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We apply the finite-temperature renormalization gréB®) to a model based on an effective action with a
short-range repulsive interaction and a rotation-invariant Fermi surface. The basic quantities of Fermi-liquid
theory, the Landau function, and the scattering vertex are calculated as fixed points of the RG flow in terms of
the effective action’s interaction function. The classic derivations of Fermi-liquid theory, which apply the
Bethe-Salpeter equation and amount to summing direct particle-hole ladder diagrams, neglect the zero-angle
singularity in the exchange particle-hole loop. As a consequence, the antisymmetry of the forward scattering
vertex is not guaranteed and the amplitude sum rule must be imposed by hand on the components of the
Landau function. We show that the strong interference of the direct and exchange processes of particle-hole
scattering near zero angle invalidates the ladder approximation in this region, resulting in temperature-
dependent narrow-angle anomalies in the Landau function and scattering vertex. In this RG approach the Pauli
principle is automatically satisfied. The consequences of the RG corrections on Fermi-liquid theory are dis-
cussed. In particular, we show that the amplitude sum rule is not y&@lL63-182€08)02403-5

I. INTRODUCTION Refs. 12—20 and references thejeim both approaches it
has been established, for models with reasonable fermion-
In 1956-1957 Landau formulated his theory of Fermifermion effective interactions, that the Fermi-liquid phase is
liquids! The original phenomenological formulation of this stable, whereas adding gauge-field interactions may drive the
theory is based on an expansion near the ground state of tisgstem towards a hon-Fermi-liquid regime, or may result in a
energy functional in terms of variations of the distribution marginal Fermi-liquid phase, like for composite fermions at
function (bosonic variables Later, Pomeranchuk derived the the half-filled Landau level.
thermodynamic stability conditions for this functiorfal. The RG analysis of FLT presented here and in our previ-
Much effort has been dedicated, including by Landauous work!® like other such analyses already published, starts
himself3 to vindicate some intuitive assumptions of Landaufrom a low-energy effective action with a margin@h the
and elucidate the foundations of the phenomenologicaRG sensg short-range interaction. However, contrary to
Fermi-liquid theory(FLT). The field-theoretic interpretation other works on the subject, our finite-temperature RG ap-
of the Landau FLT has reformulated the key notions andoroach revealed that, in the Landau channel of nearly for-
basic results of the phenomenological theory entirely inward scattering quasiparticles, the effective interaction flows
terms of the fermionic Green functions technida®.The  with successive mode eliminations towards the Fermi sur-
demonstration of the equivalence of the field-theoretic resultface, even in the absence of singular or gauge interactions. In
obtained from the solution of the Bethe-Salpeter equatiommther words, the action’s interactigooupling function does
with the results obtained from the functional expansion andot stay as a purely marginal under the RG transformation,
from the Boltzmann transport equation describing the collecsince itsg function is not identically zero. From the RG flow
tive modes, has become a textbook topit.The field- equations the standard FLT results have been recovered.
theoretic approach provided not only a solid basis to phe- It was also pointed out, and elaborated later in more detail
nomenology, but also a potentially efficient method toby one of us together witN. Dupuis in Ref. 20, that the bare
calculate the phenomenological parameters of FLT from firstnteraction function of the low-energy fermion effective ac-
principles. tion cannot be identified with the Landau interaction func-
Current interest in non-Fermi-liquids ii>1 inspired a tion. The latter, along with other observable parameters of a
new wave of efforts aimed at clarifying the foundations of Fermi liquid, should be calculated as a fixed point of the RG
the Landau FLT and the mechanisms of its breakdown. Leequations® Let us briefly give two arguments for this. First,
us mention only two approaches, which can be seen as sadentifying the Landau function with the effective action’s
phisticated modern counterparts of the two classic formulabare interaction is inconsistent with other standard FLT re-
tions of the Landau FLT. A bosonized treatment of Fermisults, due to the role of Fermi statistics. Indeed, in a stable
liquids has recently been develop@ih the framework of ~Fermi liquid, the well-known relationship between compo-
Haldane’s formulation of higher-dimensional bosonizafibn. nents of the scattering amplitudd’j and of the Landau
At about the same time, the renormalization-gro(RiG) interaction function F)), i.e., I''=F,/(1+F,), cannot sat-
technique has been applied to interacting fermiond3nl isfy the Pauli principle for the amplitudghe amplitude sum
with models based on fermionic field effective actidsee rule) if F has the symmetry properties of the action’s bare
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interaction. (For the explanation of this point see Sec. V problem is eliminated in a natural manner.

below). Second, identifying the Landau function with the  The paper is organized as follows. Sections Il and Ill are
bare interaction is inconsistent with the low-energy effectiveintroductory: we define the effective action of the model and
action method itself, in the way it is applied to condensedthe coupling functiongthe bare interactionand vertices to
matter problems. Namely, at the starting point of the ana|ybe calculated in the Landau interaction channel. In Sec. IV,
sis, the bare parameters of the effective action, including th&hich is rather technical, the one-loop RG equations for the
interaction, are regular functions of their variabtéd®It is ~ two-dimensional case are derived. Section V explains some

known, however, that this is not the case even for parametef¥ the weak points of the standard FLT results and argues for

of a normal Fermi liquid. For instance, the scattering ampli-their partial revision. In Sec. VI we give a numerical and

tude and the Landau function are two distinct limits of the@PProximate analytical solution of the coupled RG equations

four-point vertex in the Landau channel when energy-for spinless fermions. In Sec. VII we present and discuss our

momentum transfer goes to zero. The nonanalyticity of thdesults for the Landau function and the scattering vertex cal—
forward scattering vertex appears in its dependence both drplated at different temperatures. In Sec.. \(Ill_we relate this
the small energy-momentum transfer and, due to the antStudy to the standard treatment pf Fermi-liquid theory. Thg
symmetry(crossing symmetjy on the small angles between conseéguences of the RG corrections on FLT results are dis-
incoming (outgoing particles lying near the Fermi surface. CUSsed.

This contradiction becomes flagrant if one couples the fermi-

onic action with gauge fields since, as shown by other Il. THE MODEL

methods>! the Landau function for the marginal Fermi liquid
of composite fermions at the half-filled Landau level devel-
ops a S-function singularity in the forward directioné(
=0). Such behavior of the Landau function is related to th
divergence of the quasipatrticle’s effective mass, according

We apply the Wilson-Kadanoff renormalization scheme
in the framework developed earlier for a model with
SU(N)-invariant short-range effective interaction and rota-
ion invariant Fermi surface in spatial dimensiothis3 at

tﬂ . 9 . .
: . nite temperaturé® In order to make the discussion as clear
the theory of Halperin, Lee, and Read for the halt-filled I‘an'as possible, we concentrate in this work on two-dimensional

2 .
?naunlevterj (Eer?dalsof F;eg ?13 Scr)l,nc?rtr)llng rbackl t:)ir?turr arﬁu;l i 2D) spinless N=1) fermions. This simple model has nev-
ents, the Landau function cannot be a regular Interaction 13,155 gl the necessary qualities to illustrate our key

theT?]f;e;:it%/eO?;:rtlé)n raetsg]rst iigln?s Iiv(\)II(;]ftO?(; tgen;(ihinggzg' oints and to demonstrate the new features brought by the
ELT results have Seen recover):ad by the I§G appréddhe G analysis of a Fermi liquid. In this case the RG equations
latter would loose its appeal if it did not provide a construc-talke their_simplest form, since only the antisymmetric
tive method for calculating the Fermi liquid’'s parameters momentum-frequency-dependent parts of the interaction and
‘vertices are presetithey were labeled by in Ref. 19.

';li-\tltlas ('; ZSP?Ci'r?Ilyt;]:gpogsvrgrf%?arkgggg lt% n%frrg Crgr?f?:)f' The partition function in terms of Grassmann variables is
pplying P P given by the path integral

strongly correlated fermion systems. In this work we explic-

itly derive the Landau function and the forward scattering _

vertex from the short-range effective bare interaction. We do zZ= J Dy Dype™* S, (1)

it in the one-loop RG approximation, which takes into ac-

count contributions of the diredZS) and exchangeZS')  wherein the free part of the effective acttén'®is

graphs. This enables us to reveal singular features of the

;gg%%lj:gj)rTCtlon and scattering vertex in the forward direc Sy= fl) D[ 0y + p— e(K) (D). )
An equally important goal of this work is to resolve the

old problem of FLT with the Pauli principle. In its treatment

of FLT, the field-theoretic approach encountered a very 1¢ dK.

subtle problem caused by Fermi statistics of one-particle ex- f =_ ' E (33

citations and by the necessity to provide both stability for the i Bl (2m)?

Fermi liquid and a solution for the two-particle vertex that

meets the Pauli princip&:” The problem was “settled” by (h=(Kj,w), (3b)

imposing the amplitude sum rule on the components of the . . . .

Landau quasiparticle’s interaction function. The phenomeno\-Nhere'g IS th_e inverse temperaturﬁ,thg chemical pote_ntlal,

logical FLT is spared from this problem partially by the way & the ferm!on Matsubara frgqugnues. We g=fi=1.

it is formulated, partially because it says nothing about theThe interacting part of the action is

quasiparticle scattering amplitudeé#. detailed discussion of 1

this problem, which lies at the heart of the present study, is Sini="— —f (1) p(2)p(3)4(4)

postponed until Sec. V, where it will be put in contact with 4) (1234

the present RG_ approaghThe same problem arose in our XTAo(1,2:3,4) B(2m)28(1+ 2— 3— 4), (4)

previous work® in the form of a “naturalness problent® of

the effective action: the effective action had to be “fine whered(- - -) stands for a Dira@ function for the momenta

tuned” in order for the scattering amplitude to meet the Pauliand a Kronecker delta for the Matsubara frequencies. The

principle. We will show that if quantum interference of the function I'*o is antisymmetric under the exchangk—¢2)

direct and exchange processes is taken into account, the&d (3—4). The bare cutoffA, of the action is introduced

We introduced the following notation:
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such that each vectd; in the effective action lies in a shell 0=3-1=(Q,Q) (9)
of thickness 2 around the Fermi surface. We denote this . :

shell, i.e., the support of the effective action in the momen-s’u_(j;h :Ea‘Q<KF (tﬂnll’z a bl(zsgnKmi: i/lstsurt])ara;ireﬁueﬂcme
tum space, aétﬁo. The Matsubara frequencies are allowed toV'''© 1€ MOMENLUN®; aSK; =g+ K; Wherekg fies on the

¢ _ Fermi surface anét; (|k;|<A;) is normal to the Fermi sur-
run over all available values. We presume that the density i

icles in th tom is kept fixed Yace at the poinK . .
particies in the system 1S Kept Tixed. . . In order to calculate physical quantities, we must perform
The one-particle excitations are linearized near the Ferm

- i 4n average with the effective actig®,4), i.e., we must inte-
surface, and, therefore, the bare one-particle Green’s func- o . o
! : : grate out the “slow” modes, which lie insid€ , in the
tion for the free part of actiofy, is 0

corresponding path integrals. This is done in Wilson’s RG
Ggl(Kl,w1)= iw+p—e(Ky)~iw—vp(Ki—Kg) approach by successively integrating the high-energy modes
in Cio, i.e., by progressively reducing the momentum cutoff
from A to zero. We define a RG flow parametesuch that
In the integration measure only the relevant part is kept: the cutoff at an intermediate step At)=Aqe"". Integrat-
ing over the modes located between the cutdfig) and
Ag (27 Ao (27 A(t+dt), a recursion relatiorin the form of a differential
J dK=J7A (KF+k)dkd9*KFJ dkde. equation can be found for the various parameters of the
0 6) action. This equatioror set of equationsis then solved
from t=0 to t—o and this yields the fixed-point value of

Ei(l)l_UFkl. (5)

0 ~ApJo

The temperaturd is restricted by the condition the parameters of the action. The physical quantities are then
obtained from these parameters, e.g., by functional differen-
T<vgAp. (7)  tiation if they are source fields.

o _ _ A considerable simplification of this problem comes from

The relevant physical information can be obtained bythe scaling analysis of the low-energy effective action using
studying interactions of particles scattering with small mo-the smallness of the scalé/Kg.'® A tree-level analysis
mentum and energy transfewe call it theLandau channgl  shows that the only part of the coupling functibrt, which
and those with nearly opposite incomirigutgoing mo- s not irrelevant, couples two incoming and two outgoing
menta(the BCS channgl Since we are interested in the re- particles with the same pairs of momental(,K2) lying on
pulsive case, we presume that stability conditions againshe Fermi surface. The dependence of the coupling function
Cooper pairing are fulfilled, and we concentrate on the Lang, k; and on the frequencies; is irrelevant and can be

dau channel. omitted. When the initial cutoff\, satisfies condition(7),
we can unambiguously define laare coupling function,
Ill. COUPLING FUNCTIONS AND VERTICES which depend®nly on the angle between the incomitor

IN THE LANDAU CHANNEL outgoing momenta. This bare coupling function is given by

the vertexI'*0(1,2;Q) in the zero transfer limit Q=0)

Let_ us cla_rlfy the meaning of the quantities entering thewhere the two external momenta are put on the Fermi surface
effective action. Consider the vertex functidi(1,2;3,4),

constructed from the connectgi tw_o—particle Green’s funcg?gpg]‘fdef)r(;?;ng:)aeg)g encies asg,,= T (the latter will be
tion G5(1,2;3,4) = —{((1) (2) ¢(3) ¥(4) ). by amputation

of the external legs. Heré - -) means an average with the 1o Al L2

effective action(2,4) which contains only “slow” modes, U(Kg Kp)=5vel"o(Kg KE:0), (10)
lying in the supporlcio. Once auxiliary source fieldavith

momenta inside the Shfmzz\o) coupled to the action’s Grass- wherevp=Kg/7v¢ is the free density of states at the Fermi

_ level. Each vectoiK may be specified by a plane polar
mann fields{y,} have been introduced, such connectedangleg,. The functionU is an even function of the relative
n-particle Green’s functions can be defined as functional deangle ¢,, betweenkt and K2. The only remnant of the
rivatives of the source-dependent generating functiGhAt. antisymmetry off Ao (the Pauli principlgis the conditiort?
tree-level, I'(1,2;3,4) | yee=1"°(1,2;3,4). The bare vertex

"o [in the sense of the effective acti¢?,4)] can be defined U(0)=0. (11)

in the same fashion d8, with the difference thaf *o is the 1o _
As shown earliet? the tree-level picture becomes more

result of averaging over the “fast” modeghose outside : oL UiEs T
complicated when we carry out the mode elimination inside

Ci ) with the microscopicaction. Contrary td", the vertex ’ i - ’

N . . o C4 . It turns out that simply discarding the frequency depen-
I'*0is not a physical observable, since it is not the result Ofdence of I'* and identifying the momentaK :— K3
an integration over all degrees of freedom. 9 TR

2 4 . . .
Taking into account momentum and frequency conserval'F—KF is an ill-defined procedure when the running cutoff

tion, we use the following notation for the nearly forward A Pecomes of the order of the temperatusg 4 ~T). The
scattering vertex: ambiguity arises when calculating the one loop-contribution

from, say, the zero-soun@$S) graph, since this contribution
I'(1,2:1+0,2- Q)=I'(1,2:Q), (8  is not an analytic function of the transfeat 9=0.>"*To
describe correctly the parameters of the Fermi liquid, one
with the transfer vector should retain the dependence of the coupling function
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! 3 FIG. 2. If|Q’|>2A, the intersectiorishadedl of the supports of
BCS 112 K5 andKs— Q' are disconnectet). If |Q’|<2A, this intersection

forms a connected argh). Note that the RG flow is governed by
) 4 the boundaries of this intersection, not by their interior directly.

FIG. 1. The three diagrams contributing to the RG flow at one

loop (Peierlg, and BCS. The BCS graph contribution preserves

the antisymmetry of the vertex, while those of the ZS and
Arvl L2, ZS' graphs separately do not: only their combined contribu-
(K Kg:Q) on the energy-momentum transfel. Re- o (7S+75') is antisymmetric under exchange of incom-
taining thlsQ—dependence allows the calcu_la_tlon of responséng (or outgoing particles. To respect the Pauli principle, it
functions or collective modes of the Fermi liqufitiF orthe  s'therefore necessary to take into account both the ZS and
purpose of the %resent study we define two coupling funczg' contributions to the RG flow. In this work we discard
tions ("% and I'?), depending on the order in which the e symmetry-preserving contribution of the BCS graph to
limits of zero momentum @) and energy transfelY) are  the RG flow of the vertices in the Landau channel. Thus, we
taken: leave out the interference neé 7 of the Landau channel
with the BCS channel, which leads to the Kohn-Luttinger
effect?®

QP = Ii
(622 (LILnO[F(Glg,Q)IQ:OI], (123 The formal analytic expression of the ZS graph is
[%(619)= lim [['(612,9)|q=0]- (12b
a0 zs-- | rasiros-ore-02s2-9
(5

We use dimensionless vertices by including in their defini-
tion the factorivg, as in Eq.(10). The functionsI'®%( )
are even functions of the angle We will not explicitly
indicate their dependence on the cutaff unless necessary.
We will indiscriminately call these functiongunning ver-
tices.

Let us summarize: The effective action is defined on th
supportCi0 with the bare coupling functio*°, which is

presumably an analytic function of its variables and is mar

gipa} at ztree level. While performing the mode elimina.tion ready taken into account in E€L3). The phase space restric-
within CAo’ we need to calculate the flow of the two vertices tions are satisfied automatically for aly; e C3 in the limit

I'? and I'. The bare coupling™*° has an unambiguous g_,0. WhenK ; andK, lie on the Fermi surface an@—0,
meaning only as the common initial point of the RG flow the right-hand side of Eq13) contains both vertices of type
trajectories ofFQQand FQ - The fixed point valued % (12) with K2 running freely around the Fermi surface during
EFQ_(t:‘”) andI"™* =I""(t=c°) are physical observables: {he angular integration. Thus, for this graph, all the phase
the first one is th& limit of the vertexI" (as defined at the space is available for integration. The summation avenf
beginning of this sectignand is the scattering amplitude of he Green’s functions product on the right-hand side of Eq.

quasiparticles with all four external momenta lying on the(13) when Q— 0 gives zero in theé)-limit, and thus
Fermi surface. The second one is the unphysical lifiit (

limit) of the vertexI' and is identified with the Landau
function? I (0, 6,)
ot

XG(5G(5—9), (13

wherein the transfer vect@® is given by Eq.(9). To calcu-
date the contribution of this graph to the RG flowIof and

FQ, we only need to keep the dependence on the momenta
Kg and on the transfe@ in the vertices on the right-hand
'side of Eg.(13). Momentum and energy conservation is al-

=0. (14
IV. RG EQUATIONS IN THE LANDAU CHANNEL 28
There are three Feynman diagrams contributing to the RGhe Q limit of the same product gives a factor
flow at the one-loop levelsee Fig. 1, denoted ZS, ZS  :Bcosh %(Bueks/2), and, accordingly?
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T (61— 6,)| Br J"T do
= —TQ(6,— 9)T(6—0,), zsef I'(1,5,1+ Q' ,5- Q") I'(5- Q',2,52— Q'
ot |ZS COSI’?(BR) 777277 ( 1 ) ( 2) 5) ( Q Q ) ( Q Q )
(19 X G(5)G(5-Q"), 17
where we introduced a dimensionless temperature flow pa-
rameter: wherein Q' =2—1- Q can be thought of as an “effective”
1 transfer vector for this graph. FQK,—K4|=0 the limit
Br(D)=zveBA(). (16 Q—0 of the right-hand side of Eq17) is single-valued and
We now turn our attention to the Z§raph. Its analytic form  equivalent to theQ limit.?* The Green’s function’s contribu-
is tion to this graph is

. tanr{%e(Ks)—m _tam{g(f(Ks_Kz_Kl)_,U«)

=72 e(Ks)—e(Ks—Kp—Ky) : 18

1
EE G(5)G(5- Q)
wg 0=0

If |6,— 60,|<T/vegKg the right-hand side of Eq(18) be-  Summing up all formulas, we obtain the following system of
comes — ; Bcosh %(Bugks/2). The calculation of the ZS RG equations:
contribution is more subtle, since even in the zero-transfer

limit Q—0 (in any ordey, the vectorQ’|g .o=K,—K; is r%2¢) PR f” %FQ(¢—0)FQ(0+ )
free to take any modulus in the intery&,2K ] as the angle ot cositBr) -2
0,— 6, varies. A largeQ’ kicks the vertex momenta on the o
right-hand side of Eq(17) outside ofC2 , even ifKge C2 . L (29) (214
In such cases the contribution of the 'Z§raph is cut off, a
except for special positions of the vectOg running over the [929) i
Fermi surface. Thus, for an arbitrary angle— 6,, not all d ™
the phase space is available for integratior?. ’ o _'BR®(96_|¢|)£ ﬁEFQ(‘ﬁ_ 9)
To understand where this elimination of the 'Z&ntri-
bution comes from, we must keep in mind that our effective XT(0+ ¢)Y(,0;8R). (21b

action has suppoKtA_ In momentum space. Let us cons_lder To simplify those formulas we parametrized the angular de-
the ZS graph(see Fig. 1when all external momenta satisfy e qence of the vertices in Eqg1) by the anglep between
momentum conservation and lie @F . It suffices then to KL and KL+K2), |¢|e[0,7/2]. The small ZS contribu-

C*;e‘:k whetsher the internal momenfas(andK5—Q’) lie ir! tion coming from|sing|>A(t)/Kg [Fig. 2@] was neglected,
Ci whenKg runs around the Fermi surface during the inte-\, 1.1 is accounted for by the Heaviside step function

gration. From Fig. _&a)zwe see that "_1Q’|>2A’ thg loop  \yherein 6.=arcsin(A (t)/K ). We also defined the function
momenta lie both inC% only at special values dk? (the

shaded regionsi.e., only small fragments of phase space are 1 sinh(28q/)

available for integration. At smalle®’ (cf. Fig. 2b)) these Y(¢,0,Br)=— cosH2B) + Cosh2Bg.) " (22
intersections form a connected region atgl is free to run Bor R Q'

around the Fermi surface. If we completely neglect thé ZS _ . _

graph when the intersection is disconnediad=ig. 2(a)], the Bo =Besingsing,  Br=pueKe, (23

contribution of this graph to the RG flow #Q'|<2A is  which arises in the calculation of the Z8ontribution(18).
calculated in the same way as that of the ZS graph. SincBlotice that
|K1|=|K,|=Kg and Q| o_.o=K,—Kj3, the condition|Q’|
<2A is equivalent to the condition|sin((6;— 6,)/2)|
< A/Kg for the angle betweeK; andK,.

Taking into account both the contributions of the ZS and
ZS' graphs, the RG equations f®®'? can be written in  From Egs.(21a,22,2% we see that at small angles¢

lim Y(o,0;8r)= (29

1
foi—0 costtBr’

implicit form:%° |<=T/veKg) there is a strong interference between the ZS
and ZS contributions. This interference depletes the RG
are 19T'Q‘ are flow of I'°(¢) at small angles. Moreover, gt=0 the flow
aH ot |25+ at |, (19) is exactly zero, for the two contributions have the same ther-
s mal factor Brcosh %(Br):%’
T T 20 —— -0 Vvt (25)
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The initial conditions for the flow equation1l) are: u>-1, Vi, (30)

which are the Stoner criteria well known from the RPA ap-

[, t=0)=T($,t=0)=U(¢). (26)
proach. The bare interaction satisfies the Pauli prindigile
Recall that the fixed pointE®* andI'®* of the verticed®  Eq. (11)]

andT'? are the forward scattering vertex and the Landau
interaction function, respectively. From Eq&5,26,1) we
conclude that the RG equations for the forward scattering
vertex preserve the Pauli principle at any point of the RG
flow trajectory,

2 U|:O.

|=—o

(31)

If the vertexI" is to satisfy the Pauli principle, the condition

27 - U
|=—o 1+U|_

I'¢p=0,t)=0, Vt,

0 (32
while the “uncompensated” RG flow generated by the’ ZS

graph drives the verteR to a fixed point valuéthe Landau
function), which does not satisfy the Pauli principle, i.e.
r'**(¢=0)=0.

must be imposed on the right-hand side of E2Pa). How-
' ever, it has been known for a long time that conditi¢82)
and(31) are incompatible, unless the stability conditi¢86)
are brokerf? Indeed, subtracting Eq31) from Eq.(32), we
V. DEFICIENCIES OF THE DECOUPLED find
APPROXIMATIONS IN THE LANDAU CHANNEL .

u?
.;x 1+U,

Before finding a solutionexact or approximajeto the 0, (33

flow equations(21) which fully takes into account the cou-

pling of I'? andT"®, we will comment on approximate solu- Which cannot be satisfied without violation of E§O0).

tions in which this coupling is neglected. The Landau chan- This proves that the antisymmetric bare interactidn
nel, as defined in this paper, includes, at one-loop RG, botiannot be at the same time a fixed point of the RG flow and
the direct(ZS) and exchange (Z$ quasiparticle-quasihole the Landau function, unless the classic FLT formulas are
loops with a small transfe@. We will call decoupledany  unapplicable. The accepted cure to this paradox is to give up
treatment of the Landau channel that does not explicitly takéhe Pauli principle on the Landau function, because of the
into account both the direct and exchange contributions. It i§eglected ZS contribution?* In the RG approach, this may
shown below that solutions for the forward scattering vertexoe€ accomplishedn the decoupled approximatipby letting
provided by decoupled methods fail to meet the requirementthe ZS contribution drive the bare interactidh towards the

of the Fermi statistics. Tackling the Pauli principle by im- Landau functionF* during an earlier stage of mode elimi-

posing additional constraints on the solutiofssim rule$
leads to conceptual difficulties discussed below.
To shorten notation we drop upper label®,(2), and

nation, and then by solving the RG equati¢®8) with F* as
a new renormalized “bare” interactiol?:?° This leads to the
well-known relationship between the scattering vertex and

defineI” as the running vertex whose fixed point is the for-the Landau function,

ward scattering amplitude arfd as the Landau function.

Let us first solve the RG equations in the decoupled ap-

proximation. If we neglect completely the Z8ontribution

P (34)
SN

in Egs. (21) and perform a Fourier transformation, we re-
cover a familiar system of equatiofswith its random-
phase approximatio(RPA) like solution in which all har-
monics are decoupled:

Because of the ZScontribution, the Pauli principle does not
apply to F* (a), while it is enforced on the verteX™*
through a sum ruléb):

I _ o rrea (70 @ S F*#0 (b > ——=0. (39
o eI o Ry @8 = = LR
9 In doing so, the stability condition§30) are modified as
&—TI =0=FFPA(7)=const. (28y  follows:

: . Ffr>-1, vI, (36)
We introduced the auxiliary parameter=tanhBgz (7
€[0,70]), with 7o=tanhB, and By=2%vrBA,. Since the i.€., they become Pomeranchuk’s stability conditions for the

temperature in the effective action is restricted by the condiFermi liquid, originally —obtained on thermodynamic
tion (7), we can set,=1 for all practical purposes. grounds’ Such a decoupled RG treatment of the direct and
With the initial conditionsI'(7o)=F(7,)=U, [cf. Eq. €xchange loops makes Eq85) compatible with the condi-

(26)], the fixed points of Eq928) are tions (36). _ _
However, the sum rul€35b) is “unnatural” in the fol-

U, lowing sense. The bare interaction can in principle be traced
@ If=97g (B F=U, (29 from a microscopic Hamiltonian. For instance, let us con-
! sider the spinless extended Hubbard Hamiltonian on a square
lattice (with lattice spacinga) at low filling, with nearest-

with the following stability conditions for the fixed point:
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neighbor repulsive interactionU(™). Fourier transforming
and antisymmetrizing the interaction, we end up with the
following coupling function of the microscopic Hamiltonian:
Uhic(K1,KpKg,Kg)=—3a2U™. (K1~ K;) - (K3—Ky) 1

Let us choose this interaction as a trial bare dimensionless
coupling function:

(37

0,— 6,
2 H

U( 91_ 02) =Z/ISIn2(

wherein all parameters are hidden within a single coefficient
U. The only nonzero Fourier componers of the interac-
tion are

Up=3U, U.;=—3U. (38)

The interaction37) satisfies the Pauli principlel1,31). The
RPA sum rule(32) imposes an additional constraint, which
the interaction(37) does not satisfy. If we suppose that the
“improved” results (34,350 are always true, then, starting
from any kind of microscopic interactiore.g., the bare in- 3 5 . 0 : 5 3
teraction(37)] and integrating “fast modes” outside the im- 0 (radians)
mediate vicinity of the Fermi surface, we have to end up
with a “fine tuned” interaction, for any interaction has to be  FIG. 3. (8 Results of the numerical solution of the coupled RG
“fine tuned” in order to satisfy Eq(35b). The integral of the equations. The curves label€d andF* are the forward scattering
flow (27) [or, equivalently, the sum rul@8) below] is nota  Vertex and the Landau function, respectively, at temperatures
fine tuning, since firstly, the bare interaction at the initial T/veKg= 0.1, 0.025, and 0.01. The narrowest central peak corre-
point can be always antisymmetrized, and, secondly, Wépond§ to the s'mallest temperature, and wce_vébﬁsa\pproxmate
have an exact cancellation of the RG flow for the veifext analytical solution of the coupled RG equations, for the same pa-
zero angle due to direct and exchange contributions, thu@Meters as ina), calculated numerically from Eq49). In both
preserving Eq(27). On the contrary, there is no reason for cases the initial cutoff wad o= K.
any bare interaction to satisfy E(B2) at the beginning, nor
is there a mechanism to provide the fine tuni@pb) on
other parts of the RG trajectory. A. Exact numerical solution
These difficulties are not specific to the decoupled RG
approximation, since the latter is strictly equivalent to the
diagrammatic microscopic derivation of FL{Refs. 3,5,7
leading to the same resul{84,35,36. The decoupled RG
treatment is equivalent to applying the Bethe-Salpeter equ
tion with the particle-hole ZS loop singled ol being the

VI. SOLUTION OF THE COUPLED RG EQUATIONS

The coupled integrodifferential flow equatiof®l) may

be solved numerically. The functioris(6) and F(6) are
then defined on a discrete grid of angles, and simple linear
interpolation is used to represent them between the grid
Efioints. The grid spacing is not uniform: it has to be very

) R L small near6=0, where the flow is singular, but may be
vertex irreducible in this loop. T_here are aqriori reasons larger elsewhere. The RG equations then reduce to a large
in that approach to demand this vertex to safisfy the PaUIr"number of coupled nonlinear differential equations, which

principle. The rearrangment C.)f diagram §ummations in theclre solved by a fourth-order Runge-Kutta method with adap-
Bethe-Squeter equation qudmg tq Eaé') IS ba;ed on th.e tive step size. Typically, a grid of a few hundred points is
assumption that the vertex irreducible in the direct part'de'sufficient (we take advantage of the symmetry of the func-
hole loop(ZS) is a regular function of its variables, neglect- tions). Of course, the numerical solution was checked to be

ing the zero-angle singulariﬁatT=_0 (_Re}‘. 27] in the ZS ._indistinguishable from thdéexac} RPA solution when the
loop. As a consequence, the Pauli principle for the scatteringss ~ontribution is discarded

vertexI' is not guaranteed in the final result and “the am- An example of solution for the spinless case with the
plitude sum rule”(35h must be imposed by hand. The so- yeraction function(37) is shown on Fig. &), at various

lution (34) of the Bethe-Salpeter equation is tantamount O emperatures. The interaction functith( @) and the RPA
the summation of the ladder diagrams built up from the ZS peratres: ! ! unctieh(6)

; : '~ “solution'RPA(9) are also shown. This solution will be dis-

loops, wherein the Landau function stands as the bare intef; : ()
! . . . » ussed in Sec. VII.

action. For this reason, the soluti¢4) we will call the “the
ZS-ladder approximaticdhin the following. We refer the
reader to a paper of Hewstnwherein a “generalized”
Bethe-Salpeter equation for Fermi liquids, which explicity = The flow equationg21) may also be solved analytically,
takes into account both the ZS and’Z280ps, is derived. For albeit only approximately. In this section we give the ap-
further discussion on this issue, see also Ref. 24. proximate solution for the fixed poinfs* and F* both in

B. Approximate analytical solution
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terms of Fourier components and in terms of angular varitions along the whole RG trajectof,8,] will effectively

ables[see Eqs(47,49 below] decrease the contributions from the harmorigs(m#n) to
The Fourier transform of Eq$21) is the flow of I',,. Because of this, we expect the diagonal
terms (m=n) of Egs. (40) to be more important, and this
an 1 2, 9Fn (393 justifies a perturbative approach, in which the nondiagonal

B cosr?,BRF“jL%’ terms are ignored at zeroth-order. Lei(3g) be the zeroth

order solution:

;7;“=— éyn_m,z._m(/spz)r.n_m, (39b) o [ 1 ,
R T | sosrE YolBw) | - 42
Vo (Br= | "0 [ “dvcosagnycosomy  The soluton s
X 00| 6]) Y (,0: . @99 (Ba- o

1+[tanhBy—tanhBr—1o(Bo) +1o(Br) U,
On the plane ¢,6), the functionY(¢,#;8g) has a maxi- (43
mum on the line¢= /2, which moves from the position
(m7/2,77/12) at the beginning of renormalization procedure
(when Br~ Bg) towards the position (@/2) when ap- Br
proaching the fixed point4z—0). ElsewhereY (¢, 6; Br) |n(,3R)Ef dBRYn(Br)
is either quite flat, or its contribution is eliminated by the 0
cutoff factor ®(6,—|¢|) during the renormalization flow.
Therefore, we approximated the functi®e¢, 6; Bg) on the

1 J‘arcsir(Z,BR/,B,:) [ cosh{ B+ Besing)

=— n -
plane (,6) by its value on the line ¢, /2). This approxi- TBrJo Cosh Br— Besing)
mation, simplifying considerably our equations, allows an
analytical treatment and a qualitative insight harder to find in cosh(3 Besing) | cod 2n )
purely numerical results. The approximate analytical solution | 'cost(l Besing) sing (44)
of the RG equations given below justifies that simplification 2 PR
a posteriorj when compared with the direct numerical solu- The fixed pointy? is
tion of Egs.(21).
The approximate RG equations are . U,
= . 45
. T "I To(Bo)]U, 49
_ _ 2
%_m:_m costBg Snm~ Yn-m(Br) \I'm, (408 The integralsl(8,) can be evaluated analytically, since
(Be,Bo)>1 according to conditiori7). In the following we
oF i shall need the first two components only:
B, Yo BRITE, (40D
Room (B~ e . 1-A§/(2Kg)?
; ~——In2+In
wherein PO K o 1+ 1—-AZ/KZ
2 [(arcsin2pr/Bg) T 1 A A T (In2)(|n3)
Y =—f dY( , = Br|cOgL2Nn ). it i—2 — arcsip—2 T
n(BR)=7 1 $Y| ¢, 5 Br|cOS2n ) + | 2aresin——aresin |+ oo =
(41 (463

The key difference between Eq&®8) and (40) is that the

former do not generate new harmonics since all harmonics Ao
are decoupled, whereas the latter couple all harmafhies Il(,80)~K—
cause of the ZScontribution in such a way that an infinite F
number of new harmonics are generated by the RG flow,

even if only a finite number of harmonics are nonzero at the _ W
start. For instance, the trial interactig@88) has only three

nonzero components, but according to E@)) the fixed ) ) )
pointsT* and F* will possess an infinite number of them. [The next term in the temperature dependence, omitted in
The generation of new harmonics is not an artefact of th&ds. (46), is of the order T/vgKg)?]. Treating the off-
approximation which was used to go from E¢@1) to Eqs.  diagonal termst{# m) on the right-hand side of E¢403 as
(40), but is a generic consequence of the interference in theerturbations, we obtain the following approximate solution

1+1-A%/(2Kg)?
In2-+1In of(2Ke +1-AZ/K2

1+\1-A3K2

1
E

T (In2)(In3)

+
UFKF

(46b)

Landau channdlcf. Egs.(39)]. at first order:

Let us start the analysis of Eg&LO) with a heuristic ob- 5
servation. Whereas the componafy( Br) is a nonnegative T - n f Od 'y N2 o
function of Bg, the otherd Y, (8g), N=1] are increasingly n(Br)=7n(BR) ngn B ARYn-m( Br) Y Br)

oscillating functions of8g whenn increases. These oscilla- (479
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Fﬁ(ﬂ’a) Such an extension of the low-energy cutoff to large values
cosFBL’ (470 is analogous to what is routinely done in 1D mode@g., the
R Tomonaga-Luttinger mod&. In that context, deviations of
It is straightforward to check that the solutio#i7a satisfies the real excitation spectrum from linearity and the approxi-
the sum ruldi.e., the Pauli principlé25,27]: mated integration measure are expected to affect only the
numerical values of the renormalized physical parameters.
ChoosingA;~Kg renders the RG fixed point®bserv-
En: I'n(Br)=0, VBg. (48) ables sensitive only to the two independent physical scales
present in the modell and vgKg=2Eg, and not to the
The solution(47) can be converted back in terms of the arbitrary scale o, which divides fast and slow modes. Low-
relative angled e[ — a,7r] with a little help from Eq.(42):  ering the running cutoff until it reaches some intermediate
5 dp - scaleA y (such thatA y<Kg andvAy>T) provides us with
o [P R 2 Ay-dependent parameters for the action. We regigdas
(6)=U(9 fo cosﬁﬂRn:E_w cosn0)v:( Br) the scale of the low-energy effective action. However, the
observable quantitieghe fixed points do not depend on a

Bo
FolB =T+ | "

Po 0 articular choice ofA .
+0(6,—16]) , dBRY(EaE;BR) P X
(1/12) Bglsin(6/2)|
- VIl. ANALYSIS AND DISCUSSION OF THE RG RESULTS
X 2, cogn6)ya(Br), (499
n=-= We will now discuss the main novelties brought by quan-
b dp - tum interference in the Landau channel and compare with the
_ 0 R 2 results of decoupled approximations. The solutidiq 9)
* —T* + . . .
F(6)=I"(6) fo cosﬁ,Banz_m codnf)I(Br), andF* () at different temperatures and for the interaction

(49b) (38) are shown on Fig. 3(a): direct numerical solution of
Egs.(22); (b): solution(49)]. For this interaction the sum in
the second and third terms on the right-hand side of Eq.
(493 is v3(BRr) +273(Br)cod. The curves were calculated
for =1 [cf. Eq. (37)], which is four times smaller than the
critical valuel/2™*=4 at which the instability appears in the

) . ; )
the “renormalized” RPA ansatt43). It would be a mistake, <A solution(283 for I'; . Comparison of the approximate

however, to conclude that the Z8iiagram contributes only solutions (47,49 with the direct numerical solution shows
to the third term on the right-hand side of E49a since the good ggreen;en(;._ﬁ b h luti dth
v,-S partially include its contribution. It is worth noting that In Fig. 3 the differences between the RG solution and the
Eqs. (47b,49h are not approximations in the sense of Eqs.RPA solution(28a are minor at large angles, but they be-

(473 or (498, but they are exact relations fé¥, derived  c°Me especially striking at small angléswhere the inter-
from the basic RG equatior(d0). ference between the ZS and Z&ntributions is very strong.

The RG solution gived™* (6=0)=0 (the Pauli principlg
while TRPA(9=0)= —1/3 for this interaction strength. The
Landau interaction functiokR™* (6) differs from the bare in-

In the numerical and analytical results presented in theeractionU(#8), andF* (6=0)+0. If the ZS contribution is
following sections the initial cutoff\ ; of the effective action neglectedthe RPA solution28b)], these two quantities co-
is extended td g, i.e., Bo= Be/2. This point should be clari- incide.
fied. Notice first that the ZS contribution is not sensitive to  An interesting feature of the RG result is the temperature
the bandwidth cutoff A;—provided condition (7) is  dependence of the verticds*(6) and F*(6#). As T de-
satisfied—since tarfy is unity with exponential accuracy. creases, the “beak” of *(6) in the region of strong inter-
On the other hand, the angular cutoff of the’Z®ntribution  ference becomes narrower. The characteristic angular width
[cf. Egs.(21,39,41,44 comes from a cutoff imposed on the of this “beak” is | 8| ~T/veKg. A similar narrowing is no-
momentum transfer in this grapfef. Eq. (17)]. It is 6, ticeable in the temperature dependencd=6{6). One can
=arcsin(Pr/Br) (with 2B8r/Be=A/Kg) if Ag<Kg, and also see from the figures a weakening of the interference
0.= w2 otherwise. The specific choic@,=pB8/2 (A, effect at lower temperatures, for then the RG solutions lie
=Kg) means that at the initial point of the RG flow the angle closer to the RPA curves, but the distinctions between them
¢ is allowed to take all value6.e., the momentum transfer do not disappear ab— 0, and the RG never reproduces the
Q’ is not cut off, while the bandwidth is extended to the full RPA result?®
depth of the Fermi sea. It can be checked that the results are In terms of Fourier components this behavior manifests
not sensitive to the choice of a bigger cutdff=Kg, since itself in a linear temperature dependencd pfandF} . This
then not only is the ZS contribution to the flow is exponen-linearity is found both in the direct numerical solution of
tially small, but that of ZS as well, until the cutoff decreases Egs.(21), and from the solution of Eqel1,43,44,4Y. This
to A~Kg (this was also confirmed by direct numerical temperature dependence can be revealed analytically. Inte-
testg. The formulas for the approximate analytic solution aregrating by parts and using E2), we can rewrite Eq479
derived forA =K. at the fixed point as

wherein 6,=2arcsin(By/B). A comparison of Eqs(493
and (2139 shows that—with the aforementioned approxima-
tion of the angular dependence of the functdén-the ap-
proximate solution(47@ may be obtained by replacing the
vertex componentE , on the right-hand side of E¢213 by

C. Extension of the effective action
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Bo The temperature dependence is more pertinent as a “col-
Tr=vyi+2 |n7m(,30)U§1—2J dBr > ln-m(Br) lective” effect of the higher harmonics generated by the RG
mzn 0 mzn flow. Let us explain this point with the example of the inter-
action(38). The “improved” RPA ansatZ43) renormalizes

1
X M—YO(BR) Yu(BR)- (50)  the bare components,, into vy, (n=0,+1). The latter form
almost perfectly the functiol* (), except at small angles.
The leading term on the right-hand side of E§O) is yj . For those three components, the sum rule(48) is less
Using then Eqgs(45,464q, we obtain, fom=0,1, violated than for the “pure” RPA componeni293. The

generation of the new harmonics by the second term on the
right-hand side of Eq(47a gives “a final touch” to the
. . . T (In2)(In3)_ ) curve I'*(6), resulting mostly in the formation of a
(M=% (M ~=7(0)+ veKe T[ vn (0)1%, temperature-dependent feature néar0. The actual calcu-
lation of the componentE} showed that, in order to obtain
(n=0,1), (51)  with acceptable accuracy the right form bf (6) provided
by Eq. (499 via the Fourier transformation of E¢479), at
least Npax~veKg/T components are necessary. So, the
lower the temperature is, the more harmonics are needed for
the formation of the vertek* (). The same conclusion can
y*(0)= ) (520  be drawn from a numerical solution of the equations, but
" 1+[1-1o(Bo)lt=0lUn since it is carried out in terms of angles on a discrete grid, a
For the interactior{38) U, =0 and soy* =0 forn>1. Thus, reliz\lble calculatic_)n of higher harmonics is difficult. _
the higher harmonicE?*. ,, are entirely generated by the RG npther physical consequernce of the quantum interfer-
9 . n>1 . Y9 y ence in the Landau channel is the increased robustness of the
flow. To leading order, we obtain, from EG0), system against instabilities induced by strong interactions.
Even from the approximate solutio@7), we see that the
T ”ll(ﬁo)Ui- (53 maximum interaction strength al_lowed is now larger than the
one provided by the RPA solutidef. Egs.(29,30]. From
This component also has a linear temperature dependended: (45 we obtain the stability conditions for the approxi-
according to Eqs(46). To estimate the components of the mate solution (47): U;>—[1—14(B0)]"*, VI with 0
Landau function, we first rewrite Eq47b) in another, <lo(Bo)<1 according to Eq.(46a. Since lq(B,) grows
equivalent form(cf. Egs.(40)]: with temperature, larger values gf,| are allowed ad in-
creases: the higher the temperature, the more stable the sys-
tem is, as it should be from physical grounds. At the optimal
~ Bo choice of the initial cutoff Ay=Kg), 15(Bo) grows from
Fa(Br)=Unt _E f dBEY n-m(BRITH(BR)- (59  0.255 atT=0 to 0.27 atT/vKg=0.1. This value of tem-
m== JBr perature is the largest we can try without violating the con-
Proceeding in the same fashion as above, we obtain the lirlition of applicability of our model(7). Thus, within this
ear temperature-dependent componétits approximate solution, the effect of interference increases the
critical coupling by 40% compared the the RPA critical
value (30). Since we are retaining only two one-loop dia-
Fﬁ’“Un+|o(ﬂo)Uﬁ+(|n—1|+1)|1(ﬂo)U\2n—1|, grams, linearized excitation speqtrum and integration mea-
sure, we cannot be more conclusive on the role of the modes
(n=0,1) (559 deep into the Fermi sea in screening a microscopic interac-
tion of arbitrary strength, and in stabilizing the Fermi liquid

F3~11(Bo)U2. (55p ~ Pphase.

wherein

Uy

We should emphasize that simple formulas such as Egs.
(51,53,55 serve only to illustrate how the temperature de-
pendence comes about, and give only the order of magnitude
of the higher harmonicsn(>2). The latter should rather be In this section we explain how the present RG theory is
calculated numerically. The temperature dependence of thelated to the standard results of the Landau EEThis will
lowest harmonicge.g.,F§ andF7}) does not seem to be a also allow us to relate this study to previous work on this RG
relevant issue in the calculation of quantities such as thapproach to the Fermi liquitf:?°

compressibility, effective mass and heat capacity, since, in It is important to notice that the two contributions to the
the total Z3 contribution, the temperature corrections, of theRG flow, coming from the ZS and ZSyraphs, behave quite
order of T/vgKg, are very small in comparison with the differently as the flow parametg8g runs from 8y>1 to-
main corrections of ordeA,/Kg. As a consequence, the wards Br=0. At large Bg the ZS contribution to the flow,
actual values of the lowest harmonics vary within a few per-which gives the term proportional to costg on the right-
cent at most, even in the entire temperature interval Chand side of Eq(39), is virtually negligible, up toBg~1.
<T/vgKg=<0.1 (the maximum temperature studied is really On this part of the RG trajectory, the main contribution to
high: T=0.2E¢). the renormalization of’ andF comes from the ZSgraph.

VIIl. CONTACT WITH THE LANDAU FLT
AND DISCUSSION
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On the other hand, closer to the fixed poigr&<1), the ZS
contribution grows since cosRBg~1 for all harmonics,

while Y,(Br) decreases for the lower-order harmonics. At

Br<1:
1 4n
Yn(IBR)% ESIH% (56)

Using the approximated forrtd1) is justified here, since at

Br<1 there is no difference between the exact form of the

RG equationg39) and Eqs.(40). Indeed, whengg<1, the
largest allowed¢ is roughly 28gr/Bg, so in Eq. (22
maxBq|~2Br<1 and the limit(24) of the functionY can

be taken. The Kronecker delta appearing after the integratiop,qgiate values of X F
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FIG. 4. Comparison between the exact numerical solution of the
coupled RG equations fdf/vK=0.005 * andF*), the inter-
obtained from the initial valu& by stop-

over ¢ removes one summation, and we recover exactly EQsying the flow at@r=5, and the phenomenological verteR" (the

(40) with Y,(Bg) given by Eq.(56). It should be also kept in
mind that the Z3 flow is localized within the anglég|
~2xl Br .

Such different behavior of the two contributio(S and
ZS') to the total RG flow explains why approximations
based on the decoupling of these two contributidRBA, ZS
ladder”%2§ are reasonable. To clarify to what extent the
standard results of FLTEQs. (34,35] can be corroborated
by RG, we will make a two-step approximation of our RG
equations. In doing so we will follow exactly the “recipe”
of the ZS-ladder approximation discussed in Sec. V, but no

we can check each step by direct comparison with the R\%

solution of Eqs(21).

In the first step we neglect the contribution of the ZS

graph above an intermediate flow parame@gr As one can
see from the RG equatior{89), this removes the exponen-
tially small difference betweef', (8gr) and F,(Br) at Br
>By. This approximation is asymptotically exact as
T—0.2" Neglecting, in the second stage of this approxima
tion, the Z3 flow for Bg<Bx, localized by that time within
the anglefy=2arcsin(Bx/B:), we recover the exactly solv-
able equation$28) with the new initial pointBg= Bx, in-
stead of Bgr=pB,. Then according to EQs.28), Fﬁ
=F,(Bx) is the (approximatg fixed point value of the Lan-
dau function, whildl,(8g) flows towards théapproximatg
fixed pointI'P" from the new bare valuEX=T"(Bx) =FX.
This second step of approximation violates the Pauli prin
ciple, no matter how close we are to the Fermi surfafe
Eqg. (25 and Ref. 27. Afterwards the theory says nothing
about the values of the functiod¥ #) andF(#6) inside the
interval 26y and, of course, there are no more correlation
between these functions.

To preserve the correct zero-temperature limit and t
minimize the angle within which the approximation gives
completely wrong results fof'* and F*, the intermediate
cutoff Ay corresponding t@By=uvgAx/2T should be chosen
such that tanfiy=1 [cf. Egs. (28,29 and Ref. 19 and
2Bx!Be=Ax/Kg<1. Summing up what is said above, we
obtain

X X
th: Fn _ Fn
" 1+tanh Byl 1+Fp

(57a

(6]

result of the standard FLT derivationsbtained by applying the
RPA solution toI'’* (FX) considered as a new initial point of the
flow. TP" practically coincides with™*, except in the central region.

BO ! !
dBRrYn-m,21—2m(BRr)
Bx

XT /(BRI —2m(BR)-

In Fig. 4 we illustrated all this by the direct numerical
alculation ofF%, Fff from Eqgs.(21) for the interaction37),
ollowed by a calculation of P" from Egs.(57). The RG
solutions forI'* and F* are also presented. The function
F*(6) follows almost perfectly the Landau functifthe real
fixed pointF* ()], except within 2y of #=0. In the part of
the RG trajeCtOI’y,BXSﬁRSBO (BO: 100, ﬂXZS, T/UFKF
=0.005), not only is the ZS flow exponentially weak, but the
central part of the ZSflow as well[cf. Eq. (24)]. So, the

MX=FX=U,+ X

|’m:—w

(57b

evolution of both vertices is due mostly to the “taild
> ¢y of the functionY at Bg=1. That is whyI'*(¢) and
FX(#) are virtually identical. Only the slowing down of the
ZS' flow almost everywhere gBg=<1—except on the cen-
tral part[cf. Eq. (56)] wherein it is always as strong as the
other ongZS)—results in the drastic differences between the
two limits of the four-point vertex at the fixed point. The
functionTP( ¢) is featureless and looks like a corrected RPA
solution. The differences betwedtf andI'} (F¥ andF))
are negligible, i.e., less than 1%, only for the components
n=0,1.

As should be clear by now, there is no real incompatibil-

%ty of the stability conditions with the Pauli principle, since

this is a mere artefact of the ZS-ladder approximation. It is
pointless to impose the sum rule eitherlif{i}h in the form
(48), or to Fﬁ in the form (35). Both sums would give the
value of the “uncorrelated” functiod’P"(¢) at #=0. This
function goes smoothly from the right patthy , 7] towards
0=0 (cf. Fig. 4—or, equivalently, from the left, because of
parity. Actually, it can be proved exactly, turning the argu-
ments of Sec. V around, that in a stable Fermi liquid, it is
impossible to obtail™P(#=0)=0, even by chance. Thus,
there is no need for the Landau functi&if to be “fine
tuned” in the sense of the sum rul@5), since only the
relation (57)—between the approximate verteRP" and
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FX—is an exact relationshifmore precisely, asymptotically essentially(The derivation of the RG equations with spin is
exact whenT—0), not Eq.(34), which relates the physical straightforward using thil-flavor formalism of Ref 19.The
quantitiesF* andI™*. differences for the casgé=3 are only quantitativée.g., the

In the context of our discussion at the end of Sec. Vl,type of the temperature dependenbecause of different an-

notice that the cutofi\x (vpAx/T>1, Ax/Kg<1) corre-  gular functions and solid angle integrations.
sponds to the initial cutoff of thiow-energyeffective action

wherein'* is the bare interaction functioiwoupling of that
action. The equality of the function8* and F* illustrates
the point of Sec. Il that, at the beginning, the action’s cou-
pling function can be defined independently of the order in In studying the Fermi-liquid regime of interacting fermi-

IX. SUMMARY

which the zero-transfer limit is taken. ons ind>1 with the model of they*-Grassmann effective
When the RG flow reaches the scalg, the contribution  action as starting point of the analysis, one must distinguish
of the ZS graph to the flow ofl", andF,, is strictly irrel-  between three quantitie§) the bare interaction function of

evant in the RG sense, and could have been neglected intRe effective action(ii) the Landau interaction functiofiji )
model with a finite number of couplings.g., thee* theory,  the forward scattering vertex. We have derived the RG equa-
1D g-ology models, and so onkeeping only marginal terms  tions for the Landau channel which take into account both
[cf. Eqgs.(28)]. But, as pointed out by Shankrin the vi-  contributions of the ZS and ZSgraphs at one-loop level.
cinity of the Fermi surface we are dealing with coupling the pasic quantities of the Fermi-liquid theory, the Landau

functions i.e., with aninfinite set of couplings. Our RG s0- ¢ nction and the scattering vertex, are calculated as fixed
lution prowdes a curious exa_mple of a flmt_e (_Jle_V|at|on of thepoints of the RG flow in terms of effective action’s interac-
RG trajectory at the fixed point due to an infinite number oftion function

i 1 1 1 * — —
irelevant terms. Theight fixed point[I™(¢=0)=0] can- The classic derivation of Fermi-liquid theory using the

not be reached if those terms are neglected, SInC%ethe-SaIpeter equation for the four-point vertexrat0 is

I'P(9y—0)#T'*(#=0) (even atT=02%°% and we would re- S . o
turn to the problems caused by the solutBA' (the ZS- b_ased on Fhe apprOX|mat|or_1 that the vertex !rreduc_:lble in the
direct particle-hole loopZS) is a regular function of its vari-

ladder approximationdiscussed in Sec. V. To put it differ- . ) L
ently, neglecting those irrelevant terms at some part of th@P!es, neglecting the zero-angle singularity in the exchange
flow [solution (57)] violates the invariance of the RG trajec- 100P (ZS). This approach is equivalent to our earlier decou-
tory at the pointd=0, expressed by Eq&25,26,27. pled RG approxmaﬂoﬁ,’ and they are both tantamount to
The ZS-ladder approximation seems acceptable in th8Ummation of the direct particle-hole ladder diagrams,
normal Fermi-liquid regime with moderate interactioRi,( wherein the Landau function stands as the bare interaction
=<10), when the narrow-angle features of vertices revealetthe ZS-ladder approximation
by the RG theory are not too largeébecause the forward ~ One of the major deficiencies of the ZS-ladder approxi-
(#=0) singularity has little effect on the first components mation is that the antisymmetry of the forward scattering
(r:%rgh, Fzmpﬁ for n=0,1 and, in the case of a weak vertex related by the RPA-type formula to the Landau inter-
interaction, forn=2). This singularity affects mostly the action function, is not guaranteed in the final result, and the
higher Fourier components. So, the relationg3g) is valid  amplitude sum rule must be imposed by hand on the compo-
only for smalln. It should not be used fd&} (n=2) neither  nents of the Landau function. This sum rule, not indispens-
directly, nor via the sum rule from the scattering vertex pro-able in the original phenomenological formulation of the
vided experimentally. For the physical vert€¥ the sum Landau FLT! from the RG point of view is equivalent to
rule (48) is always valid, but this study indicates that its fine tuning of the effective interaction.
angular shape may require a large number of harmonics to The strong interference of the direct and exchange pro-
adequately represent it. The existence of a finite solution focesses of the particle-hole scattering near zero angle invali-

I'P"(6) under conditions dates the ZS-ladder approximation in this region, resulting in
temperature-dependent narrow-angle anomalies in the Lan-
1“?](>—1, vn (59 dau function and scattering vertex, revealed by the RG

o ) analysis. In the present RG approach the Pauli principle is
guarantees not only finite RG solutions f6f andF*, but  automatically satisfied. As follows from the RG solution, the
also the fulfillment of the thermodynamic Pomeranchuk conamplitude sum rule being an artefact of the ZS-ladder ap-

ditions (36) by F*. _ proximation, is not needed to respect statistics and, more-
The major consequence of this study on the standard reyyer, is not valid.

sults of the Landau FLT is reducing the relationsliga)
between the components of the scattering vertex and the
Landau function to the rank of approximation and invalidat-
ing of the sum rulg35). The rest of results for normal Fermi
liguids would not be affected seriously by the RG correc- Stimulating conversations with C. Bourbonnais, N. Du-
tions. For example, the temperature dependence of the vergpuis, and A.-M. Tremblay are gratefully acknowledged. In
ces would give a weak correction to the leading terms. Thesparticular we thank A.-M. Tremblay for careful reading of
conclusions are neither related to the specific choice moddéhe manuscript. This work was supported by NSERC and by
considered, nor to the spatial dimension. Including spinF.C.A.R. (le Fonds pour la Formation de Chercheurs et
doubles the number of vertices involved, changing nothing’Aide a la Recherche du Gouvernement du” Qee.
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