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Fermi liquid as a renormalization-group fixed point:
The role of interference in the Landau channel

Gennady Y. Chitov and David Se´néchal
Centre de Recherche en Physique du Solide et De´partement de Physique, Universite´ de Sherbrooke,

Sherbrooke, Que´bec, Canada J1K 2R1
~Received 2 May 1997!

We apply the finite-temperature renormalization group~RG! to a model based on an effective action with a
short-range repulsive interaction and a rotation-invariant Fermi surface. The basic quantities of Fermi-liquid
theory, the Landau function, and the scattering vertex are calculated as fixed points of the RG flow in terms of
the effective action’s interaction function. The classic derivations of Fermi-liquid theory, which apply the
Bethe-Salpeter equation and amount to summing direct particle-hole ladder diagrams, neglect the zero-angle
singularity in the exchange particle-hole loop. As a consequence, the antisymmetry of the forward scattering
vertex is not guaranteed and the amplitude sum rule must be imposed by hand on the components of the
Landau function. We show that the strong interference of the direct and exchange processes of particle-hole
scattering near zero angle invalidates the ladder approximation in this region, resulting in temperature-
dependent narrow-angle anomalies in the Landau function and scattering vertex. In this RG approach the Pauli
principle is automatically satisfied. The consequences of the RG corrections on Fermi-liquid theory are dis-
cussed. In particular, we show that the amplitude sum rule is not valid.@S0163-1829~98!02403-5#
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I. INTRODUCTION

In 1956–1957 Landau formulated his theory of Fer
liquids.1 The original phenomenological formulation of th
theory is based on an expansion near the ground state o
energy functional in terms of variations of the distributio
function~bosonic variables!. Later, Pomeranchuk derived th
thermodynamic stability conditions for this functiona2

Much effort has been dedicated, including by Land
himself,3 to vindicate some intuitive assumptions of Land
and elucidate the foundations of the phenomenolog
Fermi-liquid theory~FLT!. The field-theoretic interpretation
of the Landau FLT has reformulated the key notions a
basic results of the phenomenological theory entirely
terms of the fermionic Green functions technique.3–6 The
demonstration of the equivalence of the field-theoretic res
obtained from the solution of the Bethe-Salpeter equa
with the results obtained from the functional expansion a
from the Boltzmann transport equation describing the coll
tive modes, has become a textbook topic.5–9 The field-
theoretic approach provided not only a solid basis to p
nomenology, but also a potentially efficient method
calculate the phenomenological parameters of FLT from fi
principles.

Current interest in non-Fermi-liquids ind.1 inspired a
new wave of efforts aimed at clarifying the foundations
the Landau FLT and the mechanisms of its breakdown.
us mention only two approaches, which can be seen as
phisticated modern counterparts of the two classic formu
tions of the Landau FLT. A bosonized treatment of Fer
liquids has recently been developed10 in the framework of
Haldane’s formulation of higher-dimensional bosonization11

At about the same time, the renormalization-group~RG!
technique has been applied to interacting fermions ind.1
with models based on fermionic field effective actions~see
570163-1829/98/57~3!/1444~13!/$15.00
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Refs. 12–20 and references therein!. In both approaches i
has been established, for models with reasonable ferm
fermion effective interactions, that the Fermi-liquid phase
stable, whereas adding gauge-field interactions may drive
system towards a non-Fermi-liquid regime, or may result i
marginal Fermi-liquid phase, like for composite fermions
the half-filled Landau level.

The RG analysis of FLT presented here and in our pre
ous work,19 like other such analyses already published, sta
from a low-energy effective action with a marginal~in the
RG sense! short-range interaction. However, contrary
other works on the subject, our finite-temperature RG
proach revealed that, in the Landau channel of nearly
ward scattering quasiparticles, the effective interaction flo
with successive mode eliminations towards the Fermi s
face, even in the absence of singular or gauge interaction
other words, the action’s interaction~coupling function! does
not stay as a purely marginal under the RG transformat
since itsb function is not identically zero. From the RG flow
equations the standard FLT results have been recovered19

It was also pointed out, and elaborated later in more de
by one of us together withN. Dupuis in Ref. 20, that the bar
interaction function of the low-energy fermion effective a
tion cannot be identified with the Landau interaction fun
tion. The latter, along with other observable parameters o
Fermi liquid, should be calculated as a fixed point of the R
equations.20 Let us briefly give two arguments for this. Firs
identifying the Landau function with the effective action
bare interaction is inconsistent with other standard FLT
sults, due to the role of Fermi statistics. Indeed, in a sta
Fermi liquid, the well-known relationship between comp
nents of the scattering amplitude (G l) and of the Landau
interaction function (Fl), i.e., G l5Fl /(11Fl), cannot sat-
isfy the Pauli principle for the amplitude~the amplitude sum
rule! if F has the symmetry properties of the action’s ba
1444 © 1998 The American Physical Society
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interaction. ~For the explanation of this point see Sec.
below!. Second, identifying the Landau function with th
bare interaction is inconsistent with the low-energy effect
action method itself, in the way it is applied to condens
matter problems. Namely, at the starting point of the ana
sis, the bare parameters of the effective action, including
interaction, are regular functions of their variables.14,15 It is
known, however, that this is not the case even for parame
of a normal Fermi liquid. For instance, the scattering am
tude and the Landau function are two distinct limits of t
four-point vertex in the Landau channel when energ
momentum transfer goes to zero. The nonanalyticity of
forward scattering vertex appears in its dependence bot
the small energy-momentum transfer and, due to the a
symmetry~crossing symmetry!, on the small angles betwee
incoming ~outgoing! particles lying near the Fermi surfac
This contradiction becomes flagrant if one couples the fer
onic action with gauge fields since, as shown by ot
methods,21 the Landau function for the marginal Fermi liqu
of composite fermions at the half-filled Landau level dev
ops a d-function singularity in the forward direction (u
50). Such behavior of the Landau function is related to
divergence of the quasiparticle’s effective mass, accordin
the theory of Halperin, Lee, and Read for the half-filled La
dau level22 ~see also Ref. 23!. So, coming back to our argu
ments, the Landau function cannot be a regular interactio
the effective action at the starting point of the RG analys

The aim of the present study is twofold. Once the clas
FLT results have been recovered by the RG approach,19 the
latter would loose its appeal if it did not provide a constru
tive method for calculating the Fermi liquid’s paramete
This is especially important goal in the long-term prosp
tive of applying this powerful method to more comple
strongly correlated fermion systems. In this work we expl
itly derive the Landau function and the forward scatteri
vertex from the short-range effective bare interaction. We
it in the one-loop RG approximation, which takes into a
count contributions of the direct~ZS! and exchange (ZS8)
graphs. This enables us to reveal singular features of
Landau function and scattering vertex in the forward dir
tion (u50).

An equally important goal of this work is to resolve th
old problem of FLT with the Pauli principle. In its treatme
of FLT, the field-theoretic approach encountered a v
subtle problem caused by Fermi statistics of one-particle
citations and by the necessity to provide both stability for
Fermi liquid and a solution for the two-particle vertex th
meets the Pauli principle.24,7 The problem was ‘‘settled’’ by
imposing the amplitude sum rule on the components of
Landau quasiparticle’s interaction function. The phenome
logical FLT is spared from this problem partially by the wa
it is formulated, partially because it says nothing about
quasiparticle scattering amplitudes.~A detailed discussion o
this problem, which lies at the heart of the present study
postponed until Sec. V, where it will be put in contact wi
the present RG approach.! The same problem arose in ou
previous work19 in the form of a ‘‘naturalness problem’’14 of
the effective action: the effective action had to be ‘‘fin
tuned’’ in order for the scattering amplitude to meet the Pa
principle. We will show that if quantum interference of th
direct and exchange processes is taken into account,
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problem is eliminated in a natural manner.
The paper is organized as follows. Sections II and III a

introductory: we define the effective action of the model a
the coupling functions~the bare interaction! and vertices to
be calculated in the Landau interaction channel. In Sec.
which is rather technical, the one-loop RG equations for
two-dimensional case are derived. Section V explains so
of the weak points of the standard FLT results and argues
their partial revision. In Sec. VI we give a numerical an
approximate analytical solution of the coupled RG equatio
for spinless fermions. In Sec. VII we present and discuss
results for the Landau function and the scattering vertex
culated at different temperatures. In Sec. VIII we relate t
study to the standard treatment of Fermi-liquid theory. T
consequences of the RG corrections on FLT results are
cussed.

II. THE MODEL

We apply the Wilson-Kadanoff renormalization schem
in the framework developed earlier for a model wi
SU(N)-invariant short-range effective interaction and ro
tion invariant Fermi surface in spatial dimensionsd<3 at
finite temperature.19 In order to make the discussion as cle
as possible, we concentrate in this work on two-dimensio
~2D! spinless (N51) fermions. This simple model has nev
ertheless all the necessary qualities to illustrate our
points and to demonstrate the new features brought by
RG analysis of a Fermi liquid. In this case the RG equatio
take their simplest form, since only the antisymmet
momentum-frequency-dependent parts of the interaction
vertices are present~they were labeled byA in Ref. 19!.

The partition function in terms of Grassmann variables
given by the path integral

Z5E Dc̄DceS01Sint, ~1!

wherein the free part of the effective action14–16 is

S05E
~1!

c̄ ~1!@ iv11m2e~K1!#c~1!. ~2!

We introduced the following notation:

E
~ i!

[
1

bE dK i

~2p!2(v i

~3a!

~ i![~K i ,v i !, ~3b!

whereb is the inverse temperature,m the chemical potential,
v i the fermion Matsubara frequencies. We setkB5\51.
The interacting part of the action is

Sint52
1

4E~1,2,3,4!
c̄ ~1!c̄~2!c~3!c~4!

3GL0~1,2;3,4!b~2p!2d~1122324!, ~4!

whered(•••) stands for a Diracd function for the momenta
and a Kronecker delta for the Matsubara frequencies.
function GL0 is antisymmetric under the exchange (1↔2)
and (3↔4). The bare cutoffL0 of the action is introduced
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1446 57GENNADY Y. CHITOV AND DAVID SÉNÉCHAL
such that each vectorK i in the effective action lies in a she
of thickness 2L0 around the Fermi surface. We denote th
shell, i.e., the support of the effective action in the mom
tum space, asCL0

2 . The Matsubara frequencies are allowed

run over all available values. We presume that the densit
particles in the system is kept fixed.

The one-particle excitations are linearized near the Fe
surface, and, therefore, the bare one-particle Green’s f
tion for the free part of actionS0 is

G0
21~K1 ,v1!5 iv11m2e~K1!' iv12vF~K12KF!

[ iv12vFk1 . ~5!

In the integration measure only the relevant part is kept:

E dK5E
2L0

L0 E
0

2p

~KF1k!dkdu'KFE
2L0

L0 E
0

2p

dkdu.

~6!

The temperatureT is restricted by the condition

T!vFL0 . ~7!

The relevant physical information can be obtained
studying interactions of particles scattering with small m
mentum and energy transfer~we call it theLandau channel!,
and those with nearly opposite incoming~outgoing! mo-
menta~the BCS channel!. Since we are interested in the r
pulsive case, we presume that stability conditions aga
Cooper pairing are fulfilled, and we concentrate on the L
dau channel.

III. COUPLING FUNCTIONS AND VERTICES
IN THE LANDAU CHANNEL

Let us clarify the meaning of the quantities entering t
effective action. Consider the vertex functionG(1,2;3,4),
constructed from the connected two-particle Green’s fu
tion G2

c(1,2;3,4)52^c(1)c(2) c̄ (3) c̄ (4)&c by amputation
of the external legs. Herê•••& means an average with th
effective action~2,4! which contains only ‘‘slow’’ modes,
lying in the supportCL0

2 . Once auxiliary source fields~with

momenta inside the shellCL0

2 ) coupled to the action’s Grass

mann fields$c,c̄ % have been introduced, such connect
n-particle Green’s functions can be defined as functional
rivatives of the source-dependent generating functional.25 At
tree-level, G(1,2;3,4)u tree5GL0(1,2;3,4). The bare vertex
GL0 @in the sense of the effective action~2,4!# can be defined
in the same fashion asG, with the difference thatGL0 is the
result of averaging over the ‘‘fast’’ modes~those outside
CL0

2 ) with the microscopicaction. Contrary toG, the vertex

GL0 is not a physical observable, since it is not the result
an integration over all degrees of freedom.

Taking into account momentum and frequency conser
tion, we use the following notation for the nearly forwa
scattering vertex:

G~1,2;11Q,22Q![G~1,2;Q!, ~8!

with the transfer vector
-

of

i
c-

y
-

st
-

-

d
-

f

-

Q5321[~Q,V! ~9!

such thatQ!KF (V is a bosonic Matsubara frequency!. We
write the momentumK i asK i5KF

i 1k i whereKF
i lies on the

Fermi surface andk i (uk i u<L0) is normal to the Fermi sur-
face at the pointKF

i .
In order to calculate physical quantities, we must perfo

an average with the effective action~2,4!, i.e., we must inte-
grate out the ‘‘slow’’ modes, which lie insideCL0

2 , in the

corresponding path integrals. This is done in Wilson’s R
approach by successively integrating the high-energy mo
in CL0

2 , i.e., by progressively reducing the momentum cut

from L0 to zero. We define a RG flow parametert such that
the cutoff at an intermediate step isL(t)5L0e2t. Integrat-
ing over the modes located between the cutoffsL(t) and
L(t1dt), a recursion relation~in the form of a differential
equation! can be found for the various parameters of t
action. This equation~or set of equations! is then solved
from t50 to t→` and this yields the fixed-point value o
the parameters of the action. The physical quantities are
obtained from these parameters, e.g., by functional differ
tiation if they are source fields.

A considerable simplification of this problem comes fro
the scaling analysis of the low-energy effective action us
the smallness of the scaleL/KF .15 A tree-level analysis
shows that the only part of the coupling functionGL, which
is not irrelevant, couples two incoming and two outgoi
particles with the same pairs of momenta (KF

1 ,KF
2) lying on

the Fermi surface. The dependence of the coupling func
on k i and on the frequenciesv i is irrelevant and can be
omitted. When the initial cutoffL0 satisfies condition~7!,
we can unambiguously define abare coupling function,
which dependsonly on the angle between the incoming~or
outgoing! momenta. This bare coupling function is given b
the vertexGL0(1,2;Q) in the zero transfer limit (Q50)
where the two external momenta are put on the Fermi sur
and the external frequencies arevmin[pT ~the latter will be
dropped from now on!.

U~KF
1 ,KF

2 ![
1

2
nFGL0~KF

1 ,KF
2 ;0!, ~10!

wherenF5KF /pvF is the free density of states at the Ferm
level. Each vectorKF

i may be specified by a plane pola
angleu i . The functionU is an even function of the relative
angle u12 betweenKF

1 and KF
2 . The only remnant of the

antisymmetry ofGL0 ~the Pauli principle! is the condition:19

U~0!50. ~11!

As shown earlier,19 the tree-level picture becomes mo
complicated when we carry out the mode elimination ins
CL

2 . It turns out that simply discarding the frequency depe
dence of GL and identifying the momentaKF

1
KF
3 ,

KF
2
KF

4 is an ill-defined procedure when the running cuto
L becomes of the order of the temperature (vFL;T). The
ambiguity arises when calculating the one loop-contribut
from, say, the zero-sound~ZS! graph, since this contribution
is not an analytic function of the transferQ atQ50.5,7,24To
describe correctly the parameters of the Fermi liquid, o
should retain the dependence of the coupling funct
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GL(KF
1 ,KF

2 ;Q) on the energy-momentum transferQ. Re-
taining thisQ-dependence allows the calculation of respon
functions or collective modes of the Fermi liquid.26 For the
purpose of the present study we define two coupling fu
tions (GQ and GV), depending on the order in which th
limits of zero momentum (Q) and energy transfer (V) are
taken:

GQ~u12!5 lim
Q→0

@G~u12,Q!uV50u#, ~12a!

GV~u12!5 lim
V→0

@G~u12,Q!uQ50#. ~12b!

We use dimensionless vertices by including in their defi
tion the factor1

2 nF , as in Eq.~10!. The functionsGQ,V(u)
are even functions of the angleu. We will not explicitly
indicate their dependence on the cutoffL, unless necessary
We will indiscriminately call these functions~running! ver-
tices.

Let us summarize: The effective action is defined on
supportCL0

2 with the bare coupling functionGL0, which is

presumably an analytic function of its variables and is m
ginal at tree level. While performing the mode eliminatio
within CL0

2 , we need to calculate the flow of the two vertic

GQ and GV. The bare couplingGL0 has an unambiguou
meaning only as the common initial point of the RG flo
trajectories ofGQ and GV. The fixed point valuesGQ*
[GQ(t5`) andGV* [GV(t5`) are physical observables
the first one is theQ limit of the vertexG ~as defined at the
beginning of this section! and is the scattering amplitude o
quasiparticles with all four external momenta lying on t
Fermi surface. The second one is the unphysical limitV
limit ! of the vertexG and is identified with the Landau
function.3

IV. RG EQUATIONS IN THE LANDAU CHANNEL

There are three Feynman diagrams contributing to the
flow at the one-loop level~see Fig. 1!, denoted ZS, ZS8

FIG. 1. The three diagrams contributing to the RG flow at o
loop.
e

-

-

e

-

G

~Peierls!, and BCS. The BCS graph contribution preserv
the antisymmetry of the vertex, while those of the ZS a
ZS8 graphs separately do not: only their combined contrib
tion (ZS1ZS8) is antisymmetric under exchange of incom
ing ~or outgoing! particles. To respect the Pauli principle,
is therefore necessary to take into account both the ZS
ZS8 contributions to the RG flow. In this work we discar
the symmetry-preserving contribution of the BCS graph
the RG flow of the vertices in the Landau channel. Thus,
leave out the interference nearu5p of the Landau channe
with the BCS channel, which leads to the Kohn-Lutting
effect.15

The formal analytic expression of the ZS graph is

ZS52E
~5!

G~1,5;11Q,52Q!G~52Q,2;5,22Q!

3G~5!G~52Q!, ~13!

wherein the transfer vectorQ is given by Eq.~9!. To calcu-
late the contribution of this graph to the RG flow ofGQ and
GV, we only need to keep the dependence on the mom
KF

i and on the transferQ in the vertices on the right-han
side of Eq.~13!. Momentum and energy conservation is a
ready taken into account in Eq.~13!. The phase space restric
tions are satisfied automatically for anyK5PCL

2 in the limit
Q→0. WhenK1 andK2 lie on the Fermi surface andQ→0,
the right-hand side of Eq.~13! contains both vertices of type
~12! with KF

5 running freely around the Fermi surface durin
the angular integration. Thus, for this graph, all the pha
space is available for integration. The summation overv5 of
the Green’s functions product on the right-hand side of E
~13! whenQ→0 gives zero in theV-limit, and thus

]GV~u12u2!

]t U
ZS

50. ~14!

The Q limit of the same product gives a facto
1
4 bcosh22(bvFk5/2), and, accordingly,19

FIG. 2. If uQ8u.2L, the intersection~shaded! of the supports of
K5 andK52Q8 are disconnected~a!. If uQ8u,2L, this intersection
forms a connected area~b!. Note that the RG flow is governed b
the boundaries of this intersection, not by their interior directly.

e



p
’

-
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]GQ~u12u2!

]t U
ZS

5
bR

cosh2~bR!
E

2p

p du

2p
GQ~u12u!GQ~u2u2!,

~15!

where we introduced a dimensionless temperature flow
rameter:

bR~ t ![ 1
2 vFbL~ t !. ~16!

We now turn our attention to the ZS8 graph. Its analytic form
is
fe

e

iv
er
y

te

ar

S

in

nd
a-

ZS85E
~5!

G~1,5;11Q8,52Q8!G~52Q8,2;5,22Q8!

3G~5!G~52Q8!, ~17!

whereinQ8[2212Q can be thought of as an ‘‘effective’
transfer vector for this graph. ForuK22K1u50 the limit
Q→0 of the right-hand side of Eq.~17! is single-valued and
equivalent to theQ limit.24 The Green’s function’s contribu
tion to this graph is
1

b(
v5

G~5!G~52Q8!U
Q50

52
1

2

tanhFb2 „e~K5!2m…G2tanhFb2 „e~K52K22K1!2m…G
e~K5!2e~K52K22K1!

. ~18!
of

de-

ZS
G

er-
If uu12u2u!T/vFKF the right-hand side of Eq.~18! be-
comes 2 1

4 bcosh22(bvFk5/2). The calculation of the ZS8
contribution is more subtle, since even in the zero-trans
limit Q→0 ~in any order!, the vectorQ8uQ→05K22K1 is
free to take any modulus in the interval@0,2KF# as the angle
u12u2 varies. A largeQ8 kicks the vertex momenta on th
right-hand side of Eq.~17! outside ofCL

2 , even ifK5PCL
2 .

In such cases the contribution of the ZS8 graph is cut off,
except for special positions of the vectorK5 running over the
Fermi surface. Thus, for an arbitrary angleu12u2, not all
the phase space is available for integration.

To understand where this elimination of the ZS8 contri-
bution comes from, we must keep in mind that our effect
action has supportCL

2 in momentum space. Let us consid
the ZS8 graph~see Fig. 1! when all external momenta satisf
momentum conservation and lie inCL

2 . It suffices then to
check whether the internal momenta (K5 andK52Q8) lie in
CL

2 whenKF
5 runs around the Fermi surface during the in

gration. From Fig. 2~a! we see that ifuQ8u.2L, the loop
momenta lie both inCL

2 only at special values ofKF
5 ~the

shaded regions!, i.e., only small fragments of phase space
available for integration. At smallerQ8 ~cf. Fig. 2~b!! these
intersections form a connected region andKF

5 is free to run
around the Fermi surface. If we completely neglect the Z8
graph when the intersection is disconnected@in Fig. 2~a!#, the
contribution of this graph to the RG flow atuQ8u,2L is
calculated in the same way as that of the ZS graph. S
uK1u5uK2u5KF and Q8uQ→05K22K1, the conditionuQ8u
,2L is equivalent to the conditionusin„(u12u2)/2…u
,L/KF for the angle betweenK1 andK2.

Taking into account both the contributions of the ZS a
ZS8 graphs, the RG equations forGQ,V can be written in
implicit form:20

]GQ

]t
5

]GQ

]t UZS1
]GQ

]t U
ZS8

~19!

]GV

]t
5

]GV

]t UZS85
]GQ

]t U
ZS8

. ~20!
r

e

-

e

ce

Summing up all formulas, we obtain the following system
RG equations:

]GQ~2f!

]t
5

bR

cosh2bR
E

2p

p du

2p
GQ~f2u!GQ~u1f!

1
]GV~2f!

]t
, ~21a!

]GV~2f!

]t
52bRQ~uc2ufu!E

2p

p du

2p
GQ~f2u!

3GQ~u1f!Y~f,u;bR!. ~21b!

To simplify those formulas we parametrized the angular
pendence of the vertices in Eqs.~21! by the anglef between
KF

1 and (KF
11KF

2), ufuP@0,p/2#. The small ZS8 contribu-
tion coming fromusinfu.L(t)/KF @Fig. 2~a!# was neglected,
which is accounted for by the Heaviside step functionQ,
whereinuc[arcsin„L(t)/KF…. We also defined the function

Y~f,u;bR![
1

bQ8

sinh~2bQ8!

cosh~2bR!1cosh~2bQ8!
, ~22!

bQ8[bFsinusinf, bF[bvFKF , ~23!

which arises in the calculation of the ZS8 contribution~18!.
Notice that

lim
bQ8→0

Y~f,u;bR!5
1

cosh2bR
. ~24!

From Eqs. ~21a,22,24! we see that at small angles (uf
u&T/vFKF) there is a strong interference between the
and ZS8 contributions. This interference depletes the R
flow of GQ(f) at small angles. Moreover, atf50 the flow
is exactly zero, for the two contributions have the same th
mal factorbRcosh22(bR):27

]GQ~f50,t !

]t
50, ;t. ~25!
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The initial conditions for the flow equations~21! are:

GQ~f,t50!5GV~f,t50!5U~f!. ~26!

Recall that the fixed pointsGQ* andGV* of the verticesGQ

and GV are the forward scattering vertex and the Land
interaction function, respectively. From Eqs.~25,26,11! we
conclude that the RG equations for the forward scatter
vertex preserve the Pauli principle at any point of the R
flow trajectory,

GQ~f50,t !50, ;t, ~27!

while the ‘‘uncompensated’’ RG flow generated by the Z8
graph drives the vertexGV to a fixed point value~the Landau
function!, which does not satisfy the Pauli principle, i.e
GV* (f50)50.

V. DEFICIENCIES OF THE DECOUPLED
APPROXIMATIONS IN THE LANDAU CHANNEL

Before finding a solution~exact or approximate! to the
flow equations~21! which fully takes into account the cou
pling of GQ andGV, we will comment on approximate solu
tions in which this coupling is neglected. The Landau cha
nel, as defined in this paper, includes, at one-loop RG, b
the direct~ZS! and exchange (ZS8) quasiparticle-quasihole
loops with a small transferQ. We will call decoupledany
treatment of the Landau channel that does not explicitly ta
into account both the direct and exchange contributions. I
shown below that solutions for the forward scattering ver
provided by decoupled methods fail to meet the requireme
of the Fermi statistics. Tackling the Pauli principle by im
posing additional constraints on the solutions~sum rules!
leads to conceptual difficulties discussed below.

To shorten notation we drop upper labels (Q,V), and
defineG as the running vertex whose fixed point is the fo
ward scattering amplitude andF as the Landau function.

Let us first solve the RG equations in the decoupled
proximation. If we neglect completely the ZS8 contribution
in Eqs. ~21! and perform a Fourier transformation, we r
cover a familiar system of equations,19 with its random-
phase approximation~RPA! like solution in which all har-
monics are decoupled:

]G l

]t
5G l

2⇒G l
RPA~t!5

G l~t0!

11~t02t!G l~t0!
, ~28a!

]Fl

]t
50⇒Fl

RPA~t!5const. ~28b!

We introduced the auxiliary parametert[tanhbR (t
P@0,t0#), with t0[tanhb0 and b0[ 1

2 vFbL0. Since the
temperature in the effective action is restricted by the con
tion ~7!, we can sett051 for all practical purposes.

With the initial conditionsG l(t0)5Fl(t0)5Ul @cf. Eq.
~26!#, the fixed points of Eqs.~28! are

~a! G l* 5
Ul

11Ul
~b! Fl* 5Ul , ~29!

with the following stability conditions for the fixed point:
u

g

-
th

e
is
x
ts

-

i-

Ul.21, ; l , ~30!

which are the Stoner criteria well known from the RPA a
proach. The bare interaction satisfies the Pauli principle@cf.
Eq. ~11!#

(
l 52`

`

Ul50. ~31!

If the vertexG is to satisfy the Pauli principle, the conditio

(
l 52`

`
Ul

11Ul
50 ~32!

must be imposed on the right-hand side of Eq.~29a!. How-
ever, it has been known for a long time that conditions~32!
and~31! are incompatible, unless the stability conditions~30!
are broken.24 Indeed, subtracting Eq.~31! from Eq. ~32!, we
find

(
l 52`

` Ul
2

11Ul
50, ~33!

which cannot be satisfied without violation of Eq.~30!.
This proves that the antisymmetric bare interactionU

cannot be at the same time a fixed point of the RG flow a
the Landau function, unless the classic FLT formulas
unapplicable. The accepted cure to this paradox is to give
the Pauli principle on the Landau function, because of
neglected ZS8 contribution.24 In the RG approach, this ma
be accomplished~in the decoupled approximation! by letting
the ZS8 contribution drive the bare interactionU towards the
Landau functionF* during an earlier stage of mode elim
nation, and then by solving the RG equations~28! with F* as
a new renormalized ‘‘bare’’ interaction.19,20This leads to the
well-known relationship between the scattering vertex a
the Landau function,

G l* 5
Fl*

11Fl*
. ~34!

Because of the ZS8 contribution, the Pauli principle does no
apply to F* ~a!, while it is enforced on the vertexG*
through a sum rule~b!:

~a! (
l 52`

`

Fl* Þ0 ~b! (
l 52`

` Fl*

11Fl*
50. ~35!

In doing so, the stability conditions~30! are modified as
follows:

Fl* .21, ; l , ~36!

i.e., they become Pomeranchuk’s stability conditions for
Fermi liquid, originally obtained on thermodynam
grounds.2 Such a decoupled RG treatment of the direct a
exchange loops makes Eqs.~35! compatible with the condi-
tions ~36!.

However, the sum rule~35b! is ‘‘unnatural’’ in the fol-
lowing sense. The bare interaction can in principle be tra
from a microscopic Hamiltonian. For instance, let us co
sider the spinless extended Hubbard Hamiltonian on a sq
lattice ~with lattice spacinga) at low filling, with nearest-
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neighbor repulsive interaction (Unn). Fourier transforming
and antisymmetrizing the interaction, we end up with t
following coupling function of the microscopic Hamiltonian
Umic

A (K1 ,K2 ;K3 ,K4).2 1
4 a2Unn

•(K12K2)•(K32K4).15

Let us choose this interaction as a trial bare dimension
coupling function:

U~u12u2!5Usin2S u12u2

2 D , ~37!

wherein all parameters are hidden within a single coeffici
U. The only nonzero Fourier componentsUl of the interac-
tion are

U05 1
2U, U6152 1

4U. ~38!

The interaction~37! satisfies the Pauli principle~11,31!. The
RPA sum rule~32! imposes an additional constraint, whic
the interaction~37! does not satisfy. If we suppose that th
‘‘improved’’ results ~34,35b! are always true, then, startin
from any kind of microscopic interaction@e.g., the bare in-
teraction~37!# and integrating ‘‘fast modes’’ outside the im
mediate vicinity of the Fermi surface, we have to end
with a ‘‘fine tuned’’ interaction, for any interaction has to b
‘‘fine tuned’’ in order to satisfy Eq.~35b!. The integral of the
flow ~27! @or, equivalently, the sum rule~48! below# is not a
fine tuning, since firstly, the bare interaction at the init
point can be always antisymmetrized, and, secondly,
have an exact cancellation of the RG flow for the vertexG at
zero angle due to direct and exchange contributions, t
preserving Eq.~27!. On the contrary, there is no reason f
any bare interaction to satisfy Eq.~32! at the beginning, nor
is there a mechanism to provide the fine tuning~35b! on
other parts of the RG trajectory.

These difficulties are not specific to the decoupled R
approximation, since the latter is strictly equivalent to t
diagrammatic microscopic derivation of FLT~Refs. 3,5,7!
leading to the same results~34,35,36!. The decoupled RG
treatment is equivalent to applying the Bethe-Salpeter eq
tion with the particle-hole ZS loop singled out,F being the
vertex irreducible in this loop. There are noa priori reasons
in that approach to demand this vertex to satisfy the P
principle. The rearrangment of diagram summations in
Bethe-Salpeter equation leading to Eq.~34! is based on the
assumption that the vertex irreducible in the direct partic
hole loop~ZS! is a regular function of its variables, neglec
ing the zero-angle singularity@at T50 ~Ref. 27!# in the ZS8
loop. As a consequence, the Pauli principle for the scatte
vertexG* is not guaranteed in the final result and ‘‘the am
plitude sum rule’’~35b! must be imposed by hand. The s
lution ~34! of the Bethe-Salpeter equation is tantamount
the summation of the ladder diagrams built up from the
loops, wherein the Landau function stands as the bare in
action. For this reason, the solution~34! we will call the ‘‘the
ZS-ladder approximation’’ in the following. We refer the
reader to a paper of Hewson18 wherein a ‘‘generalized’’
Bethe-Salpeter equation for Fermi liquids, which explici
takes into account both the ZS and ZS8 loops, is derived. For
further discussion on this issue, see also Ref. 24.
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VI. SOLUTION OF THE COUPLED RG EQUATIONS

A. Exact numerical solution

The coupled integrodifferential flow equations~21! may
be solved numerically. The functionsG(u) and F(u) are
then defined on a discrete grid of angles, and simple lin
interpolation is used to represent them between the
points. The grid spacing is not uniform: it has to be ve
small nearu50, where the flow is singular, but may b
larger elsewhere. The RG equations then reduce to a l
number of coupled nonlinear differential equations, whi
are solved by a fourth-order Runge-Kutta method with ad
tive step size. Typically, a grid of a few hundred points
sufficient ~we take advantage of the symmetry of the fun
tions!. Of course, the numerical solution was checked to
indistinguishable from the~exact! RPA solution when the
ZS8 contribution is discarded.

An example of solution for the spinless case with t
interaction function~37! is shown on Fig. 3~a!, at various
temperatures. The interaction functionU(u) and the RPA
solutionGRPA(u) are also shown. This solution will be dis
cussed in Sec. VII.

B. Approximate analytical solution

The flow equations~21! may also be solved analytically
albeit only approximately. In this section we give the a
proximate solution for the fixed pointsG* and F* both in

FIG. 3. ~a! Results of the numerical solution of the coupled R
equations. The curves labeledG* andF* are the forward scattering
vertex and the Landau function, respectively, at temperatu
T/vFKF5 0.1, 0.025, and 0.01. The narrowest central peak co
sponds to the smallest temperature, and vice versa.~b! Approximate
analytical solution of the coupled RG equations, for the same
rameters as in~a!, calculated numerically from Eq.~49!. In both
cases the initial cutoff wasL05KF .
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terms of Fourier components and in terms of angular v
ables@see Eqs.~47,49! below.#

The Fourier transform of Eqs.~21! is

]Gn

]bR
5

1

cosh2bR
Gn

21
]Fn

]bR
, ~39a!

]Fn

]bR
52 (

l ,m52`

`

Yn2m,2l 22m~bR!G lG l 22m , ~39b!

Yn8,m8~bR![
2

p2E
0

p/2

dfE
0

p

ducos~2fn8!cos~um8!

3Q~uc2ufu!Y~f,u;bR!. ~39c!

On the plane (f,u), the functionY(f,u;bR) has a maxi-
mum on the lineu5p/2, which moves from the position
(p/2,p/2) at the beginning of renormalization procedu
~when bR;bF) towards the position (0,p/2) when ap-
proaching the fixed point (bR→0). Elsewhere,Y(f,u;bR)
is either quite flat, or its contribution is eliminated by th
cutoff factor Q(uc2ufu) during the renormalization flow
Therefore, we approximated the functionY(f,u;bR) on the
plane (f,u) by its value on the line (f,p/2). This approxi-
mation, simplifying considerably our equations, allows
analytical treatment and a qualitative insight harder to find
purely numerical results. The approximate analytical solut
of the RG equations given below justifies that simplificati
a posteriori, when compared with the direct numerical sol
tion of Eqs.~21!.

The approximate RG equations are

]Gn

]bR
5 (

m52`

` F 1

cosh2bR
dnm2Yn2m~bR!GGm

2 , ~40a!

]Fn

]bR
52 (

m52`

`

Yn2m~bR!Gm
2 , ~40b!

wherein

Yn~bR!5
2

pE0

arcsin~2bR /bF!

dfYS f,
p

2
;bRD cos~2nf!.

~41!

The key difference between Eqs.~28! and ~40! is that the
former do not generate new harmonics since all harmo
are decoupled, whereas the latter couple all harmonics~be-
cause of the ZS8 contribution! in such a way that an infinite
number of new harmonics are generated by the RG fl
even if only a finite number of harmonics are nonzero at
start. For instance, the trial interaction~38! has only three
nonzero components, but according to Eqs.~40! the fixed
points G* and F* will possess an infinite number of them
The generation of new harmonics is not an artefact of
approximation which was used to go from Eqs.~21! to Eqs.
~40!, but is a generic consequence of the interference in
Landau channel@cf. Eqs.~39!#.

Let us start the analysis of Eqs.~40! with a heuristic ob-
servation. Whereas the componentY0(bR) is a nonnegative
function of bR , the others@Yn(bR), n>1] are increasingly
oscillating functions ofbR whenn increases. These oscilla
i-

n
n

s

,
e

e

e

tions along the whole RG trajectory@0,b0# will effectively
decrease the contributions from the harmonicsGm (mÞn) to
the flow of Gn . Because of this, we expect the diagon
terms (m5n) of Eqs. ~40! to be more important, and thi
justifies a perturbative approach, in which the nondiago
terms are ignored at zeroth-order. Letgn(bR) be the zeroth
order solution:

]gn

]bR
5F 1

cosh2bR
2Y0~bR!Ggn

2 . ~42!

The solution is

gn~bR!5
Un

11@ tanhb02tanhbR2I 0~b0!1I 0~bR!#Un
,

~43!

with

I n~bR![E
0

bR
dbR8Yn~bR8 !

5
1

pbF
E

0

arcsin~2bR /bF!

dfF ln
cosh~bR1bFsinf!

cosh~bR2bFsinf!

2 ln
cosh~ 3

2 bFsinf!

cosh~ 1
2 bFsinf!

Gcos~2nf!

sinf
. ~44!

The fixed pointgn* is

gn* 5
Un

11@12I 0~b0!#Un
. ~45!

The integralsI n(b0) can be evaluated analytically, sinc
(bF ,b0)@1 according to condition~7!. In the following we
shall need the first two components only:

I 0~b0!'
L0

KF

1

pF ln21 ln
11A12L0

2/~2KF!2

11A12L0
2/KF

2 G
1

1

pS 2arcsin
L0

2KF
2arcsin

L0

KF
D1

T

vFKF

~ ln2!~ ln3!

p
,

~46a!

I 1~b0!'
L0

KF

1

pF ln21 ln
11A12L0

2/~2KF!2

11A12L0
2/KF

2
1A12L0

2/KF
2

2A12L0
2/~2KF!2G1

T

vFKF

~ ln2!~ ln3!

p
. ~46b!

@The next term in the temperature dependence, omitted
Eqs. ~46!, is of the order (T/vFKF)2#. Treating the off-
diagonal terms (nÞm) on the right-hand side of Eq.~40a! as
perturbations, we obtain the following approximate soluti
at first order:

Gn~bR!'gn~bR!1 (
mÞn

E
bR

b0
dbR8Yn2m~bR8 !gm

2 ~bR8 !

~47a!
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Fn~bR!5Gn~bR!1E
bR

b0
dbR8

Gn
2~bR8 !

cosh2bR8
, ~47b!

It is straightforward to check that the solution~47a! satisfies
the sum rule@i.e., the Pauli principle~25,27!#:

(
n

Gn~bR!50, ;bR . ~48!

The solution ~47! can be converted back in terms of th
relative angleuP@2p,p# with a little help from Eq.~42!:

G* ~u!5U~u!2E
0

b0 dbR

cosh2bR
(

n52`

`

cos~nu!gn
2~bR!

1Q~u02uuu!E
~1/2! bFusin~u/2!u

b0
dbRYS u

2
,
p

2
;bRD

3 (
n52`

`

cos~nu!gn
2~bR!, ~49a!

F* ~u!5G* ~u!1E
0

b0 dbR

cosh2bR
(

n52`

`

cos~nu!Gn
2~bR!,

~49b!

wherein u0[2arcsin(2b0 /bF). A comparison of Eqs.~49a!
and ~21a! shows that—with the aforementioned approxim
tion of the angular dependence of the functionY—the ap-
proximate solution~47a! may be obtained by replacing th
vertex componentsGn on the right-hand side of Eq.~21a! by
the ‘‘renormalized’’ RPA ansatz~43!. It would be a mistake,
however, to conclude that the ZS8 diagram contributes only
to the third term on the right-hand side of Eq.~49a! since the
gn-s partially include its contribution. It is worth noting tha
Eqs. ~47b,49b! are not approximations in the sense of Eq
~47a! or ~49a!, but they are exact relations forF, derived
from the basic RG equations~40!.

C. Extension of the effective action

In the numerical and analytical results presented in
following sections the initial cutoffL0 of the effective action
is extended toKF , i.e.,b05bF/2. This point should be clari-
fied. Notice first that the ZS contribution is not sensitive
the bandwidth cutoff L0—provided condition ~7! is
satisfied—since tanhb0 is unity with exponential accuracy
On the other hand, the angular cutoff of the ZS8 contribution
@cf. Eqs.~21,39,41,44!# comes from a cutoff imposed on th
momentum transfer in this graph@cf. Eq. ~17!#. It is uc
5arcsin(2bR/bF) ~with 2bR /bF[L/KF) if L0<KF , and
uc5p/2 otherwise. The specific choiceb05bF/2 (L0
5KF) means that at the initial point of the RG flow the ang
f is allowed to take all values~i.e., the momentum transfe
Q8 is not cut off!, while the bandwidth is extended to the fu
depth of the Fermi sea. It can be checked that the results
not sensitive to the choice of a bigger cutoffL0*KF , since
then not only is the ZS contribution to the flow is expone
tially small, but that of ZS8 as well, until the cutoff decrease
to L;KF ~this was also confirmed by direct numeric
tests!. The formulas for the approximate analytic solution a
derived forL0<KF .
-

.

e

re

-

Such an extension of the low-energy cutoff to large valu
is analogous to what is routinely done in 1D models~e.g., the
Tomonaga-Luttinger model28!. In that context, deviations o
the real excitation spectrum from linearity and the appro
mated integration measure are expected to affect only
numerical values of the renormalized physical parameter

ChoosingL0;KF renders the RG fixed points~observ-
ables! sensitive only to the two independent physical sca
present in the model:T and vFKF52EF , and not to the
arbitrary scaleL0, which divides fast and slow modes. Low
ering the running cutoff until it reaches some intermedi
scaleLX ~such thatLX!KF andvFLX@T) provides us with
LX-dependent parameters for the action. We regardLX as
the scale of the low-energy effective action. However,
observable quantities~the fixed points! do not depend on a
particular choice ofLX .

VII. ANALYSIS AND DISCUSSION OF THE RG RESULTS

We will now discuss the main novelties brought by qua
tum interference in the Landau channel and compare with
results of decoupled approximations. The solutionsG* (u)
and F* (u) at different temperatures and for the interacti
~38! are shown on Fig. 3@~a!: direct numerical solution of
Eqs.~21!; ~b!: solution~49!#. For this interaction the sum in
the second and third terms on the right-hand side of
~49a! is g0

2(bR)12g1
2(bR)cosu. The curves were calculate

for U51 @cf. Eq. ~37!#, which is four times smaller than th
critical valueUcr

RPA54 at which the instability appears in th
RPA solution~28a! for G1* . Comparison of the approximat
solutions ~47,49! with the direct numerical solution show
good agreement.

In Fig. 3 the differences between the RG solution and
RPA solution~28a! are minor at large angles, but they b
come especially striking at small anglesu, where the inter-
ference between the ZS and ZS8 contributions is very strong
The RG solution givesG* (u50)50 ~the Pauli principle!,
while GRPA(u50)521/3 for this interaction strength. Th
Landau interaction functionF* (u) differs from the bare in-
teractionU(u), andF* (u50)Þ0. If the ZS8 contribution is
neglected@the RPA solution~28b!#, these two quantities co
incide.

An interesting feature of the RG result is the temperat
dependence of the verticesG* (u) and F* (u). As T de-
creases, the ‘‘beak’’ ofG* (u) in the region of strong inter-
ference becomes narrower. The characteristic angular w
of this ‘‘beak’’ is uuu;T/vFKF . A similar narrowing is no-
ticeable in the temperature dependence ofF* (u). One can
also see from the figures a weakening of the interfere
effect at lower temperatures, for then the RG solutions
closer to the RPA curves, but the distinctions between th
do not disappear asT→0, and the RG never reproduces th
RPA result.29

In terms of Fourier components this behavior manife
itself in a linear temperature dependence ofGn* andFn* . This
linearity is found both in the direct numerical solution
Eqs. ~21!, and from the solution of Eqs.~41,43,44,47!. This
temperature dependence can be revealed analytically.
grating by parts and using Eq.~42!, we can rewrite Eq.~47a!
at the fixed point as
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Gn* 5gn* 1 (
mÞn

I n2m~b0!Um
2 22E

0

b0
dbR (

mÞn
I n2m~bR!

3F 1

cosh2bR
2Y0~bR!Ggm

3 ~bR!. ~50!

The leading term on the right-hand side of Eq.~50! is gn* .
Using then Eqs.~45,46a!, we obtain, forn50,1,

Gn* ~T!'gn* ~T!'gn* ~0!1
T

vFKF

~ ln2!~ ln3!

p
@gn* ~0!#2,

~n50,1!, ~51!

wherein

gn* ~0!5
Un

11@12I 0~b0!uT50#Un
. ~52!

For the interaction~38! Un50 and sogn* 50 for n.1. Thus,
the higher harmonicsGn.1* , are entirely generated by the R
flow. To leading order, we obtain, from Eq.~50!,

G2* 'I 1~b0!U1
2 . ~53!

This component also has a linear temperature depende
according to Eqs.~46!. To estimate the components of th
Landau function, we first rewrite Eq.~47b! in another,
equivalent form@cf. Eqs.~40!#:

Fn~bR!5Un1 (
m52`

` E
bR

b0
dbR8Yn2m~bR8 !Gm

2 ~bR8 !. ~54!

Proceeding in the same fashion as above, we obtain the
ear temperature-dependent componentsFn* :

Fn* 'Un1I 0~b0!Un
21~ un21u11!I 1~b0!U un21u

2 ,

~n50,1! ~55a!

F2* 'I 1~b0!U1
2 . ~55b!

We should emphasize that simple formulas such as E
~51,53,55! serve only to illustrate how the temperature d
pendence comes about, and give only the order of magni
of the higher harmonics (n.2). The latter should rather b
calculated numerically. The temperature dependence of
lowest harmonics~e.g.,F0* and F1* ) does not seem to be
relevant issue in the calculation of quantities such as
compressibility, effective mass and heat capacity, since
the total ZS8 contribution, the temperature corrections, of t
order of T/vFKF , are very small in comparison with th
main corrections of orderL0 /KF . As a consequence, th
actual values of the lowest harmonics vary within a few p
cent at most, even in the entire temperature interva
<T/vFKF<0.1 ~the maximum temperature studied is rea
high: T50.2EF).
ce,

in-

s.
-
de

he

e
in

-
0

The temperature dependence is more pertinent as a ‘‘
lective’’ effect of the higher harmonics generated by the R
flow. Let us explain this point with the example of the inte
action~38!. The ‘‘improved’’ RPA ansatz~43! renormalizes
the bare componentsUn into gn (n50,61). The latter form
almost perfectly the functionG* (u), except at small angles
For those three componentsgn the sum rule~48! is less
violated than for the ‘‘pure’’ RPA components~29a!. The
generation of the new harmonics by the second term on
right-hand side of Eq.~47a! gives ‘‘a final touch’’ to the
curve G* (u), resulting mostly in the formation of a
temperature-dependent feature nearu50. The actual calcu-
lation of the componentsGn* showed that, in order to obtain
with acceptable accuracy the right form ofG* (u) provided
by Eq. ~49a! via the Fourier transformation of Eq.~47a!, at
least Nmax;vFKF /T components are necessary. So, t
lower the temperature is, the more harmonics are needed
the formation of the vertexG* (u). The same conclusion ca
be drawn from a numerical solution of the equations, b
since it is carried out in terms of angles on a discrete grid
reliable calculation of higher harmonics is difficult.

Another physical consequence of the quantum inter
ence in the Landau channel is the increased robustness o
system against instabilities induced by strong interactio
Even from the approximate solution~47!, we see that the
maximum interaction strength allowed is now larger than
one provided by the RPA solution@cf. Eqs. ~29,30!#. From
Eq. ~45! we obtain the stability conditions for the approx
mate solution ~47!: Ul.2@12I 0(b0)#21, ; l with 0
,I 0(b0),1 according to Eq.~46a!. Since I 0(b0) grows
with temperature, larger values ofuUl u are allowed asT in-
creases: the higher the temperature, the more stable the
tem is, as it should be from physical grounds. At the optim
choice of the initial cutoff (L05KF), I 0(b0) grows from
0.255 atT50 to 0.27 atT/vFKF50.1. This value of tem-
perature is the largest we can try without violating the co
dition of applicability of our model~7!. Thus, within this
approximate solution, the effect of interference increases
critical coupling by 40% compared the the RPA critic
value ~30!. Since we are retaining only two one-loop di
grams, linearized excitation spectrum and integration m
sure, we cannot be more conclusive on the role of the mo
deep into the Fermi sea in screening a microscopic inte
tion of arbitrary strength, and in stabilizing the Fermi liqu
phase.

VIII. CONTACT WITH THE LANDAU FLT
AND DISCUSSION

In this section we explain how the present RG theory
related to the standard results of the Landau FLT.1,3 This will
also allow us to relate this study to previous work on this R
approach to the Fermi liquid.19,20

It is important to notice that the two contributions to th
RG flow, coming from the ZS and ZS8 graphs, behave quite
differently as the flow parameterbR runs from b0@1 to-
wardsbR50. At largebR the ZS contribution to the flow,
which gives the term proportional to cosh22bR on the right-
hand side of Eq.~39!, is virtually negligible, up tobR;1.
On this part of the RG trajectory, the main contribution
the renormalization ofG andF comes from the ZS8 graph.
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On the other hand, closer to the fixed point (bR&1), the ZS
contribution grows since cosh22bR;1 for all harmonics,
while Yn(bR) decreases for the lower-order harmonics.
bR!1:

Yn~bR!'
1

pn
sin

4nbR

bF
. ~56!

Using the approximated form~41! is justified here, since a
bR!1 there is no difference between the exact form of
RG equations~39! and Eqs.~40!. Indeed, whenbR!1, the
largest allowedf is roughly 2bR /bF , so in Eq. ~22!
maxubQ8u'2bR!1 and the limit~24! of the functionY can
be taken. The Kronecker delta appearing after the integra
overu removes one summation, and we recover exactly E
~40! with Yn(bR) given by Eq.~56!. It should be also kept in
mind that the ZS8 flow is localized within the angleufu
;2bR/bF .

Such different behavior of the two contributions~ZS and
ZS8) to the total RG flow explains why approximation
based on the decoupling of these two contributions~RPA, ZS
ladder5,7,19,20! are reasonable. To clarify to what extent t
standard results of FLT@Eqs. ~34,35!# can be corroborated
by RG, we will make a two-step approximation of our R
equations. In doing so we will follow exactly the ‘‘recipe
of the ZS-ladder approximation discussed in Sec. V, but n
we can check each step by direct comparison with the
solution of Eqs.~21!.

In the first step we neglect the contribution of the Z
graph above an intermediate flow parameterbX . As one can
see from the RG equations~39!, this removes the exponen
tially small difference betweenGn(bR) and Fn(bR) at bR
.bX . This approximation is asymptotically exact a
T→0.27 Neglecting, in the second stage of this approxim
tion, the ZS8 flow for bR,bX , localized by that time within
the angleuX52arcsin(2bX /bF), we recover the exactly solv
able equations~28! with the new initial pointbR5bX , in-
stead of bR5b0. Then according to Eqs.~28!, Fn

X

[Fn(bX) is the~approximate! fixed point value of the Lan-
dau function, whileGn(bR) flows towards the~approximate!
fixed pointGn

ph from the new bare valueGn
X[Gn(bX)5Fn

X .
This second step of approximation violates the Pauli p
ciple, no matter how close we are to the Fermi surface@cf.
Eq. ~25! and Ref. 27#. Afterwards the theory says nothin
about the values of the functionsG(u) andF(u) inside the
interval 2uX and, of course, there are no more correlatio
between these functions.

To preserve the correct zero-temperature limit and
minimize the angle within which the approximation giv
completely wrong results forG* and F* , the intermediate
cutoff LX corresponding tobX5vFLX/2T should be chosen
such that tanhbX'1 @cf. Eqs. ~28,29! and Ref. 19# and
2bX /bF5LX /KF!1. Summing up what is said above, w
obtain

Gn
ph5

Gn
X

11tanh~bX!Gn
X 5

Fn
X

11Fn
X ~57a!
t

e

n
s.

w
G

-

-

s

o

Gn
X5Fn

X5Un1 (
l ,m52`

` E
bX

b0
dbR8Yn2m,2l 22m~bR8 !

3G l~bR8 !G l 22m~bR8 !. ~57b!

In Fig. 4 we illustrated all this by the direct numeric
calculation ofFX, Gn

X from Eqs.~21! for the interaction~37!,
followed by a calculation ofGph from Eqs. ~57!. The RG
solutions forG* and F* are also presented. The functio
FX(u) follows almost perfectly the Landau function@the real
fixed pointF* (u)#, except within 2uX of u50. In the part of
the RG trajectorybX<bR<b0 (b05100, bX55, T/vFKF
50.005), not only is the ZS flow exponentially weak, but t
central part of the ZS8 flow as well @cf. Eq. ~24!#. So, the
evolution of both vertices is due mostly to the ‘‘tail’’u
.uX of the functionY at bR*1. That is whyGX(u) and
FX(u) are virtually identical. Only the slowing down of th
ZS8 flow almost everywhere atbR&1—except on the cen
tral part @cf. Eq. ~56!# wherein it is always as strong as th
other one~ZS!—results in the drastic differences between t
two limits of the four-point vertex at the fixed point. Th
functionGph(u) is featureless and looks like a corrected RP
solution. The differences betweenGn* andGn

X (Fn* andFn
X)

are negligible, i.e., less than 1%, only for the compone
n50,1.

As should be clear by now, there is no real incompatib
ity of the stability conditions with the Pauli principle, sinc
this is a mere artefact of the ZS-ladder approximation. I
pointless to impose the sum rule either toGn

ph in the form
~48!, or to Fn

X in the form ~35!. Both sums would give the
value of the ‘‘uncorrelated’’ functionGph(u) at u50. This
function goes smoothly from the right patch@uX ,p# towards
u50 ~cf. Fig. 4!—or, equivalently, from the left, because o
parity. Actually, it can be proved exactly, turning the arg
ments of Sec. V around, that in a stable Fermi liquid, it
impossible to obtainGph(u50)50, even by chance. Thus
there is no need for the Landau functionF* to be ‘‘fine
tuned’’ in the sense of the sum rule~35!, since only the
relation ~57!—between the approximate vertexGph and

FIG. 4. Comparison between the exact numerical solution of
coupled RG equations forT/vFKF50.005 (G* andF* ), the inter-
mediate values ofGX,FX obtained from the initial valueU by stop-
ping the flow atbR55, and the phenomenological vertexGph ~the
result of the standard FLT derivations! obtained by applying the
RPA solution toGX (FX) considered as a new initial point of th
flow. Gph practically coincides withG* , except in the central region
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FX—is an exact relationship~more precisely, asymptotically
exact whenT→0), not Eq.~34!, which relates the physica
quantitiesF* andG* .

In the context of our discussion at the end of Sec.
notice that the cutoffLX (vFLX /T@1, LX /KF!1) corre-
sponds to the initial cutoff of thelow-energyeffective action
whereinGX is the bare interaction function~coupling! of that
action. The equality of the functionsGX and FX illustrates
the point of Sec. III that, at the beginning, the action’s co
pling function can be defined independently of the order
which the zero-transfer limit is taken.

When the RG flow reaches the scaleLX , the contribution
of the ZS8 graph to the flow ofGn and Fn is strictly irrel-
evant in the RG sense, and could have been neglected
model with a finite number of couplings~e.g., thew4 theory,
1D g-ology models, and so on!, keeping only marginal terms
@cf. Eqs.~28!#. But, as pointed out by Shankar,15 in the vi-
cinity of the Fermi surface we are dealing with couplin
functions, i.e., with aninfinite set of couplings. Our RG so
lution provides a curious example of a finite deviation of t
RG trajectory at the fixed point due to an infinite number
irrelevant terms. Theright fixed point @G* (u50)50# can-
not be reached if those terms are neglected, si
Gph(uX→0)ÞG* (u50) ~even atT5029! and we would re-
turn to the problems caused by the solutionGph ~the ZS-
ladder approximation! discussed in Sec. V. To put it differ
ently, neglecting those irrelevant terms at some part of
flow @solution~57!# violates the invariance of the RG traje
tory at the pointu50, expressed by Eqs.~25,26,27!.

The ZS-ladder approximation seems acceptable in
normal Fermi-liquid regime with moderate interaction (Fn
&10), when the narrow-angle features of vertices revea
by the RG theory are not too large,29 because the forward
(u50) singularity has little effect on the first componen
(Gn* 'Gn

ph, Fn* 'Fn
X for n50,1 and, in the case of a wea

interaction, forn52). This singularity affects mostly the
higher Fourier components. So, the relationship~34! is valid
only for smalln. It should not be used forFn* (n>2) neither
directly, nor via the sum rule from the scattering vertex p
vided experimentally. For the physical vertexGn* the sum
rule ~48! is always valid, but this study indicates that i
angular shape may require a large number of harmonic
adequately represent it. The existence of a finite solution
Gph(u) under conditions

Gn
X.21, ;n ~58!

guarantees not only finite RG solutions forG* andF* , but
also the fulfillment of the thermodynamic Pomeranchuk c
ditions ~36! by F* .

The major consequence of this study on the standard
sults of the Landau FLT is reducing the relationship~34!
between the components of the scattering vertex and
Landau function to the rank of approximation and invalid
ing of the sum rule~35!. The rest of results for normal Ferm
liquids would not be affected seriously by the RG corre
tions. For example, the temperature dependence of the v
ces would give a weak correction to the leading terms. Th
conclusions are neither related to the specific choice mo
considered, nor to the spatial dimension. Including s
doubles the number of vertices involved, changing noth
,
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essentially.~The derivation of the RG equations with spin
straightforward using theN-flavor formalism of Ref 19.! The
differences for the cased53 are only quantitative~e.g., the
type of the temperature dependence! because of different an
gular functions and solid angle integrations.

IX. SUMMARY

In studying the Fermi-liquid regime of interacting ferm
ons in d.1 with the model of thec4-Grassmann effective
action as starting point of the analysis, one must distingu
between three quantities:~i! the bare interaction function o
the effective action;~ii ! the Landau interaction function;~iii !
the forward scattering vertex. We have derived the RG eq
tions for the Landau channel which take into account b
contributions of the ZS and ZS8 graphs at one-loop level
The basic quantities of the Fermi-liquid theory, the Land
function and the scattering vertex, are calculated as fi
points of the RG flow in terms of effective action’s intera
tion function.

The classic derivation of Fermi-liquid theory using th
Bethe-Salpeter equation for the four-point vertex atT50 is
based on the approximation that the vertex irreducible in
direct particle-hole loop~ZS! is a regular function of its vari-
ables, neglecting the zero-angle singularity in the excha
loop (ZS8). This approach is equivalent to our earlier deco
pled RG approximation,19,20 and they are both tantamount t
summation of the direct particle-hole ladder diagram
wherein the Landau function stands as the bare interac
~the ZS-ladder approximation!.

One of the major deficiencies of the ZS-ladder appro
mation is that the antisymmetry of the forward scatteri
vertex related by the RPA-type formula to the Landau int
action function, is not guaranteed in the final result, and
amplitude sum rule must be imposed by hand on the com
nents of the Landau function. This sum rule, not indispe
able in the original phenomenological formulation of th
Landau FLT,1 from the RG point of view is equivalent to
fine tuning of the effective interaction.

The strong interference of the direct and exchange p
cesses of the particle-hole scattering near zero angle in
dates the ZS-ladder approximation in this region, resulting
temperature-dependent narrow-angle anomalies in the L
dau function and scattering vertex, revealed by the
analysis. In the present RG approach the Pauli principle
automatically satisfied. As follows from the RG solution, t
amplitude sum rule being an artefact of the ZS-ladder
proximation, is not needed to respect statistics and, m
over, is not valid.
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