized along the direction of the applied

magnetic field, so that both f and ψ can be treated as spinless. The interaction term

Hint is given by

Hint = − g

∫

k,k′

(ψ†
k+k′fkbk′ + b†

k′f
†
k
ψk+k′) + λ

∫

k,k′,k′

b†
k+k′b

†
k′−k′bk′ bk , (2.5)

where
∫
k

denotes
∫

d3k /(2π)3. (We will consider the case of three spatial dimensions

throughout, but the results can be generalized straightforwardly.)

The first term in Hint allows the bosonic and fermionic atoms to couple and

form molecules, while the second is an interaction between pairs of bosons. We

omit quartic interactions for the fermions because the exclusion principle forbids s-

wave scattering between identical fermions, and we assume that the other allowed

interactions will be less important than the coupling g near resonance.

Taking the dimensions of momentum and energy to be unity, [k] = [E] = 1,

we have [ψ] = −3
2 and the same for the operators b and f . (Throughout, we shall

measure temperature, energy and frequency in the same units, so that ! = kB = 1.)

The coupling constants have dimensions [g] = −1
2 and [λ] = −2.

At temperature T = 1/β &= 0, we have six dimensionless parameters. First let

Nb be the total density of bosonic atoms, including those bound in molecules, and

let Nf be the same for fermionic atoms. (We consider a unit volume, so that density

is synonymous with number.) In the absence of any fermions, the bosons would

condense at a temperature [5, 6]

T0 =
2π

mb

[
Nb

ζ(3
2)

] 2
3

. (2.6)

We can take as dimensionless parameters T/T0 = β0/β, Nf/Nb, mf/mb, ν/T0, γ2/T0
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and λ2(mb)3T0, where

γ =
g2

8π

(
2mfmb

mψ

)3/2

. (2.7)

In what follows, it will not usually be necessary to take account of the coupling

between bosons given by the final term of Hint. Except within the condensed phase,

the main effect of λ is a renormalization of the boson mass, which can be incorporated

into a redefinition of mb.

Physical units

In order to relate these parameters to experimental values, we may choose a unit of

volume of 10−15 cm3, which gives the unit of momentum as roughly 10−27 kg · m/s.

Taking the unit of mass to be 6 amu, corresponding to a lithium-6 atom, the unit of

energy is roughly 7 × 10−10 eV or 8 µK.

To estimate the parameters of the Feshbach resonance, we use the expression [24]

g =

√
2πabg ∆B∆µ

m
, (2.8)

where abg is the background scattering length, ∆B is the width of the resonance and

∆µ is the difference in magnetic moments. Using the observed background scattering

length between lithium-6 and -7 of abg = 2.0 nm [43], we may estimate the coupling

constant. Taking, for instance ∆B = 1 G, ∆µ = µB, the Bohr magneton, we find

g ' 1 in our units. For a boson density Nb = 1015 cm−3 and mass mb = mf = 6 amu,

the value g = 1 gives a dimensionless coupling of γ2/T0 = 5 × 10−4.

While the width of the resonance used here, ∆B = 1 G, is sufficiently large that

∆µ∆B ! T0, it is nonetheless somewhat smaller than typical experimental values.

For our purposes, a more relevant measure of the resonance ‘width’ is the lifetime

of the molecule state in the vacuum (for ν > 0). This is calculated in Section A.1
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of the appendix, where we show that it is determined by the constant γ. Since the

relevant energies are on the order of T0, the condition for a narrow resonance is

that γ2/T0 - 1. For the numerical results throughout this paper, we will always

remain in this narrow limit, which is analytically more accessible. As noted above, we

expect our results to be at least qualitatively applicable even for the wider Feshbach

resonances observed experimentally.

Following Ref. [38], we take

λ =
2π

mb
abb , (2.9)

where for abb, the scattering length for the boson–boson interaction, we use abb =

0.27 nm [43], giving

λ2(mb)3T0 = 2 × 10−3 . (2.10)

The detuning ν appearing in the molecular dispersion relation, Eq. (2.3), is given

by [24]

ν = ∆µ(B − B0) , (2.11)

where B0 is the magnetic field at resonance and B is the applied field.

2.3 The limit g → 0

The case of vanishing coupling, which can be addressed with a classical approach, has

been considered by Yabu et al. [71]. (The results presented in this section produce

Fig. 3 of Ref. [71], which corresponds to our Fig. 2.3, below.)

For simplicity, we restrict the analysis to zero temperature, but similar arguments

can be made for nonzero temperatures. We call the two Fermi energies εf0 and εψ0 ,

and the corresponding wavenumbers kf
0 and kψ

0 . At zero temperature, all bosons are

at εb = 0 and fermionic atoms or molecules must be added at their respective Fermi
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levels.1

The atomic Fermi surface (FS) vanishes when all the fermionic atoms are con-

tained in molecules, so that

kψ
0 = (6π2 Nf)

1/3 . (2.12)

(The number of states within a unit sphere in momentum space is 1/6π2.) For

this arrangement to be favorable energetically, the molecular Fermi energy, εψ0 , must

remain below the lowest atomic energy level. The boundary of the phase without an

atomic FS is therefore where

1

2mψ
(Nf)

2/3 +
ν

(6π2)2/3
= 0 . (2.13)

Similarly, the molecular FS vanishes at the point when

1

2mf
(Nf )

2/3 −
ν

(6π2)2/3
= 0 . (2.14)

The atomic (molecular) FS is therefore only absent for negative (positive) detuning

ν.

To find the boundary of the phase with a BEC, we must consider the depletion

of the condensate. Bosons will take fermions and form molecules as long as their

final energy is lower, ie εψ0 < εf0 + 0. The phase boundary is therefore where εf0 = εψ0 ,

which gives

1

2mf
(Nf − Nb)

2/3 −
1

2mψ
(Nb)

2/3 =
ν

(6π2)2/3
, (2.15)

where the wavenumbers have been determined from Nb and Nf , using the fact that

1Here and throughout this chapter, we make the important assumption that there is no ‘Pauli
blocking’ between fermionic atoms and molecules. This implies, for instance, that a fermionic atom
and a molecule can simultaneously occupy states with the same momentum. The assumption is
justified provided that the molecule is sufficiently tightly bound that its wavefunction has negligible
overlap with the low-momentum atomic plane-wave states of interest.
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there is no condensate.

The resulting phase diagrams are shown as the dashed lines in Figs. 2.1 and 2.3,

below. It should be noted that, in this limit, the coupling to fermionic atoms reduces

the tendency of the bosons to condense. (The same is true at nonzero temperature.)

2.4 Mean-field theory

It is possible to go beyond the classical analysis used for vanishing coupling, by using

mean-field theory. We will present here two parallel developments, in this section

and Section 2.6. The first is based on single-particle quantum mechanics, using the

mixing between the fermionic dispersion relations caused by the presence of a BEC.

The second uses a field-theoretic approach and considers perturbative corrections to

the bosonic propagator. The former has the advantage of giving a somewhat clearer

physical picture, while the latter leads naturally to higher-order corrections.

In the remainder of this section, we present the quantum-mechanical approach,

starting from the Hamiltonian in Eq. (2.4). First, in Section 2.4.1, we make a mean-

field approximation and diagonalize the new Hamiltonian. We then find the condition

that a BEC should be energetically favorable, within this approximation. Since the

Hamiltonian is defined in the grand canonical ensemble, we must then relate the

chemical potentials to the particle numbers, in Section 2.4.2.

In Section 2.4.3, we restrict our attention to the case of zero temperature, where

transitions occur between states with different numbers of Fermi surfaces. We iden-

tify the positions of these transitions and present the full phase diagram for T = 0.
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2.4.1 Mean-field Hamiltonian

To derive a mean-field theory, we make the Bogoliubov approximation [72], replacing

the boson field bk in Eq. (2.4) by a real constant ϕ. The mean-field Hamiltonian is

then

Hmf =

∫
d3k

(2π)3

[
ξf
k
f †
k
fk + ξψ

k
ψ†

k
ψk − gϕ(ψ†

k
fk + f †

k
ψk)

]
− µbϕ2 + λϕ4 , (2.16)

which can be diagonalized to

Hmf =

∫
d3k

(2π)3

(
ξF
k F †

k
Fk + ξΨk Ψ†

k
Ψk

)
− µbϕ2 + λϕ4 . (2.17)

The dispersion relations for the mixed fermions F , Ψ are

ξF,Ψ
k

=
1

2

(
ξf
k

+ ξψ
k

)
±

1

2

√(
ξf
k
− ξψ

k

)2
+ 4g2ϕ2 , (2.18)

with the choice that ξF
k
≥ ξΨ

k
for all k.

Since mixing causes the dispersion relations to separate, the total energy of the

fermions is lowered by nonzero ϕ. This quantum-mechanical effect, in contrast to the

purely classical effect described in Section 2.3, therefore acts to favor condensation.

We must analyze the energetics to determine the point at which a condensate

becomes favorable. The grand free energy Φ is minimized at temperature 1/β by

a Fermi-Dirac distribution of each of the fermionic species F and Ψ. Ignoring the

thermal distribution of bosons, which does not depend on ϕ, the total free energy is

Φ(ϕ) = −µbϕ2 + λϕ4 + RF (ϕ) + RΨ(ϕ) , (2.19)
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where

Rx(ϕ) = −
1

β

∫
d3k

(2π)3
log
(
1 + e−βξx

k

)
. (2.20)

The phase transition to a state with nonzero ϕ occurs when the quadratic coef-

ficient changes sign, ie, when

∆ ≡
1

2

d2Φ

dϕ2

∣∣∣∣
ϕ=0

= 0 . (2.21)

Specifically, for negative ∆, nonzero ϕ is energetically favored, causing the bosons to

condense. Using Eqs. (2.18), (2.19), and (2.20), we find

∆ = −µb + g2

∫
d3k

(2π)3

nF(ξf
k
) − nF(ξψ

k
)

ξf
k
− ξψ

k

, (2.22)

where nF is the Fermi-Dirac distribution function. The integral equation ∆ = 0 can

be solved numerically.

2.4.2 Particle numbers

Since experiments are necessarily performed at fixed particle number, the expressions

for the numbers in terms of the chemical potentials must be found. Particles of the

species b, f and ψ are not independently conserved, so the relevant quantities are Nf

and Nb, the total numbers of fermionic and bosonic atoms, respectively (including

those contained in molecules).

Within our mean-field theory, we must consider the mixed fermionic species F

and Ψ. Since each contains one atomic fermion, we have

Nf =

∫
d3k

(2π)3

[
nF(ξΨk ) + nF(ξF

k )
]

. (2.23)



CHAPTER 2. BOSE-FERMI MIXTURES 20

The number of bosons is (with nB the Bose-Einstein distribution function)

Nb = ϕ2 +

∫
d3k

(2π)3

[
nB(ξb

k) + nF(ξΨk ) cos2 θk + nF(ξF
k ) sin2 θk

]
, (2.24)

where the first term represents the condensate, the first term in the integrand is the

thermal distribution of the bosons, and θk is the mixing angle.2

When ϕ = 0, such as along the boundary to the phase without a BEC, the

expression for the number of bosons simplifies to

Nb =

∫
d3k

(2π)3

[
nB(ξb

k) + nF(ξψ
k
)
]

. (2.25)

To locate this phase boundary for fixed particle numbers, we must find the values

of µf and µb which give the required numbers and also satisfy ∆ = 0. (Of course, a

third parameter must be tuned to its critical value to satisfy these three conditions

simultaneously.)

Results from such a procedure are displayed in Fig. 2.1, which shows the boundary

for Nf/Nb = 1.11 as a function of the detuning ν and temperature T = 1/β. The

masses of the atoms are equal, mf = mb, and the solid line has dimensionless coupling

γ2/T0 = 2.5 × 10−4. For comparison, the case of vanishing coupling, treated in

Section 2.3, is also shown, with a dashed line. Both curves tend to T = T0, as in the

case of free bosons, when ν → ∞ so that molecules cannot be formed.

In Fig. 2.2, the same phase boundary is shown on a graph of fermion number

versus detuning, for three different temperature values. The solid line is at zero

temperature, T = 0, while the two dashed lines have nonzero temperatures. The

coupling is γ2/T0 = 2.5 × 10−4 and the masses are equal, mf = mb. As expected,

2Explicitly, θk is the angle parametrizing the unitary transformation from the fermions f and ψ
in Eq. (2.16) to the fermions F and Ψ in Eq. (2.17).
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Figure 2.1: Phase boundary with detuning ν and temperature T , for fixed particle
numbers Nf/Nb = 1.11 and equal atomic masses, mf = mb. The dashed line has
vanishing coupling and has been found with a purely classical analysis. The solid
line has dimensionless coupling γ2/T0 = 2.0 × 10−2, and has been determined using
the mean-field theory of Section 2.4. For both, the condensed phase is on the left-
hand side (for lower T ) and labeled 〈b〉 &= 0, while the phase without a condensate is
labeled 〈b〉 = 0.
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Figure 2.2: Phase boundary with fermion number Nf and detuning ν, for three
different temperatures. The coupling is γ2/T0 = 2.5 × 10−4 and the atomic masses
are equal. The two phases are labeled as in Fig. 2.1, with the condensed phase
favored for higher detuning, lower fermion number and lower temperature.

Bose condensation is favored by lower temperatures, as in the case of an isolated

Bose gas.

It remains to be shown that the system is stable against separation into regions

with different densities. This question will be addressed in Section A.2 of the ap-

pendix.

2.4.3 Zero-temperature phases

At T = 0, the Fermi-Dirac distribution function is replaced by a unit step and all

bosons occupy the lowest-energy state. As noted by Yabu et al. [71], the phase

diagram can be further divided into a region with two Fermi surfaces and a region

with a single Fermi surface. (We ignore the trivial case without any Fermi surfaces,

which requires Nf = 0.)

Except when the atomic numbers precisely match, Nf = Nb, the case of a single
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Fermi surface can only occur when there is a BEC. In this case, ϕ, the expectation

value of b, is given by the minimum of the free energy Φ given in Eq. (2.19), so that

we must solve

−2µb ϕ+ 4λϕ3 +
dRF

dϕ
+

dRΨ

dϕ
= 0 (2.26)

(excluding the root ϕ = 0).

Following the choice that ξF
k
≥ ξΨ

k
in Eq. (2.18), the second Fermi surface disap-

pears when ξF
k=0

= 0, making the Fermi wavenumber for F fermions vanish. For this

to be the case, we require µf > 0, µψ > ν and

gϕ =
√

µf(µψ − ν) , (2.27)

which should be solved simultaneously with Eq. (2.26).

These expressions, along with the results in Section 2.4.2 for the particle numbers,

allow the complete zero-temperature phase diagram to be plotted. In Fig. 2.3, the

phase boundaries are shown on a graph of fermion number against detuning, for

equal atomic masses. The three sets of boundaries have couplings (a) γ2/T0 = 0, (b)

γ2/T0 = 2.5×10−4 and (c) γ2/T0 = 2.0×10−2. (Note that the dimensionless coupling

γ2/T0 depends on the fourth power of the coupling g appearing in the Hamiltonian,

so a large change in γ2/T0 is required for a noticeable change in the phase diagram.

All of these coupling values are within the narrow resonance regime.) Throughout,

we take λ2(mb)3T0 = 2 × 10−3; we have verified that, within a reasonable range of

values, changing this parameter has no significant effect.

The boundaries divide the diagram into three regions, depending on the presence

of a condensate and the number of Fermi surfaces. In the region labeled ‘2 FS, no

BEC’, the discriminant ∆ is positive, so there is no BEC and two Fermi surfaces. In

the region labeled ‘2 FS + BEC’, ∆ is negative and there is a condensate, as well



CHAPTER 2. BOSE-FERMI MIXTURES 24

c
b

a 1 FS + BEC

2 FS + BEC

2 FS, no BEC

Detuning ν/T0

F
er

m
io

n
nu

m
b
er

N
f
/N

b

3210−1−2

2

1.5

1

0.5

0

Figure 2.3: The phase diagram at T = 0 with dimensionless couplings (a) γ2/T0 =
0, (b) γ2/T0 = 2.5 × 10−4 and (c) γ2/T0 = 2.0 × 10−2. The atomic masses are
equal and the coupling between bosons is given by λ2(mb)3T0 = 2 × 10−3. The
three distinct phases have, respectively, no Bose-Einstein condensate and two Fermi
surfaces (labeled ‘2 FS, no BEC’), a condensate and two Fermi surfaces (‘2 FS +
BEC’), and a condensate and a single Fermi surface (‘1 FS + BEC’). The dotted line
indicates the fermion number at which Fig. 2.4 is plotted.
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Figure 2.4: The effective mass m! at the Fermi surface, with fermion number Nf =
0.1Nb, coupling γ2/T0 = 2.5 × 10−4, and equal atomic masses. As can be seen from
the dotted line in Fig. 2.3, these parameters give a phase with a single Fermi surface.
This surface changes from having a molecular character, with m! ' mψ, to having
an atomic character, m! ' mf .

as two Fermi surfaces. The lowermost region of the diagram, ‘1 FS + BEC’, has a

condensate and only a single Fermi surface.

For curve (a), with γ2/T0 = 0 (as in Section 2.3), the boundary between the

regions with one and two Fermi surfaces extends down to Nf = 0. The region with

a single Fermi surface is then divided into two, with the left-hand side having a

Fermi surface of molecules and the right-hand side a Fermi surface of atoms. When

γ2/T0 &= 0, these two regions are no longer distinct, with the single Fermi surface

crossing over from having a molecular character on one side (lower ν) to having an

atomic character on the other (higher ν).

This crossover is illustrated in Fig. 2.4, where the effective mass m! at the Fermi

surface is plotted. The fermion number is set at Nf = 0.1Nb and the coupling is

γ2/T0 = 2.5 × 10−4, so that the system is within the phase with a single Fermi
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Figure 2.5: The Fermi wavenumbers for the two mixed species of fermions, Ψ and
F , with coupling γ2/T0 = 2.5 × 10−4 and equal atomic masses. The solid lines have
fermion number Nf = 3

2Nb, while the dashed lines have Nf = 1
2Nb. As can be seen in

Fig. 2.3, the solid line goes between all three phases (at ν/T0 ' 0.25 and ν/T0 ' 2.9),
while the dashed line goes from the phase with a single Fermi surface to that having
two and back again (at ν/T0 ' −0.65 and ν/T0 ' 1.3). The wavenumbers are
measured in units of kf

0 , the Fermi wavenumber for free fermions with number Nf .

surface (of Ψ fermions). The effective mass is defined as

m! =

(
d2ξΨ

k

dk2

∣∣∣∣
kΨ
0

)−1

. (2.28)

For ν - 0, the Fermi surface has an essentially molecular character and m! ' mψ,

while for ν , 0, it is atom-like, with m! ' mf .

In Fig. 2.5, the Fermi wavenumbers of the two fermionic species are plotted, for

coupling γ2/T0 = 2.5 × 10−4 and two different fermion numbers, Nf = 3
2Nb (solid

lines) and Nf = 1
2Nb (dashed lines). In both the phase without a condensate (solid

lines for ν/T0 < 0.25) and the phase with a single Fermi surface (solid lines for

ν/T0 > 2.9, dashed lines for ν/T0 < −0.65 and ν/T0 > 1.3), the wavenumbers

are constant, due to the fixed particle numbers. Only in the phase with two Fermi
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surfaces and a BEC do the Fermi wavevectors change with detuning. (At the fermion

number used in Fig. 2.4, the system stays in the phase with a single Fermi surface

throughout and kΨ0 = kf
0 , kF

0 = 0 for all detunings.) In Section 2.5, we will show that

the constraints on the Fermi wavenumbers are consequences of Luttinger’s theorem,

and are not an artifact of mean-field theory.

We now briefly address the line dividing the phases ‘2 FS, no BEC’ and ‘1 FS +

BEC’ in Fig. 2.3. This boundary is horizontal and starts at the point where the three

phases meet; in Section 2.5, we will prove that this is at exactly Nb = Nf . At this

transition, two changes occur: both the second Fermi surface vanishes and the BEC

appears, as the line is crossed from above. Physically, this results from the fact that

molecules are highly energetically favored in this region, so that as many molecules

as possible are formed, and the residual atoms form their ground state. For Nf > Nb,

these atoms are fermionic and form a Fermi surface, while for Nf < Nb, they are

bosonic and form a condensate. Precisely at Nf = Nb, there are no residual atoms,

so that there is no condensate and only a molecular Fermi surface.

Figure 2.6 shows the same phase diagram as Fig. 2.3, but with the chemical

potential for the fermionic atoms, µf , on the vertical axis; the number of fermionic

atoms is allowed to vary. In the region where µf > 0, the essential features are

unchanged, with the same three phases as shown in Fig. 2.3. The boundary between

the phases ‘2 FS, no BEC’ and ‘1 FS + BEC’, however, is seen to extend into an

entire phase, labeled ‘1 FS, no BEC’. In this region, there is no condensate and µf

is negative, so that there is only one Fermi surface, of molecules. This entire phase

therefore has Nf = Nb and collapses onto a single line in Fig. 2.3. This situation

resembles that in the Mott insulator lobes in the phase diagram of the Bose-Hubbard

model (see Sections 1.2 and 3.2): the density of particles is insensitive to a change

in the chemical potential µf .
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Figure 2.6: The phase diagram in the grand canonical ensemble, with the fermion
chemical potential µf plotted on the vertical axis and the detuning ν on the horizontal
axis. The number ratio Nf/Nb is allowed to vary in this plot. The boundary between
‘2 FS, no BEC’ and ‘1 FS + BEC’ in Fig. 2.3 expands into a new phase, labeled
‘1 FS, no BEC’, within which there are only molecules, whose density is constant
(both Nf and Nb remain fixed in this phase). The atomic masses are equal, and the
couplings are γ2/T0 = 2.5 × 10−4 and λ2(mb)3T0 = 2 × 10−3.
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2.5 Luttinger’s theorem

All the ground states in our phase diagram in Fig. 2.3 contain Fermi surfaces. In

Fig. 2.5 we presented the evolution of the Fermi wavevectors of these Fermi surfaces in

our mean-field calculation. In the present section we will discuss general constraints

that must be satisfied by these Fermi wavevectors which are valid to all orders in the

interactions. (Throughout this section, we shall be concerned only with T = 0.)

We will base our arguments upon the existence of the Luttinger-Ward functional

[73] ΦLW, satisfying

Σ =
δΦLW[G′]

δG′

∣∣∣∣
G′=G

, (2.29)

where G′ is a dummy variable, G is the actual full (thermal) Green function and Σ

is the full self-energy. (Throughout this section, we will mostly be concerned with

the full Green functions, which we shall denote with the symbol G. When we make

reference to the free Green function, this will be denoted G0.)

The Luttinger-Ward functional can be constructed nonperturbatively, starting

from the partition function Z of the system [74]. It can then be shown straight-

forwardly that, treating the Green function as a matrix in its momentum (and

frequency) indices, any unitary transformation of the free Green function, G0 →

UG0U−1, that leaves Z invariant also leaves ΦLW invariant. A standard proof of Lut-

tinger’s theorem [75] for a system of interacting fermions makes use of the invariance

of Z under a shift in the frequency appearing in the free propagator, ω → ω + α.

First, we consider the phase with no BEC. Here there are necessarily two Fermi

surfaces, and, as we will now show, the volumes of the two Fermi surfaces are sepa-

rately constrained, independently of the interactions.

In the present case, ΦLW is a functional of the three Green functions, one for each

species, and Z is invariant under a simultaneous shift in two of the three frequencies,
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ie,

ΦLW[Gψ(iν1), G
f(iν2), G

b(iω)]

= ΦLW[Gψ(iν1), G
f(iν2 − iα), Gb(iω + iα)]

= ΦLW[Gψ(iν1 + iβ), Gf(iν2), G
b(iω + iβ)] (2.30)

for any α and β.

We now write µb = µψ − µf and consider derivatives of the grand energy with

respect to µf and µψ. The derivative with respect to µf yields

〈
f †f

〉
−
〈
b†b
〉

= Nf − Nb . (2.31)

Each term on the left-hand side can be rewritten in terms of the full Green functions,

giving

Nf − Nb = −
∫

d3k dω

(2π)4
eiω0+

[
Gf

k
(iω) + Gb

k(iω)
]

. (2.32)

(The change of sign of the f term results from the anticommutation of fermion

operators.)

From now on the manipulations are standard [75]. We make use of the identity

G(iω) = iG(iω)
∂

∂ω
Σ(iω) −

∂

∂ω
log G(iω) , (2.33)

which results from the Dyson equation. The first equation of Eq. (2.30) gives, to-

gether with Eq. (2.29),

∫
d3k dω

(2π)4

[
Σb

k(iω)
∂

∂ω
Gb

k(iω) + Σf
k
(iω)

∂

∂ω
Gf

k
(iω)

]
= 0 . (2.34)
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Combining these two with Eq. (2.32) and integrating by parts gives

Nf − Nb = i

∫
d3k dω

(2π)4
eiω0+ ∂

∂ω

[
log Gf

k
(iω) + log Gb

k(iω)
]

(2.35)

(with the boundary terms vanishing because G(iω) ∼ 1/|ω| for |ω| → ∞).

The integral over ω can be treated as a contour integration and closed above,

due to the factor eiω0+

. Changing the integration variable to z = iω replaces this by

an integral surrounding the left half-plane. Since both of the full Green functions

Gb,f
k

(z) have all their nonanalyticities and zeroes on the line of real z, we can write

this as

Nf − Nb = i

∫
d3k

(2π)3

∫ 0

−∞

dz

2π

∂

∂z

[
log Gf

k
(z + i0+) + log Gb

k(z + i0+)

− log Gf
k
(z + i0−) − log Gb

k(z + i0−)
]

. (2.36)

The integral of z can be performed trivially to give

Nf − Nb =
i

2π

∫
d3k

(2π)3

[
log Gf

k
(i0+) − log Gf

k
(i0−) + log Gb

k(i0
+) − log Gb

k(i0
−)
]

.

(2.37)

Using the analyticity properties of the Green functions, this can be written as

Nf − Nb = −
1

π

∫
d3k

(2π)3

[
arg Gf

k
(i0+) + arg Gb

k(i0
+)
]

. (2.38)

The reciprocals of the Green functions can now be written in terms of the free

dispersions ξb,f
k

and the exact self energies Σb,f
k

. The presence of well-defined quasi-

particles in the low-energy limit implies that the imaginary part of the self energy

must vanish for ω = 0. The Green function is therefore real and its phase can be
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written using the unit step function Θ, leaving

Nf − Nb =

∫
d3k

(2π)3

[
Θ(−ξf

k
+ Σ′f

k
) + Θ(−ξb

k + Σ′b
k)
]

, (2.39)

where Σ′ denotes the real part of the self energy evaluated for ω = 0.

By definition, the absence of a BEC requires that there be no bosonic quasiparticle

excitations at or below the chemical potential, so that the second term in the brackets

in Eq. (2.39) vanishes. (Note that this does not imply that
〈
b†b
〉

= 0, which is not

the case beyond mean-field order.) This leaves the statement of Luttinger’s theorem

for this case:

Nf − Nb =

∫
d3k

(2π)3
Θ(−ξf

k
+ Σ′f

k
) . (2.40)

The right-hand side of this expression is interpreted as the (reciprocal-space) volume

of the atomic Fermi surface.

A similar result follows by taking the derivative of the grand energy with respect

to µψ, which gives
〈
ψ†ψ

〉
+
〈
b†b
〉

= Nb . (2.41)

Going through the same manipulations as above leads to

Nb =

∫
d3k

(2π)3

[
Θ(−ξψ

k
+ Σ′ψ

k
) − Θ(−ξb

k + Σ′b
k)
]

, (2.42)

corresponding to Eq. (2.39). In the phase with no BEC, this gives

Nb =

∫
d3k

(2π)3
Θ(−ξψ

k
+ Σ′ψ

k
) . (2.43)

We have therefore proved that there are two statements of Luttinger’s theorem

in the phase with two Fermi surfaces and no BEC. One, Eq. (2.40), states that
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the volume of the atomic Fermi surface is fixed by the difference in the numbers of

atomic fermions and bosons, while the other, Eq. (2.43), states that the volume of

the molecular Fermi surface is fixed by the total number of bosonic atoms.

Similar considerations apply to the phases with a BEC, which may have either

one or two Fermi surfaces. Here we show that Luttinger’s theorem only demands

that the total volume enclosed within both Fermi surfaces is determined by Nf ; the

volumes of the two Fermi surfaces (if present) are not constrained separately.

The same manipulations as above apply in the presence of a BEC, with two

differences. Firstly, the species f and ψ can no longer be considered separately and

instead, the Green functions for the hybridized species F and Ψ should be used.

Secondly, it is no longer the case that the second term in the brackets vanishes in

Eq. (2.39) and Eq. (2.42). Instead, if we add these two equations, we arrive at

Nf =

∫
d3k

(2π)3
Θ(−ξF

k + Σ′F
k ) +

∫
d3k

(2π)3
Θ(−ξΨk + Σ′Ψ

k ) . (2.44)

The two terms in this expression give the volumes of the two Fermi surfaces. We see

that their sum is constrained by the number of fermionic atoms.

Multicritical point

A simple application of our statements of Luttinger’s theorem can be used to show

that the multicritical point, where the three phases meet in Fig. 2.3 (and where four

phases meet in Fig. 2.6), occurs at precisely Nb = Nf .

Firstly, according to Eq. (2.40), the volume of the atomic Fermi surface is given

by Nf −Nb, as long as there is no BEC. This is therefore the case on the line dividing

the phases with and without condensates, since the condensate vanishes as this line

is approached from below. Secondly, the line that divides the regions with one and
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two Fermi surfaces is the point where the atomic Fermi surface vanishes. Where the

two lines meet, we see both that Eq. (2.40) is satisfied and that its right-hand side

vanishes. We therefore have Nb = Nf .

2.6 Quantum phase transitions

We now present an alternative analysis using the language of field theory. In Sec-

tion 2.6.1, we reproduce the result that Eq. (2.22) determines the presence of a

condensate. Then, in Section 2.6.2, we determine the boson propagator near the

BEC depletion transition. In Section 2.6.3, we describe the critical field theories for

the various transitions.

For simplicity, we will restrict our attention here to the phase without a con-

densate; the extension to the condensed phases requires the standard Bogoliubov

transformation to new degrees of freedom for the boson [5,6,11]. Even with this sim-

plification, we will be able to consider the approach to the condensation transition

from the uncondensed side, and derive the appropriate critical field theory.

The dimensionless Euclidean action corresponding to the Hamiltonian, Eq. (2.4),

is

S =
1

β

∑

q

f̄qΞ
f
qfq +

1

β

∑

p

b̄pΞ
b
pbp +

1

β

∑

q

ψ̄qΞ
ψ
q ψq + Sint , (2.45)

where

Sint = −
g

β2

∑

p,q

(
ψ̄qfq−pbp + b̄pf̄q−pψp

)
. (2.46)

The symbol p stands for k and ωn, and likewise q for k′ and νm, where the Matsubara

frequencies ωn (νm) are even (odd). The summations over p (q) represent sums over
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ωn (νm) and integrals over the momentum k (k′). We have also defined

Ξp = (Gp)
−1 = −iωn + ξk , (2.47)

the inverse of the free Green function, Gp, and similarly Ξq. (In this section and the

following, we will use the symbol G to denote the free Green function, contrary to

the notation of Section 2.5.)

We have omitted from the action the coupling term between pairs of bosons, since

its effect is the same as in the standard analysis of the condensation transition [11,56],

and we assume that this is less important than the near-resonance coupling to the

fermions.

Integrating out both of the fermions and expanding the resulting coupling term

to quadratic order in b and b̄, we find that the effective action for the bosons is

S(2)
eff [b, b̄] =

1

β

∑

p

b̄pΞ
b
pbp +

g2

β2

∑

p,q

Gf
qG

ψ
q+pb̄pbp . (2.48)

2.6.1 Mean-field approximation

By replacing b by a real constant ϕ, we should arrive at the results of Section 2.4.

In this approximation, we have

S(2)
eff [b, b̄] = −µbϕ2 +

g2

β
ϕ2
∑

q

Gf
qG

ψ
q , (2.49)

so that the coefficient is

∆ = −µb + g2

∫
d3k′

(2π)3

1

β

∑

νm

Gf
k′(iνm) Gψ

k′(iνm) . (2.50)

The phase transition will occur when the coefficient ∆ vanishes.
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We can represent Eq. (2.50) by

b

ψ

b
f

, (2.51)

which appears as a self-energy diagram in the boson propagator, drawn as a dashed

line. (The two solid lines represent fermion propagators.)

The Matsubara sum can be performed by replacing it by a contour integration,

giving

∆ = −µb + g2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

ξf
k′ − ξψ

k′

, (2.52)

in agreement with Eq. (2.22).

2.6.2 Boson propagator

By retaining the frequency dependence of the boson field, but again keeping only

terms quadratic in b and b̄, we can determine the action for the long-wavelength,

low-frequency excitations.

The effective boson propagator is, from Eq. (2.48), the reciprocal of

Ξ̃b
k(iωn) ≡ Ξb

p +
g2

β

∑

q

Gf
qG

ψ
q+p

= −iωn + ξb
k + g2

∫
d3k′

(2π)3

1

β

∑

νm

1

−iνm + ξf
k′

1

−i(νm + ωn) + ξψ
k′+k

,

(2.53)

which replaces Eq. (2.50). For k = 0, this gives

Ξ̃b
0(iωn) = −iωn − µb + g2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

ξf
k′ − ξψ

k′ + iωn

, (2.54)
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where the result

nF(a − iωn) = nF(a) , (2.55)

for ωn a boson Matsubara frequency, has been used. For small ωn, we can expand to

give

Ξ̃b
0(iωn) ' ∆ − iωn

[

1 − g2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

(ξf
k′ − ξψ

k′)
2

]

− ω2
ng2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

(ξf
k′ − ξψ

k′)
3 . (2.56)

(Note that, as required, the coefficient of ω2
n is in fact positive.)

The effective boson propagator (for k = 0) is then

G̃b
0(iωn) =

Z
−iωn + ξ̃b

0(ωn)
, (2.57)

with

Z =

[

1 − g2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

(ξf
k′ − ξψ

k′)
2

]−1

, (2.58)

and

ξ̃b
0(ωn) = Z

[

∆− ω2
ng2

∫
d3k′

(2π)3

nF(ξf
k′) − nF(ξψ

k′)

(ξf
k′ − ξψ

k′)
3

]

. (2.59)

At zero temperature, the integrals in the expressions for both Z and ξ̃b
0(ωn)

diverge when the two Fermi wavenumbers coincide, which happens if Nf = 2Nb. For

any other parameters, the integrals are finite, and the effective propagator has the

form Eq. (2.57). As we discuss in the following subsection, this distinction leads to

different field theories for the BEC depletion quantum transition for these cases.
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2.6.3 Critical field theories

We now briefly outline the critical field theories that govern each of the quantum

phase transitions; more details can be found in Ref. [69].

The phase diagrams in Figs. 2.3 and 2.6 contain two types of transitions: those

where a Fermi surface appears (such as between ‘1 FS + BEC’ and ‘2 FS + BEC’),

and those where a BEC appears (such as between ‘2 FS, no BEC’ and ‘2 FS + BEC’).

The former are described by the theory of a dilute, noninteracting Fermi gas [56].

The second case is related to the transition occurring for isolated bosons at zero

density, described in Refs. [55, 56], and has upper critical dimension d = 2. The

critical theory is described by the effective action for the boson after integrating out

the fermion modes, as in Section 2.6.2.

As noted above, however, in the special case that Nf = 2Nb, the atomic and

molecular Fermi surfaces exactly coincide. The boson therefore couples to gapless

fermionic excitations at zero momentum, giving nonanalytic terms in the effective

action. These are described by the Hertz-Millis theory [56,76,77], originally applied

to the onset of ferromagnetism in a Fermi liquid.

2.7 Gaussian corrections

In this section, we will provide an estimate of the region of applicability of the mean-

field theory described above. To do so, we will consider the two-loop correction

to the grand free energy Φ, near the condensation transition. This will result in

corrections to the expressions found in Section 2.4.2 relating the chemical potentials

to the particle numbers [34,35]. We will estimate the range of parameters for which

these corrections become significant.

The term in the Hamiltonian, Eq. (2.4), that couples the boson and fermion
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produces no two-loop correction to the boson self energy. While a correction term

does arise from the quartic boson interaction, we again assume that this is small in

the region of interest. As in Section 2.6, we will simplify the analysis by restricting

to the phase without a condensate.

The only two-loop correction to the free energy Φ is given by the diagram

∆Φ =
f

b

ψ

(2.60)

which represents the expression

∆Φ =
g2

β2

∑

p,q

Gf
q G

ψ
q+pG

b
p . (2.61)

Reinstating explicit momentum integrals and frequency sums, we have

∆Φ =
g2

β2

∑

ωn,νm

∫
d3k

(2π)3

∫
d3k′

(2π)3
Gb(iωn,k) Gf(iνm,k′) Gψ(iνm + iωn,k′ + k) (2.62)

Both Matsubara sums can be performed using contour integration, to give

∆Φ = g2

∫
d3k

(2π)3

∫
d3k′

(2π)3

[
nF(ξf

k′−k
) − nF(ξψ

k′)
] [

nB(ξb
k
) − nB(ξψ

k′ − ξf
k′−k

)
]

ξb
k

+ ξf
k′−k

− ξψ
k′

, (2.63)

after a change of variables, k′ → k′ − k.

2.7.1 Renormalization of the detuning

As it stands, the integral over k is in fact divergent. As k ≡ |k| tends to infinity

(with |k′| finite), the second Bose factor, nB(ξψ
k′ − ξf

k′−k
), tends to −1. In the first
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bracket, nF(ξψ
k′) remains finite, so the integrand tends to ∼ 1/k2 and the integral

over k is linearly divergent.

This divergence can be understood by considering the self-energy diagram

ψ

b

f
ψ

(2.64)

which gives a correction to the detuning ν linear in the cut-off momentum,

ν = ν0 − g2

∫
d3k

(2π)3

2mfmb

mψ

1

k2
, (2.65)

where ν0 is the ‘bare’ detuning that appears explicitly in the action.

We use this expression to write ν0, which appears within Gψ in Eq. (2.61), in

terms of ν, and then keep terms only of order g2. The renormalized expression for

∆Φ is then given by

∆Φ = g2

∫
d3k

(2π)3

∫
d3k′

(2π)3

{[
nF(ξf

k′−k
) − nF(ξψ

k′)
] [

nB(ξb
k
) − nB(ξψ

k′ − ξf
k′−k

)
]

ξb
k

+ ξf
k′−k

− ξψ
k′

+
2mfmb

mψ

nF(ξψ
k′)

k2

}

, (2.66)

where the dispersion relation ξψ now involves the renormalized (physical) detuning

ν. (We have retained the same symbols for the new, renormalized quantities.)

This expression can be simplified somewhat by performing a further change of

variable, taking k → k + (mb/mψ)k′, and also making use of the result

nB(y − x)[nF(x) − nF(y)] = [1 − nF(x)]nF(y) . (2.67)
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We have finally

∆Φ = g2

∫
d3k

(2π)3

∫
d3k′

(2π)3

1
mψ

2mf mb k2 − ν

[

nF(ξf)nB(ξb) − nF(ξψ)nB(ξb)

+ nF(ξf)nF(ξψ) − nF(ξψ)
2mfmb

mψ

ν

k2

]

, (2.68)

in which the energies ξψ, ξf and ξb should be evaluated at the following momenta:

ξψ ≡ ξψ(k′) (2.69)

ξf ≡ ξf(k − mf

mψ k′) (2.70)

ξb ≡ ξb(k + mb

mψ k′) . (2.71)

Note that there is no singularity in the integral over k in Eq. (2.68), since the

numerator also vanishes at the point where

k =

√

ν
2mfmb

mψ
(2.72)

(for ν > 0).

2.7.2 Atom-number corrections

The expression for ∆Φ must be differentiated with respect to the chemical potentials

to give the correction to the number of each species of atom. The resulting integral

can then be performed numerically.

The results of such a calculation are shown in Fig. 2.7, where we plot the correc-

tions to the atom numbers, as a function of the dimensionless coupling γ2/T0. The

number corrections have been divided by the total number of each atom evaluated

to lowest order (as in Section 2.4.2). The detuning is held fixed at ν/T0 = 0.5 and
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Figure 2.7: Two-loop corrections to the atom numbers, shown as a fraction of the to-
tal numbers evaluated to lowest order, and plotted as a function of the dimensionless
coupling γ2/T0. The detuning is fixed at ν/T0 = 0.5, the atomic masses are equal,
mf = mb, and the temperature is zero. At each value of the coupling, the parameters
have been chosen to put the system just inside the ‘2 FS, no BEC’ phase.

the atomic masses are equal; for simplicity, the temperature has been set to zero

throughout. At every value of coupling, we have chosen the number ratio so that the

system is in the phase ‘2 FS, no BEC’ and close to the condensation transition.

The mean-field results can be expected to provide a quantitatively good approx-

imation provided that the fractional corrections are small. Figure 2.7 suggests that

this criterion is reasonably well satisfied for the coupling γ2/T0 = 2.5× 10−4 used in

Fig. 2.3. We expect only qualitative agreement at higher values of the coupling.

2.8 Conclusions

In this chapter, we have described the physics of a mixture of bosons and fermions

that are able to form a bound molecular state. The resulting molecule is also a

fermion and the mixture can form a variety of phases, distinguished by the number
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of Fermi surfaces and the presence or absence of a Bose-Einstein condensate (BEC)

of bosons.

The basic structure of the phase diagram can be determined by energetic con-

siderations: The Pauli exclusion principle applies to both the atomic and molecular

fermions and so the many-body ground state depends on the relative densities of

both atomic species as well as the binding energy of the molecule. We extended this

analysis using mean-field theory, showing that quantum-mechanical effects can favor

the formation of a BEC and lead to ‘mixing’ of the atomic and molecular fermions.

We then showed that Luttinger’s theorem, which constrains the volume of the

Fermi surface(s), can be applied to these systems. The statement takes different

forms depending on the presence or absence of a BEC. When a BEC is absent,

the volumes of the molecular and atomic Fermi surfaces are separately constrained.

When a BEC is present, only the sum of the two volumes is constrained.

The mean-field calculation can also be described in the language of quantum field

theory, and this approach was used to investigate the critical properties at the various

transitions. It was shown that the transition describing the appearance of the BEC

is generically unaffected by the presence of the fermionic modes. In the special case

that the two Fermi surfaces coincide, however, the gapless fermionic excitations give

a critical theory of the Hertz-Millis form.

To determine the region of applicability of the mean-field calculation, we then

found the two-loop corrections to the expressions for the atomic numbers. In Sec-

tion A.1 of the appendix, we consider the dressed molecular propagator, and in

Section A.2, we address the stability of the system to phase separation. In Chap-

ter 4, some recent experiments on Bose-Fermi mixtures and possible extensions to

the theory are described.



Chapter 3

Bosons with spin

3.1 Introduction

This chapter will describe the physics of bosonic atoms with spin, confined within

an optical lattice. As described in Section 1.3, the simultaneous possibilities of spin

and phase ordering lead to a very rich phase diagram. Our main focus will be the

spin-singlet condensate (SSC), a condensed phase without spin ordering that occurs

for bosons of any nonzero spin, provided that the spin-dependent interactions are

strong enough.

When individual spinful bosons condense, spin-rotation invariance is necessarily

broken, but when this is energetically unfavorable, singlet pairs will instead condense.

For most atomic species, the spin-dependent part of the interaction is relatively weak,

but an optical Feshbach resonance, described in Section 1.1, may be used to tune its

strength.

From a theoretical point of view, the SSC phase is of particular interest because it

provides a simple example of a condensate of pairs of bosons. (For similar examples

that have been considered recently, see Refs. [37,38,78,79].) Such paired condensates

44
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also provide an interesting analogue to the BCS phenomenon in superconductors,

where singlet pairs of electrons form a superfluid [80].

Our primary interest will be the behavior of the system as this phase is approached

across the quantum phase transition from the neighboring insulator (spin-singlet in-

sulator, SSI). This transition corresponds to the appearance of a condensate of pairs,

as the gap to ‘doubly-charged’ spin-singlet pair excitations vanishes, but the gap

to ‘singly-charged’ excitations remains nonzero. (Here and throughout, we use the

term ‘charged’ to refer to excitations that change the particle number, assigning to

particles and holes charges of +1 and −1 respectively. This is simply for convenience:

the bosons have no electric charge and feel no long-range forces.)

This leads to nontrivial long-time—or, equivalently, low-frequency—behavior of

the Green function for spin-carrying excitations. Consider first the single-particle

Green function for the elementary bosons. We will argue below that, near the critical

point, the dispersion of this gapped excitation is an irrelevant perturbation, and

so to leading order the analysis becomes a quantum impurity problem. A similar

conclusion was reached in Refs. [81, 82] for the case of gapped fermionic excitations

in a different context.

If the coupling between the localized (single particle) and bulk (pair) excitations

is relevant, then a renormalization group (RG) analysis is necessary to understand

the structure of the Green function. We will present such an analysis here, and show

that a nontrivial impurity fixed point controls the long-time physics. For the case of

an irrelevant localized–bulk coupling, no new impurity dimensions are needed, and

the bulk fixed point governs the physics.

Similar results also apply for the correlation functions of composite operators,

such as the spin-response function. We will show that these operators can be classified

by their symmetry properties and that different anomalous dimensions apply in each
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case.

We now give an outline of the contents of the rest of this chapter. We will begin

in Section 3.2 with a presentation of the model Hamiltonian and a simple description

of its phases. We will then describe the continuum theory of the model, which will

be used to analyze the behavior across the phase transition to the SSC phase.

In Section 3.3, we describe a simple mean-field theory that explicitly incorpo-

rates the possibility of the SSC phase, and show that it occurs only when the spin-

dependent part of the interaction is strong enough to overcome the kinetic-energy

cost associated with condensing pairs of bosons.

In Section 3.4, we will describe the behavior of the single-particle Green function

on both sides of the SSI–SSC transition. Then, in Section 3.5, we will address the

transition itself and present the RG calculation that allows the scaling dimensions to

be found. We will perform the analysis using dimensional regularization, which leads

to the simplest explicit calculations. In Section A.3 of the appendix, we present an

alternative derivation using a momentum cutoff, in which the physical interpretation

is clearer.

3.2 Model

3.2.1 Hamiltonian

The application of the Bose-Hubbard model to bosonic atoms trapped in an optical

lattice potential has been described above, in Section 1.2. The extension of this

model to the case where the bosons carry spin is straightforward. While most of our

results apply for general spin F &= 0, we will treat explicitly the case F = 1 and

draw attention to the generalizations when appropriate. The Hamiltonian can then
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be written as

H = −t
∑

〈i,j〉

(b†iµbjµ + h.c.) +
∑

i

V (b†iµbiµ) + J
∑

i

|Li|2 , (3.1)

where summation over repeated spin indices µ is implied throughout. The operator

biµ annihilates a boson at site i with spin index µ ∈ {x, y, z}; this basis will be the

most convenient for our purposes.

The first term in H involves a sum over nearest-neighbor pairs of sites, and allows

the bosons to tunnel, with ‘hopping’ strength t. We will restrict attention to square

and cubic lattices, but the results can be straightforwardly generalized to other cases.

The function V (n) contains an on-site spin-independent interaction and the chemical

potential; we will write it in the form

V (n) =
1

2
Un(n − 1) − µn . (3.2)

In the final term of Eq. (3.1), Li is the total angular momentum on site i, given

by (for F = 1) Li,ρ = −iεµνρb
†
iµbiν , where εµνρ is the completely antisymmetric

tensor. For F = 1, this term is the most general quartic on-site spin-dependent

interaction. For spin F , the boson operator becomes a tensor of rank F and there are

F + 1 independent quartic interaction terms corresponding to different contractions

of the spin indices [83]. We will not include any direct interactions between spins on

neighboring sites, nor long-range polar forces between the atoms.1

Suppose that V (n) has its minimum near some even integer, N , and the couplings

are tuned so that the model is particle–hole symmetric around this filling. Requiring

1Note that we have also made the simplification of including only interaction terms up to fourth
power in the boson operators. This neglects three-body interactions, for instance, which may be
important for quantitative agreement with experiment. The analysis here can be straightforwardly
extended to include such terms.
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this symmetry corresponds to restricting consideration to the case of integer filling

factor, and is equivalent to using the canonical ensemble [56].

3.2.2 Classification of phases

The spinless Bose-Hubbard model, with a single species of boson, has a transition

from a Mott insulator when U , t to a superfluid when U - t [55, 56]. When

the bosons have spin, various types of spin ordering are possible within both the

insulator and superfluid.

With an even number of particles per site, the simplest insulating phase, the

spin-singlet insulator (SSI), has a spin singlet on each site. This will be favored

energetically when J > 0, and we will restrict to this case in the following. For

J < 0 or odd N , the net spin on each site will be nonzero, and the system will

be well described by a quantum spin model, allowing various forms of spin ordering

within the lattice [65].

In a simple superfluid, the bosons condense, so that 〈biµ〉 &= 0, breaking both gauge

and spin symmetries. For J > 0, a so-called polar condensate2 (PC) is favored, with

〈biµ〉 ∝ δµz, where z is an arbitrary direction. A variety of other condensates are, in

general, also allowed [61].

For large enough J , a second variety of superfluid is possible [64], within which

single bosons have not condensed. Instead, pairs of bosons condense, giving 〈biµbiµ〉 &=

0, which does not break spin-rotation symmetry. For this state, the spin-singlet

condensate (SSC), to be energetically favorable, J must be large enough to overcome

the kinetic-energy cost associated with pairing.

2This name was chosen [60] by analogy with the corresponding state of superfluid helium-3.
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3.2.3 Continuum action

To describe the low-energy excitations of the model, we will derive a continuum field

theory that captures the physics near to zero momentum. This assumes the absence

of antiferromagnetic ordering of the spins, for example; it is chosen to be appropriate

to the phases with which we are concerned.

The action that results is in fact completely determined by the symmetries of the

model, but we will outline the steps of a formal derivation.

We first write the partition function as a path integral and decouple the hopping

term using a site-dependent field ψµ, as with the standard (spinless) Bose-Hubbard

model [55]. We then use perturbation theory in ψµ to eliminate all particle and hole

excitations, leaving only the manifold of states with precisely N bosons per site.

The low-energy Hilbert space on each site then consists of a singlet state |s〉 and

a quintet of states with Li = 2, which we label |dm〉. We use slave bosons with

annihilation operators s and dm to write these as

|s〉 = s†|0〉 and |dm〉 = d†
m|0〉 , (3.3)

where |0〉 is a fictitious vacuum state. These bosons are subject to the constraint

s†s + d†
mdm = 1 , (3.4)

applied on each site.

We can now make a Holstein-Primakoff expansion to eliminate s, taking into

account the constraint. (For another example of this technique, see Ref. [84].) This

then allows the continuum limit to be taken, assuming that all the important low
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energy excitations are near zero momentum.3 Finally, the field arising from the slave

boson dm can be integrated out to leave a field theory for ψµ.

The final form of the action is completely determined by the U(1) phase and

SU(2) spin symmetry of the original Hamiltonian. Since the parameters have been

chosen to give particle–hole symmetry, it can be written in a relativistic form:

Sψ =

∫
ddx dt

(
−ψ̄µ∂

2ψµ + r ψ̄µψµ

)
+ S(4)

ψ + · · · . (3.5)

Note that the action is completely relativistic and the derivative ∂ acts in D = d+1

dimensions: ∂2 = ∇2 − ∂2
t . The quartic interaction contains two terms:

S(4)
ψ =

∫
ddx dt

(u

4
ψ̄µψµψ̄νψν +

v

4
ψ̄µψ̄µψνψν

)
. (3.6)

The first term has full SU(3) symmetry, while the second term, which vanishes if

J = 0 in H, breaks this down to SU(2).

For higher spin F , the action has a similar form, with the field ψ becoming a

tensor of rank F . The quadratic part of the action is unchanged, but the quartic

term now involves the F + 1 distinct scalar contractions of the field.

3.3 Mean-field theory

To provide a concrete, if qualitative, guide to the phase structure of the particular

model in Eq. (3.1), we implement a mean-field theory capable of describing the

phases of interest. This will be similar to the approach of Ref. [55] for the spinless

3One can instead take the continuum limit before eliminating s, resulting in a gauge theory.
Physically, this stems from the redundancy in the slave boson description and the constraint,
Eq. (3.4). The continuum action described here results from allowing s to condense, causing the
gauge field to acquire a gap by the Anderson-Higgs mechanism. This field can then be integrated
out, leaving an action in terms of d alone. We neglect the alternative possibility of the gauge field
becoming deconfining.
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Bose-Hubbard model, where a mean-field decoupling is applied to the hopping term.

3.3.1 Strong-pairing limit

Before describing the full mean-field calculation, we will first use a very simple pertur-

bative calculation to give an approximate criterion for condensation of boson pairs.

In the limit of large J/U , an odd number of bosons on any site is strongly disfavored,

and we can deal with a reduced Hilbert space of singlet pairs.

The effective tunneling rate τ for such pairs is given by τ ∼ t2/v1, where v1 =

U + 2J is the energy of the intermediate state with a ‘broken’ pair. The effective

repulsion of two pairs (ie, four bosons) on the same site is Υ ∼ v2 = 4U .

We therefore arrive at the simple criterion zt2 ! U(U + 2J) for the condensation

of pairs, where z is coordination number of the lattice. This should be compared

with the criterion zt ! U + 2J for the condensation of single bosons [55, 56]. These

two simple results will be confirmed, and the numerical prefactors determined, by

the mean-field analysis that follows (see Fig. 3.1).

3.3.2 Quantum rotor operators

To simplify the calculation somewhat, we will use SO(2) quantum rotor operators n̂i

and aiµ in place of boson operators in the mean-field calculation. These satisfy

[aiµ, n̂j ] = δijaiµ (3.7)

and

[aiµ, a
†
jν ] = 0 . (3.8)
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This simplification, which automatically incorporates particle–hole symmetry, is con-

venient but inessential. The eigenvalues of n̂i are both positive and negative integers.

The full Hamiltonian, from Eq. (3.1), can be written as H = V − tT , where V is

the on-site interaction and T is the kinetic energy term. In the rotor formalism, we

have

V =
∑

i

[
U(n̂i − N)2 + J |Li|2

]
, (3.9)

where the term involving the chemical potential has been absorbed by making the

spin-independent interaction explicitly symmetric about N . For simplicity, we will

take N = 2 in the following. In the rotor formalism, the angular momentum Li is

defined by its commutation relations with aiµ, and the kinetic term is

T =
∑

〈i,j〉

(a†
iµajµ + h.c.) . (3.10)

First, consider the case when t = 0. Then the Hamiltonian is simply a sum of

terms acting on a single site, containing only the commuting operators n̂ and |L|2.

The ground state on each site, which we label |2, L〉, is therefore an eigenstate both of

n̂, with eigenvalue N = 2, and of |L|2, with eigenvalue L(L + 1). For positive J , the

ground state is a spin singlet with L = 0 and the lowest-lying ‘charged’ excitations

are triplets with L = 1.

3.3.3 Mean-field Hamiltonian

We will proceed by choosing a mean-field (variational) ansatz that incorporates the

symmetry breaking of the phases of interest. We choose to do so by defining a

mean-field Hamiltonian Hmf , whose ground state will be taken as the variational

ansatz.
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An appropriate mean-field Hamiltonian is

Hmf = V − Tψ − TΨ − TΦ , (3.11)

where V is the same on-site interaction as in Eq. (3.9). Tψ is the standard mean-field

decoupling of the hopping term, generalized to the case with spin,

Tψ =
∑

i

[
ψµa†

iµ + ψ∗
µaiµ

]
, (3.12)

where ψµ is a (c-number) constant vector, which will be used as a variational pa-

rameter. The remaining terms allow for the possibility of a spin-singlet condensate

through the parameters Ψ and Φ:

TΨ =
∑

i

[
Ψa†

iµa
†
iµ + Ψ∗aiµaiµ

]
, (3.13)

and

TΦ =
∑

〈i,j〉

[
Φa†

iµa
†
jµ + Φ∗aiµajµ

]
, (3.14)

where the sum is over nearest-neighbor pairs within the lattice.

We now use the ground state of Hmf , which we denote |mf〉, as a variational

ansatz and define

Emf(ψµ,Ψ,Φ) = 〈mf|H|mf〉 , (3.15)

which should be minimized by varying the three parameters. If this minimum occurs

for vanishing values of all three parameters, then |mf〉 breaks no symmetries and the

SSI phase is favored. A nonzero value for ψµ at the minimum corresponds to PC,

while vanishing ψµ but nonzero values of Ψ and/or Φ corresponds to SSC.

Since Hmf contains terms (within TΦ) that link adjacent sites, it cannot be
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straightforwardly diagonalized, as in the standard mean-field theory for the spin-

less Bose-Hubbard model. To find the phase boundaries, however, we need to keep

only terms up to quadratic order in the variational parameters, which can be found

using perturbation theory.

3.3.4 Variational wavefunction

To order zero in ψµ, Ψ and Φ, we require the ground state of V , Eq. (3.9). Assuming

U > 0 and J > 0, this is given by the simple product state

|mf(0)〉 =
∏

j

|2, 0〉j . (3.16)

To first order, the ground state of Hmf is

|mf(1)〉 =

(
1

v1
Tψ +

1

v2
TΨ +

1

2v1
TΦ

)
|mf(0)〉 . (3.17)

(If rotors were not used in place of boson operators, a similar but somewhat more

complicated expression would result.) All the physics incorporated in the mean-field

ansatz is visible at this order: The first term allows for a condensate of single bosons,

while the last two terms allow for a condensate of spin singlets. The third term is

necessary to allow these singlet pairs to move around the lattice and make the SSC

phase energetically favorable.

Computing Emf to quadratic order in the variational parameters (which requires
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Figure 3.1: Phase diagram for the Hamiltonian in Eq. (3.1) calculated using the
mean-field theory of Section 3.3. The three phases that are included are the spin-
singlet insulator (SSI), the spin-singlet condensate (SSC), and the polar condensate
(PC). The calculation has been performed using quantum rotors, corresponding to
the canonical ensemble with the filling factor an even integer. The horizontal and ver-
tical axes give the hopping strength t and the spin-dependent part of the interaction
J , both in units of the spin-independent part of the interaction, U .

the expression for the perturbed states also to quadratic order) gives

Emf =
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. (3.18)

The transition to PC occurs when the top-left element in the matrix vanishes, while

the transition to SSC occurs when the determinant of the remaining block vanishes.

This gives the criteria 2zt > v1 for PC and 27zt2 > v1v2 for SSC, in agreement

with the simple considerations of Section 3.3.1. The phase boundaries are shown in

Fig. 3.1.

Note that it is in fact necessary to continue the expansion to fourth order to
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determine the direction of the vector ψµ when it is nonzero. This calculation has

been performed in Ref. [85], where the possibility of SSC was not incorporated and

the PC phase was found to be favored for J > 0, as expected.

In principle it is also necessary to continue the expansion to higher order to inves-

tigate the competition between PC and SSC in the region where both are possible.

Simple energetic considerations suggest, however, that condensation of single bosons

in the PC phase will dominate over condensation of pairs, and this has been assumed

in Fig. 3.1.

3.4 Properties of phases

Below, in Section 3.5, we will consider the quantum phase transition from SSI to SSC.

Before doing so, we first describe the low-energy properties of these two phases, based

on the continuum action derived in Section 3.2.3.

The explicit calculations will be carried out in two spatial dimensions, but most

of the qualitative conclusions will also apply in three dimensions.

3.4.1 Spin-singlet insulator

The SSI phase is a ‘featureless’ insulator without spin or phase ordering. All quasi-

particle excitations are gapped, ie, they occur at finite energy above the ground

state.

The phase can be further divided according to the lowest-energy ‘charged’ ex-

citation. Throughout most of the phase, individual particle and hole excitations,

described by the field ψµ, will have the smallest gap, but in a small region relatively

close to the transition to SSC, bound singlet pairs will move to lower energy. (It

is these excitations that condense across the transition to SSC, as described below,
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in Section 3.4.3.) We will describe the former case here and return to the latter in

Section 3.4.2.

In the absence of any condensate, the appropriate action is simply that given in

Eq. (3.5), which we write, with r = λ2, as

SSSI =

∫
ddx dt

[
ψ̄µ(−∂2 + λ2)ψµ +

u

4
ψ̄µψµψ̄νψν +

v

4
ψ̄µψ̄µψνψν + · · ·

]
. (3.19)

Particles and holes are described by the same field ψµ, with gap λ and two distinct

quartic interactions, with coefficients u and v.

Perturbation theory in u and v, which we take to be on the same order, will be

used to describe the low-energy properties of this phase. To do so, we first define

the free propagator for the field ψµ:

Gψ
0 (ω,k) =

1

−ω2 + k2 + λ2
. (3.20)

Because of relativistic invariance, the results are given below for the case k = 0;

the corresponding expressions for nonzero momentum are given by the replacement

ω2 → ω2 − k2.

Self energy

The lowest-order diagram for the self energy is the ‘tadpole’:

Σψ
1 = (3.21)

(where the vertex represents some linear combination of u and v). This diagram

does not depend on the frequency or momentum carried by the external line and so
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simply contributes a constant that renormalizes the gap λ.

The lowest-order diagram that depends on the external momentum is

Σψ
2 = . (3.22)

The physical interpretation of this diagram is as the decay of a particle, given suf-

ficient energy, into a hole (described by the top line, with reversed propagation

direction) and two particles. It is therefore clear that this diagram will make no

contribution to the decay rate for a particle unless its energy exceeds 3λ.

This interpretation is clarified by using the spectral representation; the ‘spectral

weight’ is given by

ρψ(ω) = 2 lim
η→0+

Im Gψ(ω + iη) , (3.23)

where Gψ is the full propagator. This can be calculated numerically, and is shown in

Fig. 3.2.4 There is a delta-function peak at ω = λ (a small width has been manually

added to make it visible on the plot), and a three-body continuum, resulting from

Σψ
2 , appears at ω = 3λ.

3.4.2 SSI near SSC

As the spin-dependent interaction increases and the SSC phase is approached, a

bound state composed of a singlet pair of bosons becomes energetically favorable.

At the transition to SSC, the singlet pairs condense into a superfluid with no spin

4We note here a subtlety regarding this plot and those in the remainder of Section 3.4. The
full series of diagrams, including those shown in Eq. (3.21) and Eq. (3.22), cause a renormalization
of the gap λ (and hence movement of the features in ρψ) away from its bare value, ie, the value
appearing explicitly in the action. In this plot (and the ones that follow), λ should be interpreted
as meaning the renormalized value, rather than the bare value, and it is for this reason that the
peak appears precisely at ω = λ.
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Figure 3.2: The spectral weight ρψ in SSI, calculated up to second order in the
couplings u and v. The delta-function peak at ω = λ (which has artificially been
given a small but nonzero width) describes the stable particle excitation of the field
ψµ. For ω > 3λ, there is continuum of three-particle excitations.

ordering.

To describe the approach to this transition, we start with the action SSSI and

introduce the field Ψ ∼ ψµψµ, by a Hubbard-Stratonovich decoupling of the quartic

interaction v. The field Ψ describes the singlet pairs and will condense across the

transition. It is described by the action

SΨ =

∫
ddx dt

(
|∂Ψ|2 + rΨ|Ψ|2 +

uΨ
4
|Ψ|4 + · · ·

)
. (3.24)

The full action has the form

S ′
SSI = Sψ + SΨ +

gψ
2

∫
ddx dt

(
Ψ̄ψµψµ + Ψψ̄µψ̄µ

)
. (3.25)

(The introduction of the field Ψ renormalizes the coupling constants within Sψ. Here

and throughout, we will simplify the notation by retaining the same symbols for these
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renormalized quantities.)

Self energy

The diagrams shown in Section 3.4.1, coming from Sψ, will still contribute to the

self energy near to SSC. As seen above, however, these diagrams are important only

for ω > 3λ, whereas new diagrams coming from coupling to the pair field Ψ will

contribute at lower frequencies.

Using a dashed line for the propagator of the Ψ field, the first such diagram is

Σψ
1 = , (3.26)

in which a particle decays into a hole plus a pair. The vertices correspond to factors

of gψ. The threshold for this process is clearly λ + λΨ, where λ is the gap to the

particle and hole excitation as before, and λΨ =
√

rΨ is the gap to the pair excitation.

This excitation therefore becomes important at low energies when λΨ < 2λ, which

is simply the condition that a bound state exists below the two-particle continuum.

The diagram can be evaluated to give

Σψ
1 =

g2
ψ

8πω
log

λ+ λΨ + ω

λ+ λΨ − ω
, (3.27)

and the corresponding spectral weight is shown in Fig. 3.3. A continuum of excita-

tions appears for ω > λ+λΨ, as expected. As the transition to SSC is approached, λΨ

becomes smaller and the edge of the continuum approaches the peak at ω = λ. The

perturbation expansion used here breaks down as λΨ → 0 and a more sophisticated

RG calculation, described in Section 3.5.1, is required.
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λΨ/λ = 0.15
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Figure 3.3: The spectral weight ρψ in SSI near the transition to SSC, calculated up
to order g2

ψ, plotted for three different values of λΨ, the gap to pair excitations. The
coupling strength is gψ = 0.1. The peak at ω = λ (which is present for all values of
λΨ and has artificially been given a small but nonzero width) describes the stable
particle and hole excitation of the field ψµ. For ω > λ + λΨ, there is continuum of
excitations, corresponding physically to the conversion of a particle to a pair plus a
hole.
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3.4.3 Spin-singlet condensate

In the SSC phase, singlet pairs of bosons form a condensate, giving a superfluid with

no spin ordering. The perturbation expansion used in Section 3.4.2 is not applicable

here, and we must instead expand about the new ground state, with a condensed

Ψ field. (A similar approach can be used to describe the condensed phase of the

spinless Bose gas [86].)

We first write Ψ in terms of amplitude and phase as

Ψ = Ψ0e
iθ′ , (3.28)

where Ψ0 and θ′ are both real. For simplicity, we treat the amplitude of the Ψ field as

a constant, ignoring the gapped amplitude modes. (This is appropriate sufficiently

far from the transition to SSI, where the gap is large.) With this parameterization,

SΨ, given by Eq. (3.24), can be rewritten as the action of a free, gapless field:

SΨ =

∫
ddx dt

1

2
(∂θ)2 , (3.29)

with the definition θ =
√

2Ψ0θ′. Physically, θ is interpreted as the Goldstone mode

corresponding to the broken phase symmetry in SSC.

In dealing with ψµ, it is convenient to take out a factor of the condensate phase

by writing ψµ = ϕµeiθ′/2. Then, since the condensate has broken phase-rotation

invariance, we rewrite the field ϕµ in terms of real and imaginary parts,

ϕµ =
1√
2
(ϕR

µ + iϕI
µ) . (3.30)
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In terms of the new fields θ, ϕR
µ and ϕI

µ, the action becomes5

SSSC =

∫
ddx dt

{
1

2
(∂θ)2 +

1

2
ϕR

µ (−∂2 + r + gψΨ0/2)ϕR
µ

+
1

2
ϕI

µ(−∂2 + r − gψΨ0/2)ϕI
µ +

u

16
(ϕR

µϕ
R
µ + ϕI

µϕ
I
µ)(ϕR

ν ϕ
R
ν + ϕI

νϕ
I
ν)

+
v

16

[
(ϕR

µϕ
R
µ − ϕI

µϕ
I
µ)(ϕ

R
ν ϕ

R
ν − ϕI

νϕ
I
ν) + 4ϕR

µϕ
I
µϕ

R
ν ϕ

I
ν

]

+
i√
8Ψ0

(ϕI
µ∂ϕ

R
µ − ϕR

µ∂ϕ
I
µ) · ∂θ +

1

16Ψ2
0

(ϕR
µϕ

R
µ + ϕI

µϕ
I
µ)(∂θ)2

}
. (3.31)

Note that the two fields ϕR
µ and ϕI

µ remain gapped, but that their gaps are no longer

the same. The lowest-energy ‘charged’ mode is ϕI
µ, with gap λI =

√
r − gψΨ0/2.

Self energy

As an example, we consider the lowest-order diagram that contributes to the self

energy for ϕI
µ, at energies well below that required to produce an excitation of the

field ϕR
µ . This is given by

Σϕ = , (3.32)

where the solid lines represent ϕI
µ and the dashed lines θ. Each vertex represents a

factor ∼ (p1 · p2)Ψ
−2
0 , where p1 and p2 are the momenta of the two θ propagators,

coming from the final term in SSSC. (All the other interaction terms involve ϕR
µ and

contribute to the decay rate only at higher energies. As in Section 3.4.1, there is also

a lower-order tadpole diagram that does not contribute to the decay rate.)

The diagram can be calculated numerically and the corresponding spectral weight

5It is straightforward to show that the Jacobian associated with the change of variables is equal
to a constant.
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Figure 3.4: The spectral weight ρϕ for the field ϕI
µ in SSC, near the gap λI , calcu-

lated numerically using the diagram in Eq. (3.32). As in Figs. 3.2 and 3.3, there is
a delta-function peak at ω = λI (which has artificially been given a nonzero width),
corresponding to the stable particle excitation. In this case, unlike in SSI, the con-
tinuum in the spectral weight occurs immediately above the peak. This is due to
the (gapless) Goldstone mode θ resulting from the broken phase symmetry in SSC.
The derivatives in the coupling between the Goldstone mode and the ϕI

µ field in SSSC

strongly suppress the spectral weight as ω → λI from above; in fact, ρϕ ∼ (ω− λI)3.

is shown in Fig. 3.4. As in SSI, there is a sharp peak (at ω = λI) corresponding

to the stable gapped ‘charged’ mode, followed at higher energy by a continuum of

excitations. In this case, however, the Goldstone mode θ causes the continuum to

begin precisely at ω = λI , albeit suppressed by a factor of (ω − λI)3.

This should be contrasted with the transition between SSI and SSC, described

below in Section 3.5.1. At the transition, the gapless modes are critical, rather than

Goldstone modes, and their coupling is not suppressed by powers of the momentum.

As a result, the spectral weight, calculated perturbatively, does not tend to zero as

ω → λ (see Section 3.5.2) and a RG analysis shows that the sharp peak at ω = λ is

in fact replaced by a weaker singularity.
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3.5 Critical properties

The critical field at the transition to SSC is the singlet pair Ψ, introduced in Sec-

tion 3.4.2. Once Ψ has been isolated, ψµ, which has no gapless excitations, can be

safely integrated out. This leaves the field theory of a single complex scalar, with

the same form6 as the action SΨ given in Eq. (3.24):

SΨ =

∫
ddx dt

(
|∂Ψ|2 + rΨ|Ψ|2 +

uΨ
4
|Ψ|4 + · · ·

)
. (3.33)

This transition is therefore of the XY universality class, with upper critical dimension

D = d + 1 = 4. (The field Ψ has engineering dimension [Ψ] = (d − 1)/2, so the

coupling uΨ has dimension [uΨ] = 3 − d.)

While the action SΨ is sufficient to describe the critical properties of the ground

state across the transition, we are also interested in the behavior single-particle

excitations, and other excitations that carry spin. Since Ψ is spinless, the critical

theory given by SΨ does not describe these. Instead, we must keep the singly-charged

excitations given by ψµ, and use the full action S ′
SSI, in Eq. (3.25).

Since ψµ has only gapped excitations, while the field Ψ is now gapless, this can

be simplified somewhat. The important excitations are those just above the gap

λ =
√

r, for which the dispersion can be replaced by a nonrelativistic form. We

define particle and hole operators so that ψµ ∼ pµ + h̄µ, giving an action SΨ + S ′
Ψ,ψ,

6Integrating out the field ψµ renormalizes the constants in SΨ. We will retain the same symbols
for the renormalized quantities, because we are interested in the critical behavior, which is described
by a fixed point of the action and is not dependent on the precise values of the parameters.
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where

S ′
Ψ,ψ =

∫
ddx dt

[
p̄µ

(
i∂t −

∇2

2mψ
+ λ

)
pµ + h̄µ

(
i∂t −

∇2

2mψ
+ λ

)
hµ

+ gψ
(
Ψ̄pµh̄µ + Ψp̄µhµ

) ]
. (3.34)

Using power counting (and taking [t] = [x] = −1, since the critical theory SΨ is

relativistic), the engineering dimension of the kinetic-energy term is [1/mψ] = −1.

The dispersion is therefore irrelevant and the particles and holes can be treated as

static impurities. This gives, finally,

SΨ,ψ =

∫
ddx dt

[
p̄µ (i∂t + λ) pµ + h̄µ (i∂t + λ)hµ + gψ

(
Ψ̄pµh̄µ + Ψp̄µhµ

)]
. (3.35)

The scaling dimension of the coupling gψ is [gψ] = (3−d)/2, so that it is relevant

for d < 3. It is therefore relevant in two (spatial) dimensions and marginal in three,

and we will consider both of these cases below. Any other interactions, including

terms quartic in pµ and hµ, are irrelevant.

In Section 3.5.1, we will treat the case d = 2 using a renormalization-group (RG)

analysis, and then, in Section 3.5.2, return to the case d = 3, where straightforward

perturbation theory is sufficient.

3.5.1 Renormalization group

For d < 3, the correlation functions of the particle and hole excitations can be found

using a RG calculation. Since the present approach is slightly different from the

standard RG, we perform the calculation using a cutoff in momentum space, which

makes the logic involved more transparent, in Section A.3 of the appendix. Here we

use dimensional regularization, which is the simplest approach from a calculational
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point of view.

We define the (imaginary-time) free propagator for the Ψ field as

GΨ
0 (k, iω) =

1

k2 + ω2 + rΨ
. (3.36)

At the critical point, the renormalized mass of Ψ vanishes; in dimensional regular-

ization, this occurs for rΨ = 0. For the pµ and hµ fields, the propagator is

Gψ
0 (iω) =

1

−iω + λ
, (3.37)

independent of the momentum.

The renormalization of the terms in the action SΨ describing Ψ is identical to

the standard analysis: the presence of the gapped ψµ excitations cannot affect the

critical behavior of the gapless Ψ field. The corresponding RG has a fixed point with

uΨ of order ε = 3 − d, and wavefunction renormalization ZΨ = 1 + O(ε2) [87].

To lowest order in the coupling gψ (or, as will subsequently be shown to be

equivalent, in an expansion in ε), the only self-energy diagram for the particle field

pµ is as shown in Eq. (3.26):

Σψ
1 (iω) =

k, iω′

(3.38)

= g2
ψ

∫

k

∫ ∞

−∞

dω′

2π
GΨ

0 (k, iω′)Gψ
0 (i(ω − ω′)) , (3.39)

where
∫

k

≡
∫

ddk

(2π)d
≡ Ωd

∫ ∞

0

dk kd−1 (3.40)

(for an isotropic integrand). There is no diagram giving a renormalization of the
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coupling gψ at this order, so this is the only diagram that must be evaluated.

Performing the integral over ω′ using contour integration gives

Σψ
1 (iω) = g2

ψ

∫

k

1

2k
·

1

−iω + λ+ k
, (3.41)

which leads to, defining z = −iω + λ,

Σψ
1 (iω) = −

g2
ψz1−ε

4π2ε
, (3.42)

plus terms that are finite as ε→ 0.

To this order, the full propagator of the particle is then given by

(Gψ)−1 = z − Σψ
1 (3.43)

= z

(
1 +

g2
ψz−ε

4π2ε

)
, (3.44)

so that renormalizing the propagator (using minimal subtraction) at real frequency

z = µ gives for the wavefunction renormalization

Zψ = 1 −
g2
ψµ−ε

4π2ε
. (3.45)

Since there are no diagrams corresponding to renormalization of the coupling, we

have Zg = 1, to this order.

We now define the (dimensionless) renormalized coupling g̃ψ, given by

gψ = 2πg̃ψ
µε/2Zg

Zψ

√
ZΨ

. (3.46)

In terms of this, we have Zψ = 1 − g̃2
ψ/ε, and the beta function for the coupling is



CHAPTER 3. BOSONS WITH SPIN 69

given by

β(g̃ψ) ≡ µ

(
∂g̃ψ
∂µ

)

gψ

= g̃ψ
(
−
ε

2
+ g̃2

ψ

)
, (3.47)

so that the fixed point is at

g̃!ψ =

√
ε

2
. (3.48)

Since the fixed point has g̃!ψ ∼ ε1/2, a perturbative expansion at this point is indeed

equivalent to an expansion in ε.

The anomalous dimension of the particle (and hole) propagator is then given by

ηψ = β
d

dg̃ψ
log Zψ , (3.49)

so that ηψ = ε/2 at the fixed point.

We have also obtained results for the next order in this expansion [70], which also

involves diagrams renormalizing the coupling gψ. The fixed point then occurs at

(g̃!ψ)2 =
1

2
ε−

(
π2

15
−

49

100

)
ε2 + O(ε3) , (3.50)

and the anomalous dimension is

ηψ =
1

2
ε+

(
π2

15
−

6

25

)
ε2 + O(ε3) . (3.51)

The Green function behaves, for ω > λ, as

Gψ(ω) ∼ (λ− ω)−1+ηψ , (3.52)
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Figure 3.5: The spectral weight ρψ at the SSI–SSC transition in d = 2 spatial
dimensions. The delta-function peak at ω = λ has been replaced by a continuum
of excitations, with ρψ ∼ (ω − λ)−1+ηψ . The numerical value ηψ = 0.91797 used in
the plot results from a dimensional expansion in ε = 3 − d, carried out to order ε2,
Eq. (3.51), and evaluated at ε = 1.

so that the corresponding spectral weight is given by

ρψ(ω) ∼ (ω − λ)−1+ηψ . (3.53)

The relativistic invariance of the original theory allows these results to be extended

to finite external momentum by the usual replacement ω →
√
ω2 − k2.

Figure 3.5 shows the spectral weight ρψ for d = 2 (ε = 1), using the numeri-

cal value from Eq. (3.51). The quasiparticle peak appearing on both sides of the

critical point (see Figs. 3.2, 3.3 and 3.4) is replaced by an incoherent continuum of

excitations.
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Higher-order response functions

A similar calculation applies to the response functions corresponding to composite

operators, such as those of the form Tµνpµhν . These operators, where Tµν is an

arbitrary matrix, correspond to excitations that are chargeless, but (assuming Tµν &=

δµν) carry net spin. Such composite operators will be represented by the following

‘insertion’:
ψν

ψµ

(3.54)

To find the critical exponent for these compound operators, we must consider

renormalization of the corresponding insertion, given (at one-loop order) by the di-

agram

H1(2iω) = k, iω′ (3.55)

= g2
ψ

∫

k

∫ ∞

−∞

dω′

2π
GΨ

0 (k, iω′)Gψ
0 (i(ω − ω′))Gψ

0 (i(ω + ω′)) , (3.56)

where all spin indices have been omitted. The integral can be performed to give

H1(2iω) = −
g2
ψz−ε

4π2ε
. (3.57)

In accounting for the spin indices, it is important to note that the exchange of

the pair interchanges the particle and hole lines and hence the indices µ and ν. This

causes the results to be dependent on the symmetry of the matrix Tµν , leading to

different exponents y2± for excitations of even (Tµν symmetric) and odd spin (Tµν
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antisymmetric). Including the two-loop results, we have, for the former,

y2+ = 1 − ε+

(
2π2

15
−

49

50

)
ε2 + O(ε3) , (3.58)

while y2− = 1 exactly for the latter [70].

In terms of this exponent, the correlation function behaves like

Πµν,ρσ(2ω) ∼ (λ− ω)−y2 . (3.59)

Of particular importance is the spectral density

Aµν,ρσ(2ω) = lim
η→0+

ImΠµν,ρσ(2ω + iη) , (3.60)

which is a delta-function at ω = λ for y2 = 1, and otherwise behaves like

Aµν,ρσ(2ω) ∼ (ω − λ)−y2 , (3.61)

for ω just above the gap λ.

3.5.2 Perturbation theory

For d = 3, the fixed point of the RG equations occurs for g̃!ψ = 0, so perturbation

theory in the coupling can be used to determine the structure of the Green function.

Using the fully relativistic form of the action to calculate the lowest-order self-energy

diagram gives, for ω2 > λ2 + k2,

ImΣψ
d=3 =

g2
ψ

8π
·
ω2 − k2 − λ2

ω2 − k2
. (3.62)
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Figure 3.6: The spectral weight ρψ at the SSI–SSC transition in d = 3 spatial
dimensions. The delta-function peak at ω = λ has been replaced by a continuum of
excitations, with the mean-field exponent ρψ ∼ (ω − λ)−1.

For comparison, the same calculation in two dimensions gives

ImΣψ
d=2 =

g2
ψ

8
·

1√
ω2 − k2

. (3.63)

(ImΣψ = 0 for ω2 < λ2 +k2 in both cases.) Note that ImΣψ
d=2 tends to a constant as

ω →
√
λ2 + k2 from above, in contrast to the cases considered in Section 3.4 above.

The same is not true in three dimensions, and we have

ImΣψ
d=3 ∼ ω −

√
λ2 + k2 . (3.64)

The corresponding spectral weight for the particle and hole excitations is shown

in Fig. 3.6. As in Fig. 3.5, the coherent quasiparticle peak is replaced by a continuum

of excitations, but the exponent is given by its mean-field value: ρψ ∼ (ω − λ)−1.
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3.6 Conclusions

In this chapter, we have considered a system of bosons with spin in a lattice potential,

which can be experimentally realized using atoms trapped in an optical lattice. Using

the Bose-Hubbard model, extended to the case with spin, it was argued that the

system allows for both spin and phase ordering. In order to have superfluidity (phase

ordering) without breaking spin-rotation symmetry, it is necessary to condense singlet

pairs of bosons. Such a condensed state, referred to as the spin-singlet condensate

(SSC), and, in particular, the transition to this state from the featureless spin-singlet

insulator (SSI), was the main focus of the chapter.

A simple mean-field theory was constructed containing the physics of these pha-

ses, by allowing explicitly for the possibility of a condensate of singlet pairs. The

phase diagram (Fig. 3.1) found by this method illustrates, as expected, that the SSC

is favored for sufficiently strong spin-dependent interactions.

We then turned to the description of the SSI and SSC phases in terms of their

low-energy excitations. Within the insulating phase, all excitations are gapped (ie,

occur at finite energy above the ground state), whereas in the condensate a gapless

Goldstone mode appears, corresponding to the broken gauge symmetry. In both

phases, there is a singly-charged, spin-carrying excitation corresponding to a single

particle or hole, giving an infinitely sharp peak in the spectral weight. This excitation

remains gapped in the SSC, where singlet pairs of particles, rather than the individual

bosons, condense.

At the transition, a calculation using the renormalization group (RG) was used to

show that this sharp peak is replaced by an incoherent continuum of excitations. This

results from the strong coupling to the gapless critical modes at the transition. Using

scaling arguments, it was shown the dispersion of the gapped particle excitation is
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irrelevant (in the RG sense) and that the corresponding response function can be

found by treating it as a static impurity. The anomalous exponents were then found

using a dimensional expansion.

While the analysis here has addressed the specific case of bosons with spin, it

should be noted that the results regarding the critical properties can be applied

directly to other paired condensates. The results rely on the existence of a gap to

single-particle excitations and on particle–hole symmetry near the transition, but are

otherwise quite general. In Section 4.5, we describe other examples where similar

results are expected.



Chapter 4

Summary and outlook

This thesis has presented theoretical analyses of two systems that might previously

have been considered purely hypothetical models, but can now potentially be realized

using techniques for manipulating ultracold atoms.

In the first system, a Bose-Fermi mixture with a Feshbach resonance, a phase

diagram was constructed using mean-field theory, showing how simple energetic con-

siderations and quantum-mechanical effects allow for a variety of phases. We then

demonstrated that these phases could be distinguished by their different Luttinger

constraints. Techniques from quantum field theory were used to describe the transi-

tions between the phases and to investigate the validity of the mean-field theory.

For the second system, a collection of bosons with spin confined within an optical

lattice, considerations of symmetry were used to classify the various possible phases

and a simple mean-field theory was constructed to serve as a guide to the phase

structure in the regime of interest. We then addressed the behavior of excitations

carrying spin at the appearance of a spin-singlet condensate. Considerations based

on the renormalization group, and a calculation using an expansion in the spatial

dimensionality, allowed the critical behavior of such excitations to be determined.

76
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I now describe some recent related experimental results, limitations of the analysis

presented above, and potential future directions for related research.

4.1 Bose-Fermi mixtures: recent experiments

In recent experiments [41], the possibility of tuning a Feshbach resonance between

fermionic and bosonic atoms has been demonstrated using a mixture of potassium-40

(fermion) and rubidium-87 (boson). These experiments also provide good evidence

for the formation of bound molecular states as the detuning is slowly reduced from

large positive values.

Unfortunately, it appears that the scattering rate between the fermionic molecules

and the residual bosonic atoms is sufficiently high that the lifetime of the molecules

within the trap is extremely short. This scattering has been omitted from the analysis

in Chapter 2.

It is nonetheless interesting to consider the appearance of these molecules, which

occurs at the line separating ‘1 FS + BEC’ and ‘2 FS + BEC’ on the right-hand side

of Fig. 2.3 (on p. 24). To the right of this line, molecules are absent and the loss rate

of atoms is low; crossing the line causes the formation of molecules and a significant

loss of atoms from the trap.

Further experiments are planned [88] to map out the boundary as a function

of detuning, temperature and the relative atomic numbers. A theoretical analysis

beyond mean-field and incorporating the different spatial-density profiles of the two

atomic species might be necessary for closer agreement with these experiments.
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4.2 Universality in quantum liquids

Recent work [25] has shown that certain properties of quantum liquids at large scat-

tering lengths, where their behavior displays universality, can be understood in terms

of renormalization group (RG) flows. An expansion in the spatial dimensionality [89],

similar to that described in Section 3.5.1, can be used to give explicit expressions for

the universal functions.

An analysis of the case of pairing between fermions has been carried out [25] using

this dimensional expansion and another technique useful for strongly interacting

systems, the ‘1/N expansion’. It would be interesting to apply these techniques to

access the universal phase diagram for Bose-Fermi mixtures.

4.3 Extensions of Luttinger’s theorem in related

systems

A feature of particular novelty in the Bose-Fermi mixture is the appearance of dif-

ferent forms of Luttinger’s theorem within the different phases. As described in

Chapter 2, this comes about because of the separate conservation laws governing the

two species of atoms. In the absence of a BEC, all of the atoms are contained within

Fermi surfaces, resulting in two separate Luttinger constraints, while the presence of

a condensate eliminates one of the two.

These results can in fact be extended to other systems involving multiple species

of fermions, and an example is provided by fermion pairing [90] (see also Section 1.1).

In the case when the densities of the two fermion species (for example, two spin states)

are unequal, a paired condensate can coexist with one or more Fermi surfaces. This

case is analogous to the phases ‘1 FS + BEC’ and ‘2 FS + BEC’ of Chapter 2, and
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a single Luttinger constraint again applies, in this case to the difference of the Fermi

surface volumes. In the absence of condensate, the two Fermi surfaces’ volumes are

separately constrained, as in the phase ‘2 FS, no BEC’.

Another, seemingly unrelated, system to which similar considerations apply is

the Kondo lattice model of the heavy-fermion compounds [91–93]. In this model,

electrons in localized f orbitals interact with those of the conduction band, and

two number constraints can again be formulated. The connection can be made

more explicit by introducing a boson to represent hybridization between the orbitals;

condensation of this boson corresponds to the standard heavy Fermi liquid with a

single Luttinger constraint.

4.4 Assumption of spatial uniformity

An important simplification that we have made throughout our analysis of both

models is to assume spatial uniformity, while in actual experiments, it is necessary

to confine the atoms using an external trapping potential. In the case of an optical

lattice, this trap is superimposed upon the lattice potential and can have significant

effects, which have been studied using numerical approaches [94,95]. The main effect

is to replace the uniform insulator state by a shell structure, where regions closer to

the center of the potential have higher occupation numbers than those further out.

Adding a trapping potential [31] to models formulated in the continuum (such

as the Bose-Fermi mixture of Chapter 2) causes the single-particle states to cease to

be pure momentum states, with relatively minor quantitative effects on the phase

structure. Luttinger’s theorem, however, now applies in the new single-particle basis,

and the momentum-space distribution has no discontinuity. It may, however, be

possible to modify the trapping potential to produce one that approximates a square
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well [90], for which the single-particle states again have well-defined momentum. This

would allow the Fermi surface to be seen directly in the time-of-flight measurements

described in Chapter 1.

4.5 Excited-state spectra at other pairing transi-

tions

The results found in Chapter 3 for pairing transitions of bosons with spin can also be

applied, with minor modifications, to the case of fermions. It was assumed through-

out, however, that single-particle excitations were gapped on both sides of the pairing

transition, and so the results are not applicable to the standard BCS transition from

a gapless Fermi liquid.

Instead, consider a band insulator, with an integer number of fermions per spin

state, per site of the lattice. At sufficiently strong attractive interactions between the

fermions, this state undergoes a transition into a paired condensate, which is directly

analogous to the SSC of Chapter 3. In both states, the single-particle excitations

remain gapped as in the bosonic case.

As can be seen in Section 3.5.1, the critical properties of the gapped excitations

are determined by diagrams with only one single-particle line. The bosonic nature

of that particle is therefore unimportant and the results for the Green function Gψ

can be applied without modification to fermions. In the case of the two-particle

response functions, the same results again apply, but with the roles of symmetric

and antisymmetric matrices Tµν reversed.

Besides atoms in optical lattices, our results also apply to superfluid-insulator

transition in electronic systems, provided that there is an even number of electrons

per unit cell. Such a situation can arise in the cuprate compounds, with a periodic
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potential generated spontaneously by charge-density-wave order. For example, recent

experiments in spin ladder compounds [96] have shown that each unit cell of the

‘stripe’ ordering pattern contains a pair of holes. The results of Chapter 3 then

predict the frequency dependence of the electron photoemission spectrum across a

superfluid-insulator transition in which the charge-density wave is present on both

sides of the transition [70].

4.6 Other transitions of spinful bosons in optical

lattices

In Chapter 3, the phase diagram of bosons with spin in optical lattices has been

investigated and shown to contain a number of phases. The transition from an

insulating state to a paired superfluid was the subject of our focus, because the

presence of (unbroken) spin-rotation symmetry on both sides of the transition leads

to interesting response functions for operators that carry spin.

More generally, the behavior of such response functions across the transitions

shown in Fig. 3.1 will depend on the order parameter governing each transition.

For example, the transition between the phases SSI and PC has an order parameter

carrying nonzero spin. The spin-excitation spectrum is then gapless at the critical

point and the standard methods of quantum critical phenomena can be used to

determine the scaling dimensions. We intend to investigate this and other cases in

more detail in future work.
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A.1 Dressed molecular propagator

In Chapter 2, we have considered the many-body physics of the model defined in

Section 2.2. In this section, we will consider an isolated molecule, and find an

expression for the renormalized (‘dressed’) molecular propagator [24, 75], involving

all orders in the coupling g.

A.1.1 Diagrammatic description

An isolated bosonic or fermionic atom in the vacuum is an exact eigenstate of

the Hamiltonian, Eq. (2.4), since the interaction terms in Hint annihilate such a

state. The same is not, however, true of a molecule, for which the process shown in

Eq. (2.64), which can take place in the vacuum, produces a correction to the prop-

agator. The dressed molecular propagator can be found using the Dyson equation,

which can be written diagrammatically for this case as

ψ
=

ψ
+

ψ

b

f
ψ

(A.1)
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where only the term in the bubble diagram Eq. (2.64) of order zero in density is to

be included.

A.1.2 Calculations

The Dyson equation Eq. (A.1) gives the relation between the reciprocals of the bare

and full Green functions

Ξ̃ψ
q = Ξψ

q −
g2

β

∑

p

Gf
q−pG

b
p ; (A.2)

compare Eq. (2.53).1

In the vacuum, both the Bose-Einstein and Fermi-Dirac factors give zero, leaving

Ξ̃ψ
q = Ξψ

q − g2

∫
d3k

(2π)3

(
1

ξb
k

+ ξf
k′−k

− iω
−

2mfmb

mψk2

)

, (A.3)

where q stands for k′ and ω, the (imaginary-time) frequency. (The second term in

the parentheses comes from renormalizing the detuning ν, as in Section 2.7.1.) The

integral can be performed analytically, to give

Ξ̃ψ
q = Ξψ

q + 2γ
√
ξψ
k′ − ν − iω , (A.4)

where γ, defined in Eq. (2.7), has been used.

This function can be continued to one that is analytic everywhere except along

the real axis, by replacing iω by z. In terms of z, the full Green function is

G̃ψ
k′(z) =

1

−z + ξψ
k′ + 2γ

√
ξψ
k′ − ν − z

. (A.5)

1The sign difference results from the fermion loop in Eq. (2.51).
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Along the real axis, the square root has a branch cut for z > ξψ
k′−ν which corresponds

to the continuum of free-atom excitations. For ν < 0, G̃ψ has a single pole at the

real value

z0 = ξψ
k′ − 2γ

(
γ −

√
γ2 − ν

)
, (A.6)

corresponding to the renormalized molecule. For ν > 0, there are no poles, since the

molecule has a finite lifetime, decaying into two atoms.

A.1.3 Spectral representation

These analytical properties are best summarized using the spectral representation

for G̃ψ,

G̃ψ
k′(z) =

∫ ∞

−∞

dx

2π

ρψ
k′(x)

x − z
. (A.7)

The spectral weight, defined in Eq. (3.23), is in this case given by

ρψ
k′(x) = Θ(x − ξψ

k′ + ν)
4γ
√

x − ξψ
k′ + ν

(
x − ξψ

k′

)2
+ 4γ2

(
x − ξψ

k′ + ν
)

+ Θ(−ν)
√
γ2 − ν − γ
√
γ2 − ν

2πδ
(((
x − ξψ

k′ − 2γ
(√

γ2 − ν − γ
))))

, (A.8)

where Θ is the unit step function and δ is the Dirac delta function. A plot of ρψ0 (x)

is shown for γ2/T0 = 2.5 × 10−4 in Fig. A.1 and for γ2/T0 = 0.1 in Fig. A.2. In

both cases, there is a delta-function peak at some x < 0 only for negative ν, and a

continuum of excitations for x > 0 for all ν (although this is too small to be visible

in Fig. A.1 for ν/T0 = −1). In the case where γ2/T0 = 2.5× 10−4, there is a narrow

well-defined peak in the spectral weight for ν > 0, corresponding to a long-lived

molecular state; it is for this reason that we refer to this case as a ‘narrow’ Feshbach

resonance. For γ2/T0 = 0.1, the same peak is much broader, corresponding to a
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Figure A.1: The spectral weight ρψ0 of the molecule in vacuum for a narrow Feshbach
resonance, with γ2/T0 = 2.5 × 10−4, for three different detunings. (The density is
zero in this plot, so T0 is an arbitrarily chosen unit of energy.) The curves have all
been evaluated at zero momentum; a nonzero momentum k would simply shift the
curves to the right by an amount k2/(2mψ). For ν < 0, there is a delta-function
peak for negative x, which has artificially been given a finite width. For all ν, there
is a continuum for x > 0, but this is too small to be visible for ν/T0 = −1.

shorter lifetime for decay into a pair of atoms.

Note that, while the expression for ρψ
k′ depends on the momentum k′, the latter

appears only in the combination x−ξψ
k′ and we have therefore kept k′ = 0 for clarity.

(We have similarly set µψ = 0, which in the present case simply corresponds to a

choice of the zero of energy.)

Weak-coupling limit

As the coupling strength is reduced, the peak shown in Fig. A.1 for x > 0 and ν > 0

becomes progressively narrower. In the limit γ → 0, the first term of Eq. (A.8)

involves the Lorentzian representation of the Dirac delta function,

lim
ε→0

ε

t2 + ε2
= πδ(t) . (A.9)
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Figure A.2: As Fig. A.1, but for a broader resonance, γ2/T0 = 0.1.

For γ small enough, the first term of Eq. (A.8) thus has weight only near x = ξψ
k′,

where x − ξψ
k′ + ν can be replaced by ν. The limit of vanishing γ is therefore given

by

lim
γ→0

2γ
√

x − ξψ
k′ + ν

(
x − ξψ

k′

)2
+ 4γ2

(
x − ξψ

k′ + ν
) = πδ(x − ξψ

k′) , (A.10)

so that the spectral weight becomes, in this limit,

ρψ
k′(x) → Θ(x − ξψ

k′ + ν)δ(x − ξψ
k′) + 2πΘ(−ν)δ(x − ξψ

k′)

= 2πδ(x − ξψ
k′) ,

(A.11)

which, with Eq. (A.7), gives the free propagator for the bare molecule, as used in

Section 2.6.
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A.2 Stability against phase separation

The results of Chapter 2 rely on the assumption that the ground state is always a

homogeneous mixture of bosons, fermions and molecules. In this section, we address

the question of whether the Bose-Fermi mixture is stable to separation into multiple

regions with different densities. We use the mean-field results of Section 2.4. and,

for simplicity, the temperature will be taken as zero throughout.

Note that we are only allowing for instabilities allowed by the explicit model H,

given in Eq. (2.4). Other interaction terms that we have omitted may also lead to

instabilities; see Section 4.1.

A.2.1 The compressibility matrix

To establish the stability of the system against separation into two coexisting fluids,

we evaluate the compressibility matrix [97], defined by

K ′
αβ = −

∂2Φ

∂µα∂µβ
, (A.12)

for α, β ∈ {f, b}.

We now define the (canonical) free energy F (Nf , Nb) by a Legendre transforma-

tion,

F (Nf , Nb) = Φ(µf , µψ) + µfNf + µbNb , (A.13)

where Nf and Nb are the total number of Fermi and Bose atoms, respectively. (Note

that the full fermion and boson numbers, which are conserved by the Hamiltonian, are

used.) The compressibility matrix K ′ is then the inverse of the Hessian of F , so that

complete stability against phase separation requires that K ′ be positive semidefinite.

It is in fact easier to work with the matrix Kαβ, given by the same expression,
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Eq. (A.12), but with α, β ∈ {f,ψ}. This amounts to a simple (but not orthogonal)

change of basis; it is sufficient (and necessary) for K ′ to be positive semidefinite that

K be the same.

We begin with Eqs. (2.19) and (2.20), and use Eq. (2.26) to determine the implicit

dependence of ϕ on the chemical potentials. We must then take second derivatives

with respect to the two chemical potentials to find the compressibility matrix. In

the presence of a condensate, this leads to an expression

Kαβ = K(0)
αβ +

rαrβ

λ̃
, (A.14)

where K(0)
αβ is the matrix of second derivatives, evaluated at fixed ϕ and rα is a

function whose form will not concern us here.

The denominator of the second term is

λ̃ = λ+ g4

∫ kΨ
0

kF
0

dn(k)

W 3
k

−
1

2
g4
(
zF + zΨ

)
, (A.15)

where

zx =
mψmf dn/ dk

k
(
ξf
k + ξψk

)(
mfξf

k + mψξψk

)

∣∣∣∣∣∣
k=kx

0

(A.16)

and

Wk =

√(
ξf
k − ξψk

)2
+ 4g2ϕ2 . (A.17)

When λ̃ goes through zero, the determinant of K diverges, so that the Hessian of

F becomes singular, signifying that one of its eigenvalues vanishes. This marks the

onset of instability; we conclude that stability requires that λ̃ > 0.

When there is no condensate, such as in the phase labeled ‘2 FS, no BEC’ in

Fig. 2.3, it is found that the system is always stable.
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A.2.2 Physical interpretation

The obvious physical interpretation of λ̃ is that it represents the resultant interaction

between the bosons, coming partly from the explicit term λ in the Hamiltonian,

Eq. (2.4), and partly from the interaction induced by coupling to the fermions. This

induced interaction can alternatively be found directly by continuing the expansion

in Eq. (2.48) to fourth order in b and b̄.

A resultant interaction of the form of Eq. (A.15) is familiar from the case where

the molecular degrees of freedom are not included explicitly [98,99]. This corresponds

to our model for ν , 0, when only virtual molecules are formed and the coupling

term ψ†fb in the Hamiltonian can be replaced by a boson–fermion scattering of the

form b†f †fb. The induced interaction then comes from the diagram

b
b

b f

f b

, (A.18)

which gives a term proportional to the density of states at the Fermi surface (at

T = 0).

In this case, the induced interaction is always attractive, as can be shown by a

simple physical argument. For experimentally accessible parameters, however, it is

not strong enough to overcome the intrinsic repulsion between the bosons, so that

the phase is stable [99]. In our notation, the boson–fermion scattering is suppressed

by a factor of 1/ν, so that the induced interaction falls off as 1/ν2. For ν - 0, a

similar picture is obtained, with the atomic and molecular fermions exchanging roles.

In the case of intermediate ν, the induced interaction is no longer so heavily sup-

pressed, but it is also no longer the case that it is always attractive. The physical

picture is clarified in this case by rewriting the action in Eq. (2.45) in terms of the
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fermions F and Ψ introduced in Section 2.4.1. These fermions are defined so that

there is no coupling term in the action linear in ϕ = 〈b〉; instead, the lowest order

interactions have the form F̄ ϕ2 F and F̄ ϕ4 F , and the same for Ψ. The former

reproduces exactly the diagram in Eq. (A.18) above, with f replaced by F and Ψ:

physically this is a boson–fermion scattering inducing an attractive interaction be-

tween the bosons, as described above. This accounts for the final term in Eq. (A.15).

Note that the exclusion principle requires the momenta of the two fermion lines to

be exactly at the Fermi surface, leading to zx being evaluated at kx
0 .

The term F̄ ϕ4 F produces the diagram

ϕ
ϕ

ϕ
ϕ

F,Ψ

(A.19)

which also represents an induced boson–boson interaction and accounts for the inte-

gral in Eq. (A.15). Since Wk ≥ 0, it is always repulsive and represents the fact that

the fermion energy is lowered by a uniform distribution of bosons.

A.2.3 Results

The sign of the resultant interaction λ̃ must be calculated numerically to determine

whether the system is indeed stable. Using the parameters from Fig. 2.3, stability

is found everywhere within the plot for cases (a) and (b). In case (c), where the

coupling g is larger relative to λ, there is a region of the diagram where the phase is

not stable; this is shown in Fig. A.3.

For large |ν| the attractive coupling from the diagram in Eq. (A.18) is suppressed

by a factor 1/ν2 as described above, so that the system becomes stable. (The region

for large negative ν is not visible on this plot.) For intermediate values of |ν|,
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Figure A.3: The phase diagram at T = 0, as in Fig. 2.3, with couplings γ2/T0 =
2.0 × 10−2 and λ2(mb)3T0 = 2 × 10−3. The other parameters, and the labels for the
three phases, are the same as in Fig. 2.3. The region where the phase is unstable, as
determined in Section A.2, is indicated.

the induced coupling becomes larger than the intrinsic coupling, λ, and it is the

competition between the two diagrams in Eqs. (A.18) and (A.19) that determines

the stability.

Stability is therefore favored by a higher Nf/Nb, since this increases kΨ0 and hence

the phase space for the diagram in Eq. (A.19). The other diagram, Eq. (A.18),

increases more slowly with kΨ0 since the internal fermion lines are restricted to be at

the Fermi surface. For intermediate |ν| and very small Nf/Nb, on the order of 10−3,

the intrinsic interaction once more dominates the induced and the system is stable.

This region is too small to be seen in Fig. A.3.

An analysis similar to that carried out in Ref. [99] could be performed to deter-

mine the stabilities of the alternative, mixed phases. It should be noted, however,

that, as can be seen in Fig. A.3, the boundaries between the three phases are not

disturbed at the parameters we have considered.
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Furthermore, the analysis above shows that increasing the coupling g (or equiv-

alently γ2/T0) beyond the value used in Fig. A.3 would increase the value of |ν| re-

quired for stability at small Nf/Nb (ie extend the unstable region to larger |ν|), but

would not decrease the stability at intermediate |ν|. This follows from the fact that

the latter is determined by the competition between the two diagrams in Eqs. (A.18)

and (A.19), whose relative magnitude does not depend on g. We therefore expect

that, for a broad Feshbach resonance, there remains a large region of stability for

intermediate values of |ν|, similar to that in Fig. A.3.

A.3 Momentum cutoff RG

In Section 3.5.1, the scaling dimensions of the particle and hole excitations across

the SSI–SSC transition were found using dimensional regularization. Here, we will

perform the same calculation using a momentum cutoff. (The scaling dimension of

the compound operator pµhν can be found by an analogous calculation.)

Our approach will be to calculate the correlation functions of the gapped pµ and

hµ excitations, evaluated for real frequencies just above the gap λ. (Imaginary fre-

quencies will be used as a formal device when calculating the diagrams, followed by

analytic continuation.) We will find that there is a rescaling operation that is a sym-

metry of the theory and relates correlation functions evaluated at one frequency to

those evaluated at another, as in a standard RG calculation. In this case, however, it

is necessary to rescale relative to the gap energy λ, rather than the zero of frequency.

A.3.1 Self-energy renormalization

As a result of particle conservation, there is no one-loop diagram contributing to the

renormalization of the interaction vertex.
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The only one-loop diagram for the self energy of the particle (or hole) excitation

is given in Eq. (3.38):

Σψ
1 (iω) = g2

ψ

∫

k

∫ ∞

−∞

dω′

2π
GΨ

0 (k, iω′)Gψ
0 (i(ω − ω′)) , (A.20)

where
∫

k

≡
∫

ddk

(2π)d
= Ωd

∫ Λ

0

dk kd−1 (A.21)

(for an isotropic integrand), with Λ the cutoff. Since the dispersion of pµ and hµ is

irrelevant, the diagram is calculated with the external momentum equal to zero.

Working at criticality, where we set rΨ = 0, this gives

Σψ
1 (iω) = g2

ψ

∫

k

1

2k
·

1

−iω + λ+ k
, (A.22)

after performing the integral over ω′ by contour integration. With the definition

z = −iω + λ, we have

Σψ
1 (iω) = g2

ψ

Ωd

2

∫ Λ

0

dk
kd−2

k + z
. (A.23)

Using Dyson’s equation, the inverse of the propagator is therefore

Gψ
1 (iω)−1 = z −

g2
ψΩd

2

∫ Λ

0

dk
kd−2

k + z
+ O(g4

ψ) . (A.24)

Taking the derivative with respect to Λ and expanding in powers of z/Λ gives

Λ
∂G−1

1

∂Λ
= −

g2
ψΩd

2
Λd−2 +

g2
ψΩd

2
zΛd−3 + · · · . (A.25)

The first term is independent of ω and so corresponds to a renormalization of λ, which

is of no interest to us. The second term corresponds to wavefunction renormalization



APPENDIX 94

and is the only relevant contribution from this diagram.

Since there is no diagram giving a renormalization of the coupling gψ, a reduction

in the cutoff from Λ to (1−δ)Λ (with δ infinitesimal) can be compensated by replacing

the action SΨ,ψ by

SΨ,ψ + δSΨ,ψ =

∫
ddx dτ

{(
1 + ĝ2

ψδ
) [

p̄µ (∂τ + λ) pµ + h̄µ (∂τ + λ) hµ

]

+ gψ
(
Ψ̄pµh̄µ + Ψp̄µhµ

)}
. (A.26)

To simplify this expression slightly, we have defined the dimensionless quantity2

ĝψ = gψΛ−(d−3)/2
√

Ωd/2.

A.3.2 Partition function

This notion of ‘compensating a reduction in the cutoff’ can be made more precise by

considering the partition function with discrete sources:

ZΛ(Ji,ki, zi, gψ) =

∫

Λ

D2pD2h exp−
{∫

ω,k

(p̄µzpµ + h̄µzhµ)

+ gψ

∫

ω1,k1

∫

ω2,k2

[
Ψ̄(k1 − k2, i(ω1 − ω2))pµ(k1, iω1)h̄µ(k2, iω2) + c.c.

]

+
∑

i

J̄iµ[pµ(ki,λ− zi) + h̄µ(ki,λ− zi)] + c.c.

}
, (A.27)

from which correlation functions can be found by successive differentiation with

respect to Ji and J̄i. (We are concerned with ψµ, so integration over Ψ, with the

appropriate measure, is implied.) The subscript Λ on the integral sign denotes that

a cutoff Λ should be used.

2Note the similarity to the corresponding definition in Eq. (3.46), since Ω−1

3 = 2π2.
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Using this definition, Eq. (A.26) can be written

ZΛ(Ji, zi, gψ) =

∫

(1−δ)Λ

D2pD2h exp−
{(

1 + ĝ2
ψδ
) ∫

ω,k

(p̄µzpµ + h̄µzhµ)

+ gψ

∫∫

ω,k

(
Ψ̄pµh̄µ + c.c.

)
+
∑

i

J̄iµ[pµ(λ− zi) + h̄µ(λ− zi)] + c.c.

}
, (A.28)

which expresses the fact that the partition function, and hence all correlators, are

unchanged by a shift in the cutoff and a compensating change in the action. A

condensed notation has been used, where the momentum dependence is suppressed

throughout.

To bring this closer to the form of Eq. (A.27), we rescale the fields pµ and hµ

within the functional integral. By doing so, we can return the coefficient of the

quadratic term to unity, giving

ZΛ(Ji, zi, gψ) =

∫

(1−δ)Λ

D2pD2h exp−
{∫

ω,k

(p̄µzpµ + h̄µzhµ)

+ gψ
(
1 − ĝ2

ψδ
) ∫∫

ω,k

(
Ψ̄pµh̄µ + c.c.

)

+
∑

i

(
1 −

ĝ2
ψ

2
δ

)
Jiµ[pµ(λ− zi) + h̄µ(λ− zi)] + c.c.

}
. (A.29)

By comparison with Eq. (A.27), we can write

ZΛ(Ji,ki, zi, gψ) = Z(1−δ)Λ((1 − ĝ2
ψδ/2)Ji,ki, zi, (1 − ĝ2

ψδ)gψ) . (A.30)

A.3.3 Rescaling

To return to the original theory, with cutoff Λ, we now perform a rescaling of all

variables according to their engineering dimensions, with [τ ] = [x] = −1. Since we
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are working at the critical point of Ψ, we have

Ψ(x/b, τ/b) = bXΨ(x, τ) , (A.31)

where X is the scaling dimension of the field Ψ. By dimensional analysis of Eq. (3.33),

the engineering dimension of Ψ is seen to be [Ψ] = (D − 2)/2 = (d − 1)/2 and one

would naively expect X = [Ψ] = 1 − ε
2 . This expectation actually happens to be

correct (to order ε), since there is no wavefunction renormalization of SΨ to one-loop

order.

Performing this rescaling leads to

ZΛ(Ji,ki, zi, gψ) = ZbΛ(b1+d/2Ji, bki, bzi, b
1−Xgψ) , (A.32)

after making the substitutions ψ′(k,λ − z) = bd/2+1ψ(bk,λ − bz) and λ − iω′ =

(λ− iω)/b.

This can now be combined with Eq. (A.30) to give

ZΛ(Ji,ki, zi, gψ) = ZΛ((1 − ĝ2
ψδ/2)[1 + (1 + d/2)δ]Ji, (1 + δ)ki, (1 + δ)zi,

(1 − ĝ2
ψδ)[1 + (1 − X)δ]gψ) . (A.33)

This gives a relationship between correlators in the same theory but at different

frequencies.

The fixed point of Eq. (A.33) occurs when

g!ψ = [1 − (ĝ!ψ)2δ][1 + (1 − X)δ]g!ψ , (A.34)
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so that

ĝ!ψ =
√

1 − X =

√
ε

2
, (A.35)

which should be compared with Eq. (3.48).

A.3.4 Renormalized propagator

At the fixed point, Eq. (A.33) becomes

ZΛ(Ji,ki, zi, g
!
ψ) = ZΛ((1 + yδ)Ji, (1 + δ)ki, (1 + δ)zi, g

!
ψ) , (A.36)

where y = 1 + d/2 − (ĝ!ψ)2/2 = 5/2 − 3ε/4. Taking derivatives with respect to Jµ

and J̄ν gives

〈
ψ̄µ(k1,λ− z1)ψν(k2,λ− z2)

〉
=

(1 + 2yδ)
〈
ψ̄µ((1 + δ)k1,λ− (1 + δ)z1)ψν((1 + δ)k2,λ− (1 + δ)z2)

〉
. (A.37)

Using the conservation of frequency and momentum, we can define the propagator

Gψ by

〈
ψ̄µ(k1,λ− z1)ψν(k2,λ− z2)

〉
= (2π)d+1δd(k1 − k2)δ(z1 − z2)δµνG

ψ(k1,λ− z1) .

(A.38)

Using this definition, Eq. (A.37) becomes

Gψ(k,λ− z) = (1 + y′δ)Gψ((1 + δ)k,λ− (1 + δ)z) , (A.39)

with y′ = 2y − d − 1 = 1 − ε/2.
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Restricting attention to k = 0 gives

Gψ(0,λ− z) = (1 + y′δ)Gψ(0,λ− (1 + δ)z) , (A.40)

which can be iterated to give Gψ(0,λ − z) ∼ z−1+ε/2. Equivalently, after analytic

continuation to real frequencies, we have

Gψ(0,ω) ∼ (λ− ω)−1+ε/2 , (A.41)

which agrees with Eq. (3.52).
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