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Abstract

Quantum dot devices may be tuned to Kondo models which each have a non-interacting
limit called the Toulouse limit. At sufficiently low temperatures the Toulouse limit can be
used to make predictions for charge transport in such devices driven away from equilib-
rium, e.g. with an ac bias. We investigate non-equilibrium transport in a resonant level
model with a single lead which may be mapped onto the Toulouse limit of the Kondo
model. The main results are expressions for the charge current that are exact in the
tunnelling couplings, while remaining in the linear response regime of the time-dependent
voltage bias. We also show how the line of enquiry directly extends to the tunnelling
junction studied by A. Schiller and S. Hershfield in which a Kondo impurity interacts
separately with two leads.
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Chapter 1

Introduction

Pervasive challenges in theoretical physics include finding fundamental descriptions for the
collective behaviour of electrons in systems where they are strongly interacting. A related
question is how these descriptions change when such systems are driven far away from
equilibrium. Due to the rapid progress in recent decades in the fabrication of small elec-
tronics on the nanoscale it is possible to engineer nanostructures to directly test different
theoretical models.

The theoretical work developed in this thesis is connected to experiments on semi-
conductor quantum dot devices which are tuned to the Kondo regime. Traditionally the
Kondo problem concerns the many body effects of a single localised spin-1/2, represent-
ing a magnetic impurity, in an otherwise non-magnetic metal. Curiously the spin-1/2
strongly interacts under exchange with the spins of the conduction electrons, and this
effect leads to a minimum in the resistivity-temperature plot for temperatures below the
Kondo scale TK . For quantum transport experiments the Kondo effect leads to a boost
in the conductance through nanostructures.. In a 1997 review on electron transport in
quantum dots [1], L. P Kouwenhoven et al. wrote of the Kondo effect:

‘This is particularly interesting since parameters like the exchange coupling and the
Kondo temperature should be tunable with a gate voltage. However, given the size of
present day quantum dots, the Kondo temperature is hard to reach, and no experimental
results have been reported to date.’

Less than a year after this remark was made the situation changed dramatically. The
year of 1998 saw the first publication for observation of the Kondo effect in a quantum
dot approximately 100 nm across [2], by 2007 the first observation of two-channel Kondo
physics was reported in a similarly sized device [3], and recently, in 2015, a fully tuneable
‘charge’ two-channel Kondo effect has been observed on the relative macroscale where the
role of the ‘dot’ is played by a metallic island of several microns in diameter (consisting
of billions of electrons) which combine to have an overall pseudospin-1/2 [4].

Earlier theoretical research towards exact solutions of models for strongly correlated
electrons in a sense anticipated the progress in nanostructure fabrication. In particular
Meir and Wingreen [5], and later Jauho, Wingreen and Meir [6], exactly solved for the
charge current through different resonant level models with two leads, in and away from
equilibrium, including the most physically relevant case with a harmonically modulating
bias. This showed that a general formula for tunnelling through an arbitrary mesoscopic
region exists, provided that one treats the connecting leads as non-interacting.

In a similar manner, and more related to the present research, A. Schiller and S.
Hershfield investigated transport through a Kondo impurity interacting with two separate
leads away from equilibrium [7, 8], including time-dependent transport with the sinusoidal
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1.1. Outline

voltage bias [9]. This was done by studying the non-interacting Toulouse limit of the spin-
anisotropic two-channel Kondo model, extended to include anisotropic exchange between
the channels. Beyond a motivation from the point of view of basic research, a search for
exact solutions is important for quantum dot experiments in the Kondo regime because the
tunnelling between the dot and surrounding reservoirs of electrons does not necessarily
have to be weak. One should therefore aim to work non-perturbatively in the Kondo
exchange couplings.

In this thesis we will examine the physics of electron transport in Kondo impurity
models away from equilibrium by using Keldysh functional integrals, inspired by the
theoretical studies above. The main line of investigation studies a one-channel Kondo
(1CK) model at the Toulouse limit, where it is described by a resonant level (RL) model
with a single lead. By allowing for a height difference between the Fermi energy and the
d level, and modulating the single particle energies of the lead electrons with a sinusoidal
voltage bias, we will study an extension of the Toulouse limit 1CK model that is driven
away from equilibrium. The system may be loosely thought of as half of a tunnelling
junction. The main results are expressions for the current which are exact in the tunnelling
couplings within the linear response regime in the amplitude of the bias. We also show how
the procedure carries over to the two-channel model studied by Schiller and Hershfield.

1.1 Outline

Chapter 2 introduces a selection of useful subjects. This includes theoretical concepts:
many body physics tools in one-dimension, Keldysh functional integrals and linear re-
sponse; as well as phenomenology: transport in quantum dots, and Kondo impurity
physics topics.

Chapter 3 prepares for the research in chapters IV and V by showing the mappings
of the one-channel and two-channel Kondo models to the resonant level and Majorana
resonant level models in their respective Toulouse limits. This is mainly done by filling
in details from the book by Gogolin et al. [10].

Chapter 4 investigates ac transport through a RL model, i.e. the non-interacting
Anderson model. The toy-version of the model here considers a single metallic lead of
spinless electrons attached to a quantum dot. The current into the dot is calculated for
any temperature and driving frequency in the sinusoidal voltage bias. This is mapped to
a non-equilibrium version of the 1CK model at the Toulouse limit.

Chapter 5 considers ac transport in the two-channel Kondo (2CK) model at the
Toulouse limit. Here a free Majorana fermion controls the behaviour near a non-trivial
fixed point in the RG flow. By this we mean the Toulouse limit for the 2CK model inter-
polates between the familiar RL model and a Majorana RL model in the space of exchange
couplings, making potential experiments a robust way to observe Majorana physics. We
outline how the methods of Chapter 4 extend to the tunnelling junction studied by Schiller
and Hershfield [8].

Chapter 6 summarises the findings in the thesis. An important feature to the research
is that our conductance calculations are exact in the tunnelling amplitudes (while staying
within linear response in the time dependent voltage bias). This is crucial because for
quantum dot experiments tuned to the Kondo regime the role of “tunnelling amplitude”
is played by the transverse Kondo coupling J⊥ which may be O(1).
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Chapter 2

Preliminaries

Here we devote a chapter to background material to help the thesis become accessible
to the reader not working in the field of quantum transport, or who may not be familiar
with some of the techniques we employ such as Keldysh functional integrals.

2.1 Impurity physics and quantum transport topics

The first half of the chapter focuses on selected topics in quantum transport.

2.1.1 Quantum dots and transport

A quantum dot is a spatially isolated island, quantum confined in all three orthogonal
directions, that supports discrete energy levels. A simple model for a dot would be to
consider a single energy level:

Hdot =
∑
σ∈(↑,↓)

εdd
†
σdσ + Und↑nd↓ (2.1)

where dσ, d
†
σ are creation/annihilation operators for a spin-σ electron on the dot, εd is the

onsite energy, ndσ = d†σdσ and U > 0 is a repulsive Hubbard-type potential which provides
an energy penalty for double occupancy. To investigate transport through a quantum dot

QD

I(V)

T L  μ
L, T R  μ

R,

(for ∆μ or temperature bias)

Figure 2.1: Schematic for the prototypical single impurity Anderson model (2.4) used for
investigating transport through quantum dots.
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2.1. Impurity physics and quantum transport topics

we can put metallic leads to the left and right which have the Hamiltonians:

HL =
∑
kσ

ξkLc
†
kLckL HR =

∑
kσ

ξkRc
†
kRckR, (2.2)

where we have neglected interaction effects in the leads and assumed that they have the
single particle energies ξk,α = εk − µα where α labels the channel in the left (L) or right
(R) lead. Since the leads and the dot are close together the electrons can hop between
the dot and each lead separately. For this we have a tunnelling Hamiltonian:

Htun =
∑
α=R,L

∑
kσ

(Vkαc
†
kασdσ + h.c.) (2.3)

where Vk,L(R) are complex hopping amplitudes which are often assumed to be momentum-
independent.

The whole set-up comprises the single impurity Anderson model:

HAnd. = Hdot +HL +HR +Htun, (2.4)

sketched in Fig. 2.1. The leads act as reservoirs for the electrons so by holding them at
different chemical potentials (with a gate voltage V ) the electrons hop from one lead to
the dot and then onto the next, thus leading to an observable current I(V ). This is what
is meant by “out of equilibrium” for charge transport1. The dot can accommodate up
to two electrons that are strongly interacting due to the finite onsite Couloumb repulsion
U . The current will be a complicated function of the applied voltage, the tunnelling
amplitudes Vk,L(R) and the interaction U .

2.3 The Kondo effect in nonequilibrium 11

Quantum dot

co
nt

ac
t

co
nt

ac
t

GaAs

Gates

AlGaAs

2DEG

Figure 2.4: The left picture shows a scanning electron microscope image of a quantum
dot that is created in the confined region between the electrodes. The picture is taken
from Goldhaber-Gordon et al. [11]. The two outer metallic gates can be used to tune
the tunnel coupling of the dot to the surrounding 2DEG. The metallic gate in between,
the so-called back-gate, enables to control the energy levels of the dot relative to the
conduction band electrons. Additionally, contacts for source and drain, not shown in
the left picture, can be placed upon the heterostructure in order to create a current
through the device. A schematic picture of the experimental situation is shown on the
right hand side.

that can be viewed as a generalization of the usual isotropic Kondo Hamiltonian. Here,
the perpendicular coupling J? and the parallel coupling Jk are not necessarily identical.
This is in contrast to the Kondo Hamiltonian that emerges from the Anderson impu-
rity model after the Schrieffer-Wolff transformation. Initially, the anisotropic Kondo
Hamiltonian was introduced by Anderson and coworkers [3] in the beginning of the
70’s merely as a calculational tool while rotational invariance, i.e. Jk = J?, was always
demanded in the end. Here, the anisotropic Kondo Hamiltonian in the Toulouse limit
serves as an effective Hamiltonian for the strong coupling limit of the Kondo model.
Under this replacement, however, the meaning of the coupling constant changes. The
parallel coupling Jk is fixed at a special value, Jk = 2�

p
2, the so-called Toulouse limit,

where the Hamiltonian can be diagonalized exactly using the bosonization technique.
The Kondo scale TK is still linked to a coupling constant in the Kondo model, namely
to the perpendicular coupling J?. The exact relation will be discussed later.

2.3 The Kondo effect in nonequilibrium

Originally, measurements on the Kondo effect were restricted to metallic or semicon-
ducting bulk samples in which magnetic impurities have been embedded. In order to
observe their impact on bulk properties like conductance or magnetic susceptibility, for
example, a sufficient concentration of impurities was needed. The influence of a single
impurity, however, has not been accessible by such an experiment. Moreover, a varia-
tion of the microscopic parameters was achievable only by fabricating different samples
with different kinds of impurities.

The advent of quantum dots opened up the possibility to study the Kondo effect
with a high tunability of the microscopic parameters. Quantum dots can be thought

Figure 2.2: Scanning electron microscope image of a semiconductor quantum dot device
extracted from Goldhaber-Gordon et al. [2], in which the Kondo effect was first observed
in quantum dots. Typical energy scales for such experiments are of the order 1 meV.

For comparison to an experimental system, consider Fig. 2.2 from Ref. [2]. The quan-
tum dot is in the confined region between the electrodes, or metallic ‘gates’, shown in
white. By placing semiconductors with different band structures together, e.g. GaAs and
AlGaAs, the conductance bands and valence bands bend at the interface so to create a
two dimensional electron gas (2DEG) where the electrons have a very high mobility. This

1Another possibility is a a heat current from a non-zero temperature gradient between the leads.
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Chapter 2. Preliminaries

is the dark background. In this case the outer two gates tune the tunnelling coupling
between the dot and the 2DEG, while the ‘back gate’ in the middle controls the levels
of the dot compared to the Fermi energy of the conduction band electrons. Two further
‘source’ and ‘drain’ contacts may also be placed on the heterostructure in order to measure
a current through the device.

In this thesis we will investigate non-equilibrium charge transport that fits into this
framework.

2.1.2 Transport regimes for quantum dots

The field of quantum transport can be divided into different regimes by energy scales.
Two important ones are the level spacing δs (∼ the inverse of the DOS per energy in-
terval) and the charging energy Ec (the cost to add an electron into the nanostructure).
Other than energy, the other important quantity is the conductance in terms of the con-
ductance quantum GQ = 2e2/h which gives us an idea about the scattering behaviour.
Often experimentalists investigate the conductance lineshape for a device, which shows
the conductance in units of GQ versus an applied voltage bias for different temperatures,
e.g. Fig. 2.3.

For experiments addressing transport through quantum dots the conductance is often
low, G � GQ, the scale of Ec becomes important, and electron-electron interactions are
strong. As a consequence electrons tunnel one-by-one as infrequent discrete events, with
corrections for ‘co-tunelling’ where they tunnel two at a time. This is known as Coulomb
blockade. Moving towards lower energies one enters the Kondo regime characterised by

0.5
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(e
2 /
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(m
V
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Figure 2.3: Conductance versus gate voltage at different temperatures for a single elec-
tron transistor. An increased peak in the conductance with decreased temperature is an
unmistakable sign of the Kondo effect. The curves range from 100 mK (at the highest)
to 3800 mK (at the lowest) here. Figure reproduced from Ref. [11]

an energy scale TK which, theoretically, should be much less than bare energy scales like
the electron bandwidth D. As we will see later the conductance depends exponentially on
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2.1. Impurity physics and quantum transport topics

TK . An important difficulty that experimentalists must confront which is buried in words
like ‘moving towards lower temperature one enters the Kondo regime’ is that for Kondo
physics one needs to design the device such that it has a degenerate ground state. This
makes it very difficult in general for transport experiments in semiconductor quantum
dot devices to access the Kondo regime and in practice can lead to a narrow range of
tunnelling conductances.

2.1.3 The Kondo effect

Long before the advent of semiconductor quantum dot devices like in Fig. 2.2, the phe-
nomenon called the Kondo effect was found in metals: Usually the resistivity ρ is ap-
proximately flat at low temperatures T towards some residual T = 0 value ρ0. Then at
higher T electron-phonon scattering effects are important giving a ρep ∝ T 5 contribution,
for T � θD where θD denotes is the Debye scale, and at even higher T the behaviour
is Ohmic. In the 1930s, however, the resistivity of gold was found to increase at low T .
The anomalous behaviour was due to magnetic impurities; doping a metallic host with
magnetic ions, such as iron, contributes a Curie component to the susceptibility

χimp ∝ J(J+1)/T (2.5)

where J is the total angular momentum of the impurities. This indicates the formation
of a localised magnetic moment because free spins also show the χ ∝ 1/T decay.

Figure 2.4: The Kondo effect. A resistivity minimum appears at low temperatures for
metals doped with magnetic impurities.

Kondo explained the resistivity minimum, Fig. 2.4, by virtual spin flip scattering
processes between the conduction electrons and the impurities. He did this by going up to
third order perturbation theory in the interaction of his effective model, which describes
a single localised magnetic moment at the origin interacting with a sea of conduction
electrons via spin exchange.

H = H0[ψ] + JS · s(0), J > 0 (2.6)

with
H0 =

∑
kσ

εkc
†
kσckσ, s(0) =

∑
σ,σ′

ψ†σ(0)σσσ′ψσ′(0) (2.7)

Here S is the spin-1/2 operator such that S2 = S(S + 1), J is the antiferromagnetic
exchange coupling, ψσ are the conduction electron field operators, s(0) is the spin density

6



Chapter 2. Preliminaries

of the conduction electrons and σ = (σx, σy, σz)
ᵀ is the vector of Pauli matrices. Kondo’s

perturbative solution, however, diverges logarithmically in the zero temperature limit and
further corrections diverge ever more rapidly. Seeking an understanding of this became
known as the Kondo problem, while the resulting characteristic behaviour such as the
resistivity minimum at low T is due to the ‘Kondo effect’.

Figure 2.5: Resistivity of dilute iron alloys as a function of temperature close to T = 0K.
Image reproduced from [12].

The Kondo effect is associated with a condensation of the conduction electrons spins
to ‘screen’ the localised moment. This phenomenon becomes stronger the lower the tem-
perature and the greater the dilution of magnetic moments, Fig. 2.5. Screening means
that the bare interaction becomes replaced by an effective one which is shorter ranged.
For instance, in any electronic medium the electric fields are always screened on a macro-
scopic scale since current must not flow in thermodynamic equilibrium. The extreme end
of this is the Hubbard U where only zero ranged potentials are retained, described as
‘total screening’.

Local moment formation

The notion of a localised spin interacting under exchange with the spins of many con-
duction electrons in a surrounding bath emerges from a microscopic description. Starting
with a single lead version of the Anderson model (2.3), we may arrange the parameters
such that the energy of the singly occupied state of the dot is lower than both the empty
and the doubly-occupied states, Fig. 2.6. Given this starting point the low energy limit
of the Hamiltonian is an effective Kondo model.

This is achieved by the Schrieffer-Wolff transformation, a canonical transformation
that projects the Hamiltonian onto the subspace where only one electron is on the dot.
The idea is that excitations to the empty or doubly occupied subspace exist as virtual

7



2.1. Impurity physics and quantum transport topics

or

doubly degenerate
ground state

Figure 2.6: Arrangement of parameters for the local moment regime, where the Fermi
energy for the conduction band is set at zero. Virtual processes, e.g. where a single dot
electron in the ground state hops to the conduction band for a short period of time, leads
to Kondo spin flips. This is accurate for isolated transition metal atoms with unfilled
f-shells.

processes which are integrated out in a kind of one-step renormalisation process,

HAnd.
S-W−−→

∑
k,k′

V ∗k Vk′

[
1

(εk − εd)
+

1

(U + εd − εk′)

]
c†kασαβck′β · d†λσλµdµ + . . .

=
∑
k,k′

Jkk′S · c†kασαβck′β + . . . , (2.8)

(repeated spin indices summed)

where the dots indicate a discarded potential scattering term2 and the pseudofermionic
representation of the spin-1/2 is: S = d†λσλµdµ. Since only electrons near the Fermi level
εk = 0 contribute to the low energy properties, the k dependence may be neglected, giving
precisely the Kondo model. Further details for this procedure may be found in textbooks
(e.g. Hewson [13], Ch. 1.7).

As a consequence one finds that the exchange coupling which emerges is antiferromag-
netic, such that it is favourable for neighbouring spins to be anti-parallel:

J ' V 2

(
1

|εd|
+

1

|εd + U |

)
> 0 (2.9)

2.1.4 Scaling and screening for Kondo models

The Wilsonian numerical renormalisation group (NRG) as a non-perturbative method
fully solves the Kondo problem. Historically, Anderson’s “poor man’s scaling” came as
one of the important advances towards this and is in exact agreement with a perturbative
RG analysis to leading order in the β-function expansion. We will briefly outline the
scaling features for the Kondo models and how this fits in with the screening picture.

2which vanishes in the particle-hole symmetric case.
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Chapter 2. Preliminaries

Isotropic 1CK model

In renormalisation group procedures one progressively adjusts the coupling J while slowly
lowering a cutoff energy scaleD such that the Hamiltonian retains its form, i.e. H(J,D)→
H(J, D̃) where J(D)→ J(D̃) + δJ for the rescaling D → D̃ < D. This is also referred to
as integrating out the excitations E ∈ [D̃,D]. This tells us whether or not the theory has
a well defined low energy limit. Since J is being tuned in this case and it depends on the
cutoff it is said to be a running coupling constant. For the Kondo model starting at high
temperatures the result is that J = 0+ flows to a J =∞ strong coupling fixed point, Fig.
2.7 (a):

∂g

∂ log(D)
= −2g2 + 2g3 +O(g4) (2.10)

Here the dimensionless coupling g = νJ has been introduced where ν is the density of
states which is assumed to be constant near the Fermi level. In plain English, ‘flowing
to an infinite fixed point’ means that the Kondo interaction strength always grows as
the energy scale is reduced in the renormalisation group (RG) transformation. This
behaviour is known as asymptotic freedom - it is said that the local moment coupled
to the conduction sea through J is asymptotically free - which is famously known as
a feature of quantum chromodynamics describing the quark-gluon interactions found in
nuclear matter. The Kondo model is the simplest example of this idea in physics.

Solving the RG equation to leading order, choosing appropriate integration boundaries,
gives

g(D) =
g0

1 + 2g0 log(D/D0)
, (2.11)

from which we may estimate the Kondo temperature TK , the point at which we need to
use more advanced techniques than perturbation theory, by a rewriting

1

g(D)
= 2 log

(
D

D0e
− 1

2g0

)
. (2.12)

The running coupling diverges when D approaches D0e
−1/2g0 , which gives an approxima-

tion for TK as

TK = D0e
− 1

2g0 . (2.13)

For quantum dot experiments the Kondo temperature is in the range of a few millikelvin
and is estimated from the width of the zero bias peak, which is smeared out and re-
duced in height with increased temperature. The Kondo resonance is destroyed when the
temperature goes above TK .

The ground state for the Kondo model is a local many body singlet between the spin-
1/2 and the conduction electron spins, Fig. 2.7 (b). The idea is that as the temperature is
lowered, provided J is initially positive, the conduction band gains a net spin-polarisation
which screens the spin-1/2 impurity. A consequence is the spectral function of the impu-
rity develops a peak at the Fermi energy of the conduction band electrons due to resonant
spin-flip scattering, and the effects of this have been experimentally confirmed in quantum
dot systems such as the one shown in the earlier figure from Goldhaber-Gordon et. al,
Fig. 2.2.

In addition, the spin singlet ground state for the Kondo effect in metals can be deduced
from an analysis of specific heat data. For combining two spin 1/2 particles there is only
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2.1. Impurity physics and quantum transport topics

weak coupling strong coupling 

singlet

large, yet finite, volume

screening:
Local

Moment

repulsive 
fixed point

attractive
fixed point

crossover

(a)

(b)

Figure 2.7: (a) The renormalisation group flow for the isotropic Kondo model. (b) Corre-
sponding illustration of the many body state where the blue arrow represents the spin-1/2
impurity, and the red arrow is the collective spin of the bath of conduction electrons. The
ground state is a many body singlet.

one possible way to make a singlet3, so the degeneracy is one and the predicted residual
entropy is S = kB ln(1) = 0. In contrast for a free spin-1/2, as in the local moment
regime, the spin is either up or down so the prediction in that case would be S = kB ln(2).
Nozières showed that towards the strong coupling fixed point with T � TK the conduction
band electrons behave like a local Fermi liquid near the local singlet. This acts as static
scatterer with an associated phase shift near the Fermi energy of δ = π/2 per spin [14].

Anisotropic 1CK

The Kondo model can also be generalised to allow anisotropy of the exchange interaction:

V̂ = JaS
aψα(0)†σaα,βψβ(0)

= ψ†↑ψ↓(JxS
x − iJySy) + ψ†↓ψ↑(JxS

x + iJyS
y) + Jz(ψ

†
↑ψ↑ − ψ†↓ψ↓)Sz

= J⊥(ψ†↑ψ↓S
− + ψ†↓ψ↑S

+) + Jz(ψ
†
↑ψ↑ − ψ†↓ψ↓)Sz (2.14)

where all field operators are implicitly evaluated at x = 0, the S± = Sx ± iSy are ladder
operators, we have defined Jx = Jy ≡ J⊥ and the repeated indices were summed over. In
this situation there are two coupled flow equations:

∂Jz
d log(D)

= −2νJ2
⊥ +O(J3) (2.15)

∂J⊥
d log(D)

= −2νJzJ⊥ +O(J3) (2.16)

3So the Fermi sea is not really ‘one’ electron. ‘One’ is accurate for considering the problem on a 1D
lattice, on the other hand, where the impurity traps a single electron at say site zero and hopping onto
it is excluded.

10



Chapter 2. Preliminaries

To leading order these are also in the form of the Kosterlitz RG equations originally found
for the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in the two-dimensional XY
model. The anisotropic version of the Kondo model is the one we will be most concerned
with in later chapters.

A qualitatively different approach than the perturbative analysis, such as NRG, is
necessary to fully determine all possible fixed points. In the simple example of the isotropic
1CK model, for instance, suppose it is only known that there is the repulsive (trivial) fixed
point at J = 0 and an attractive fixed point at J → ∞. Then in principle it is possible,
though it seems unlikely, that such an arrangement has any even number of fixed points in
between since these would all be topologically consistent situations. Due to NRG, which
is numerically exact, we know that this is not the case and that the asymptotic freedom
characterisation is accurate.

Two-channels and non-Fermi-Liquid physics

The two channel Kondo model includes a second species of fermions which also interact
with the localised spin:

H2CK =
∑
α=L,R

∑
kσ

εkc
†
kσαckσα + JLS · sL(0) + JRS · sR(0) (2.17)

0 weak coupling strong 

unstable
fixed point

Figure 2.8: RG flow for the two-channel Kondo model when JL = JR = J > 0. The
infinite coupling fixed point is now repulsive and a single intermediate fixed point exists
at finite coupling. This is confirmed by numerically exact techniques like the NRG.

Sticking with the spin-isotropic case, for simplicity, and choosing JL = JR = J > 0, we
may compare the RG flow Fig. 2.8 to the earlier single-channel diagram Fig. 2.7 (a). The
infinite coupling fixed point is now unstable and there is a new non-trivial attractive fixed
point at finite coupling. This leads to different physics because the low energy properties
of the model are no longer in essence like the Fermi-liquid. Instead correlators now decay
with power laws. This situation is also described as ‘overscreened’. What this means is
that both baths compete to screen the spin-1/2 and, loosely speaking, each only interacts
with ‘half’ of the impurity spin, Fig. 2.9.

The low energy properties are well described by the the non-interacting limit of the
Hamiltonian, a ‘Majorana resonant level model’, that we will see in more detail in Chap-
ter 3. By an analysis of the free energy for this theory, a frustrated ground state with
non-integer degeneracy is revealed by a non-vanishing residual entropy:

S(T → 0) =
1

2
ln(2). (2.18)

11



2.2. Many body physics techniques

two baths

Figure 2.9: In the two-channel case both conduction baths try to screen the spin leading
to a non-trivial fixed point in the RG flow. There is a frustrated ground state (non-integer
degeneracy) manifested by a non-zero residual entropy.

2.2 Many body physics techniques

In this section we cover the essential techniques used in the rest of the thesis. This includes
bosonization, Keldysh functional integrals and linear response theory.

2.2.1 One dimensional techniques (bosonization)

There are two features of one-dimensional Fermi systems which are responsible for the
main differences which allow for bosonization, the local fermion-boson correspondence we
will use later to set up our transport problems:

(i) No low-lying energy states for particle-hole excitations with momentum 0 ≤ q ≤ 2kF

(ii) Linear dispersion in the limit q → 0.

Figure 2.10: Massive particle dispersion (left) and excitation spectrum (right) for a d = 1
system (right) with excitation momentum q. Increasing q requires moving away from the
Fermi points. For d > 1 however there is a continuum of low E states which are accessible
for |q| < 2kF .

The corresponding excitation spectrum Ek(q) = E(k + q) − E(k) and dispersion E(k)
is shown in Fig 2.10. They may be thought of as a direct result of the reduced phase
space of the particle-hole excitations, since they are confined to move along a line with no

12



Chapter 2. Preliminaries

freedom of angles to increase their momentum. In addition we know from fundamental
results (Mermin-Wagner-Hohenberg-Coleman theorem) that no ordering can exist at finite
temperature in one dimension. In the following we present a very short overview of
bosonization for non-interacting models.

Free Tomonaga-Luttinger model (FTLM)

We shall start by linearising the free electron Hamiltonian. This is always allowed when
there is a one-dimensional excitation spectrum, Fig. 2.10. Expanding around the points
±kF where we impose a finite bandwidth of 2Λ, one finds

H =
∑
k

εkc
†
kck ≈

kF+Λ∑
k=kF−Λ

∂ε(k)

∂k

∣∣∣∣
kF

(k − kF )c†kck +

−kF+Λ∑
k=−kF−Λ

∂ε(k)

∂k

∣∣∣∣
−kF

(k + kF )c†kck

=
∑

−Λ≤k<Λ

vFkc
†
k+kF

ck+kF +
∑

−Λ≤k<Λ

−vFkc†k−kF ck−kF .

Extending the momenta range Λ→∞ and inserting normal ordering signs, we have

H → HF =
∞∑

k=−∞
vFk(: c†kRckR : − : c†kLckL :). (2.19)

HF =
∑

k,r∈(−1,1)

rvFk : c†αr,kcαrk : (2.20)

where αr ∈ (α1, α−1) = (R,L). This is the free Tomonaga-Luttinger model (FTLM).
Here the symbols R and L correspond to right- and left-moving electrons. With the
finite bandwidth it is known just as the Tomonaga model. Extending the k values is
justified provided the higher energy states never take part in any physical excitation.
The normal ordering signs are inserted because the states below the lower −Λ cutoff are
unphysical; the (Dirac) sea of electrons is unbounded from below. The left-moving and
right-moving c operators obey the usual fermionic algebra and different species R and L
always anticommute with each other, regardless of their creation or annihilation nature.

{cαrk, c†αr′k′} = δr,r′δk,k′ , {cαrk, cαr′k′} = {c†αrk, c
†
αr′k

′} = 0 (2.21)

Field description (Massless Dirac theory)

Later we will often work at the level of field operators. The fermion field operator splits
into left and right moving parts ψL and ψR. This comes by restricting attention to states
near the Fermi momentum and isolating the parts ψL and ψR which are slowly varying
in space compared to exp(±ikFx):

ψ(xj, τ) =
1√
L~β

∑
kn

eikxj−iωnτck ≈
1√
L~β

[
kF+Λ∑

n,k=kF−Λ

eikxj−iωnτck +

−kF−Λ∑
n,k=Λ−kF

eikxj−iωnτck

]
Λ→∞−−−→ 1√

L~β

∑
kn

(eikF xjeikxj−iωnτck,R + e−ikF xjeikxj−iωnτck,L)

= eikF xjψR(xj, τ) + e−ikF xjψL(xj, τ) (2.22)

13



2.2. Many body physics techniques

Eq. (2.22) above is for discrete systems with a length L = Na, with N sites and a lattice
spacing a where sites are enumerated by xj = ja with 1 ≤ j ≤ N . Again the continuum
limit is allowed for low energy processes |q ± kF | � kF . The spatial part taken alone is

ψ(x) = eikF xψR(x) + e−ikF xψL(x) (2.23)

where

ψαr(x) =
1√
L

∑
k

eikxck,αr , ck,αr =
1√
L

∫ L

0

dxe−ikxψαr(x) (2.24)

with the periodic boundary conditions k = 2πn/L, (n = 0,±1±2 . . . ). For this convention
the anticommutator is normalized as a delta function:

{ψαr(x), ψ†αr′ (y)} = δr,r′δ(x− y). (2.25)

Rewritten on the level of the fermion fields using the definitions above the FTLM is the
massless Dirac Hamiltonian:

HF = −ivF
∫

dx : [ψ†R(x)∂xψR(x)− ψ†L(x)∂xψL(x)] : (2.26)

where the Fermi velocity plays the role of the speed of light.

Fermion-boson correspondence between the massless free theories

Chiral fermion densities JL and JR may be used to rewrite the FTLM. In field-theoretic
language we may also refer to JL(R) as currents. The currents are:

Jαr(p) =
∑
k

: c†αr,k+pcαr,k :

=
∑
k

(
c†αr,k+pcαr,k − δk,0〈c†αr,0cαr,0〉

)
, (2.27)

such that:
JL(p > 0)|0〉 = 0, JR(p < 0)|0〉 = 0, (2.28)

where 0 < p ≤ 2π and αr ∈ (α−1, α1) = (L,R). They form an Abelian Kac-Moody
algebra:

[Jαr(p), Jαr′ (−p′)] = −δp,p′δr,r′
rLp

2π
(2.29)

The Hamiltonian may be written in this new basis up to an unimportant constant.

HF =
πvF
L

∑
q

(: JR(q)JR(−q) : + : JL(q)JL(−q) :) (2.30)

= πvF

∫
dx : (JR(x)2 + JL(x)2) : (2.31)

This is equal to a theory of massless chiral bosons φL(R) which are compactified on a
circle4,:

HB = −v
∫

dx
(
(∂xφL(x))2 + ∂x(φR(x))2

)
(2.32)

4e.g. φL(R)(x+ a) = φL(R)(x). The U(1) symmetry motivates the name Abelian bosonization.
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Chapter 2. Preliminaries

The equivalence comes by using the famous bosonization formulae:

ψL(x) =
1√

2πa0

: e−i
√

4πφL(x) :, ψR(x) =
1√

2πa0

: ei
√

4πφR(x) :, (2.33)

where a0 is a short-distance cut-off. In this case the corresponding bosonization formulae
for the currents are more useful for showing the mapping:

JL(x) =
i√
π
∂xφL(x), JR(x) = − i√

π
∂xφR(x), (2.34)

The details of the correspondence HF = HB and the equivalence of the local operator
algebras for the above bosonization formulae (2.33)-(2.34) may be found in Appendix
A.2. More straightforwardly, one can also establish the correspondence by ensuring that
HB and HF generate equivalent correlation functions. This is a common trick which will
be seen again shortly in the context of the Keldysh formalism which describes the many
body physics of systems out of equilibrium.

Note that the label of ‘chiral’ for the Bose fields φL(R) is not only to indicate which kind
of Weyl fermion it bosonizes. It also indicates that the fields only move in one direction in
(τ, x) space, because they are defined as the left and right moving parts of Φ(x, τ) which
solve the wave equation from the Gaussian model:

HB(τ) =
v

2

∫
dx(Π(x, τ))2 + (Φ(x, τ))2. (2.35)

We will exclusively use the definitions (2.33)-(2.34) for the bosonization formulae
throughout this thesis with the exception of Chapter VI, where we elect to adopt no-
tations from Schiller and Hershfield in Ref. [8].

Inclusion of spin: Klein factors

For upgrading our discussion to the case of more than one fermion species, which we
will need later for the two-channel Kondo model, we have to deal with the fact that the
different species should anti-commute. In addition the different spin species of the same
fermionic field should also anti-commute. This is afforded by introducing ‘Klein factors’
ηL(R)µ such that

ψRµ(x) =
1√

2πa0

ηRµe
i
√

4πφR(x) ψLµ(x) =
1√

2πa0

ηLµe
−i
√

4πφL(x), (2.36)

where α, β ∈ (L,R) and ν, µ ∈ (1, 2, 3 . . . ) are labels for the fermion species (or spins).
These obey a Clifford algebra.

{ηα,µ, ηβ,ν} = 2δαβδµν (2.37)

As a consequence the chiral currents associated to three spin components for right-movers
are:

Jz(x) =
1

2
ψ†α(σ3)αβψβ =

i√
2π
∂xφs(x) (2.38)

Jx(x) =
1

2
ψ†α(σ1)αβψβ =

i

2π
η↑η↓ sin(8πφs(x)) (2.39)

Jy(x) =
1

2
ψ†α(σ2)αβψβ = − i

2π
η↑η↓ cos(8πφs(x)) (2.40)

15



2.2. Many body physics techniques

where the spin-sector chiral Bose field φs is defined by φs = φ↑ − φ↓ and we dropped the
subscript R everywhere for neatness. For completeness the even combination is called the
charge-sector: φc = φ↑ + φ↓. The fact that this description is not spin-rotation invariant5

motivates the extension to non-Abelian bosonization where the corresponding bosonized
descriptions are Wess-Zumino-Witten models [15], but this goes beyond the material we
will need.

2.2.2 Local scattering and reduced dimensionality

The features of one-dimensional many body physics as sketched above are applicable
to isolated impurities in a three dimensional Fermi liquid. Due to the local nature of
potential scattering off the impurities, or indeed the spin exchange interaction as in the
Kondo model, one can make progress by using a spherical wave basis rather than a plane
wave basis,

ψλ(x) =

∫ ∞
0

dk

2π

∑
lm

χklm(x)cklm,λ (2.41)

where

χklm(x) = Rkl(|x|)Ylm
(

x

|x|

)
, Rkl(|x|) = 2kjl(k|x|) (2.42)

are the expansion coefficients, Ylm are spherical harmonics and Rkl are radial functions
in terms of spherical Bessel functions jl(x).6,7 By considering s-wave scattering as the
dominant contribution, so χklm(x) = 0 for l > 0, the only important term is

χk00(x) =
2 sin(k|x|)
|x| . (2.43)

and the chiral fermion field evaluated at the location x = 0 of a single impurity is

ψλ(0) =

∫ ∞
0

dk

2π
2k ckλ + (l ≥ 1 waves). (2.44)

This approximation is exact for point-like scattering off a static impurity, where ‘static’
means that there are no internal degrees of freedom (e.g. spin):

V̂ =

∫
dxV δ(x)ψ†(x)ψ(x) = V ψ†(0)ψ(0) (2.45)

As a side remark, such terms arise the passage from the Anderson model to the Kondo
model via the Schrieffer-Wolff transformation. These are typically discarded because
static potential scattering is not important for the Kondo effect. Nevertheless, scattering
potentials with an electron spin index s can always be reduced to (2.45) through a general
decomposition:

V̂ =
∑
s,s′

V (s, s′)ψ†s(0)ψs′(0), V (s, s′) = V δss′ + JS · σss′ . (2.46)

5While the current-current correlators 〈Jα(x)Jα(0)〉 decay with the same power law, Jz has a different
normalisation, somewhat unsatisfactorily.

6See e.g. Landau and Lifshitz Vol. 3 Ch. 5 [16].
7For convenience we are choosing a different normalisation of the fields for this subsection alone, with

{ψλ(x), ψ†ρ(x
′)} = (2π)3δλρδ(x− x′)
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Chapter 2. Preliminaries

consisting of the potential scattering V δs,s′ and the spin-exchange term controlled by
J . In summary, this is therefore an accurate tool for studying the Kondo problem; the
spin-1/2 impurity acts as a boundary which scatters electrons and we unfold it into a one-
dimensional picture with artificial length.8 The crucial point is that only one spin channel
(the s-wave) couples to the Kondo impurity for the mapping to the one-dimensional model
to be applicable.

Figure 2.11: Local Hamiltonians like the Kondo model can be mapped to an effective
one-dimensional picture with species of chiral fermion that defined along the whole real
line, given that it is a good approximation to consider only the s-wave channel.

In practice, a way forward to accomplish this is to define a new chiral field ψσ (a
right-mover) which is defined in general on the whole line −∞ < x <∞ through

ψσ(x) =

{
ψRσ(x), x > 0
ψLσ(−x), x < 0

(2.47)

where x is a fictitious coordinate which is conjugate to k and σ is the spin index (Fig. 2.11).

2.2.3 Keldysh functional integrals and non-interacting transport

Equilibrium statistical field theory methods often rely on Matsubara expansions for Green
functions. These are ineffective when there is broken time translation symmetry in a
model, in the same way that Fourier transformations in momentum space are futile when
there is broken spatial translation symmetry. This happens whenever systems are driven
out of equilibrium by arbitrary time-dependent potentials V (t). Examples of physical
systems include electrons in a quantum wire when an alternating voltage bias is applied
or when lasers are applied to the same effect in a cold atom set-up. The Keldysh technique
circumvents relying on any symmetries so it is the proper theoretical tool for investigating
time-dependent many body physics.

8Appendix A.3 contains an example scattering amplitude calculation for Kondo’s spin-flips.
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t

t =-∞1

t   =-∞2N t     =∞N+1

t  =∞N
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(c)

ρ(−∞)

-∞ ∞

∞-∞
O(t)

O(t)

Figure 2.12: (a) The closed time contour is broken up into 2N pieces to define the discrete
path integral. (b) Calculating the observable O(t) on the forwards path, Eq. (2.55). (c)
Calculating O(t) on the backwards path, Eq. (2.56).

The unique fact about the Keldysh technique is that it does not rely on interactions
being switched on adiabatically (the Gell-Mann and Low theorem). Instead it views the
averages of observables as properties which are calculated along a closed-time contour C,
Fig. 2.12 (a). This traces the evolution of a many-body state in real time from t = −∞,
at which point it is in equilibrium, to t = ∞ and back again to t = −∞ where the
final state no longer has to coincide with the initial one. The Matsubara formalism, in
contrast, assumes that at some time in the distant past there was an equilibrium state from
which the full interacting system evolves adiabatically and we only propagate forwards in
imaginary time τ towards a final state which is the same up to a phase as the initial one.

The framework we will use for the Keldysh technique is based on coherent state func-
tional integrals. It is of course possible to work only in the operator formalism instead.
We will adhere to conventions in the book by Kamenev [17].

Short overview

The von Neumann equation is

∂tρ̂(t) = −i[H(t), ρ̂(t)] (2.48)

where the quantum system has density matrix ρ̂, a Hamiltonian H(t) and we work in
units such that ~ = 1. At t = −∞ assume the system is described by a many body
density matrix ρ̂(−∞). The formal solution is

ρ̂(t) = Ût,−∞ρ(−∞)Û−∞,t (2.49)

where the evolution operator, up to a phase, is the time ordered exponent:

Ût,t′ = T exp

(
−i
∫ t

t′
H(s) ds

)
= lim

N→∞
e−iH(t)δte−iH(t−δt)δt . . . e−iH(t′+δt)δt (2.50)

where the infinitesimal time step is δt = (t − t′)/N . In non-equilibrium systems the
final state does not have to coincide with the initial one in expectation values, and the
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correct evolution takes place on a closed time contour C. This leads to considering a unit
partition function:

Z =
Tr(Ucρ̂0)

Tr(ρ̂0)
= 1 (2.51)

where the initial equilibrium density matrix is

ρ̂0 = e−β(Ĥ−µN̂) (2.52)

and the evolution along the closed time contour is

Uc = U−∞,∞U∞,−∞

= 1 (trivially by Eq. (2.50)). (2.53)

Even though Z = 1 it is still useful for setting up a coherent state path integral. From it,
Z = 1 also provides a useful consistency check. Averages of observables O are calculated
as:

〈Ô(t)〉 =
Tr[U−∞,tÔUt,−∞ρ0(−∞)]

Tr[ρ0(t)]
(2.54)

which can proceed in one of two ways when introducing the closed time contour:

〈Ô(t)〉 =
Tr[U−∞,∞U∞,tÔUt,−∞ρ0(−∞)]

Tr[ρ0(−∞)]
(2.55)

or, similarly,

〈Ô(t)〉 =
Tr[U−∞,tÔUt,∞U∞,−∞ρ0(−∞)]

Tr[ρ0(−∞)]
(2.56)

corresponding to evaluating the average on the forwards or backwards path respectively,
Figs 2.12 (b) and (c). The accepted wisdom is to combine half of each option by making
the Hamiltonian different on each half of the contour with a source term W (t).

H±W (t) ≡ H(t)± ÔW (t) (2.57)

where the Hamiltonian is H
+(−)
W on the forwards (backwards) part. Then Uc[W ] 6= 1 and

we may define a generating functional:

Z[W ] =
Tr[Uc[W ]ρ0(−∞)]

Tr ρ0(−∞)
(2.58)

The form for 〈Ô(t)〉 involving functional differentiation of Z[W ] from this is:

〈Ô(t)〉 ≡ Tr(Ô(t)ρ0)

Tr(ρ0)
=
i

2

δZ[W ]

δW (t)

∣∣∣∣
W=0

. (2.59)

If ~ is restored it is 〈Ô(t)〉 = i~
2
δZ[W ]
δW (t)

∣∣∣∣
W=0

. The factor of one half in the formula arises

from adding the source twice along the contour.
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Single particle partition function and the Keldysh rotation for fermions:

We will start from the discrete coherent state partition function Z for a spinless single-
fermion with Hamiltonian H = ε0c

†c set up on the closed time contour. The formal
procedure for constructing fermionic path integrals can be found in many statistical field
theory books so we will not repeat it here9. For the free fermion we have

Z =
1

det[iG−1]

∫ 2N∏
i=1

dψ̄i dψi exp

( 2N∑
i,j=1

ψ̄i(−iG−1)ijψj

)
=

1

det[iG−1]

∫
D(ψ̄, ψ) exp(iS[ψ̄, ψ])→ 1, as N →∞, Nδt = const. (2.60)

where

− iG−1 =



−1 −ρ(ε0)
1− iε0δt −1

1− iε0δt −1
. . .

. . .

1− iε0δt −1
1 −1

1 + iε0δt −1
1 + iε0δt −1

. . .
. . .

1 + iε0δt −1


(2.61)

is the 2N × 2N matrix, and

ρ(ε0) = e−β(ε0−µ). (2.62)

Next we define the generating functional with Grassmann sources Ji, J̄i:

Z[J, J̄ ] =
1

det[iG−1]

∫
D(ψ̄, ψ)e−

∑2N
i,j=1 ψ̄i(iG

−1)ijψj+
∑
i(J̄iψi+ψ̄iJi) = e

∑
ij J̄i(iG)ijJj (2.63)

where the last equality is a standard Grassmann Gaussian integral result which holds for
any invertible complex matrix iG−1. Two point functions may be found by differentiating
Z with respect to the sources and then setting them equal to zero:

〈ψiψ̄j〉 =
δ2Z[J, J̄ ]

δJjδJ̄i

∣∣∣∣
J,J̄=0

= iGij (2.64)

The inverse of iG−1 has the form:

iG =
1

1 + ρ(h−h+)N−1

(
(iGT) (iG<)

(iG>) (iGT̃)

)
(2.65)

9One splits up the evolution operator, Uc in this case, with the composition property x-times, inserts
x-complete sets of coherent states in Grassmann variables and then completes the trace. The usual choice
is x = 2N for the closed time contour C so that there is no time evolution between points N and N + 1.
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where h± = 1± iε0δt and the four N ×N blocks are:

(iGT) =


1 −ρhN−1

+ hN−2
− . . . −ρhN−1

+ h− −ρhN−1
+

h− 1 . . . . ρhN−1
+ h−

...
. . .

...
hN−2
− . . 1 −ρhN−1

− hN−2
+

hN−1
− hN−2

− . . . h− 1


= [(iGT̃), provided h+ ↔ h−], (2.66)

(iG<) =


−ρhN−1

+ −ρhN−2
+ . . . −ρh+ −ρ

−ρh−hN−1
+ . . . −ρh−

... . . .
...

−ρhN−2
− hN−1

+ . . . ρhN−2
−

−ρhN−1
− hN−1

+ −ρhN−1
− hN−2

+ . . . −ρhN−1
− h+ ρhN−1

−


= [−ρ(iG>), provided h+ ↔ h−] . (2.67)

Indexing the 2N×2N matrix as j = 1, 2, . . . , N,N, . . . , 2, 1, the components of these may
be written as:

〈ψ+
j ψ̄
−
j′ 〉 ≡ iG<

jj′ =
−ρhj−1

+ hj
′−1
−

det(iG−1)
(2.68)

〈ψ−j ψ̄+
j′ 〉 ≡ iG>

jj′ =
hN−j+ hN−j

′

−
det(iG−1)

(2.69)

〈ψ+
j ψ̄

+
j′ 〉 ≡ iGT

jj′ =
hj−j

′

−
det(iG−1)

×
{

1 j ≥ j′

−ρ(h+h−)N−1 j < j′
(2.70)

〈ψ−j ψ̄−j′ 〉 ≡ iGT̃
jj′ =

hj−j
′

+

det(iG−1)
×
{
−ρ(h+h−)N−1 j > j′

1 j ≤ j′
(2.71)

and in the continuum limit N →∞ these become:

〈ψ+(t)ψ̄−(t′)〉 ≡ iG<(t, t′) = −nF (ε0) exp[−iε0(t− t′)] (2.72)

〈ψ−(t)ψ̄+(t′)〉 ≡ iG>(t, t′) = (1− nF (ε0)) exp[−iε0(t− t′)] (2.73)

〈ψ+(t)ψ̄+(t′)〉 ≡ iGT(t, t′) = (θ(t− t′)− nF (ε0)) exp[−iε0(t− t′)] (2.74)

〈ψ−(t)ψ̄−(t′)〉 ≡ iGT̃(t, t′) = (θ(t′ − t)− nF (ε0)) exp[−iε0(t− t′)] (2.75)

where θ(n) = 1 for n ≥ 1 and 0 otherwise, and nF is the Fermi distribution coming from
nF = ρ/(1 + ρ). All four continuum limit correlators combine into one Green matrix10:

G(t,t′) = −i〈ψtψ̄t′〉 = −i
〈(

ψ+
t

ψ−t

)(
ψ̄+
t′ ψ̄−t′

)〉
= −i

(
〈ψ+

t ψ̄
+
t′ 〉 〈ψ+

t ψ̄
−
t′ 〉

〈ψ−t ψ̄+
t′ 〉 〈ψ−t ψ̄−t′ 〉

)
. (2.76)

Up to the present point with the toy model we have only reviewed a coherent state
functional integral for a single fermion set up on the closed time contour. The Keldysh

10The change from G(t, t′) to the subscript notation G(t,t′) is just for convenience.
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formalism exploits a redundancy in the description of the two point functions for unequal
times:

GT(t, t′) +GT̃(t, t′)−G<(t, t′)−G>(t, t′) = 0 for t 6= t′. (2.77)

(the right hand side is 1 if t = t′). This motivates a rotation of the fields such that this
combination explicitly appears in the rotated version of the full Green matrix. The choice
for fermions (due to Larkin and Ovchinnikov) is the non-unitary transformation:

ψ1(t) =
1√
2

(ψ+(t) + ψ−(t)), ψ2(t)
1√
2

(ψ+(t)− ψ−(t)) (2.78)

ψ̄1(t) =
1√
2

(ψ̄+(t)− ψ̄−(t)), ψ̄2(t)
1√
2

(ψ̄+(t) + ψ̄−(t)) (2.79)

This is also conveniently written as:

ψ′ = Uψ, ψ̄′ = ψ̄σ3U (2.80)

where U = 1√
2

(
1 1
1 −1

)
, ψ′ =

(
ψ1

ψ2

)
and ψ̄′ =

(
ψ̄1 ψ̄2

)
. Consequently the transformed

Green matrix for unequal times is

G→ G(t, t′) =

(
Gr(t, t′) GK(t, t′)

0 Ga(t, t′)

)
where t 6= t′ (2.81)

where the retarded (r), advanced (a) and Keldysh (K) Green functions are defined:

Gr
(t,t′) =

1

2
(GT

(t,t′) +G>
(t,t′) −G<

(t,t′) −GT̃
(t,t′)) (2.82)

Ga
(t,t′) =

1

2
(GT

(t,t′) −G>
(t,t′) +G<

(t,t′) −GT̃
(t,t′)) (2.83)

GK
(t,t′) =

1

2
(GT

(t,t′) +G>
(t,t′) +G<

(t,t′) +GT̃
(t,t′)). (2.84)

They have the properties:

[Gr(t, t′)]† = Ga(t, t′), [GK(t, t′)]† = −GK(t, t′). (2.85)

Equations (2.81-2.85) are general expressions that are not restricted to the single-fermion
toy model. For the free fermion the functions are:

Gr
(t,t′) = −iθ(t− t′)e−iε0(t−t′) → GR(ε) = (ε− ω0 + iδ+)−1 (2.86)

Ga
(t,t′) = iθ(t′ − t)e−iε0(t−t′) → GA(ε) = (ε− ω0 − iδ+)−1 (2.87)

GK
(t,t′) = −i(1− 2nF (ε0))e−iε0(t−t′) → GK(ε) = −2πi(2nF (ε0)− 1)δ(ε− ε0) (2.88)

where we also wrote the Fourier transforms11, since they are all only functions of the
difference in times. The first two Fourier transforms are easily proved using the Heaviside
function δ(t) = 1

2πi

∫
ds eits

s−iδ+ . A further extremely useful result is:

GK(ε) = tanh

(
ε− µ
2T

)
[Gr(ε)−Ga(ε)] (2.89)

which is a fluctuation-dissipation relation. This form is true for any fermionic system in
equilbrium.

11~ = 1 FT convention: f(ε) =
∫

dteiεtf(t), f(t) =
∫

dε
2π e
−iεtf(ε).
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Keldysh causality structure for fermions:

The essence of the Keldysh technique is that we construct a second (inequivalent) Gaussian
action in the Keldysh rotated basis which generates the same two point functions (2.81)
as the continuum limit of our original problem, and then we study that simpler QFT
instead. The price to pay is that we have to double the number of fields.

The inverse of G(t,t′), (2.81), is the operator matrix defined by
∫

dt1Ĝ
−1
(t,t1)G(t1,t′) =

δ(t− t′). We may propose a form such that:

∫
dt1

(Ĝ−1
(t,t1)

)r (
Ĝ−1

(t,t1)

)K
0

(
Ĝ−1

(t,t1)

)a
(GR

(t1,t′)
GK

(t1,t′)

0 GA
(t1,t′)

)
= δ(t− t′). (2.90)

The form is valid provided the anti-hermitian Keldysh component GK is parameterised
by a hermitian matrix F :

GK
(t,t′) =

∫
dt1
(
Gr

(t,t1)F(t1,t′) − F(t,t1)G
a
(t1,t′)

)
, (2.91)

thus satisfying the anti-hermiticity property. As a consequence the R and A components
of Ĝ−1 are simply the operator inverses of GR and GA.

Ĝ−1
(t,t′) =

(Ĝr
(t,t′)

)−1 (
Ĝ−1

(t,t′)

)K
0

(
Ĝa

(t,t′)

)−1

 (2.92)

In thermal equilibrium for fermions one always has

F (ε) = 1− 2nF (ε) = tanh((ε− µ)/kBT ), (2.93)

as found for the single-fermion Hamiltonian previously, and specific to the non-interacting
model one has (Ĝ−1)K = 2i0+F . Equation (2.92) defines the so-called causality structure.
This form is very general; it extends to the many body case and is even robust for
interacting models (in which case (Ĝ−1)K is no longer infinitesimally small).

A broad reason why we have no need to worry about the equal time possibility spoiling
this nice framework is that observables in many body physics are always found using time
ordered correlation functions due to a causality restriction: switching on external fields
should not affect properties of the system in the past. This explains the origin of the
‘causality structure’ name.

The kinetic equation for F

For systems away from equilibrium, instead of the fluctuation-dissipation theorem relation
we have to calculate the non-equilibrium distribution function F (t, t′) explicitly. For this
we need a quantum kinetic equation. In general for a dressed Fermionic Green function
we have to solve a Dyson equation:

(Ĝ−1
0 − Σ̂) ◦ Ĝ = 1̂ (2.94)

where the subscript “0” indicates the bare inverse Green function, and “◦” indicates
to trace over the intermediate arguments. The self energy matrix Σ shares the same
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structure as (2.92), with the difference that the Keldysh component is now finite. For
the one-dimensional theories we will investigate, the dressed components Gr,a obey the
equation

(i∂t − iv∂x − Σr,a)Gr,a = δ(t− t′)δ(x− x′), (2.95)

and the Keldysh component may be written in the form

− [(i∂t − iv∂x)◦,F ] = ΣK − (Σr ◦ F − F ◦ Σa). (2.96)

This last equation is the quantum kinetic equation for the distribution F .

Keldysh technique example: non-interacting transport in one-dimension

lead c lead d

Figure 2.13: Schematic of two connected leads.

As an instructive example of the Keldysh technique, here we will demonstrate an
explicit derivation of the tunnelling current in a set-up of two connected leads12 fol-
lowing [18], where interactions in the leads are neglected, Fig. 2.13. All dimensionful
quantities will be retained in the calculation. The Hamiltonian is

H = H0 +Htun =
∑
k

(ε
(c)
k c
†
kck + ε

(d)
k d†kdk) +

∑
k,k′

(tk,k′c
†
kdk′ + t∗k,k′d

†
kck′). (2.97)

where ck and dk′ describe fermions in left and right leads respectively and tk,k′ are tun-
nelling matrix elements between the two. From this we can find an expression for the
current operator for electrons in the left lead via the Heisenberg equation of motion:

Î(t) = −edNc(t)

dt
=
ie

~
∑
k,k′

[tk,k′c
†
k(t)dk′(t)− t∗k,k′d†k′(t)ck(t)] (2.98)

where
Nc =

∑
k

c†kck (2.99)

is the number operator of electrons in the left lead and e > 0 is the elementary charge.
From the Hamiltonian we can also construct the Grassmann action:

S =

∫ ∞
−∞

dt
∑
k,k′

(
c̄k(t)
d̄k(t)

)ᵀ
[(

i~∂t − ε(c)k 0

0 i~∂t − ε(d)
k

)
δk,k′ −

(
0 tk,k′
t∗k,k′ 0

)](
ck′(t)
dk′(t)

)

=

∫ ∞
−∞

dt
∑
k,k′

(
c̄k(t)
d̄k(t)

)ᵀ
(
δk,k′~Ĝ−1

0k(c) −tk,k′
−t∗k,k′ δk,k′~Ĝ−1

0k(d)

)(
ck′(t)
dk′(t)

)
. (2.100)

12The ‘connected leads’ do not need to be wires, nor do they have to be touching. One just needs that
electrons can tunnel from one conducting material to another. The conductors may be separated by an
insulating oxide material for instance, or, in the case of a scanning tunnelling microscope, by the vacuum.
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Next we may construct the Keldysh version of S and J . First of all the action has to be
put on the Keldysh contour,

S =

∫
dtL→

∫
C

dtL =

∫ ∞
−∞

L+ dt+

∫ −∞
∞

L− dt (2.101)

where L+(−) indicates the fields inherit plus (minus) subscripts which doubles their num-
ber. Then we apply the rotation (2.80). This leads to:

S =

∫ ∞
−∞

dt
∑
k,k′

Ψ̄k(δk,k′~Ĝ−1
0k − T̂k,k′)Ψk′ (2.102)

where we defined the matrices:

Ĝ−1
0k =

(
γ̂clĜ−1

0k(c) 0

0 γclĜ−1
0k(d)

)
, T̂k,k′ =

(
0 tk,k′γ

cl

t∗k,k′γ
cl 0

)
, (2.103)

γq =

(
0 1
1 0

)
, γcl =

(
1 0
0 1

)
(2.104)

along with a four component spinor Ψ̄k = (ψ̄
(c)
1k , ψ̄

(c)
2k , ψ̄

(d)
1k , ψ̄

(d)
2k ) and a similar one for the

fields without the bar (explicit details of the steps may be found in Appendix A.4).

According to the agreed-upon convention, Eq. (2.57), to calculate the current we
should add Î(t) to the Hamiltonian with a source W (t) which takes different values W+(t)
and W−(t) on the forwards and backwards parts of the closed time contour. Going through
the same algebra and replacing H with H+

W+
and H−W− on the corresponding parts of the

contour leads to (2.102) plus the following source action:

SW = −
∫

dt
∑
k,k′

Ψ̄kWαÎ
α
k,k′Ψk′ (2.105)

where

Îαk,k′ =

(
0 ie

~ tk,k′
− ie

~ t
∗
k,k′ 0

)
⊗ γα, Wcl(t) =

1

2
(W+ +W−), Wq(t) =

1

2
(W+ −W−)

(2.106)
and α ∈ (cl = 1, q = 2) is summed over. The full action Stot = S + SW for the generating
functional is therefore:

Stot[{Ψ̄k}, {Ψk},Wcl,Wq] =

∫
dt
∑
k,k′

Ψ̄k(δk,k′~Ĝ−1
0k − T̂k,k′ −WαÎ

α
k,k′)Ψk′ . (2.107)

To calculate averages, the generating functional has to be differentiated with respect
to the quantum component of the source, called Wq. It can be shown quite generally that
contributions from non-zero Wcl do not change the normalisation, Z[Wcl,Wq = 0] = 1.
We may therefore discard Wcl as it serves no future purpose for this problem. The full
Keldysh generating functional is:

Z[Wq] =
1

Tr(ρ̂)

∫
D(ψ̄, ψ)e

i
~Stot[ψ̄,ψ,Wq ]

=
1

Tr(ρ̂)

∫
D(ψ̄, ψ)e

i
~
∫

dt
∑
k,k′ Ψ̄k(δk,k′~Ĝ

−1
0k −T̂k,k′−Wq Îk,k′⊗γq)Ψk′ (2.108)
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Side-remark: For non-interacting theories the majority of the steps for Keldysh set-
ups such as (2.108) above can be short-circuited; doubling the fields and Keldysh-rotating
amounts to the substitutions:

S =
∑
k,k′

∫
C

dtψ̄k~G−1
k,k′ψk′ →

∑
k,k′

∫ ∞
−∞

dtΨ̄k(~G−1
k,k′ ⊗ γcl)Ψk′ , (2.109)

and

SWq = −
∫ ∞
−∞

dt
∑
k,k′

Wq(t)Ψ̄k(Ôk,k′ ⊗ γq)Ψk. (2.110)

for an observable Ôk,k′ .

At this point we could evaluate the Gaussian integral and then take the derivative
with respect to Wq to find the current, but this turns out to be quite impractical for the
problem with two connected leads. A better choice is to settle for an approximation by
making an expansion in T̂k,k′ before integrating. In effect, this means partitioning the
system into an unmixed part S0 and the tunnelling perturbation ST that breaks particle
number conservation and which we are assuming to be weak:

〈Ĵ(t)〉 =
i~
2

δ

δWq(t)

∣∣∣∣
Wq=0

1

Tr[ρ̂0]

∫
D(ψ̄, ψ)e

i
~Stot[ψ̄,ψ,Wq ]

=
1

Tr(ρ̂o)

∫
D(ψ̄, ψ)

1

2

∑
k,k′

Ψ̄k(t)Îk,k′Ψk′(t)

 ∞∑
n=0

(
− i

~
∫

dt′
∑

k1k2
Ψ̄k1(t′)T̂k1,k2Ψk2(t′)

)n
n!

e
i
~S0

=

〈
1

2

∑
k,k′

Ψ̄k(t)Îk,k′Ψk′(t)
−i
~
∑
k1,k2

∫
dt′Ψk1(t′)T̂k1,k2Ψk2(t′)

〉
0

+O[(T̂k,k′)
2] (2.111)

The expectation 〈Î(t)〉0 coming from the n = 0 term in the perturbation series vanished
because the average is weighted by exp( i~S0) and S0 just describes two disconnected leads.

Equivalently, [Ĥ0, N̂c] = 0 so there is no contribution from this term in the perturbation
theory. Focusing on the leading order term, we have to calculate:

I(t) =
−i
2~

∑
k,k′,k1,k2

∫
dt′
〈

Ψ̄k(t)Îk,k′Ψk′(t)Ψ̄k1(t′)T̂k1,k2Ψk2(t′)
〉

0
(2.112)

Now we can use a trick from linear algebra: xᵀAx = Tr(Axxᵀ) for square matrices A and
vectors x. Identifying A = Îk,k′Ψk′(t)Ψ̄k1(t′)T̂k1,k2 leads to

I(t) =
−i
2~

∑
k,k′,k1,k2

∫
dt′Tr

[〈
Îk,k′Ψk′(t)Ψ̄k1(t′)T̂k1,k2Ψk2(t′)Ψ̄k(t)

〉
0

]
=
−i
2~

∑
k,k′,k1,k2

∫
dt′Tr

[
Îk,k′

〈
Ψk′(t)Ψ̄k1(t′)

〉
0
T̂k1,k2

〈
Ψk2(t′)Ψ̄k(t)

〉
0

]
(2.113)

where we applied Wick’s theorem, dropping the (unphysical) disconnected Feynman
graph. In the above we have Green matrices:

G0(k,t;k′,t′) = −i〈Ψ(k, t)Ψ̄(k′, t′)〉0 =

(
γclG

(c)
0(k,t;k′,t′) 0

0 γclG
(d)
0(k,t;k′,t′)

)
. (2.114)
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These are diagonal in k space, G0(k,t;k′,t′) = δk,k′G0k(t,t′), due to spatial translational sym-
metry of the action S0.

I(t) =
i

2~
∑
k,k′

∫
dt′Tr

[
Îkk′G0k′(t,t′)T̂k′kG0k(t′,t)

]
=

e

2~2

∫
dt′
∑
k,k′

|tkk′|2 Tr[γqG
(c)
0k(t,t′)γ

clG
(d)
0k′(t′,t) − γqG

(d)
0k′(t,t′)γ

clG
(c)
0k(t′,t)] (2.115)

where |tkk′ |2 = tkk′t
∗
k′k and we took a partial trace. At this point we may make use of the

Keldysh structure for the 2× 2 s:

γclG
(x)
0k(t,t′) →

(
G

(x)R
k(t,t′) G

(x)K
k(t,t′)

0 G
(x)A
k(t,t′)

)
(2.116)

where x ∈ (c, d). We also dropped the ‘0’ subscript referring to the pre-Keldysh-rotated
action S0. This leads to:

I(t) =
e

2~2

∫
dt′
∑
kk′

|tkk′ |2
[
G

(c)r
k(t,t′)G

(d)K
k′(t′,t) +G

(c)K
k(t,t′)G

(d)a
k′(t′,t) −G

(d)r
k′(t,t′)G

(c)K
k(t′,t) −G

(d)K
k′(t,t′)G

(c)a
k(t′,t)

]
(2.117)

This is the leading order term in the perturbation series in tk,k′ for finding the tunnelling
current. One can go further than this for certain limiting cases. As a simple example, for
a stationary situation where the Green functions only depend on the time difference, due
to time-independent single particle energies, it is advantageous to work in energy space13:

I =
e

4π~3

∫
dε
∑
k,k′

|tk,k′|2(G
(c)r
k,ε G

(d)K
k′,ε +G

(c)K
k,ε G

(d)a
k′,ε −G

(d)r
k′,εG

(c)K
k,ε −G

(d)K
k′,ε G

(c)a
k,ε )

=
e

4π~3

∫
dε
∑
k,k′

|tk,k′|2[(G
(c)r
k,ε −G

(c)a
k,ε )G

(d)K
k′,ε − (G

(d)r
k′,ε −G

(d)a
k′,ε )G

(c)K
k,ε ] (2.118)

We proceed by using the earlier expressions for the non-interacting Green functions in
energy space for free fermions14. This comes with the assumption that the electrons in
the leads are in local thermal equilibrium. The result is:

I =
2πe

~
∑
k,k′

|tk,k′ |2δ(ε(d)
k′ − ε

(c)
k )
[
n

(d)
F (εk′)− n(c)

F (εk)
]

(2.119)

where we have different occupation factors associated to the different leads because they
may be at different chemical potentials, e.g. due to a dc bias.

n
(c)
F (ε) =

1

eβ(ε−µc) + 1
, n

(d)
F (ε) =

1

eβ(ε−µd) + 1
. (2.120)

In conclusion we see that there are problems even in perturbation theory where the func-
tional Keldysh framework is very useful. For instance we did not need to do any analytic
continuation to real time, a calculation that becomes cumbersome with increasingly com-
plicated set-ups.

13FT convention when ~ 6= 1: G(t−t′) =
∫

dε
2π~ exp[− iε~ (t−t′)]G(ε), G(ε) =

∫
dt exp[ iε~ (t−t′)]G(t−t′)

14Each of Gr,a,K for single particles acquires an overall factor of ~ when recovering SI units.
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2.2.4 Linear response techniques

The generalised susceptibility χij which describes the response of an observable Ai to
weak perturbations Vj is defined by the linear response formula:

Ai(x, t) =
∑
j

∫
dx′
∫

dt′χij(x, t; x
′, t′)Vj(x

′, t′) +O(Ṽ 2) (2.121)

In addition we demand the causality constraint:

χij(x,x
′; t, t′) = 0 t < t′ (2.122)

This ensures that the perturbation only has influence at later times and characterises χ
as a retarded function. For a conservative system, H 6= H(t), we can work in frequency
space as χ will only depend on the differences in times: χij(x,x

′; t, t′) = χij(x,x
′; t− t′).

From this, (2.121) becomes:

Ai(x, ω) =

∫
dx′χij(x,x

′;ω)Vj(x
′, ω) +O(V 2) (2.123)

(adopting the summation convention for repeated indices from now on). If there is also
translational invariance in space, then similarly one writes χij(x,x

′; t, t′) = χij(x−x′; t−t′)
such that:

Ai(q, ω) = χij(q;ω)Vj(q, ω) +O(V 2) (2.124)

Averages of observables can be found with functional field integrals. Consider for
example the average of a single particle operator:

A(τ) =
∑
α,α′

〈ψ̄α(τ)Aα,α′ψα′(τ)〉 (2.125)

where the average 〈(. . . )〉 is defined by functional integration over Grassmann fields ψ̄
and ψ with weight eiSV :

〈(. . . )〉 = Z−1
V

∫
D(ψ̄, ψ)(. . . ) exp(−S[V, ψ̄, ψ]) (2.126)

Here the Euclidean action is SV = S[V, 0, ψ̄, ψ] such that:

S[V, Ṽ , ψ̄, ψ] = S0[ψ̄, ψ] + δS[V, ψ̄, ψ] + δS̃[Ṽ , ψ̄, ψ] (2.127)

where the perturbation is

δS[V, ψ̄, ψ] =

∫
dτV (τ)

∑
α,α′

ψ̄α(τ)Aα,α′ψα′(τ). (2.128)

and similar for δS̃[Ṽ , ψ̄, ψ]. This fixes the generating functional:

Z[V, Ṽ ] =

∫
D(ψ̄, ψ)e−S[V,Ṽ ,ψ̄,ψ]. (2.129)

Equation (2.125) is then expressed through functional differentiation:

A(τ) = −δ ln(Z[V, Ṽ ])

δV (τ)

∣∣∣∣
V=0

(2.130)
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Chapter 2. Preliminaries

We can see from (2.130) that the reason for including a second copy of the perturbation,
the term δS̃ in equation (2.127), was in order to ensure the correct Boltzmann weight, or
otherwise the expectation would vanish over the unperturbed action (a standard assump-
tion which arises because the imagined system described by S0 is in thermal equilibrium).
In other words the ZV in the definition (2.126) is Z[V, 0].

Equations (2.125) through to (2.130) are in principle exact for averages over any
distribution S. To narrow it down to just the linear response, the generating functional
is expanded about Ṽ (τ̃) = 0 to first order:

lnZ[V, Ṽ ] = lnZ[V ] +

∫
dτ̃
δ lnZ[V, Ṽ ]

δṼ (τ̃)

∣∣∣∣
Ṽ=0

Ṽ (τ̃) +O(Ṽ 2) (2.131)

Substitution into (2.130) gives:

A(τ) ≈ − 1

Z[0, 0]

δZ[V ]

δV (τ)

∣∣∣∣
V=0

−
∫

dτ̃
δ2 lnZ[V, Ṽ ]

δV (τ)δV (τ ′)

∣∣∣∣
V=Ṽ=0

Ṽ (τ̃) (2.132)

where the first term is an average over the unperturbed (equilibrium) distribution with
weight exp(iS0) and is therefore assumed to be zero: 〈Â(τ)〉0 = 0. From the second term
we identify the linear response function χ, which can be simplified:

χ(τ, τ̃) = − δ

δV (τ)

(
1

Z[V, 0]

δZ[V, Ṽ ]

δṼ (τ̃)

∣∣∣∣∣
Ṽ=0

)∣∣∣∣∣
V=0

= − 1

Z[V, 0]

δ2Z[V, Ṽ ]

δV (τ)δṼ (τ̃)

∣∣∣∣∣
V=Ṽ=0

+
1

Z[0, 0]

δZ[V, 0]

δV (τ)

∣∣∣∣
V=0

1

Z[0, 0]

δZ[0, Ṽ ]

δṼ (τ̃)

∣∣∣∣∣
Ṽ=0

= − 1

Z[V, 0]

δ2Z[V, Ṽ ]

δV (τ)δṼ (τ̃)

∣∣∣∣∣
V=Ṽ=0

(2.133)

By applying this to the path integral (2.129) we are led to the conclusion:

A(τ) =
∑
α,α′

〈ψ̄α(τ)Aα,α′ψ(τ)〉 ≈ −
∑
abcd

∫
dτ̃〈ψ̄a(τ)Aa,bψb(τ)ψ̄c(τ̃)Ac,dψd(τ̃)〉Ṽ (τ̃) (2.134)

i.e. the response function is a 4-point correlation function.

The version of linear response that we will employ in the following research is a twist on
the description above. Instead of considering the generating functional or its logarithm in
a series expansion we will calculate observables by expanding the Green functions to linear
order in a potential V (t). This is an entirely equivalent choice which is more traditional
in the spirit of operator formalism diagrammatic perturbation theory. Furthermore since
we will work in the Keldysh functional formalism where Z[V, 0] = 1, the instances of
lnZ[V, Ṽ ] are replaced everywhere by Z[V, Ṽ ] and then the discussion follows identically.
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Chapter 3

Non-interacting limits for Kondo impurity models

Here we include mappings of anisotropic Kondo impurity models to their exactly solvable
points. We elect to use the letter I for the various Kondo couplings, (e.g. Iz, I⊥ for
one-channel Kondo) to avoid confusion with the spin density operators for the conduction
electrons which traditionally take the letter J .

3.1 Introduction

An initial remark is that the descriptions we outline are not unique. The technique
followed is the Abelian bosonization procedure applied to the one-dimensional formulation
of the Kondo model which comes by projecting out the s-wave channel. Affleck and
Ludwig, by contrast, used boundary conformal field theory techniques to study the general
over-screened multichannel case [19], and one may also make progress for exact results
for some observables by using the Bethe-Ansatz.

3.2 Mapping for the anisotropic one-channel Kondo (1CK) model

Recasting the anisotropic Kondo model as a one-dimensional theory with the spin densities
for the conduction electrons as Ja(x) =

∑
α,β

1
2

: ψ†α(x)σaα,βψβ(x) :, where a ∈ (x, y, z),
gives:

H = H0[ψ] +
I⊥
2

[s+J
−(0) + h.c.] + IzszJ

z(0) (3.1)

with

H0[ψ] = −ivF
∑

s∈{↑,↓}

∫
dxψs(x)†∂xψs(x) (3.2)

where the exchange couplings are now written with the symbols I⊥ and Iz, adopting
notations from Ch. 28 of Ref. [10]. For convenience the currents in (3.1) above are1:

J−(x) =: ψ†↓(x)ψ↑(x) :, Jz(x) =
1

2
: [ψ†↑(x)ψ↑(x)− ψ†↓(x)ψ↓(x)] : (3.3)

This model only depends on right movers ψs where s ∈ {↑, ↓}. The electrons are therefore
chiral and we have dropped the subscript R for neatness. This was allowed due to the

1We discard Klein factors by assuming suitable zero modes in the mode expansion of the Bose fields
which preserve the anticommutation algebra. This kind of simplification can sometimes be dangerous.
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Chapter 3. Non-interacting limits for Kondo impurity models

local nature of the Hamiltonian: the chiral right-moving field ψs is defined in general on
the whole line −∞ < x <∞ through

ψσ(x) =

{
ψRσ(x), x > 0
ψLσ(−x), x < 0

(3.4)

where x is a fictitious coordinate which is conjugate to k. We will outline, following [10],
the mapping of (3.1) onto a refermionized resonant level model. There are three steps to
this:

1. Bosonization: The chiral fermion field ψs is a vertex operator ψs ∝ eiφs of the chiral
boson φs. Only the spin-sector (the antisymmetric combination of Bose fields φs)
will turn out to be coupled to the impurity spin.

2. Canonical transformation (a rotation H → U †HU): In order to ensure we can
refermionize the the contributions to exchange the scaling dimensions of new fermion
fields should be ∆ = 1/2. This fixes the rotation parameter α.

3. Refermionization: By defining new Fermi fields (ψ, ψ†) including a pseudo-fermionic
(d, d†) representation for the spin-1/2 operators, and ensuring that the canonical
anticommutation relations still hold, we map to a resonant level model.

The details of the steps are slightly cumbersome so only the main features will be sketched
here (elaboration is provided in Appendix B.1).

Step (1): The bosonized electron fields are defined as:

ψσ(x) =
1√

2πa0

ei
√

4πφσ(x) (3.5)

where φs is a right-moving Bose field with spin σ and a0 is a short distance cutoff (e.g.
lattice spacing). The Kac-Moody SU(2) currents may be expressed in terms of just the
‘spin-sector’ Bose field φ(x) = [φ↑(x)− φ↓(x)]/

√
2:

J−(x) =
1

2πa0

ei
√

8πφ(x), Jz(x) =
1√
2π
∂xφ(x). (3.6)

Using these the bosonized Hamiltonian is

H = H0[φ] +
I⊥

4πa0

[s+e
i
√

8πφ(0) + h.c.] +
Iz√
2π
sz∂xφ(0), (3.7)

with

H0[φ] = vF

∫
dx[∂xφ(x)]2 (3.8)

where a contribution H0[φc] from the decoupled charge field φc(x) = [φ↑(x) + φ↓(x)]/
√

2
has been discarded and H0[φ] is the non-interacting contribution from the spin-sector
which is retained. The fact that only the the spin sector remains coupled to the impurity
immediately reveals the power of the bosonization approach for this problem.

Step (2): The unitary transformation is achieved by U = ei
√

4παszφ(0). For the s+ part
by employing the standard SU(2) algebra we have

U †s+U = s+e
−i
√

4παφ(0) (3.9)
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3.2. Mapping for the anisotropic one-channel Kondo (1CK) model

The result for the transverse exchange, therefore, is

U †
[
I⊥

4πa0

(s+e
i
√

8πφ(0) + h.c.)

]
U =

I⊥
4πa0

(s+e
i
√

4π(
√

2−α)φ(0) + h.c.) (3.10)

The new scaling dimension for this term is ∆ = 1
2
(
√

2−α)2. Choosing α =
√

2−1 ensures
we can define the new fermionic fields with ∆ = 1

2
, required for the one-dimensional theory

by a simple dimensional analysis. For H0 combined with the longitudinal exchange term
we find:

U †
[
H0 +

Iz√
2π
sz∂xφ(0)

]
U = H0 +

sz√
π

(
Iz√

2
− 2πvFα

)
∂xφ(0) +

(
απvF −

Iz√
2

)
α

4
δ(0)

(3.11)
by using the canonical algebra [∂xφ(x), φ(y)] = i

2
δ(x− y). The transformed Hamiltonian

now reads

H = H0[φ] +
I⊥

4πa0

[s+e
i
√

4πφ(0) + h.c.] +
λ√
π
sz∂xφ(0) (3.12)

with

λ =
Iz√

2
− 2(
√

2− 1)πvF (3.13)

where the shift to the longitudinal coupling arises due to the contribution

U †∂xφ(x)U = ∂xφ(x)−√παszδ(x). (3.14)

Step (3): The new fermion fields to refermionize the problem are

ψ(x) =
1√

2πa0

eiπd
†dei

√
4πφ(x) (3.15)

where the {d, d†} construct a pseudo-fermionic representation for the impurity spin 1/2
via

s+ = d†, sz = d†d− 1

2
. (3.16)

It may be easily checked with the redefinition of the fields that the canonical algebra (e.g.
{ψ(x), d} = 0) holds due to the inclusion of the phase eiπd

†d. Using these the Hamiltonian
finally becomes:

HRL = H0[ψ] +
I⊥

2
√

2πa0

[d†ψ(0) + h.c.] + λ(d†d− 1

2
) : ψ†(0)ψ(0) : . (3.17)

We can see that this is a type of interacting resonant level model for spinless particles
with an interaction controlled by the parameter λ, where the resonant d level is situated
at the Fermi energy (i.e. εd = 0). This is in contrast to the Anderson model where there
is an energy penalty U for double occupancy.

3.2.1 Toulouse limit

The important non-interacting limit which we are interested in is the Toulouse limit
Iz = I∗z when the interaction with the Fermi sea vanishes (λ = 0) but there is still
hybridisation present:

I∗z = 2
√

2(
√

2− 1)πvF . (3.18)

No restriction is put on I⊥ so this limit forms a line in the parameter space.
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Chapter 3. Non-interacting limits for Kondo impurity models

lead

dot

Figure 3.1: The Toulouse point Kondo model may be loosely thought of as half of a
tunnelling junction, where the resonant d level sits at the Fermi energy of the conduction
electrons in the lead.

3.3 Mapping for the anisotropic two-channel Kondo (2CK) model

The mapping for the two-channel model was accomplished by Emery and Kivelson [20]
and proceeds in a similar spirit. Upon refermionization it also leads to models of the
resonant level type. We will just show an outline. The starting point for the anisotropic
2CK model mapping is essentially the double of Eq. (3.1):

H =
∑
α=1,2

{
H0[ψα] +

I⊥α
2

[s+J
−
α (0) + h.c.] + IzαszJ

z
α(0)

}
(3.19)

We could instead have named the different channels L and R for consistency with the
2CK introduction in Chapter 2, but it is easy to see how this could be confused with the
left/right notion for the chiral movers. The J operators follow the same representation
as (3.3) with the addition of a channel index for the electron fields.

From this point the steps, in a guiding fashion, are:

1. Bosonization: Bosonize fermions in each channel and discard the decoupled charge-
sector contribution to the non-interacting Hamiltonian.

• This is identical to Step (1) from before.

2. Basis change: Introduce channel-symmetric and channel-antisymmetric Bose fields
(i.e. linear combinations of the two different boson species).

• Symmetric (dubbed ‘spin’): φs(x) = 1√
2
[φ1(x) + φ2(x)]

• Antisymmetric (dubbed ‘spin-flavour’): φsf (x) = 1√
2
[φ1(x)− φ2(x)]

• Couplings: I⊥± = 1
2
(I⊥1 ± I⊥2) and Iz± = 1

2
(Iz1 ± Iz2)

3. Canonical transformation: The correct unitary U(α) this time depends on the
channel-symmetric Bose field so this is more cumbersome than the 1CK model.
The free rotation parameter is α = 1 in order for the scaling dimension of the
transverse exchange coupling to remain fermionic.
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3.3. Mapping for the anisotropic two-channel Kondo (2CK) model

4. Refermionization: Carefully define the new Fermi fields ψs and ψsf , and pick the
same pseudofermionic description for the spin-1/2, to map to another resonant-level
type of model.

• ψs(x) = 1√
2πa0

ei
√

4πφs(x), and ψsf (x) = 1√
2πa0

eiπd
†dei

√
4πφsf (x)

This gives a resonant level type model where the d-level is hybridised and interacting with
the conduction electrons:

H = H0[ψs] +H0[ψsf ] +
I⊥+√
8πa0

(d† − d)[ψ†sf (0) + ψsf (0)]

+
I⊥−√
8πa0

(d† + †)[ψ†sf − ψsf (0)] + (d†d− 1

2
)[λ+ : ψ†s(0)ψs(0) : +λ− : ψ†sf (0)ψsf (0) :]

(3.20)

where
λ+ = Iz+ − 2πvF , and λ− = Iz−. (3.21)

3.3.1 Toulouse limit

We may see that this model becomes quadratic in the fields for λ± = 0 such that the
Toulouse limit is given by fixed values of the original longitudinal couplings:

Iz1 = Iz2 = 2πvF (3.22)

For further choices of the couplings there are two neat options. The trivial one is the case
of I⊥2 = 0 which reduces to the usual resonant level model:

HRL = H0[ψsf ] +
I⊥1√
8πa0

[d†ψsf (0) + h.c.] (3.23)

where we discarded the decoupled H0[ψs] contribution. More exciting is the observation
that the d-level fields combine in the Toulouse limit Hamiltonian in a convenient way
when cast in the Majorana basis:

ψsf (x) =
1√
2

[ξsf (x) + iζsf (x)], ψs(x) =
1√
2

[ξs(x) + iζs(x)] (3.24)

d =
1√
2

[ψsf (x) + iζsf (x)]. (3.25)

In particular for the channel symmetric case, I⊥1 = I⊥2 ≡ I⊥, this gives the Emery-
Kivelson Hamiltonian which is a Majorana-resonant level model:

HMRL = H0[ξsf ]− i
I⊥√
2πa0

bξsf (0) (3.26)

In the space of couplings, given we are pinned to the Toulouse line, the two channel Kondo
model therefore interpolates between the Majorana resonant level model and the resonant
level model.
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Chapter 4

Transport in a non-equilibrium resonant level model

In this chapter we investigate electron transport in a resonant level (RL) toy model with
a sinusoidal voltage bias. The time-dependent tunnelling conductance is calculated using
non-equilibrium Green functions, which was first accomplished for resonant level models
by Jauho, Wingreen and Meir [6]. We take a different approach to the problem by using
Keldysh functional integrals. The main results are explicit expressions for the alternating
current in the linear response regime in V0 which are exact in the tunnelling coupling g.

4.1 Introduction

The picture we will investigate has a single lead coupled to the resonant d level Fig. 4.1.
This has a direct connection to the one-channel Kondo model at the Toulouse point as
discussed in Chapter 3.

lead dot

V(t)

g

εd

Figure 4.1: The resonant level toy model studied in this chapter. If the dot is put at
the Fermi energy of the conduction electrons in the lead, εd = µ, then we recover the
one-channel Kondo model at the Toulouse point.

We take as a starting point the one-dimensional Hamiltonian H(t),

H(t) = Hc(t) +Htun +Hcen

Hc(t) =
∑
k

εk(t)c
†
kck, Htun = g[c†(0)d+ d†c(0)], Hcen = εdd

†d, (4.1)

where the conduction electron energy and voltage bias as a function of time are:

εk(t) = ~vFk − eV (t), V (t) = V0 cos(ω0t). (4.2)
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4.1. Introduction

The resonant d level is localised in real space at the origin, it has energy εd and is populated
by electrons created by d†, while c†k creates a conduction electron with momentum k. The
elementary charge is e > 0. The tunnelling matrix elements g are assumed to be real
numbers that are independent of k. They have SI units:

[g] = Jm1/2. (4.3)

Notice that we are considering a single species of (spinless) fermions. Thus the label
“resonant” is artificial because there is only one lead in the picture represented by this
Hamiltonian, Fig. 4.1. Usually one considers two-terminal conductance set-ups with left
and right channels L and R. We provide an appendix for the differences that arise when
adding a second lead.

The non-linear time-dependent current through a system described by Eq. (4.1) is
given by

I(t) ≡ −e〈Ṅc(t)〉 =
2eg

~
Re

[
〈c†(0, t)d(t)〉

]
with Nc =

∑
k

c†kck. (4.4)

which comes from the Heisenberg equation of motion for the particle number Ṅc(t) =
− i

~ [Nc, H]:

Î(t) ≡ −eṄc(t) = −ieg
~
(
d†(t)c(0, t)− c†(0, t)d(t)

)
(4.5)

and the property G<
k(t,t) = −(G>

k(t,t))
† for the mixed Green functions G<

k(t,t) = −i〈d(t)c†k(t)〉.
We need the Heisenberg versions of the different Hc, Htun, Hcen in order to construct

an action. In real space the kinetic term for the conduction electrons is:

Hc(t) =

∫
dx c†(x, t) (−i~vF∂x − eV (t)) c(x, t) (4.6)

where the Fermion field operator is

c(x, t) =
1√
L

∑
k

eikxck(t), ck(t) =
1√
L

∫
dxe−ikxc(x, t) (4.7)

where L is the size of the system and k takes values 2πn/L, (n = 0,±1,±2 . . . ). In the
transformation c(x)→ c(x, t) = eiHt/~c(x)e−iHt/~ the annihilation operator ck is promoted
to being time dependent. The total Hamiltonian mixes the c and d operators so this t-
dependence is not a simple usual phase. Similarly, for the tunnelling Hamiltonian:

Htun(t) = g[c†(0, t)d(t) + d†(t)c(0, t)]. (4.8)

and for the central region with the impurity:

Hcen(t) = εdd
†(t)d(t) (4.9)

To find the Lagrangian density we need the canonical momenta conjugate to c(x, t) and
d(t). These are:

Πc(x, t) ≡
∂L

∂ċ(x, t)
= i~c†(x, t), Πd(x, t) ≡

∂L
∂ḋ(t)

= i~δ(x)d†(t). (4.10)
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Chapter 4. Transport in a non-equilibrium resonant level model

which satisfy the canonical algebra:

{Πc(x, t), c(x
′, t′)} = i~δ(x− x′)δ(t− t′) (4.11)

{Πd(x, t), d(t′)} = i~δ(x)δ(t− t′). (4.12)

The associated action is:

S[c, d] =

∫
dt dx

(
c†(x, t) d†(t)

)(i~∂t + i~vF∂x + eV (t) −gδ(x)
−gδ(x) δ(x)(i~∂t − εd)

)(
c(x, t)
d(t)

)
=

∫
dt dx dt′ dx′

(
c†(x, t) d†(t)

)
~Ĝ−1(x, t;x′, t′)

(
c(x′, t′)
d(t′)

)
(4.13)

≡ (ψ|~G−1|ψ).

For a simple consistency check, it may be seen that the Euler-Lagrange equations for this
Lagrangian generate the same equations of motion as the Heisenberg equations for the
original Hamiltonian (Appendix C.1). The inverse Green function Ĝ−1 for the theory is
read off as the 2× 2 matrix:

Ĝ−1(x, t;x′, t′) = δ(x− x′)δ(t− t′)Ĝ−1(x, t)

= δ(x− x′)δ(t− t′)1

~

(
i~∂t + i~vF∂x + eV (t) −gδ(x)

−gδ(x) δ(x)(i∂t − εd)

)
(4.14)

such that the Green function G(x, t;x′, t′) is defined by the inverse matrix equation:∫
dt1 dx1Ĝ

−1(x, t;x1, t1)G(x1, t1;x′, t′) = δ(x− x′)δ(t− t′) (4.15)

=⇒ Ĝ−1(x, t)G(x, t;x′, t′) = δ(x− x′)δ(t− t′). (4.16)

Note that the 1/~ that is absorbed into Ĝ−1 is the one which multiplies S in the partition
function:

Z =

∫
D(c̄, c) dd̄ dd exp

(
i

~
S[c̄, c, d̄, d]

)
, D(c̄, c) =

N∏
i=1

dc̄i dci. (4.17)

Due to the time dependence in V (t) the solution for G cannot be written using a usual
Matsubara expansion. This motivates turning to the Keldysh formalism.

Before proceeding to the Keldysh set-up it will be useful to review why constructing
an action for the problem helps with calculating the current (4.4). The idea is to construct
the generating functional,

Z[Jd, Jc] =

∫
D(c̄, c) dd̄ dd e

i
~S[c,d]+(Jc|c)+(c|Jc)+(Jd|d)+(d|Jd), (4.18)

where the short-hand notation is

(Jc|c) =

∫
dx dtJ̄c(x, t)c(x, t) (4.19)

and the c(x) fields are expressed as vectors of Grassmann variables. With this in place,
the correlator 〈c†k(t)d(t)〉 which we need for finding the current in Eq. (4.4) comes from
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4.2. Conversion to a local theory

taking the appropriate derivatives of Z with respect to the (Grassmann) sources J̄c(d) and
then taking the Fourier transform:

〈c†(x, t)d(t)〉 =
1√
L

∑
k

eikx〈c†k(t)d(t)〉 = − 1

Z0

δ2Z[Jc, Jd]

δJ̄dδJ̄c

∣∣∣∣
J,J̄=0

(4.20)

〈c†k(t)d(t)〉 =
1√
L

∫ L

0

dxe−ikx〈c†(x, t)d(t)〉 (4.21)

where Z0 = Z[0, 0]. Since Eq. (4.20) is just a two-point function it can be read off from
the off-diagonal element of the corresponding Green function G due to well known results
for Grassmann Gaussian functional integrals:

Z0 ≡ Tr[e−β(Ĥ−µN̂)] =

∫
D(φ̄, φ)e−(φ|(iG)−1|φ) = det[(iG)−1] (4.22)

Z[J̄ , J ] =

∫
D(φ̄, φ)e−(φ|(iG)−1|φ)+(J |φ)+(φ|J) = det[(iG)−1]e(J |iG|J) (4.23)

〈φiφ̄j〉 = − 1

Z0

δ2Z[J̄ , J ]

δJ̄iδJj

∣∣∣∣
J̄ ,J=0

= iGij (4.24)

As already explained, however, it is not straightforward to invert the 2 × 2 matrix Ĝ−1

due to the time dependent potential V (t).

4.2 Conversion to a local theory

Rewriting the action (4.13) in momentum space we find:

S =
∑
k

∫ ∞
−∞

dt

(
c̄k(t)
d̄(t)

)ᵀ(
i~∂t − εk(t) −g/

√
L

−g/
√
L δk,0(i~∂t − εd)

)(
ck(t)
d(t)

)
. (4.25)

By integrating out all of the fermions from the partition function except the one at site
zero we can derive an effective action with just two fermionic fields (four when counting
the bar fields). For ease of notation let us denote the operators for the unmixed c and d
theories by

L̂−1
0k =

1

~
[i~∂t − εk(t)], D̂−1

0 =
1

~
[(i~∂t − εd)], (4.26)

and a discrete Fourier representation for the lead electrons, e.g:

L̂−1
0k =

∑
x

e−ikxL̂−1
0 (x) (4.27)

where the coefficients L̂−1
0 (x) are unknowns. Denoting f(x, x′) = c̄(x)~L̂−1

0 (x−x′)c(x) we
may write: ∑

k

c̄k~L̂−1
k ck =

∑
x 6=0
x′ 6=0

f(x, x′) +
∑
x 6=0

[f(0, x) + f(x, 0)] + f(0, 0) (4.28)

Using this full action is
S = Sa + Sbath (4.29)
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Chapter 4. Transport in a non-equilibrium resonant level model

where:

Sa =

∫ ∞
−∞

dt

(
c̄(0)
d̄

)ᵀ(~L̂−1
0 (0) −g
−g ~D̂−1

0

)(
c(0)
d

)
(4.30)

and,

Sbath =

∫
dt

∫
dt′
∑
x 6=0
x′ 6=0

c̄(x)~L̂−1
0 (x− x′)c(x′) + ~

∑
x 6=0

[c̄(0)L̂−1
0 (−x)c(x) + c̄(x)L̂−1

0 (x)c(0)]

(4.31)
where we suppressed the time arguments for ease of notation. The partition function is:

Z =

∫
D(c0, d)e

i
~Sa

∫
D(c(x 6= 0))e

i
~Sbath︸ ︷︷ ︸

ZB [c(0)]

, (4.32)

We may now integrate out all the fermions from the ‘bath’, by treating J(x) = iL̂0(x)c(0)
and J̄(x) = ic̄(0)L̂0(−x) as source terms and applying (4.23), giving:

ZB = N exp

[
− i
∫

dt

∫
dt′
∑
x 6=0
x′ 6=0

c̄(0)L̂−1
0 (−x′)[L̂−1

0 (x− x′)]−1L̂−1
0 (x)c(0)

]
(4.33)

where N = det

[
−i
(
L̂−1

0 (x 6= 0, x′ 6= 0)
)−1
]
. Then the effective theory is

Z = N
∫
D(c(0), d)e

i
~Seff . (4.34)

where

Seff =

∫
dt

∫
dt′
(
c̄(0)
d̄

)ᵀ

t

(
~L̂′−1 −g
−g ~D̂−1

0

)
t,t′

(
c(0)
d

)
t′
, (4.35)

and
L̂′−1 = L̂−1(0)−

∑
x 6=0
x′ 6=0

c̄(0)L̂−1
0 (−x′)[L̂−1

0 (x− x′)]−1L̂−1
0 (x)c(0). (4.36)

The matrix element (4.36), unlike the other three, is not diagonal in time. We will see
that this plays an important role for the following investigation.

Crucially it does not matter if we do not know the precise operator form of (4.36)
which generates the site zero propagator. According to the original action the two point
functions for the electrons in the absence of tunnelling are:

〈ckc̄k′〉0 = iδk,k′L0k (4.37)

and, consequently, the propagator for the lead electrons in the local theory is given by
the momentum integral over the single particle Green functions L0k:

L′ ≡ −i〈c(0)c̄(0)〉0 =
1

L

∑
k

e0〈ckc̄k′〉 =
1

L

∑
k

L0k →
∫

dk

2π
L0k (4.38)

In the following sections we revert to a more traditional notation, i.e. L′0 ≡ Gco and
D0 ≡ Gdo for the unmixed propagators.
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4.3. Keldysh action and expression for the current

4.3 Keldysh action and expression for the current

Doubling the fermionic fields and performing the Keldysh rotation gives:

Seff → S =

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ψ̄(t)

[(
~Ĝ−1

co −g
−g i~∂t − εd

)
t,t′

⊗ 12×2

]
ψ(t′) (4.39)

where we have defined a four component spinor ψ = (ψ
(c)
1 , ψ

(c)
2 , ψ

(d)
1 , ψ

(d)
2 )ᵀ and a similar

one for the bar fields, and 12×2 is a 2× 2 unit matrix. By similar manipulations one finds
the source action for the current:

SW = −
∫

dtWq(t)ψ̄
(eg
~
σy ⊗ γq

)
ψ (4.40)

Thus the generating functional is:

Z[Wq] = N
∫
D(ψ̄, ψ)e

i
~SW e

i
~S (4.41)

where N accounts for a constant prefactor coming from integrating out the fields from
the lead. We call to mind from Chapter 2 that the ‘quantum’ γq matrix above is just
the Pauli x-matrix. Following the prescription for averages on the Keldysh contour, the
time-dependent current is:

I(t) ≡ 〈Î(t)〉 =
i~
2

δZ[Wq(t
′)]

δWq(t)

∣∣∣∣
Wq=0

=
1

2
〈ψ̄(t)

(eg
~
σy ⊗ γq

)
ψ(t)〉 (4.42)

where the expectation sign 〈(. . . )〉 indicates that the average is taken over the whole
theory with weight N exp(iS/~). Recall that the 1/2 in front originates from adding two
copies of the observable on the closed time contour, once in the forwards direction and
once going back. Now we can use the identity xᵀAx = Tr(Axxᵀ) for square matrices A
and column vectors x:

I(t) =
eg

2~
〈Tr(σy ⊗ γq)ψ(t)ψ̄(t)〉

=
eg

2~
(Gdc(t,t) −Gcd(t,t))

K (4.43)

where we used the (as-yet-unknown) 4× 4 Green matrix1,2:

G(t,t) ≡
(
Gcc Gcd

Gdc Gdd

)
t,t

= −i〈ψ(t)ψ̄(t)〉 (4.44)

and the Keldysh causality structure Gij =

(
Gr
ij GK

ij

0 Ga
ij

)
where i, j ∈ (c, d). The K in

equation (4.43) indicates that we are taking the Keldysh component. The forms of Gcd

and Gdc may be found using the block inversion formula:(
A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
, (4.45)

1The (t, t′)-arguments were put in the subscripts simply for neatness. The ‘⊗12×2’ notation will also
be dropped for convenience where it is unambiguous.

2This Green matrix is exact in the hybridisation coupling g.
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Chapter 4. Transport in a non-equilibrium resonant level model

true for any block matrix with non-singular A and D−CA−1B. We may therefore write
G at site zero in terms of the components of its inverse Ĝ−1 which has the known form

Ĝ−1
(t,t′) =

(
δ(t− t′)Ĝ−1

co (t′) −(g~)t,t′
−(g~)t,t′

1
~δ(t− t′)[i~∂t′ − εd]

)
=

(
Ĝ−1
co −g

~
−g

~ Ĝ−1
do

)
t,t′

(4.46)

where: (g~)t,t′ = δ(t− t′)g~ . Hence:

G(t,t′) =

(
(G−1

co − g2

~2Gdo)
−1 Gco

g
~(G−1

do − g2

~2Gco)
−1

(G−1
do − g2

~2Gco)
−1 g

~Gco (G−1
do − g2

~2Gco)
−1

)
t,t′

=

(
Gcc Gco

g
~Gdd

Gdd
g
~Gco Gdd

)
t,t′

(4.47)

such that
∫

dt1Ĝ
−1
t,t1Gt1,t′ = δ(t− t′).

We need to calculate the off-diagonal blocks and isolate their Keldysh components.
Substituting Gdc and Gcd into the expression for the current gives:

I(t) =
eg2

2~2

∫
dt′(Gdd(t,t′)Gco(t′,t) −Gco(t,t′)Gdd(t′,t))

K

=
eg2

2~2

∫
dt′(Gr

dd(t,t′)G
K
co(t′,t) +GK

dd(t,t′)G
a
co(t′,t) −Gr

co(t,t′)G
K
dd(t′,t) −GK

co(t,t′)G
a
dd(t′,t)).

(4.48)

The different Gco(t, t
′) in the above integral for the current are the local Green functions

corresponding to the single electron at site zero which is correlated with the impurity.
The prescription from single-particle Green functions, which we call Gco(k, t, t′), to the
local functions Gco(t, t

′) in the above formula, as recently discussed, is:

Gco(t, t
′) =

1

L

∑
k

Gco(k; t, t′)→
∫

dk

2π
Gco(k; t, t′) (4.49)

The resonant level model just has one d-fermion so this is not necessary for the impurity
Green functions:

Gdo(t, t′) ≡ Gdo(t, t
′), (4.50)

yet it is for the mixed functions Gdd which are dressed by the hybridisation:

Gdd(t, t
′) =

1

L

∑
k

Gdd(k; t, t′)→
∫

dk

2π
Gdd(k; t, t′). (4.51)

4.4 Linear response calculations

In this section the current I(t) is calculated by doing linear response in the time dependent
potential with the parameter V0, the amplitude of the ac bias. This is necessary because
it is too difficult to find the fully time dependent Gdd functions analytically. Instead, the
approach we take is to apply the different Green functions in linear response where they
are only functions of the difference in times ±(t− t)′.
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4.4. Linear response calculations

4.4.1 Approximation for the current

The retarded/advanced versions of functions Gco, Gdo and Gdd must satisfy the inverse
equations:

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εk(s)± i0+)Gr,aco(k;s,t′) (4.52)

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εd ± i0+)Gr,a

do(s,t′) (4.53)

~δ(t− t′) =

∫
ds[δ(t− s)(i~∂s − εd ± i0+)− 1

~
g2Gr,a

co(t,s)]G
r,a
dd(s,t′), (4.54)

where the upper (lower) sign corresponds to the leftmost (rightmost) superscripts. The
Keldysh versions, meanwhile, are constructed from these according to the usual recipe3

described in Chapter II, i.e.:

GKco(k;t,t′) = (Grco(k;t,t′) − Gaco(k;t,t′))(1− 2nF (εk)) (4.55)

The fully time dependent results, as far as possible, are:

Gr,aco(k;t,t′) = ∓iθ[±(t− t′)]e−
iεk
~ (t−t′)e−

ie
~
∫ t′
t V (s) ds, (4.56)

Gr,a
co(t,t′) = ∓iθ[±(t− t′)]

∫
dk

2π
e−

iεk
~ (t−t′)e−

ie
~
∫ t′
t V (s) ds, (4.57)

GK
co(t,t′) = −i

∫
dk

2π
(1− 2nF (εk))e

− iεk~ (t−t′)e−
ie
~
∫ t′
t dsV (s), (4.58)

Gr,a
do(t−t′) = ∓iθ[±(t− t′)]e−

iεd
~ (t−t′). (4.59)

By contrast, the full hybridisation-dressed functions Gr,a
dd cannot be written so simply.

This motivates turning to an approximation for the I(t) integral by doing linear response
in V0. By examining the current Eq. (4.48) we see that we need expansions for Gr,a,K

co and
Gr,a,K
dd . Expanding around V0 = 0 gives4:

Gr,a,K
co(t,t′;V0) = Gr,a,K

co(t,t′;0)

(
1− ie

~

∫ t′

t

dsV (s)

)
+O(V 2

0 ) (4.60)

Gr,a
dd(t,t′;V0) = Gr,a

dd(t,t′;0)−
ieg2

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)
Gr,a
dd(t,t1;0)G

r,a
co(t1,t2;0)G

r,a
dd(t2,t′;0)+O(V 2

0 )

GK
dd(t,t′;V0) = GK

dd(t,t′;0)−
ieg2

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)[
Gr
dd(t,t1;0)G

r
co(t1,t2;0)G

K
dd(t2,t′;0)

+Gr
dd(t,t1;0)G

K
co(t1,t2;0)G

a
dd(t2,t′;0) +GK

dd(t,t1;0)G
a
co(t1,t2;0)G

a
dd(t2,t′;0)

]
+O(V 2

0 ) (4.61)

All of the Green functions on the right hand side of the expansions have V0 = 0. They
therefore only depend on the difference in times and may be referred to as equilibrium
functions:

Gr,a,K
co,dd (t, t′, V0 = 0) ≡ Gr,a,K

co,dd (t− t′). (4.62)

3This comes with the assumption that the lead is in local thermal equilibrium.
4The interested reader may find derivations in Appendix C.3.1.
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Chapter 4. Transport in a non-equilibrium resonant level model

Kinetic equation for the dot: The dot, unlike the lead which we assume to be in ther-
mal equilibrium, comes with a kinetic equation to solve to find the Keldysh component.
Through it enters the filling factor of the electrons in the lead. From the Dyson equation
for the dot we find that:

GK
dd = Gr

ddΣ
K
d G

a
dd (4.63)

where ΣK
d is the Keldysh component of the self energy matrix, which is proportional to

the lead Keldysh function:

ΣK
d =

g2

~2
GK
co (4.64)

This may be determined by the diagram technique (there is only one irreducible diagram)
or by an explicit calculation (e.g. integrating out all fermions except d from the theory).

It will be advantageous to work in the energy domain. The results are given in Table
4.1, where vF > 0 is the Fermi velocity and Λ is a UV cutoff. For the Keldysh functions
GK
dd(ε) and GK

co(ε) we will sometimes substitute the hyperbolic tangents for 1−2n
(c)
F (ε) with

chemical potential µ.

Table 4.1: Equilibrium Green functions

Mixed Green functions Local Green functions

Gr,a
dd(ε) =

~
ε− εd ± i g2

2~vF

+O(Λ−1) Gr,a
co(ε) =

ε

π~v2
FΛ
∓ i

2vF
+O(Λ−2)

GK
dd(ε) =

− ig2

vF

(ε− εd)2 + ( g2

2~vF
)2

tanh
(

ε−µ
2kBT

)
+O(Λ−1) GK

co(ε) =
1

ivF
tanh

(
ε−µ

2kBT

)
+O(Λ−1)

Substituting the expansions for the Green functions into Eq. (4.48) leads to the
following perturbation series for the charge current:

I(t) = ︸ ︷︷ ︸
∼g2

∫
dt(... )

O(V 0
0 )︷︸︸︷

I0(t) +

O(V 1
0 )︷ ︸︸ ︷

I1(t) + I2(t)︸︷︷︸
∼g4

∫
dt(... )

+ O(V 2
0 ) (4.65)

where the three contributions are:

I0(t) =
eg2

2~2

∫
dt′
[
Grdd(t−t′)G

K
co(t′−t) +GKdd(t−t′)G

a
co(t′−t) −Grco(t−t′)GKdd(t′−t) −GKco(t−t′)Gadd(t′−t)

]
,

(4.66)

I1(t) =
−ie2g2

2~3

∫
dt′
(∫ t

t′
V (s) ds

)[
Grdd(t−t′)G

K
co(t′−t) +GKdd(t−t′)G

a
co(t′−t) +Grco(t−t′)G

K
dd(t′−t)

+GKco(t−t′)G
a
dd(t′−t)

]
, (4.67)

I2(t) =
−ie2g4

2~5

∫
dt′
∫

dt1

∫
dt2

(∫ t2

t1

dsV (s)

)[
Grdd(t−t1)G

r
co(t1−t2)G

r
dd(t2−t′)G

K
co(t′−t)

+Grdd(t−t1)G
r
co(t1−t2)G

K
dd(t2−t′)G

a
co(t′−t) +Grdd(t−t1)G

K
co(t1−t2)G

a
dd(t2−t′)G

a
co(t′−t)

+GKdd(t−t1)G
a
co(t1−t2)G

a
dd(t2−t′)G

a
co(t′−t) −Grco(t−t′)Grdd(t′−t1)G

r
co(t1−t2)G

K
dd(t2−t)

−Grco(t−t′)Grdd(t′−t1)G
K
co(t1−t2)G

a
dd(t2−t) −G

r
co(t−t′)G

K
dd(t′−t1)G

a
co(t1−t2)G

a
dd(t2−t)

−GKco(t−t′)Gadd(t′−t1)G
a
co(t1−t2)G

a
dd(t2−t)

]
. (4.68)
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4.4.2 The I0 (equilibrium) contribution

The first of these, I0(t), is the equilibrium contribution since V0 is absent. It is accurate
to all orders in the coupling g. By making use of the following useful identity,

GX
dd,co(t−t′)G

Y
co,dd(t′−t) =

∫
dε

2π~

∫
dε1
2π~

GX
dd,co(ε)G

Y
co,dd(ε−ε1)e

− i
~ ε1(t−t′), (4.69)

the contribution I0(t) becomes:

I0(t) =
eg2

2~2

∫
dε

2π~
[(Gr

dd(ε) −Ga
dd(ε))G

K
co(ε) − (Gr

co(ε) −Ga
co(ε))G

K
dd(ε)] (4.70)

Inserting the Green functions immediately gives zero, as we would expect in equilibrium.

I0 = 0 (4.71)

4.4.3 The I1(t) contribution

The next contribution, I1(t), is the first out of the two pieces for the leading order term in
V0. Only when combined with I2 does it become accurate to all orders in g. The Fourier
transform Ĩ1(ω) is:

Ĩ1(ω) =
−ie2g2

2~3

∫
dt

∫
dt′
(∫ t

t′
dsV (s)

)
eiωt/~

∫
dε1
2π~

∫
dε2
2π~

e−iε2(t−t′)/~f(ε1, ε2) (4.72)

where we have defined a new function f :

f(ε1, ε2) = Gr
dd(ε1)G

K
co(ε1−ε2) +GK

dd(ε1)G
a
co(ε1−ε2) +Gr

co(ε1)G
K
dd(ε1−ε2) +GK

co(ε1)G
a
dd(ε1−ε2). (4.73)

We may complete all of the time integrals to find:

I1(t) =
−V0e

2g2

8π~4ω0

∑
ζ=−1,1

ζe−iζω0t

∫
dε(h1(ε, ζ~ω0) + h2(ε, ζ~ω0)) (4.74)

where we have reorganised the integral with new functions:

h1(ε, ζ~ω0) = GK
dd(ε)(G

r
co(ε+ζ~ω0) +Ga

co(ε−ζ~ω0) −Gr
co(ε) −Ga

co(ε)). (4.75)

h2(ε, ζ~ω0) = GK
co(ε)(G

r
dd(ε+ζ~ω0) −Gr

dd(ε) +Ga
dd(ε−ζ~ω0) −Ga

dd(ε)) (4.76)

by making appropriate integration shifts. The first piece of Eq. (4.74), h1(ε, ζ~ω0), is
vanishingly small with the UV cutoff Λ. By inserting the Green functions I1(t) becomes:

I1(t) =
iV0e

2g2

4π~2vF

∑
ζ,α=−1,1

αe−iζω0t

∫ ∞
−∞

dε
n

(c)
F (ε+ εd)

(ε+ iα g2

2~vF
+ αζ~ω0)(ε+ iα g2

2~vF
)
. (4.77)
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Chapter 4. Transport in a non-equilibrium resonant level model

One integral was immediately discarded because all of the poles lie in one half of the
complex plane5. By transferring to a Matsubara sum we can trade the remaining ε-
integral for infinite sums by further treatment with the residue theorem. The sums may
then be expressed in a closed form in terms of the digamma function Ψ .

I1(t) =
V0e

2g2

4π~2vF

∑
ζ=−1,1

ie−iζω0tXζ (4.78)

where:

Xζ =
−ζ
~ω0

{[
Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ− ζ~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)]

+

[
Ψ

(
1

2
+

g2

2~vF
− i(εd − µ+ ζ~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
− i(εd − µ)

2πkBT

)]}
(4.79)

We may rewrite this in a nicer form, that is more obviously real, by using the conju-
gation property for polygamma functions Ψ (n)(z∗) = (Ψ (n)(z))∗. The final result is

I1(t) =
eV0

~ω0

e · ( g2

2~vF
)

π~
Im

{
e−iω0t

∑
α=1,−1

[
Ψ

(
1

2
+

g2

2~vF
+ iα(εd − µ− α~ω0)

2πkBT

)

−Ψ
(

1

2
+

g2

2~vF
+ iα(εd − µ)

2πkBT

)]}
. (4.80)

Explicit details for this calculation may be found in Appendix C.4.

The I1(t) dc limit at finite temperature

For the dc limit, by expanding the summations in (4.78)-(4.79) and taking ω0 → 0, we
find:

I1(ω0 → 0) = V0
−2e2

π~

g2

2~vF
2πkBT

Re

[
Ψ (1)

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)]
(4.81)

The I1(t) zero temperature limit:

Picking up from (4.77) we can find the zero temperature limit I1(t, T ) → I1(t, 0). The
Fermi function becomes a step function and the integral simplifies:

I1(t, T = 0) =
iV0e

2g2

4π~2vF

∑
ζ,α=−1,1

αe−iζω0t

∫ µ−εd

−∞
dε

1

(ε+ iα g2

2~vF
+ αζ~ω0)(ε+ iα g2

2~vF
)

=
−eV0

~ω0

e · ( g2

2~vF
)

π~
Im

{
e−iω0t ln

[
(εd − µ)2 − ( ig2

2~vF
+ ~ω0)2

(εd − µ)2 − ( ig2

2~vF
)2

]}
(4.82)

5We may enclose the empty half with a standard semi-circular contour (giving zero by Cauchy-Goursat)
that yields the desired form in the radius →∞ limit.
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4.4. Linear response calculations

4.4.4 The I2(t) contribution

Going through the algebra as done for I1(t) (see ‘Useful identities’ in Appendix C.3.3) to
write the I2(t) integral (4.68) in energy space, we find:

I2(t) =
−e2g4V0

8π~6ω0

∑
ζ=−1,1

ζe−iζω0t

∫
dε(h1(ε, ζ~ω0) + h2(ε, ζ~ω0) + h3(ε, ζ~ω0)) (4.83)

where we have defined the functions:

h1(ε1, ε2) =
∑

α=1,−1

GK
dd(ε1)G

ξα
dd(ε1+αε2)(G

ξ−α
co(ε1) −G

ξα
co(ε1+αε2))(G

ξα
co(ε1) −G

ξα
co(ε1+αε2)), (4.84)

h2(ε1, ε2) =
∑

α=1,−1

GK
co(ε1)(G

ξα
dd(ε1)(G

ξα
co(ε1) −G

ξα
co(ε1+αε2))G

ξα
dd(ε1+αε2)), (4.85)

h3(ε1, ε2) =
∑

α=1,−1

GK
co(ε1)G

ξα
dd(ε1)(G

ξα
co(ε1) −G

ξ−α
co(ε1−αε2))G

ξ−α
dd(ε1−αε2), (4.86)

where (ξ1, ξ−1) = (r, a).

As found in the case of the I1 contribution we notice that large parts of the integral
(underlined) vanish with the UV cutoff Λ, since, for all ε1, ε2:

Gr,a
co(ε1) −G

r,a
co(ε2) =

1

Λ
→ 0 as Λ→∞ (4.87)

The third part, (4.86), however, does not vanish with the cutoff since, for all ε1, ε2:

Gr,a
co(ε1) −G

a,r
co(ε2) = ∓ i

vF
as Λ→∞ (4.88)

This leads to a potentially non-zero contribution:

I2(t) =
−e2g4V0

4π~6vFω0

Im

{
e−iω0t

∫ ∞
−∞

dε(Gr
dd(ε)G

a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))G

K
co(ε)

}
(4.89)

by making use of the properties Gr
dd(ε) = (Ga

dd(ε))
† and GK

dd(ε) = −(GK
dd(ε))

†.

Inserting the Green functions and performing the integrals, in an identical manner as
done for I1(t), gives the final result:

I2(t) =
−eV0

~ω0

e

2π~
( g2

~vF
)2

( g2

~vF
)2 + (~ω0)2

Im
{
e−iω0t( g2

~vF
+ i~ω0) (4.90)

·
∑

α=1,−1

[
Ψ

(
1

2
+

g2

2~vF
+ iα(εd − µ− α~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
+ iα(εd − µ)

2πkBT

)]}
(4.91)

Further details are located in Appendix C.5, and the dc and zero temperature limits are
still in progress at the time of writing.
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Chapter 4. Transport in a non-equilibrium resonant level model

4.5 Translation of results to the 1CK model Toulouse limit

For the 1CK model at the Toulouse limit the resonant d level is pinned to the Fermi
energy of the conduction band which can be set equal to zero (recall Fig. 3.1):

H1CK
Toulouse = H0[ψ] +

J⊥
2
√

2πa0

[d†ψ(0) + h.c.]. (4.92)

If we consider the I1 solution alone then this leads to the zero temperature prediction:

I1CK
1 (t, T = 0) =

−eV0

~ω0

e · ( g2

2~vF
)

π~
Im

[
e−iω0t ln

(
1− i~ω0

(g2/2~vF )

)]
(4.93)

where we could also write g → J⊥
2
√

2πa0
for an exact mapping. The dc conductance at zero

temperature may now be found. It is approximated by

Gdc(T=0) = lim
ω0→0

I1(t, 0)

V0

, (4.94)

leading to a result which is independent of model parameters:

G1CK
dc(T=0) =

4e2

h
(4.95)

In this limit we expect the Kondo enhanced conductance to be equal to the conductance
quantum e2/h for just a single channel, corresponding to perfect transmission into the
dot. Since we did not yet complete the calculation for I2, it is possible that this gives
a correction. Nevertheless we have found a first approximation for the peak Kondo res-
onance6 at zero bias and near the right order of magnitude. Furthermore we point out
that when taken with a possible I2 correction this should be the exact zero bias dc result
because higher order terms than linear response vanish for V0 = 0.

4.6 Discussion and conclusion

In this chapter we calculated the alternating current in a resonant level toy model for any
temperature by doing linear response in the amplitude V0 of a sinusoidal voltage bias,
and for all driving frequencies ω. We also extracted several limits. Notably, the dc limit
for I1 is in the same form as the two-channel Kondo literature result (up to a numerical
prefactor). This quantitatively reproduces the hallmark Kondo resonance peak at zero
bias, as measured in recent experiments [4], Fig. 4.2.

An obvious question to ask is what would change if we added another lead so that the
RL model has two non-interacting channels that are coupled to the dot. This is a well
known problem that was successfully solved exactly by Jauho, Wingreen and Meir in a
variety of situations, [5, 6], even including the time-dependent harmonic bias, so it would
be interesting to see how to do the equivalent derivation with functional integrals. This
also suggests that, actually, it ought to be possible to go beyond linear response for the
problem at hand. A potential extension could be to add another lead which also has the
time dependent bias in it and then compare explicitly to a linear response result that can
be extracted from Jauho, Wingreen and Meir.

6Insofar as a single channel model can be ‘resonating’ at all.
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4.6. Discussion and conclusion

Figure 4.2: The Kondo resonance peak around zero bias from the recent (2015) experi-
ments of the Pierre group [4]. The points are experimental data and the solid red line is
the analytical result in terms of the trigamma function.
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Chapter 5

Extension: ac transport through a Kondo impurity

Using the methods of the previous chapter we we outline how the procedure for calculating
the current in the toy resonant level model may be applied to the tunnelling junction
studied by Schiller and Hershfield.

5.1 Motivation from a common low energy crossover

An effective anisotropic two-channel Kondo model for a spin-1/2 impurity is:

HK =
∑
α=L,R

[
Jα
∑
k,k′

(c†α↑kcα↓k′Ŝ
− + c†α↓kcα↑k′Ŝ

+) +
∑
k,σ

εασkc
†
ασkcασk

]
+ ∆EŜZ (5.1)

By numerical renormalization group calculations on this particular model, A. K. Mitchell
et. al [21] were able to reproduce the curve for the conductance line shape in an ingenious
recent experiment by the Pierre group in Marcoussis, France [4] for over nine orders of
magnitude.
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G
(ω

) 
[e

2
/h

]

G(ω)

T ∗

Figure 5.1: NRG calculation for the T = 0 ac conductance in linear response for the
Hamiltonian (5.1). For the model parameters used, T ∗ = 4.2 × 10−9D, JL = 1.5D,
JR = 1.5001D with D being the conduction electron bandwidth and T ∗ the FL crossover
scale (see text). Data courtesy of A. K. Mitchell.

Like the anisotropic two-channel Kondo model, the Hamiltonian we will focus on in
this chapter is not an effective theory that may be derived from an Anderson model by
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5.2. S&H’s Model: Kondo impurity interacting with two separate leads

the Schrieffer-Wolff transformation. It does, however, display universal features at low
temperatures and bias, and belongs to the same universality class of Hamiltonians as the
Anderson impurity model. The general idea is that any solvable model with the same
low energy physics can be used to study the universal behaviour near the common fixed
point, even though the results far away from it will be generally model dependent. For
the 2CK model there is the non-Fermi liquid (NFL) quantum critical point involving the
Majorana fermion (with the frustrated ground state), and, due to an instability in the
RG flow for JL 6= JR, there is also a crossover scale T ∗ towards a universal FL ground
state.

Consider for instance Fig. 5.1 which shows conductance versus an energy scale ω.
Provided the crossover scale T ∗ is below the Kondo temperature TK , and TK is much less
that the bare energy scales, i.e. the electron bandwidth D, then towards zero temperature
there should be universal Fermi-liquid like behaviour for the conductance G(T/TK). For
the particular lineshape above the exchange couplings are intentionally high in order to
focus in on the low energy flow away from the 2CK fixed point below T ∗. The practical
message to take from this is that we can compare the low ω asymptote of the NRG
calculation based on the model (5.1) to analytics from the Toulouse limit.

5.2 S&H’s Model: Kondo impurity interacting with two separate leads

By extending the findings of Emery and Kivelson of the Toulouse point for the two-channel
Kondo model to include channel anisotropy, in a series of papers in the 1990s Schiller and
Hershfield (S&H) conducted some of the first exact transport calculations for problems
with strong correlations. The 2CK model with a general non-equilibrium condition Y0

adapted from the paper by S&H [8] is:

H2CK = i~vF
∑
α=L,R

∑
σ=↑,↓

∫ ∞
−∞

ψ†ασ(x)∂xψασ(x) dx+
∑

α,β=L,R

∑
λ=x,y,z

Jαβλ sλαβτ
λ + Y0, (5.2)

where

Y0 =
eV (t)

2

∑
σ

∫ ∞
−∞

dx[ψ†LσψLσ − ψ†RσψRσ], sλαβ =
1

2

∑
σ,σ′

ψ†ασ(0)σλσσ′ψβσ′(0) (5.3)

where the elementary charge is e > 0, the conduction-electron spin densities at the origin
are sλαβ in terms of the one-dimensional fields ψασ(x) and the τλ components form the
spin-1/2 impurity moment1. This describes a spin-1/2 impurity coupled separately to
two non-interacting leads of conduction electrons L and R via spin exchange in a tunnel
junction, Fig. 5.2. An exactly solvable point for this model is known for special values of
the exchange couplings:

Jαβx = Jαβy ≡ Jαβ⊥ (5.4)

JLRz = JRLz = 0 (5.5)

JLLz = JRRz ≡ Jz = 2π~vF . (5.6)

Equation (5.6), in particular, constitutes the generalisation of the Toulouse point where
the model becomes non-interacting.

1We have changed −Y0 → +Y0 for ease of comparison to calculations in the last chapter in certain
limits. For comparison to the findings of S&H we may simply write eV0 → −eV0 at the end.
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Chapter 5. Extension: ac transport through a Kondo impurity

lead L

eV(t)

lead R

eV(t)

spin-1/2

Figure 5.2: Schematic of the physical system for this chapter, adopted from [8]. The
tunnel junction has a spin-1/2 impurity moment with two leads of spin-1/2 electrons
on either side. Tunnelling across the junction takes place via the exchange interaction
between the conduction electrons and the impurity spin. We choose to put an ac voltage
bias in both leads.

We adapt as our starting point the refermionized Hamiltonian from Eqs. (4.4) and
(4.5) in Ref. [8], which is derived from (5.2)-(5.6) with Abelian bosonization techniques
(see Chapter 3):

H =
∑
k

[
εkψ

†
s,kψs,k + εk(t)ψ

†
f,kψf,k + i

J+

2
√
πa0L

(
ψ†s,k + ψs,k

)
b

+
JLR⊥

2
√
πa0L

(
ψ†f,k − ψf,k

)
a+

J−

2
√
πa0L

(
ψ†s,k − ψs,k

)
a

]
, (5.7)

where

J± =
1

2
(JLL⊥ ± JRR⊥ ), (5.8)

εk(t) = εk + eV (t), εk = ~vFk, V (t) = V0 cos(ω0t), (5.9)

where L is the size of the system and a0 is a short-distance cutoff. The flavor and spin-
flavor fields, ψf,k and ψs,k respectively, are fermionic channels, chiral left-movers emerging
from the bosonization, and a and b are Majorana operators coming from the d-level
fermions:

a =
d+ d†√

2
, b =

d† − d
i
√

2
(5.10)

so a2 = b2 = 1/2. Two further quadratic parts coming from charge-sector and spin-sector
fermions have been discarded because they do not affect the dynamics.

This is a non-equilibrium analogue of the Toulouse limit with a sinusoidal voltage
bias. A prominent feature is that the bias only affects the flavour fermions, despite being
initially put in both leads. In reference [8] the authors study many different properties
for a dc bias V (t) → V0, while the ac bias was investigated in an earlier publication, [9].
To some extent this chapter provides a re-examination of the latter problem, although we
do not investigate the effects of a magnetic field.

The Emery-Kivelson limit is given by conditions when only one Majorana fermion is
coupled to the ψ fermions:

JLR⊥ = 0 and JLL⊥ = JRR⊥ , (5.11)
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5.2. S&H’s Model: Kondo impurity interacting with two separate leads

or,
JRR⊥ = −JLL⊥ , (5.12)

which we henceforth call case (a) and case (b) respectively (coupling only to the a or b).

For the equilibrium case with V0 = 0 they are also the only two situations when
JLRz = 0 and JLLz = JRRz ≡ Jz remain stable when reducing the bandwidth. For any other
values a nonzero JLRz coupling is generated upon rescaling [8]:

dJLLz
dl

=
1

2π~vF
[(JLL⊥ )2 + (JLR⊥ )2], (5.13)

dJRRz
dl

=
1

2π~vF
[(JRR⊥ )2 + (JLR⊥ )2], (5.14)

dJLRz
dl

=
1

2π~vF
(JLL⊥ + JRR⊥ )JLR⊥ , (5.15)

These weak-coupling RG equations (derived by S&H with the ‘poor man’s scaling’ tech-
nique) provide the necessary justification that Eq. (5.5), in which we set one coupling to
zero, has no consequence on the low-energy physics.

For convenience we will relabel the couplings:

v1 = − JLR⊥
2
√
πa0

, v2 = − J−

2
√
πa0

, vb = − iJ+

2
√
πa0

. (5.16)

In the new variables the Emery Kivelson limits for case (a) and case (b) are

v1 = 0 and v2 = 0. (5.17)

or,
vb = 0. (5.18)

Recast as an action with Grassmann variables, the model we will investigate is:

S =
∑
k

∫
dt


ψ̄f,k
ψ̄s,k
ā
b̄


ᵀ

i~∂t − εk(t) 0 v1/
√
L 0

0 i~∂t − εk v2/
√
L vb/

√
L

v1/
√
L v2/

√
L δk,0i~∂t 0

0 v∗b/
√
L 0 δk,0i~∂t



ψf,k
ψs,k
a
b

 (5.19)

The charge current I(t) measures the rate at which electric charge increases on the
left lead (or, equivalently for Kondo models, increases on the right one):

Î(t) = I↑(t) + I↓(t) (5.20)

with

Iσ(t) = −ed(Ntot.σ)

dt
= ie

[
NLσ −NRσ

2
, H2CK

]
(5.21)

where Nασ is the number operator for electrons with spin σ on lead α. In the (f, sf)
refermionized basis for the Hamiltonian (5.7), this transforms to:

Î(t) =
ie

~
∑
k

[ψ†f,kψf,k, H] = − iev1

~
√
L

∑
k

(ψ†fk + ψfk)a

=
−iev1

~
√
L

∑
k


ψ†f,k
ψ†s,k
a
b


ᵀ

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



ψf,k
ψs,k
a
b

 (5.22)
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Chapter 5. Extension: ac transport through a Kondo impurity

by using the standard fermionic anticommutators. The global prefactor of v1 immediately
shows that the current is zero in the second Emery Kivelson limit, Eq. (5.17), so we only
need to be concerned with the first limit with vb = 0.

5.3 Setting up the Keldysh action and current

In an identical procedure to the RL chapter, we may convert to a local problem, put the
action on the closed time contour and Keldysh-rotate to find:

S → S =

∫
dtψ̄



~Ĝ−1

fo 0 v1 0

0 ~Ĝ−1
so v2 vb

v1 v2 i~∂t 0
0 v∗b 0 i~∂t

⊗ 12×2

ψ (5.23)

where we introduced the eight component spinor

ψ̄ = (ψ̄f1, ψ̄f2, ψ̄s1, ψ̄s2, ā1, ā2, b̄1, b̄2) (5.24)

and a similar one for the fields without the bar. Similarly a source action for the current
in the new basis is:

SW = −
∫

dtψ̄Wq(t)

−iev1

~


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⊗ γq
ψ (5.25)

where γq is the first Pauli matrix and Wq(t) is a scalar source field. The reader is reminded
that the minus sign in front of the integral just arises from the Legendre transformation
L(q, q̇) = pq̇ −H(p, q). The generating functional is:

Z[Wq] = N
∫
D(ψ, ψ)e

i
~SW e

i
~S (5.26)

where N takes care of the fields we integrated out. To find the current we calculate:

I(t) ≡ 〈Î(t)〉 =
i~
2

δZ[Wq(t
′)]

δWq(t)

∣∣∣∣
Wq=0

=
1

2

〈
ψ̄(t)

−iev1

~


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⊗ γq
ψ(t)

〉

(5.27)

where the expectation signs 〈(. . . )〉 mean that the average is taken over the whole theory
with weight N exp(iS/~). Employing the identity xᵀAx = Tr(Axxᵀ) for square matrices
A and vectors x gives:

I(t) =
ev1

2~
Tr





0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⊗ γq
 (−i

〈
ψ(t)ψ̄(t)

〉
)


=
ev1

2~
Tr[γqGaf − γqGfa]

=
ev1

2~
(Gaf −Gfa)

K , (5.28)
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5.4. General expression for the current

where we used the (as-yet-unkown) 8× 8 Green matrix:

G(t,t′) = −i〈ψ(t)ψ̄(t′)〉 =


Gff Gfs Gfa Gfb

Gsf Gss Gsa Gsb

Gaf Gas Gaa Gab

Gbf Gbs Gba Gbb


t,t′

(5.29)

and the causality structure Gij =

(
Gr
ij GK

ij

0 Ga
ij

)
where i, j ∈ (f, s, a, b). Not that the

superscript a denotes advanced functions and is unrelated to the Majorana a. We will
stick to the ‘upstairs = character of Green function, downstairs = fermion channel’ choice
so this will not be a problematic choice of notation.

5.4 General expression for the current

To proceed we can find the Green matrix using the block inversion formula:(
A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
. (5.30)

It is profitable to rearrange the basis first before the inversion:

Ĝ−1 =


Ĝ−1
fo

v1

~ 0 0
v1

~ Ĝ−1
ao

v2

~ 0

0 v2

~ Ĝ−1
so

vb
~

0 0
v∗b
~ Ĝ−1

bo

 (5.31)

such that the spinors in the action are ψ̄ = (ψ̄f1, ψ̄f2, ψ̄a1, ψ̄a2, ψ̄s1, ψ̄s2, ψ̄b1, ψ̄b2) and a
similar one for the fields without the bar. As in the last chapter, note that the factor
of 1/~ entering the inverse Green matrix is absorbed from the path integral, i.e. Z =∫
eiS/~ =

∫
ei(Ψ|G

−1|Ψ) schematically. The block inversion leads to a 4× 4 matrix,(
Gff Gfa

Gaf Gaa

)
=

(
Gff −v1

~ GfoGaa

−v1

~ GaaGfo Gaa

)
, (5.32)

with components that are 2× 2 matrices:

Gff = {G−1
fo −

v2
1

~2 [G−1
ao − v2

2

~2 (G−1
so − |vb|

2

~2 Gbo)
−1]−1}−1 (5.33)

and

Gaa = (G−1
ao − v2

2

~2 (G−1
so − |vb|

2

~2 Gbo)
−1 − v2

1

~2Gfo)
−1. (5.34)

Substituting Gaf and Gfa into (5.28) and using the causality structure gives:

I(t) =
ev2

1

2~2

∫
dt′
(
Gr
fo(t,t′)G

K
aa(t′t) +GK

fo(t,t′)G
a
aa(t′,t) −Gr

aa(t,t′)G
K
fo(t′,t) −GK

aa(t,t′)G
a
fo(t′,t)

)
(5.35)

in precise analogy to the resonant level toy model investigated in Chapter 4.
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Chapter 5. Extension: ac transport through a Kondo impurity

5.5 Outline for linear response calculations

As with the earlier RL model, an inability to exactly solve the integral equations for the
fully time dependent dressed functions Gr,a

aa(t,t′;V0), defined by (5.34), leads us to consider
the linear response regime in the amplitude V0.

The retarded/advanced versions of the Green functions we need, Gfo, Gso, G(a,b)o and
Gaa, must satisfy the inverse equations:

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εk(s)± i0+)Gr,afo (s, t′, k) (5.36)

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εk ± i0+)Gr,aso (s, t′, k) (5.37)

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s ± i0+)Gr,a

(a,b)o(s, t
′) (5.38)

δ(t− t′) =

∫
ds[G−1

ao − v2
2

~2 (G−1
so − |vb|

2

~2 Gbo)
−1 − v2

1

~2Gfo]
r,a
t,sG

r,a
aa (s, t′), (5.39)

where r(a) corresponds to the upper (lower) sign in ±i0+. Notation such as G(a,b)o indi-
cates that there are two copies of the equation, one for Gao and one for Gbo.

Solutions to the first three of these carry over directly from the last chapter. Equation
(5.36) corresponds to the RL Gr,aco function with V0 6= 0 and (5.37) corresponds to it V0 = 0.
The unmixed Majorana Green functions Gr,a

ao and Gr,a
bo are also special cases where εk = 0.

The equation for Gaa plays the same role as the one for the dressed impurity Green
function Gdd in the resonant level model investigation.

The expansions for the Green functions are:

Gr,a,K
fo(t,t′;V0) = Gr,a,K

fo(t,t′;0)

(
1 +

ie

~

∫ t′

t

dsV (s)

)
+O(V 2

0 ) (5.40)

Gr,a
aa(t,t′;V0) = Gr,a

aa(t,t′;0)+
iev2

1

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)
Gr,a
aa(t,t1;0)G

r,a
fo(t1,t2;0)G

r,a
aa(t2,t′;0)+O(V 2

0 )

GK
aa(t,t′;V0) = GK

aa(t,t′;0)+
iev2

1

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)[
Gr
aa(t,t1;0)G

r
fo(t1,t2;0)G

K
aa(t2,t′;0)

+Gr
aa(t,t1;0)G

K
fo(t1,t2;0)G

a
aa(t2,t′;0) +GK

aa(t,t1;0)G
a
fo(t1,t2;0)G

a
aa(t2,t′;0)

]
+O(V 2

0 ) (5.41)

They follow the same form as before because only the full Gfo functions depend on V0.
Consequently the same expansion for the current also follows:

I(t) = ︸ ︷︷ ︸
∼v2

1

∫
dt(... )

O(V 0
0 )︷︸︸︷

I0(t) +

O(V 1
0 )︷ ︸︸ ︷

I1(t) + I2(t)︸︷︷︸
∼v4

1

∫
dt(... )

+ O(V 2
0 ) (5.42)

where

I0(t) =
ev2

1

2~2

∫
dt′
[
Graa(t−t′)G

K
fo(t′−t) +GKaa(t−t′)G

a
fo(t′−t) −Grfo(t−t′)GKaa(t′−t) −GKfo(t−t′)Gaaa(t′−t)

]
,

(5.43)
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I1(t) =
ie2v2

1

2~3

∫
dt′
(∫ t

t′
V (s) ds

)[
Graa(t−t′)G

K
fo(t′−t) +GKaa(t−t′)G

a
fo(t′−t) +Grfo(t−t′)G

K
aa(t′−t)

+GKfo(t−t′)G
a
aa(t′−t)

]
, (5.44)

I2(t) =
ie2v4

1

2~5

∫
dt′
∫

dt1

∫
dt2

(∫ t2

t1

dsV (s)
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Graa(t−t1)G

r
fo(t1−t2)G

r
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K
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r
fo(t1−t2)G

K
aa(t2−t′)G

a
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K
fo(t1−t2)G

a
aa(t2−t′)G

a
fo(t′−t)

+GKaa(t−t1)G
a
fo(t1−t2)G

a
aa(t2−t′)G

a
fo(t′−t) −Grfo(t−t′)Graa(t′−t1)G

r
fo(t1−t2)G

K
aa(t2−t)

−Grfo(t−t′)Graa(t′−t1)G
K
fo(t1−t2)G

a
aa(t2−t) −G

r
fo(t−t′)G

K
aa(t′−t1)G

a
fo(t1−t2)G

a
aa(t2−t)

−GKfo(t−t′)Gaaa(t′−t1)G
a
fo(t1−t2)G

a
aa(t2−t)

]
. (5.45)

The distinguishing feature that makes this not identical to the resonant level model is
that the dressed Majorana functions Gaa also depend on couplings v2 and, in principle,
vb. By inspection of the integral equation (5.39) we note that if v2 = 0 and vb = 0 then we
have precisely the same starting point as the linear response calculations for the resonant
level model where v2

1 = g2. The results of the previous chapter therefore provide limiting
cases of the present two-channel model.

5.6 Summary

In this chapter we saw how the linear response approach for the toy resonant level model
develops for the two-channel model studied by Schiller and Hershfield. In a nutshell, the
functional form of the perturbation theory in terms of Green functions is the same even
down to the energy domain. Moreover we noticed from inspecting the defining equations
for the Green functions that our earlier results for the RL model are a limiting case.
This is not so surprising since, as we saw in Chapter 3, the anisotropic 2CK model at
the Toulouse limit has a one-channel non-interacting limit as well as the more exotic
Emery-Kivelson one with the NFL critical point.

While we stopped short of calculating the integrals we note here that the route forward
is very similar. A next step would be to calculate the new 2× 2 Majorana Green function
Gaa(ε) which plays the role of Gdd(ε) in the resonant level investigation. By considering
(5.39), we deduced that the Majorana Green function in principle should depend on all
three couplings J+, J− and JLR⊥ of the Toulouse limit Hamiltonian (5.7).

In Ref. [9] the authors provide a solution to this very problem as an infinite series of
integer Bessel functions depending on V0. On the basis of the investigation here, it remains
unclear if this extraordinary solution is exact to all orders in the Kondo couplings. We
provide an appendix (D.3) extracting the linear response results from that calculation for
future comparison with the present investigation, including the T = 0 and low ω0 limits
where universal behaviour is expected.
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Chapter 6

Discussion and outlook

Interest in the Kondo problem has continued to persist in theoretical physics ever since
Jun Kondo’s explanation in 1964 of the resistivity minimum in metals with a small num-
ber of magnetic impurities. It presented a perfect environment for the development of
renormalisation group ideas, beginning with Anderson’s ‘scaling’ and culminating with
the fully nonperturbative NRG method which, for the first time, traced the full crossover
from the high temperature phase with a free spin to the completely screened ground state.

From one point of view the continued interest is because it is a well defined many
body problem with the dual elements of strong interactions and localisation, so it remains
an ideal playground to develop new analytical and numerical tools. From another, it
is due to the ever-increasing access to real strongly correlated electron systems given
modern techniques in nanotechnology. With novel experiments reported as recently as
last year, namely by the Pierre group [4], it is now possible to investigate fully tuneable
multi-channel Kondo models away from equilibrium. While the research described in this
thesis was theoretical in nature, and focusing on non-interacting limits, the findings have
a direct relevance to such modern experiments due to the powerful idea of universality:
the effective low energy Hamiltonian for the Kondo model constitutes a universality class
that is accurate provided one tunes the experimental parameters correctly.

Chapter 2 opened with a description of how transport setups in semiconductor quan-
tum dot devices may be broken down schematically into their different components with
the Anderson model, followed by the basic physics of the local moment regime, followed
by the Kondo regime which emerges below the Kondo temperature TK . The techniques
for setting up the exactly solvable limits of the Kondo models were then discussed and the
main tool used for setting up our calculations in a non-equilibrium setting, the Keldysh
functional integral, was thoroughly introduced. Chapter 3 showed the mappings of the
Kondo models to their exactly solvable ‘Toulouse’ limits with the technique of bosoniza-
tion. Chapter 4 investigated the charge current in a resonant level model away from
equilibrium which maps onto the one-channel Kondo model at the Toulouse limit, and
Chapter 5 showed how the same approach develops for a two-channel Kondo model at its
Toulouse limit.

6.1 Results of this thesis and outlook

The main line of enquiry focused on the single lead resonant level (RL) model away from
equilibrium where it may be loosely considered half of a tunnelling junction. We found
the charge current in this set-up for a sinusoidal voltage bias to all orders in the tun-
nelling amplitudes, while staying within linear response in the strength of the bias. The
main result was a prediction for this at all temperatures and driving frequencies ω0. We
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6.1. Results of this thesis and outlook

also mapped to the Toulouse point Hamiltonian for the one-channel Kondo model away
from equilibrium. In the dc limit this recovered the literature result (up to a numerical
prefactor) describing the characteristic Kondo resonance that enhances the conductance
to a peak around zero bias. This also reproduces experimental findings, agreeing quan-
titatively with the observation that the effect of increased temperature on the Kondo
resonance is to smear and reduce the peak height.

In the final chapter we considered a two-channel Kondo (2CK) model at the Toulouse
limit which was previously investigated thoroughly by A. Schiller and S. Hershfield [7–9].
We concluded that the linear response calculations follow an identical procedure to the
RL investigation and that our earlier results should hold in a certain limit of the 2CK
exchange couplings, even for the ac calculation at finite temperatures.

To conclude, the non-equilibrium 2CK problem is a particularly timely problem for
several reasons. The most important is the aforementioned experimental progress with the
‘charge’ two channel Kondo effect which means this is now accessible at significantly higher
scales for the Kondo temperature, specifically due to the ingenious experiment in Ref. [4],
allowing for unprecedented access to the range of the Kondo couplings. Moreover, given
excitement for experiments elsewhere which appear to contain signatures of Majorana
fermions (e.g. coming in pairs at either end of a nanowire), the quantum critical point of
the two-channel Kondo model provides an alternative route to Majorana-related physics
due to the Emery-Kivelson solution for the exactly solvable Toulouse limit.
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Appendix A

Detailed calculations - Chapter 2

A.1 Chiral fermion densities

In the text we defined operators Jαr(p) which we claimed are chiral fermion densities.
These really are just density operators as can be seen by taking the FT of ψ†(x)ψ(x):∫ L

0

dxe−ipxψ†αr(x)ψαr(x) =
1

L

∑
k,k′

c†αr,k′cαr,k

∫ L

0

dxei(k−k
′−p)x =

∑
k

c†αr,k−pcαrk ≡ Jαr(−p)

(A.1)

They are chiral because each Jαr contains just one kind of fermion, R or L. We also
claimed that they form an abelian Kac-Moody algebra. Consider,

[Jαr(p), Jαr′ (−p′)] =
∑
k1k2

[c†αrk1+pcαrk1 , c
†
αr′k2−p′cαr′k2 ]

=
∑
k1k2

[c†αrk1+p(δr,r′δk2−p′,k1 − c†αr′ ,k2−p′crk1)cαr′k2

− c†αr′k2−p′(δr,r′δk1+p,k2 − c†αrk1+pcαr′k2)cαrk1 ]

= δr,r′
∑
k1k2

(δk2−p′,k1c
†
αrk1+pcαr′k2 − δk1+p,k2c

†
αr′k2−p′cαrk1) (A.2)

At this point one might naively sum over k2 in the rightmost terms and, after relabelling
k2 ↔ k1 in the leftmost ones do the same there, so to find zero overall, but this would
be incorrect. Any arbitrary result can be found by the subtraction of two infinities and
this is the case here because k was extended to ±∞ in the Tomonaga-Luttinger model.
Instead one needs to be more careful and use normal ordering:

: AB := AB − 〈AB〉0. (A.3)

Only the finite normal ordered part can safely subtract to zero in such a manner.

[Jαr(p), Jαr′ (−p′)] = δr,r′
∑
k2

(c†αrk2−p′+pcαr′k2 − c†αr′k2−p′cαrk2−p)

= δr,r′
∑
k2

(: c†αrk2−p′+pcαr′k2 : − : c†αr′k2−p′cαrk2−p :)

+ δr,r′
∑
k2

(〈c†αrk2−p′+pcαr′k2〉0 − 〈c†αr′k2−p′cαrk2−p〉0)

= δr,r′
∑
k2

(〈c†αrk2−p′+pcαr′k2〉0 − 〈c†αr′k2−p′cαrk2−p〉0)
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A.2. Fermion-boson correspondence

= δr,r′δp,p′
∑
k

(〈c†αrkcαrk〉0 − 〈c
†
αrk−pcαrk−p〉0)

→ δp,p′δr,r′L

∫ ∞
−∞

dk

2π
(Θ(kF − k)−Θ(kF − (k − p)))

= −δp,p′δr,r′
rLp

2π
(A.4)

where 0 < p < 2kF and αr ∈ (α1, α−1) = (R,L). So the commutator is equal to the
particle number, thus forming the abelian Kac-Moody algebra. Importantly this is only
true because we assumed the infinite number of occupied states coming from unphysical
excitations below a cutoff −Λ.

A technical remark is that the non-zero commutator is a manifestation of the chiral
anomaly associated with the screening effect of massless relativistic electrons: the massless
Dirac theory is invariant under local U(1) gauge transformations of the fields ψR(L) and
yet the corresponding electric fields are paradoxically non-zero. This can be seen nicely
on the level of the path integral, see e.g. Gogolin et al. Ch. 1 [10] for a discussion. In
other words chiral symmetry is broken in (1+1) massless QED. The equivalent relation
to (A.4) in real space is:

[Jαr(x), Jαr′ (x
′)] =

ir

2π
δr,r′∂xδ(x− x′) (A.5)

It is possible to derive (A.5) by an analogous calculation to the one in momentum space.
This requires considering the point-split correlation function 〈ψ†(x)ψ(x+ ε)〉 for a single

Weyl fermion described by H = v
∫ L

0
dx : ψ†(x)(−i∂x)ψ(x) :. The correlator is singular

in the following sense, using an alternative definition of normal ordering:

〈ψ†(x)ψ(x+ ε)〉 =
1

2πiε
+O(1), ε→ 0 (A.6)

J(x) =: ψ†(x)ψ(x+ ε) := lim
ε→0

[
ψ†(x)ψ(x)− 1

2πiε

]
. (A.7)

A.2 Fermion-boson correspondence

Here we establish the correspondence of the massless Dirac fermion in one dimension,
described by the free Tomonaga-Luttinger model HF , with a massless scalar field theory
HB. We adopt conventions for the fields from Gogolin et al. [10] and borrow parts of the
discussion from the introduction to bosonization by Sénéchal [15].

Fermion side HF

Using the chiral fermion densities Jαr(p) we may rewrite the FTLM. To do this consider
the commutator:

[JR(p), HF ] =
∑
k

vFk[JR(p), : (c†RkcRk − c†LkcLk) :]

=
∑
k,k1

vFk : (c†R,k1+pcR,k1c
†
R,kcR,k − c†R,kcR,kc†R,k1+pcR,k1) :
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Appendix A. Detailed calculations - Chapter 2

=
∑
k,k1

vFk : (c†R,k1+p{cR,k1 , c
†
R,k}cR,k − c†R,k{cR,k, c†R,k1+p}cR,k1) :

=
∑
k

vFk : c†R,k+pcR,k : −
∑
k

vF (k + p) : c†R,k+pcR,k :

= −vFpJR(p) (A.8)

By a similar calculation,
[JL(p), HF ] = vFpJL(p). (A.9)

These two results and the J-algebra (A.4) are sufficient to determine the bosonic repre-
sentation of HF . This shall be done by constructing a mode expansion for a local scalar
field φ(x) out of bosonic creation/annihilation operators (b†, b). First we will continue to
rewrite HF with the JR/L operators. Consider another commutator:

πvF
L

∑
q

[: JR(q)JR(−q) :, JR(p)]

=
πvF
L

∑
q

: (JR(q)JR(−q)JR(p)− JR(p)JR(q)JR(−q)) :

=
πvF
L

∑
q

: (JR(q)[JR(−q), JR(p)]− [JR(p), JR(q)]JR(−q)) :

= vFpJR(p), (A.10)

using (2.29). Similarly,

πvF
L

∑
q

[: JL(q)JL(−q) :, JL(p)] = −vFpJL(p). (A.11)

By comparing (A.8-A.11) we determine:

HF =
πvF
L

∑
q

(: JR(q)J(−q) : + : JL(q)JL(−q) :) + const. (A.12)

Now by using the Fourier pair,

Jαr(x) =
1

L

∑
q

eiqxJαr(q), Jαr(q) =

∫ L/2

−L/2
dxe−iqxJαr(x), (A.13)

we can recast the Hamiltonian in real space:

HF = πvF

∫ L/2

−L/2
dx(JR(x))2 + (JL(x))2

→ πvF

∫ ∞
−∞

dx(JR(x))2 + (JL(x))2, as L→∞ (A.14)

where we discarded the additive constant. For later convenience we include here the
explicit real space commutation algebra of the currents JL(R) with the Weyl fermions
ψL(R), even though we didn’t need them for the above:

[ψR(x), JR(x′)] = ψR(x)ψ†R(x′)ψR(x′)− ψ†R(x′)ψR(x′)ψR(x)

= {ψR(x), ψ†R(x′)}ψR(x′)

= δ(x− x′)ψR(x) (A.15)

This means a right mover ψR(x) annihilates a fermion locally at position x and changes
the density JR(x) at that point.
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A.2. Fermion-boson correspondence

Boson side HB

Now we pause and consider a Gaussian model:

HB =
v

2

∫ ∞
−∞

dx[Π(x)2 + (∂xΦ(x))2] (A.16)

where the scalar field Φ(x) and conjugate momentum Π(x) are related by

[Π(x),Φ(x′)] = −iδ(x− x′). (A.17)

This describes a set of coupled oscillators, familiar from quantum field theory. Time
evolution shows that Π(x, t) = 1

v
∂tΦ(x, t) so Φ follows the wave equation:

v−2∂2
t Φ(x, t) = ∂2

xΦ(x, t) (A.18)

which has the general solution

Φ(x, t) = ϕ(x+ vt) + ϕ(x− vt). (A.19)

Equally, in imaginary time we may cast this as:

− v−2∂2
τΦ(x, τ) = ∂2

xΦ(x, τ), (A.20)

Φ(x, τ) = φ(τ − ix/v) + φ(τ + ix/v). (A.21)

We may also write this with the complex numbers z and z̄

Φ(z, z̄) = φL(z̄) + φR(z) (A.22)

where φL and φR are the left and right chiral components, chiral meaning that they each
only move in one direction. The field Φ possesses a mode expansion:

Φ(τ, x) = Φ0 +
i
√
πJτ

L
+

√
πQx

vL
+
∑
q 6=0

1√
2|q|L

(b†qe
|q|τ−iqx/v + bqe

−|q|τ+iqx/v) (A.23)

where the creation and annihilation operators obey [bq, b
†
q′ ] = δq,q′ and the wavevectors

are quantised as q = 2πn/L with n = 0,±1,±2, . . . . This is easily seen by substitution
into the equation of motion (A.20). From this we may extract the chiral components:

φR(z) =
i
√
π

2
(J −Q)z/L+

∑
q>0

1√
2qL

(e−qzb−q + eqzb†−q) (A.24)

φL(z̄) =
i
√
π

2
(J +Q)z̄/L+

∑
q>0

1√
2qL

(eqz̄b†q + e−qz̄b†q) (A.25)

(Φ0 may be set to zero). As a side remark, it is also customary to define the dual field
Θ(z, z̄) = φR(z)−φL(z̄). Together with Φ(z, z̄), this provides a complete basis of bosonic
exponents which may be used for expansions of any local periodic functional F (Φ,Θ) and
therefore for studying the scaling properties of its correlators.

Zero mode: The quantities Q and J are called the total charge and current through
the system respectively.
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Bringing both sides together (HF = HB)

As hinted at by the choice of notation, each Weyl fermion ψL(R) is bosonized by its chiral
boson φL(R):

ψR(z) =
1√

2πa0

: ei
√

4πφR(z) :, ψL(z̄) =
1√

2πa0

: e−i
√

4πφL(z̄) : (A.26)

The normal ordering signs : (. . . ) : mean that all annihilation operators are commuted to
the right and a0 is a small distance cut-off assumed to be the smallest possible interval
between two points in (τ, x)-space. Furthermore we also have expressions for the currents:

JR(z) = − i√
π
∂zφR(z), JL(z̄) =

i√
π
∂z̄φL(z̄) (A.27)

Eqs. (A.26)-(A.27) are bosonization formulae. Using these we will show the equivalence
HB = HF .

Upgrading to τ -dependent fields and decomposing the Gaussian model into the left
and right movers with complex co-ordinates z(x, τ) gives:

HB(τ) = −1

v

∫
dx
[
(∂zφR(z))2 + (∂z̄φL(z̄))2

]
. (A.28)

The result follows by applying the JL(R) formulae:

HB(τ) =
π

v

∫
dx
[
(JR(z))2 + (JL(z̄))2

]
≡ HF (τ), with vF =

1

v
. (A.29)

We could alternatively have just parametrised z and z̄ differently as z = vτ − ix and z̄ =
vτ + ix in order to find v = vF , as done for example in the introduction by Sénéchal [15].

For a proof of the local operator algebra equivalence the reader is referred to the
literature [10, 15]. The point split procedure is a nice way to show (A.27). One can also
directly check that the commutators such as δ(x−x′)ψR(x) = [ψR(x), JR(x′)] hold for the
new Bose representation by using the Campbell-Baker-Hausdorff lemma. Equally, one
could be satisfied by verifying that the massless theories produce equivalent correlation
functions.

A.3 Kondo spin-flip scattering for the reduced dimension theory

As a starting point the full one-dimensional Hamiltonian reads

H = ~vF
∫

dk

2π
c†kλ k ckλ + ~vg

∫
dk

2π

∫
dp

2π
c†kλcpµσλµ · S (A.30)

where repeated spin indices are summed and g = J/~vF is a dimensionless parameter. In
this reduced form the conduction electrons taken alone are Weyl fermions and there is
only one Fermi point in the problem.

We may do perturbation theory in the weak coupling limit g � 1 and examine the spin
flip scattering process which Kondo showed may account for the resistance minimum, Fig.
A.1, but for the effective one-dimensional theory. Let the ingoing and outgoing states be

|in〉 =

√
L

vF~
|k ↑〉 ⊗ | ⇓〉, |out〉 =

√
L

vF~
|k ↓〉 ⊗ | ⇑〉. (A.31)
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A.3. Kondo spin-flip scattering for the reduced dimension theory

Figure A.1: For spin flip scattering all intermediate virtual processes are summed over.
.

where the outer ket denotes the spin-1/2 impurity moment. Using a discretised version
of the Kondo coupling, the leading order scattering amplitude is

Γ(1) = 〈out|V̂ |in〉 = 〈out|gv~
L

∑
pr

c†pλσλµcrµ · S|in〉 = g〈⇑ |〈k ↓ |
∑
pr

c†pλσλµcrµ · Sd|k ↑〉| ⇓〉

= g〈⇑ |〈0|
∑
pr

σλµ · Sδk,rδµ↑δp,kδλ,↓|0〉| ⇓〉 = g〈⇑ |〈0|

 (σx)↓↑
(σy)↓↑
(σz)↓↑

 ·
 Sx

Sy

Sz

 |0〉| ⇓〉
= g〈⇑ |S+| ⇓〉 = g. (A.32)

The second order amplitude calculation proceeds similarly.

Γ(2) =
∑
ν

〈out| V̂ |ν〉〈ν|V̂
Ek − Eν

|in〉 = 〈out|
∑
µλp

(~vFg)2σ(0) · S c†pλ|0〉 ⊗ |µ〉〈µ| ⊗ 〈0|cpλσ(0) · S
~vF (k − p) |in〉

→ 2g2

∫ ∞
0

dp

2π

1

k − p (A.33)

The scattering is restricted to positive momentum and we can see that the result loga-
rithmically diverges. Introducing a UV-cutoff Λ and taking the principle value integral
gives

Γ(2) = 2g2

∫ Λ

0

dp

2π

1

k − p = −2g2 log

(
Λ− k
k

)
. (A.34)

The spin flip scattering process, therefore, to second order is

Γ = Γ(1) + Γ(2) +O(g2) = g − 2g2 log

(
Λ− k
k

)
+O(g3) (A.35)

Since scattering amplitudes like Γ are physical quantities, contributing to heat capacity
and resistivity for example, but Λ and g are unphysical, the divergence from log(Λ) as
Λ→∞ should be fixed. A natural next step is to make a second order correction to the
Hamiltonian with a counterterm Hk → Hk+ # log(Λ) and eliminate the troublesome area
in the spectrum by choosing # appropriately. Proceeding in this direction is in the spirit
of the Wilsonian renormalisation group. Kondo showed, however, with similar T-matrix
calculations, that the higher order corrections diverge even more rapidly.

Acknowledgement: I am grateful to Vadim Cheianov for lectures in Spring 2015 as
part of the DITP Advanced Topics courses, during which this calculation and others were
carefully explained.
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Appendix A. Detailed calculations - Chapter 2

A.4 Keldysh technique example: tunnelling conductance

Here we show the details of how to set up the Keldysh action for the example problem of
the tunnelling conductance Hamiltonian, justifying the prescription in the text.

S =

∫
C

dt
∑
k,k′

(
c̄k(t)
d̄k(t)

)ᵀ
(
δk,k′Ĝ

−1
0k(c) −tkk′

−t∗kk′ δk,k′Ĝ
−1
0k(d)

)(
ck′(t)
dk′(t)

)
(A.36)

=

∫ ∞
−∞

dt
∑
k,k′

[(
c̄k+

d̄k+

)ᵀ
(
δk,k′Ĝ

−1
0k(c) −tkk′

−t∗kk′ δk,k′Ĝ
−1
0k(d)

)(
ck′+
dk′+

)

−
(
c̄k−
d̄k−

)ᵀ
(
δk,k′Ĝ

−1
0k(c) −tkk′

−t∗kk′ δk,k′Ĝ
−1
0k(d)

)(
ck′−
dk′−

)]
, (doubling the number of fields)

=

∫
dt
∑
k,k′


c̄k+

c̄k−
d̄k+

d̄k−


ᵀ

δk,k′Ĝ

−1
0k(c) 0 −tk,k′ 0

0 −δk,k′Ĝ−1
0k(c) 0 tk,k′

−t∗k,k′ 0 δk,k′Ĝ
−1
0k(d) 0

0 t∗k,k′ 0 −δk,k′Ĝ−1
0k(d)



ck′+
ck′−
dk′+
dk′−


=

∫
dt
∑
k,k′

(
c̄k(t)
d̄k(t)

)ᵀ
(
δk,k′Ĝ

−1
0k(c)σ3 −tk,k′σ3

−t∗k,k′σ3 δk,k′Ĝ
−1
0k(d)σ3

)(
ck′(t)
dk′(t)

)
, (compressing notation)

=

∫
dt
∑
k,k′

(
ψ̄

(c)
k

ψ̄
(d)
k

)ᵀ(
Uσ3(δk,k′Ĝ

−1
0k(c)σ3)U Uσ3(−tk,k′σ3)U

Uσ3(−t∗k,k′σ3)U Uσ3(δk,k′Ĝ
−1
0k(d)σ3)U

)(
ψ

(c)
k′

ψ
(d)
k′

)
, (K rotation)

=

∫
dt
∑
k,k′


ψ̄

(c)
1k

ψ̄
(c)
2k

ψ̄
(d)
1k

ψ̄
(d)
2k


ᵀ

δk,k′Ĝ
−1
0k(c) 0 −tk,k′ 0

0 δk,k′Ĝ
−1
0k(c) 0 −tk,k′

−t∗k,k′ 0 δk,k′Ĝ
−1
0k(d) 0

0 −t∗k,k′ 0 δk,k′Ĝ
−1
0k(d)



ψ

(c)
1k′

ψ
(c)
2k′

ψ
(d)
1k′

ψ
(d)
2k′

 (A.37)

Similarly for the source action used for finding the electric current:

SW = −
∫ ∞
−∞

dt
∑
k,k′

W (t)Î(t)

= −ie
~

∫
C

dtW+

∑
k,k′

[tk,k′c
†
k+dk′+ − t∗k,k′d†k′+ck+]− (fields+ → fields−)

= −ie
~

∫ ∞
−∞

dt
∑
k,k′


c̄k+

c̄k−
d̄k+

d̄k−


ᵀ

0 0 W+tk,k′ 0
0 0 0 −W−tk,k′

−W+t
∗
k′,k 0 0 0

0 W−t∗k′,k 0 0



ck+

ck−
dk+

dk−


= −ie

~

∫ ∞
−∞

dt
∑
k,k′

Ψ̄k(1⊗ Uσ3)

[(
0 tk,k′
−t∗k′,k 0

)
⊗ (Wq1 +Wclσ3)

]
(1⊗ U)Ψk′

= −ie
~

∫ ∞
−∞

∑
k,k′

Ψ̄k

{(
0 tk,k′
−t∗k′,k 0

)
⊗ [Uσ3(Wq1 +Wclσ3)U ]

}
Ψk

= −ie
~

∫ ∞
∞

dt
∑
k,k′

Ψ̄k

[(
0 tk,k′
−t∗k′,k 0

)
⊗Wαγ

α

]
Ψk′ (A.38)

as stated in the main text.
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A.4. Keldysh technique example: tunnelling conductance

A useful linear algebra trick

In the main text we used the result xᵀAx = Tr(Axx )T for column vectors x and square
matrices A. This is also used in the later chapters.

Proof. Consider that (Ax)ij is a a column vector so j = 1 only:

(Ax)ij =
∑
k

Aikxkj → (Ax)i =
∑
k

Aikxk (A.39)

Then consider:

xᵀAx =
∑
ik

(xᵀ)iAikxk =
∑
ik

Aikxk(x
ᵀ)i =

∑
i

(Ax)i(x
ᵀ)i =

∑
i

∑
k=1
only

(Ax)ik(x
ᵀ)ki =

∑
i

(Axxᵀ)ii

= Tr(Axxᵀ) (A.40)
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Appendix B

Detailed calculations - Chapter 3

B.1 1CK bosonization details, mapping to a resonant level Hamiltonian

Here we will fill in the steps outlined in the main text showing the mapping of the single-
channel Kondo (1CK) model to the resonant level (RL) model.

Step 1: The spin densities Jz(x) and J±(x) were expressed in terms of Bose fields in
Eq. (3.6), as introduced in the previous chapter.

For the conduction electrons, the mapping to the bosonic description simply marks
the return of the equivalence between the free boson and massless fermion theories (or
half of it, loosely speaking). Just as the massless Dirac Hamiltonian is equivalent to the
free boson Hamiltonian, which we showed in an earlier appendix, the Hamiltonian for the
Weyl fermion is equivalent to the Hamiltonian for the chiral boson.

Step 2: A unitary transformation allowed for a redefinition of new Fermi fields

ψ(x) =
1√

2πa0

eiπd
†dei

√
4πφ(x).

For the transformation of the transverse term, recalling the spin algebra result [s+, sz] =
−sz, consider

s+U = s+

∞∑
n=0

(i
√

4παszφ(0))n

n!

= s+ + s+i
√

4παszφ(0) + s+
1

2
(i
√

4παszφ(0))2 + s+
1

3!
(i
√

4παszφ(0))3 + . . .

= s+ + i
√

4παφ(0)(sz − 1)s+ +
1

2
(i
√

4παszφ(0))2[(sz − 1)s+sz] + . . .

=
∞∑
n=0

(i
√

4παφ(0)(sz − 1))n

n!
s+ (B.1)

Therefore
U †s+U = e−i

√
4παszφ(0)e−i

√
4πα(sz−1)φ(0)s+ = e−i

√
4παφ(0)s+ (B.2)

For the longitudinal exchange term and the H0 contribution we must consider U †∂xφ(x)U
and U †[∂xφ(x)]2U . We have the convention for the Bose fields that

[∂xφ(x), φ(y)] =
i

2
δ(x− y). (B.3)

Using the Campbell-Baker-Hausdorff lemma:

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + . . . (B.4)
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B.1. 1CK bosonization details, mapping to a resonant level Hamiltonian

where X = −i
√

4παszφ(0) and Y = ∂xφ(x), the first commutator is

[X, Y ] = −√παszδ(x). (B.5)

All of the successive nested commutators in the series vanish and we find

U †∂xφ(x)U = ∂xφ(x)−√παszδ(x). (B.6)

Using this, the transformation for H0 is:

U †H0[φ]U = vF

∫
dxU †φ′(x)2U = vF

∫
dxU †φ′(x)U [φ′(x)−√παszδ(x)]

= −vF
√
παsz[U

†φ′(0)U ] + vF

∫
dx[U †φ′(x)U ]φ′(x)

= −vF
√
παsz[φ

′(0)−√παszδ(0)] + vF

∫
dx[φ′(x)−√παszδ(x)]φ′(x)

= H0[φ]− 2vF
√
παsz∂xφ(0) +

πvFα
2

4
δ(0) (B.7)

where we used s2
z = 1/4 for spin-1/2 particles. Consider this together with the trans-

formation for the longitudinal part. They combine to modify the longitudinal exchange
coupling term:

U †
(
H0[φ] +

Iz√
2π
sz∂xφ(0)

)
U

= H0 − 2vF
√
παsz∂xφ(0) +

πvFα
2

4
δ(0) +

Iz√
2π
szφ

′(0)− Iz√
2
αs2

zδ(0)

= H0 +
sz√
π

(
Iz√

2
− 2πvFα

)
∂xφ(0) +

(
απvF −

Iz√
2

)
α

4
δ(0) (B.8)

The transformed Hamiltonian therefore reads

H = H0[φ] +
I⊥

4πa0

[s+e
i
√

4πφ(0) + h.c.] +
λ√
π
sz∂xφ(0) + δH, (B.9)

where

λ =
Iz√

2
− 2απvF =

Iz√
2
− 2(
√

2− 1)πvF (B.10)

is the modified coupling, and

δH =

(
απvF −

Iz√
2

)
α

4
δ(0) (B.11)

is an additive shift to the energies which may be discarded:

H = H0[φ] +
I⊥

4πa0

[s+e
i
√

4πφ(0) + h.c.] +
λ√
π
sz∂xφ(0). (B.12)

Step 3: For the new Fermi fields,

ψ(x) =
1√

2πa0

eiπd
†dei

√
4πφ(x), (B.13)
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Appendix B. Detailed calculations - Chapter 3

we have a fermionic representation (d, d†) for the spin-1/2 operators s± of the Jordan-
Wigner type:

s+ = d†, s− = d, sz = d†d− 1

2
(B.14)

These should anticommute with the fields themselves, e.g.: {ψ(x), d} = 0, {ψ(x), d†} = 0.
Taking the hermitian conjugates of these two relations gives all the different options, so
only two need to be checked. Since a single fermionic number operator raised to any
non-zero power 1, 2, 3 . . . is just the original number operator, we may write:

eiπd
†d =

∞∑
n=0

(iπd†d)n

n!
= 1 +

( ∞∑
n=0

(iπ)n+1

(n+ 1)!

)
d†d = 1 +

[( ∞∑
n=0

(iπ)n

n!

)
− 1

]
d†d

= 1 + (eiπ − 1)d†d = 1− 2d†d (B.15)

Making use of this, consider the first anticommutator

{ψ(x), d} =
1√

2πa0

ei
√

4πφ(x)(eiπd
†dd+ deiπd

†d)

=
1√

2πa0

ei
√

4πφ(x)[(1− 2d†d)d+ d(1− 2d†d)] =
1√

2πa0

ei
√

4πφ(x)(2d† − 2dd†d)

=
1√

2πa0

ei
√

4πφ(x)[2d† − 2(1− d†d)d] = 0. (B.16)

The second anticommutator proceeds similarly:

{ψ(x), d†} =
1√

2πa0

ei
√

4πφ(x)[(1− 2d†d)d† + d†(1− 2d†d)] = 0. (B.17)

For the refermionization mapping itself, noting that d†eiπd
†d = d†, the Hamiltonian

straightforwardly becomes

HRL = H0[ψ] +
I⊥

2
√

2πa0

[d†ψ(0) + h.c.] + λ(d†d− 1

2
) : ψ†(0)ψ(0) : (B.18)

which is the resonant level type model we set out to show.

69



Appendix C

Detailed calculations - Chapter 4

C.1 Equations of motion for the RL action

Setting ~ = 1 and g/
√
L = v for convenience, the Heisenberg equations of motion for the

RL toy model are:

ċk(t) = −i[ck(t), H(t)] = −iU †(t, 0)[ck, H(t)]U(t, 0)

= −iU †(t, 0)
∑
k′

[
εk(t)[ck, c

†
k′ck′ ] + v([ck, d

†ck′ ] + [ck, c
†
k′d])

]
U(t, 0)

= −iU †(t, 0)

(
εk(t)ck + vd

)
U(t, 0)

= −iεk(t)ck(t)− ivd(t) (C.1)

and

ḋ(t) = −i[d(t), H(t)] = −iU †(t, 0)

(
v
∑
k

[d, d†ck] + εd[d, d
†d]

)
U(t, 0)

= −iU †(t, 0)

(
v
∑
k

ck + εdd

)
U(t, 0)

= −iv
∑
k

ck(t)− iεdd(t). (C.2)

The Euler-Lagrange equation for c(x, t) is:

0 = ∂t

(
∂L

∂(∂tc(x, t))

)
+ ∂x

(
∂L

∂(∂xc(x, t))

)
− ∂L
∂c(x, t)

= i∂tc
†(x, t) + ivF∂xc

†(x, t) + eV (t)c†(x, t) +
√
Lvd†δ(x)

=⇒ 0 = −i∂tc(x, t)− ivF∂xc(x, t) + eV (t)c(x, t) +
√
Lvdδ(x)

= − 1√
L

∑
k

{iċk(t)− [vFk + eV (t)]ck(t)}eikx +
√
Lvd(t)δ(x)

∑
k

i

L

(∫ L

0

dxei(k−k
′)x

)
ċk(t) =

1

L

∑
k

ck(t)

∫ L

0

dxei(k−k
′)xεk(t) + vd(t)

∫ L

0

dxe−ik
′xδ(x)∑

k

iδk,k′ ċk(t) =
∑
k

ck(t)δk,k′εk(t) + vd(t)

=⇒ ċk = −iεk(t)ck(t)− ivd(t) (C.3)
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Similarly, the Euler-Lagrange equation for d is:

0 = ∂t

(
∂L

∂(∂td(t))

)
− ∂L
∂d(t)

= iḋ(t)†δ(x) +
√
Lvc†(x, t)δ(x) + εdd

†(t)δ(x)

=⇒ 0 = iḋ(t) +
√
Lvc(0, t) + εdd(t)

ḋ(t) = −iv
∑
k

ck(t)− iεdd(t). (C.4)

By comparing Eqs. (C.1)-(C.4) the action we quoted in the main text is justified.

C.2 Local Green functions and Fourier transformations

Throughout this thesis we used the following definition for the Fourier expansion of the
field operator c(x, t) into its creation/annihilation coefficients ck(t):

c(x, t) =
1√
L

∑
k

eikxck(t), ck(t) =
1√
L

∫ L

0

dxe−ikxψ(x, t). (C.5)

Consequently the Fourier expansion for the real space Green function contains a 1/L:

G(x, t;x′, t′) = −i〈ψ(x, t)ψ̄(x′, t′)〉 = − i
L

∑
k,k′

ei(kx−k
′x′)〈ck(t)c̄k′(t′)〉

=
1

L

∑
k,k′

ei(kx−k
′x′)G(k,t;k′,t′) (C.6)

In addition, for translationally invariant systems we have:

G(x, x′; t, t′) = G(x− x′; t, t′) (C.7)

Explicitly, we find for the Fourier transform with respect to the difference x − x′, where
we may set x′ to zero, that:

G(x; t, t′) =
1

L

∑
k,k′

eikxG(k,t;k′,t′) (C.8)

The translational invariance implies that G(k,t;k′,t′) is diagonal in momentum space:

G(k,t;k′,t′) = δk,k′G(k;t,t′) (C.9)

Thus,

G(x; t, t′) =
1

L

∑
k

eikxG(k;t,t′). (C.10)

In the two research chapters we often use local Green functions for the conduction electrons
at the impurity location x = 0. These follow from (C.10), e.g. for the toy resonant level
model:

Gco(t, t
′) =

1

L

∑
k

G(k;t,t′), where Gco(t, t
′) ≡ Gc(x = 0; t, t′). (C.11)
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C.3. Linear response details

Example for (C.9)

Green functions are defined by∫
dx1

∫
dt1Ĝ

−1(x, t;x1, t1)G(x1, t1;x′, t′) = δ(x− x′)δ(t− t′) (C.12)

where Ĝ−1 may be read off from the action S = (ψ|~Ĝ−1|ψ). The operator Ĝ−1 is diagonal:

Ĝ−1(x, t;x1, t1) = δ(t− t1)δ(x− x1)Ĝ−1(x1; t1) (C.13)

Plugging into (C.12):

=⇒ Ĝ−1(x, t)G(x, t;x′, t′) = δ(x− x′)δ(t− t′). (C.14)

For the non-interacting one-dimensional theories we study in this thesis, the bare Ĝ−1

have a general form:

Ĝ−1(x, t) =
1

~

[
i~
∂

∂t
+ i~vF

∂

∂x
+ f(t)

]
(C.15)

where f(t) is just a time-dependent function. Thus:

~δ(x− x′)δ(t− t′) =

[
i~
∂

∂t
+ i~vF

∂

∂x
+ f(t)

]
G(x, t;x′, t′), (C.16)

which shows that G is mathematically a Green function. A solution can be constructed:

G(x, t;x′, t′) =
1

L

∑
k

iθ(t′ − t)eik(x−x′)e−ivF k(t−t′)e
−i
~
∫ t′
t f(s) ds, (C.17)

which holds for the continuum limit 1
L

∑
k(. . . )→

∫
dk
2π

(. . . ) given that the sum over k con-
verges absolutely. Therefore, by comparing (C.17) to (C.8), we may confirmG(x, t;x′, t′) =
G(x− x′; t, t′) by inspection and also that G(k,t;k′,t′) = δk,k′G(k;t,t′):

G(k,t;k′,t′) = δk,k′
[
iθ(t′ − t)e−ivF k(t−t′)e

−i
~
∫ t′
t f(s) ds

]
. (C.18)

C.3 Linear response details

C.3.1 Derivations of the Green functions

Here we show derivations for the Green functions we quoted in the text.

Time domain Green functions

For convenience the defining equations a second time are:

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εk(s)± i0+)Gr,aco(k;s,t′) (C.19)

~δ(t− t′) =

∫
dsδ(t− s)(i~∂s − εd ± i0+)Gr,a

do(s,t′) (C.20)

~δ(t− t′) =

∫
ds[δ(t− s)(i~∂s − εd ± i0+)− g2

~ G
r,a
co(t,s)]G

r,a
dd(s,t′), (C.21)

The retarded/advanced Green functions for the electrons of momentum k subject to the
harmonic potential are:

Gr,aco(t,t′,k) = ∓iθ[±(t− t′)]e−
iεk
~ (t−t′)e

−ie
~
∫ t′
t V (s) ds. (C.22)
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Proof.

[i~∂t − εk(t)± i0+]Gr,aco (t, t′)

= ~δ(t− t′)e(... ) ∓ i2θ[±(t− t′)]
(
− iεk − ie

d

dt

∫ t′

t

V (s) ds

)
e−iεk(t−t′)/~e

−ie
~
∫ t′
t dsV (s)

− εk(t)Gr,aco (t, t′)

= ~δ(t− t′)e−iεk(t−t′)/~e
−ie
~
∫ t′
t V (s)ds + (εk − eV (t))Gr,aco (t, t′)− εk(t)Gr,aco (t, t′)

= ~δ(t− t′)e−iεk(t−t′)/~e
−ie
~
∫ t′
t V (s)ds

= ~δ(t− t′)

The last step is true because both expressions equal one when integrated over all t.

The local version comes by integrating over k:

Gr,a
co (t, t′, V0) = ∓iθ[±(t− t′)]

∫
dk

2π
e−iεk(t−t′)/~e

−ie
~
∫ t′
t V (s) ds (C.23)

For the Keldysh component, taking the lead to be in equilbrium, applying GKco(k;t,t′) =

(Grco(k;t,t′) − Gaco(k;t,t′))(1− 2nF (εk)) straightforwardly leads to:

GK
co(t, t

′) = −i
∫

dk

2π
(1− 2nF (εk))e

−iεk(t−t′)/~e
−ie
~
∫ t′
t dsV (s). (C.24)

Similarly, Gdo is a bare Green function for the single d-fermion with energy εd, just like
the case in chapter II where we introduced the Keldysh technique:

Gr,a
do (t− t′) = ∓iθ[±(t− t′)]e−iεd(t−t′)/~, (C.25)

GK
do(t− t′) = −i(1− 2nF (εd))e

−iεd(t−t′)/~. (C.26)

We may group the results into their associated matrices.

Gco(t,t′;V0) = −i
∫

dk

2π
e−iεk(t−t′)/~e

−ie
~
∫ t′
t dsV (s)

(
θ(t− t′) 1− 2nF (εk)

0 −θ(t′ − t)

)
, (C.27)

Gdo(t−t′) = −ie−iεd(t−t′)/~
(
θ(t− t′) 1− 2nF (εd)

0 −θ(t′ − t)

)
. (C.28)

C.3.2 Expansions for the Green functions Gco and Gdd

The fully time dependent solutions Gr,a,K
co share a common functional form in V0. Ex-

panding around V0 = 0 gives:

Gr,a,K
co(t,t′;V0) = Gr,a,K

co(t,t′;0) +
∂Gr,a,K

co(t,t′;V0)

∂V0

∣∣∣∣
V0=0

V0 +O(V 2
0 )

= Gr,a,K
co(t,t′;0)

(
1− ie

∫ t′

t

dsV (s)

)
+O(V 2

0 ) (C.29)
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For Gdd we recall the 2× 2 matrix
[
(Gdo)

−1 − g2

~2Gco

]−1

from the block matrix inversion:

Gdd(t,t′;V0) = Gdd(t,t′;0)+
∂
[
(Gdo)

−1 − g2

~2Gco

]−1

(t,t′;V0)

∂V0

∣∣∣∣∣∣∣∣
V0=0

V0 +O(V 2
0 ).

(C.30)

Applying the rule1 for derivatives of the inverse of a matrix,

∂A−1(x)

∂x
= −A−1(x)

∂A(x)

∂x
A−1(x),

we find an expansion in 2× 2 matrices:

Gdd(t,t′;V0) = Gdd(t,t′;0) +
g2

~2

[
Gdd|V0=0

∂Gco

∂V0

∣∣∣∣
V0=0

Gdd|V0=0

]
t,t′

V0 +O(V 2
0 )

= Gdd(t−t′)−
ieg2

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)[
Gdd(t−t1)Gco(t1−t2)Gdd(t2−t′)

]
+O(V 2

0 )

(C.31)

where the multiplication included integration over the intermediate times. By straightfor-

ward matrix multiplication using the form Gdd =

(
Gr
dd GK

dd

0 Ga
dd

)
, the various components

we quoted follow:

Gr,a
dd(t,t′;V0) = Gr,a

dd(t,t′;0)−
ieg2

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)
Gr,a
dd(t−t1)G

r,a
co(t1−t2)G

r,a
dd(t2−t′)

+O(V 2
0 )

GK
dd(t,t′;V0) = GK

dd(t,t′;0)−
ieg2

~3

∫
dt1

∫
dt2

(∫ t2

t1

dsV (s)

)[
Gr
dd(t−t1)G

r
co(t1−t2)G

K
dd(t2−t′)

+Gr
dd(t−t1)G

K
co(t1−t2)G

a
dd(t2−t′) +GK

dd(t−t1)G
a
co(t1−t2)G

a
dd(t2−t′)

]
+O(V 2

0 ) (C.32)

Energy domain Green functions

Following this were the equilibrium versions,

Gr,a,K
co,dd (t, t′, V0 = 0) ≡ Gr,a,K

co,dd (t− t′), (C.33)

written in the energy domain. For the Fourier transformation of the Gr,aco and Gr,a
do functions

we use the integral representation of the step function:

θ(t) = lim
δ→0+

1

2πi

∫ ∞
−∞

ds
eits

s− iδ (C.34)

which leads to

Gr,a
do (ε) = ~(ε− εd ± i0+)−1, (C.35)

Gr,aco (ε, k) = ~(ε− εk ± i0+)−1. (C.36)

1Consider expanding: 0 = ∂[A−1(x)A(x)]
∂x .
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Proof. Consider Gr,a
do (ε) since the derivation is identical for Gr,aco (ε, k). By Fourier trans-

formation:

Gr,a
do (ε) =

∫
dt1e

iεt1/~Gr,a
do (t1)

=

∫
dt1e

iεt1/~(∓i)
(

lim
δ→0+

1

2πi

∫
d( s~)

e±it1s/~

s
~ − iδ

)
e−iεdt1/~

= ∓ lim
δ→0+

∫
ds

~δ(ε− εd ± s)
s− iδ

= lim
δ→0+

∓~
∓(ε− εd)− iδ

= ~(ε− εd ± i0+)−1.

The local version of Gr,aco is:

Gr,a
co (ε) =

1

2πvF
ln

∣∣∣∣~vFΛ + ε

~vFΛ− ε

∣∣∣∣∓ i

2vF
(−1 + θ(ε+ ~vFΛ) + θ(~vFΛ− ε)) (C.37)

≈ ε

π~v2
FΛ
∓ i

2vF
(C.38)

where we introduced a UV cutoff Λ, with SI units m−1, and vF > 0.

Proof.

Gr,a
co (ε) =

∫ ∞
−∞

dk

2π

~
ε− εk ± i0+

→ P
∫ Λ

−Λ

dk

2π

~
ε− εk

∓ iπ~
∫ Λ

−Λ

dk

2π
δ(ε− εk)

= lim
δ→0+

∫ (ε/~vF )−δ

−Λ

dk

2π

~
ε− ~vFk

+ lim
δ→0+

∫ Λ

(ε/~vF )+δ

dk

2π

~
ε− ~vFk

∓ i

2|vF |

∫ Λ

−Λ

dkδ(k − (ε/~vF )), set vF > 0 from now on.

= − limδ→0+

2πvF

(
ln |ε− ~vFk|

∣∣∣∣ ε
~vF
−δ

−Λ

+ ln |ε− ~vFk|
∣∣∣∣Λ

ε
~vF

+δ

)
∓ i

2vF
(−1 + θ(ε+ ~vFΛ)− θ(ε− ~vFΛ))

=
1

2πvF
ln

∣∣∣∣~vFΛ + ε

~vFΛ− ε

∣∣∣∣∓ i

2vF
(−1 + θ(ε+ ~vFΛ) + θ(~vFΛ− ε))

where the θ-functions here are defined with θ(x) = 1 if x ≥ 0 and zero otherwise to
ensure the δ-function integral equals one if −Λ ≤ ε/~vF ≤ Λ and zero otherwise. For
Λ→∞ we may treat |ε/~vFΛ| � 1 as a small parameter:

ln

∣∣∣∣1 + (ε/~vFΛ)

1− (ε/~vFΛ)

∣∣∣∣
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=

[
ε

~vFΛ
− 1

2

(
ε

~vFΛ

)2

+
1

3

(
ε

~vFΛ

)3

− . . .
]

+

[
ε

~vFΛ
+

1

2

(
ε

~vFΛ

)2

+
1

3

(
ε

~vFΛ

)3

+ . . .

]
= 2

∞∑
n=0

(
ε

~vFΛ

)2n+1

=
2ε

~vFΛ
+O[(ε/~vFΛ)3]

which gives the lowest order approximation:

Gr,a
co (ε) ≈ ε

π~v2
FΛ
∓ i

2vF

Discarding the real part with 1/Λ is the wide-band limit.

The equilibrium Keldysh function GK
co(ε) is:

GK
co(ε) =

−i
vF

(1− 2nF (ε)), vF > 0 (C.39)

Proof. Taking the Fourier transform of GK
co(t,t′;0) = GK

co(t−t′) where we may set t′ to zero,
we find:

GK
co(ε) = −i

∫
dk

2π
(1− 2nF (εk))

∫
dtei(ε−εk)t/~

= −i
∫

dk(1− 2nF (~vFk))
1

|vF |
δ[k − (ε/~vF )]

= − i

vF
(1− 2nF (ε)), vF > 0,

in agreement with the FDT: GK
co(ε) = (Gr

co(ε) −Ga
co(ε))(1− 2nF (ε)).

The retarded/advanced energy-domain version of Gr,a
dd (t− t′) is:

Gr,a
dd (ε) =

Gr,a
do (ε)

1− g2

~2G
r,a
do (ε)Gr,a

co (ε)
(C.40)

which reduces to the bare Gr,a
do (ε) function as g → 0.

Proof. ∫
dsĜr,a

dd (t, s)−1Gr,a
dd (s, t′)

=

∫
ds

[
1

~
δ(t− s)(i~∂s − εd ± i0+)− g2

~2
Gr,a
co (t− s)

]
Gr,a
dd (s− t′)

=

∫
dε

2π~

[
1

~
(ε− εd ± i0+)Gr,a

dd (ε)e−iε(t−t
′)/~

− g2

~2

∫
dω

2π~
Gr,a
co (ω)Gr,a

dd (ε)e−i(ωt−εt
′)/~
∫

dse−is(ε−ω)/~
]
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=

∫
dε

2π~
e−iε(t−t

′)/~(Gr,a
do (ε)−1 − g2

~2G
r,a
co (ε))Gr,a

dd (ε)

=

∫
dε

2π
e−iε(t−t

′)/~(Gr,a
do (ε)−1 − g2

~2G
r,a
co (ε))

Gr,a
do (ε)

1− g2

~2G
r,a
do (ε)Gr,a

co (ε)

= δ(t− t′)

The expression for Gr,a
dd (ε) is:

Gr,a
dd (ε) ≈ ~

ε− εd ± ig2

2~vF

. (C.41)

Proof.

Gr,a
dd (ε)

=

(
1

~
(ε− εd ± i0+)− g2

~2
Gr,a
co (ε)

)−1

=

{
1

~
(ε− εd ± i0+)− g2

~2

[
1

2πvF
ln

∣∣∣∣~vFΛ + ε

~vFΛ− ε

∣∣∣∣∓ i

2vF
(−1 + θ(ε+ ~vFΛ) + θ(~vFΛ− ε))

]}−1

≈
[

1

~
(ε− εd ± i0+)− g2

~2

(
ε

π~v2
FΛ
∓ i

2vF

)]−1

≈ ~
(
ε− εd ±

ig2

2~vF

)−1

The Keldysh function for the bare impurity is zero:

GK
do(ε) = 0. (C.42)

Proof. Consider:∫ ∞
−∞

dε(Gr
do(ε)−Ga

do(ε)) =

∫
dε lim

δ→0+

[
~

ε− εd + iδ
− ~
ε− εd − iδ

]
= lim

δ→0+

∫
dε

−2i~δ
(ε− εd)2 + δ2

The integrand, call it f(ε), has two simple poles at ε± = εd ± iδ. Integrating this
anticlockwise around a semicircular contour with radius R over the upper-half complex
plane, the semicircular arc contribution vanishes as R → ∞ because |f(z)| ≤ a/|z|2 for
sufficiently large |z| where a > 0 ∈ IR. By the residue theorem the integration of f(z)
around the path therefore becomes∫ ∞
−∞

dε
−2i~δ

(ε− ε+)(ε− ε−)
= 2πiResε+f(z) = 2πi lim

z→ε+
(z − ε+)

−2i~δ
(z − ε+)(z − ε−)

= 2πi~
−2iδ

2iδ
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i.e.
∫∞
−∞ dε(Gr

do(ε)−Ga
do(ε)) = −2πi~ which suggests the identity:

Gr
do(ε)−Ga

do(ε) = −2πi~δ(ε− εd). (C.43)

In other words we have found the nascent δ-function:

lim
δ→0+

1

π

δ

x2 + δ2
= δ(x).

Applying the fluctuation dissipation theorem therefore gives a dependence on the spectral
function which is a δ-spike:

GK
do(ε) = tanh

(
ε− µ
2kBT

)
(Gr

do(ε)−Ga
do(ε))

= −2πi~ tanh

(
ε− µ
2kBT

)
δ(ε− εd) (C.44)

Since the chemical potential for the quantum dot is εd, however, this is actually zero.

The Keldysh function for the dressed impurity, by contrast, is broadened:

GK
dd(ε) =

−i( g2

vF
)

(ε− εd)2 + ( g2

2~vF
)2

tanh

(
ε− µ
2kBT

)
. (C.45)

Proof. Multiplying out the Dyson equation,[(
(Gr

do)
−1 2i0+F

0 (Ga
do)
−1

)
−
(

Σr
d ΣK

d

0 Σa
d

)]
◦
(
Gr
dd GK

dd

0 Ga
dd

)
= 1 (C.46)

gives
GK
dd = Gr

ddΣ
K
d G

a
dd. (C.47)

By explicitly integrating out all lead electrons from the partition function, a similar but
simpler calculation to the one shown in the section ‘Conversion to a local theory’, we
can find the full self energy matrix. The reader is referred to that calculation for details
of the procedure. The result is

Z = N
∫
D(d)e

i
~
∫

dt
∫

dt′d̄

[
i~∂t−εd− g

2

~2

(
1
L

∑
k

1
i~∂t−εk(t)

)]
d

(C.48)

We therefore determine that Σd = g2

~2Gco, and so the Keldysh component is proportional
to the Keldysh component for the lead. Simple multiplication gives the final result:

GK
dd =

g2

~2
Gr
ddG

K
coG

add =
−i( g2

vF
)

(ε− εd)2 + ( g2

2~vF
)2

tanh

(
ε− µ
2kBT

)
(C.49)
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A note on SI units for the Green functions

In energy-space the units for the Green functions are [Gr,a,K
dd(ε) ] = s and [Gr,a,K

co(ε) ] = s
m

by
inspection of our results. The FT to move back to the time-domain is:

Gr,a,K
dd,co (t− t′) =

∫
dε

2π~
e−i

ε
~ (t−t′)Gr,a,K

dd,co (ε).

Consequently we find [Gr,a,K
dd (t − t′)] = J

Js
s = 1 and [Gr,a,K

co (t − t′)] = J
Js

s
m

= 1
m

. This
provides an easy way to check that each contribution in the perturbation series for the
current has the correct units of Cs−1.

C.3.3 Useful identities

Useful FT identity for I0 and I1: The useful FT identity we referred to in the text for
grinding down the integrals I0 and I1 is:

GX
dd,co(t−t′)G

Y
co,dd(t′−t) =

∫
dω

2π~

∫
dν

2π~
GX
dd,co(ν)GY

co,dd(ν − ω)e−iω(t−t′)/~ (C.50)

Proof.

GX
dd,co(t−t′)G

Y
co,dd(t′−t)

=

∫
dt1G

X
dd,co(−t1)GY

co,dd(t1)δ(t1 − t′ + t)

=

∫
dt2

∫
dt1G

X
dd,co(t2)GY

co,dd(t1)δ(t2 + t1)δ(t1 − t′ + t)

=

∫
d(ω/~)

2π

∫
d(ν/~)

2π

∫
dt2

∫
dt1G

X
dd,co(t2)GY

co,dd(t1)ei(ν/~)(t2+t1)e−i(ω/~)(t1−t′+t)

=

∫
dω

2π~

∫
dν

2π~

(∫
dt2G

X
dd,co(t2)eiνt2/~

)(∫
dt1G

Y
co,dd(t1)ei(ν−ω)t1/~

)
e−iω(t−t′)~

=

∫
dω

2π~

∫
dν

2π~
GX
dd,co(ν)GY

co,dd(ν − ω)e−iω(t−t′)/~

Useful identities for I2: For the I2(t) integrals we went a step further and stated
formulae for just immediately converting four time integrals to a single energy integral.∫

dt′
∫

dt1

∫
dt2

(∫ t2

t1

dsV (s)

)
a1(t−t1)a2(t1−t2)a3(t2−t′)a4(t′−t)

=
−iV0

4π~ω0

∫
dε a1(ε)

∑
ζ=−1,1

ζe−iζω0t(a2(ε−ζ~ω0) − a2(ε))a3(ε−ζ~ω0)a4(ε−ζ~ω0), (C.51)

and ∫
dt′
∫

dt1

∫
dt2

(∫ t2

t1

dsV (s)

)
a1(t−t′)a2(t′−t1)a3(t1−t2)a4(t2−t)

=
−iV0

4π~ω0

∫
dε a1(ε)a2(ε)

∑
ζ=−1,1

ζe−iζω0t(a3(ε−ζ~ω) − a3(ε))a4(ε−ζ~ω0), (C.52)
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We will only show a sketch proof for (C.51) as the proof for (C.52) is very similar.

Proof. Let the LHS of (C.51) be called A. The s-integral is∫ t2

t1

dsV (s) =
V0

2iω0

(eiω0t2 − e−iω0t2 − eiω0t1 + e−iω0t1) (C.53)

and therefore all of the remaining time integrals reduce to δ-functions by using the
Fourier transforms for each a{i}.

A =
−iV0

4π~ω0

∫
dε1

∫
dε2

∫
dε3

∫
dε1

∫
dε4a1(ε1)a2(ε2)a3(ε3)a4(ε4)e

−it(ε1−ε4){

δ(ε4 − ε3)[δ(ε2 − ε1)(δ(ε3 − ε2 − ~ω0)− δ(ε3 − ε2 + ~ω0))

−δ(ε3 − ε2)(δ(ε2 − ε1 − ~− ω0)− δ(ε2 − ε1 + ~ω0))]]} (C.54)

From this point it is just a process of using up the δ-functions and noticing a symmetry
with ω0 → −ω0 in the expression in order to write the sum over ζ.

C.4 The I1(t) calculation

For the integral I1(t), consider the Fourier transform Ĩ1(ω):

Ĩ1(ω) =
−ie2g2

2~3

∫
dt

∫
dt′
(∫ t

t′
dsV (s)

)
eiωt/~

∫
dε1
2π~

∫
dε2
2π~

e−iε2(t−t′)/~f(ε1, ε2) (C.55)

where we have defined a new function f :

f(ε1, ε2) = Gr
dd(ε1)G

K
co(ε1−ε2) +GK

dd(ε1)G
a
co(ε1−ε2) +Gr

co(ε1)G
K
dd(ε1−ε2) +GK

co(ε1)G
a
dd(ε1−ε2). (C.56)

Focusing on the temporal integrals, the integral over s is∫ t

t′
dsV (s) =

V0

2iω0

(eiω0t − e−iω0t − eiω0t′ + e−iω0t′) (C.57)

and therefore all of the time integrals in (C.55) reduce to δ-functions:∫
dt

2π~

∫
dt′

2π~

(∫ t

t′
dsV (s)

)
eiωt/~e−iε2(t−t′)

=
V0

2iω0

∫
dt

2π~

∫
dt′

2π~
(ei(ω+~ω0−ε2)t/~eiε2t

′/~ − ei(ω−~ω0−ε2)t/~eiε2t
′/~ − ei(ω−ε2)t/~ei(~ω0+ε2)t′/~

+ ei(ω−ε2)t/~ei(ε2−~ω0)t′/~)

=
V0

2iω0

(δ(ω − ε2 + ~ω0)δ(ε2)− δ(ω − ε2 − ~ω0)δ(ε2)− δ(ε2 + ~ω0)δ(ω − ε2)

+δ(ε2 − ~ω0)δ(ω − ε2)) (C.58)

So far we have

Ĩ1(ω) =
−V0e

2g2

4~3ω0

∫
dε1

∫
dε2(δ(~ω0 + ω − ε2)δ(ε2)− δ(ω − ~ω0 − ε2)δ(ε2)

− δ(ε2 + ~ω0)δ(ω − ε2) + δ(ε2 − ~ω0)δ(ω − ε2))f(ε1, ε2) (C.59)
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Next we can complete the ω-integral and the ε2-integral via the δ-functions:

I1(t) =

∫
dω

2π~
e−iωt/~Ĩ1(ω)

=
−V0e

2g2

8π~4ω0

∫
dε1

∫
dε2[(e−i(ε2−~ω0)t/~ − e−i(ε2+~ω0)t/~)δ(ε2)− e−iε2t/~δ(ε2 + ~ω0)

+ e−iε2t/~δ(ε2 − ~ω0)]f(ε1, ε2)

=
−V0e

2g2

8π~4ω0

[
eiω0t

∫
dε(f(ε, 0)− f(ε,−~ω0))− e−iω0t

∫
dε(f(ε, 0)− f(ε, ~ω0))

]
=
−V0e

2g2

8π~4ω0

∑
ζ∈(−1,1)

ζe−iζω0t

∫ ∞
−∞

dε(f(ε, ζ~ω0)− f(ε, 0)) (C.60)

The reorganisation of the ε-integral into the pieces h1 and h2 is:∫
dε(f(ε, ζ~ω0)− f(ε, 0))

=

∫
dε

[
Gr
dd(ε)G

K
co(ε−ζ~ω0) +GK

dd(ε)G
a
co(ε−ζ~ω0) +Gr

co(ε)G
K
dd(ε−ζ~ω0) +GK

co(ε)G
a
dd(ε−ζ~ω0)

− (Gr
dd(ε)G

K
co(ε) +GK

dd(ε)G
a
co(ε) +Gr

co(ε)G
K
dd(ε) +GK

co(ε)G
a
dd(ε))

]
=

∫
dεGK

dd(ε)(G
r
co(ε+ζ~ω0) +Ga

co(ε−ζ~ω0) −Gr
co(ε) −Ga

co(ε))

+

∫
dεGK

co(ε)(G
r
dd(ε+ζ~ω0) −Gr

dd(ε) +Ga
dd(ε−ζ~ω0) −Ga

dd(ε))

=

∫
dε(h1(ε, ζ~ω0) +

∫
dεh2(ε, ζ~ω0)) (C.61)

where along the way we made constant shifts to the integration variables in order to factor
out the GK

co,dd(ε) in front. So far the integral for I1(t) has been reduced to:

I1(t) =
−V0e

2g2

8π~4ω0

∑
ζ∈(−1,1)

ζe−iζω0t

∫ ∞
−∞

dε(h1(ε, ζ~ω0) + h2(ε, ζ~ω0)). (C.62)

For the first piece the integrand is vanishingly small with the UV cutoff Λ.

h1(ε, ζ~ω0)

= GK
dd(ε)

{
1

2πvF
ln

[
(~vFΛ + ε+ ζ~ω0)(~vFΛ + ε− ζ~ω0)

(~vFΛ− ε− ζ~ω0)(~vFΛ− ε+ ζ~ω0)

]
− 1

πvF
ln

(
~vFΛ + ε

~vFΛ− ε

)}
=

−i( g2

vF
)

(ε− εd)2 + ( g2

2~vF
)2

tanh

(
ε− µ
2kBT

)∑
ζ

ζe−iζω0t·

· ln
[

(~vFΛ + ε+ ζ~ω0)(~vFΛ + ε− ζ~ω0)

(~vFΛ− ε− ζ~ω0)(~vFΛ− ε+ ζ~ω0)

(
~vFΛ + ε

~vFΛ− ε

)2]
∝ −2 sin(ω0t) ln

[
(~vFΛ + ε+ ~ω0)(~vFΛ + ε− ~ω0)

(~vFΛ− ε− ~ω0)(~vFΛ− ε+ ~ω0)

(
~vFΛ + ε

~vFΛ− ε

)2]
∝ −10 sin(ω0t)

vF

ε

~vFΛ
+O[(ε/~vFΛ)3]→ 0 as Λ→∞. (C.63)
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Alternatively, by keeping just the lowest order approximation in (ε/~vFΛ) for the functions
Gr,a
co(ε) one immediately finds:

Gr
co(ε+ζ~ω0) +Ga

co(ε−ζ~ω0) −Gr
co(ε) −Ga

co(ε) ≈
ε+ ζ~ω0

π~v2
FΛ

+
ε− ζ~ω0

π~v2
FΛ
− ε

π~v2
FΛ
− ε

π~v2
FΛ

= 0

(C.64)
so we can be convinced that there is no contribution from h1. We are therefore left with:

I1(t) =
−V0e

2g2

8π~4ω0

∑
ζ∈(−1,1)

ζe−iζω0t

∫ ∞
−∞

dεh2(ε, ζ~ω0)

=
−V0e

2g2

8π~4ω0

∑
ζ∈(−1,1)

ζe−iζω0t

∫ ∞
−∞

dεGK
co(ε)(G

r
dd(ε+ζ~ω0) −Gr

dd(ε) +Ga
dd(ε−ζ~ω0) −Ga

dd(ε))

(C.65)

Consider:

Gξα
dd(ε+αζ~ω0) −G

ξα
dd(ε) =

~
ε− εd + iα g2

2~vF
+ αζ~ω0

− ~
ε− εd + iα g2

2~vF

=
−αζ~2ω0

(ε− εd + iα g2

2~vF
+ αζ~ω0)(ε− εd + iα g2

2~vF
)

(C.66)

where ξα ∈ (ξ−1, ξ1) = (a, r), so α takes values ±1 correspondingly. Plugging in the Green
functions, I1(t) becomes:

I1(t) =
−V0e

2g2

8π~4ω0

∑
ζ,α=−1,1

ζe−iζω0t

∫ ∞
−∞

dε
(1− 2nF (ε+ εd))

ivF

−αζ~2ω0

(ε+ iα g2

2~vF
+ αζ~ω0)(ε+ iα g2

2~vF
)

=
iV0e

2g2

4π~2vF

∑
ζ,α=−1,1

αe−iζω0t

∫ ∞
−∞

dε
nF (ε+ εd)

(ε+ iα g2

2~vF
+ αζ~ω0)(ε+ iα g2

2~vF
)

(C.67)

=
iV0e

2g2

4π~2vF

∑
ζ=−1,1

e−iζω0tXζ , (C.68)

where

Xζ =
∑

α=−1,1

α

∫ ∞
−∞

dε
nF (ε+ εd)

(ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

(C.69)

One integral has been immediately discarded because all poles lie in one half of the
complex plane (so we can enclose the other half with a semi-circular contour in the usual
manner to give zero by Cauchy-Goursat). By transferring to a Matsubara sum we can
trade the coefficent named Xζ for infinite sums by further treatment with the residue
theorem. The Matsubara form of the Fermi function is

nF (ε) =
kBT

~
∑
n

1

iωn − (ε− µ)/~
, ωn = π(2n+ 1)kBT/~, n = 0,±1,±2, . . . ,

(C.70)

82



Appendix C. Detailed calculations - Chapter 4

This gives:

Xζ =
∑

α=−1,1

α

∫ ∞
−∞

dε
nF (ε+ εd)

(ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

= kBT
∑

α=−1,1

α

∞∑
n=−∞

∫
dε

−1

ε− (i~ωn − εd + µ)

1

(ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

= −kBT
∑

α=−1,1

α

(∑
n≥0

+
∑
n<0

)∫
dε

1

[ε− (i~ωn − εd + µ)](ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

(C.71)

Using
∑

n<0 g(iωn) =
∑

n≥0 g(−iωn) for fermionic Matsubara frequencies gives:

Xζ = −kBT
∑

α=−1,1

α
∑
n≥0

∫
dε

[
1

[ε− (i~ωn − εd + µ)](ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

+
1

[ε− (−i~ωn − εd + µ)](ε+ i αg
2

2~vF
+ αζ~ω0)(ε+ i αg

2

2~vF
)

]
(C.72)

The integral for the first line has poles only in the upper-half plane for α = −1, for any
given n, so in this case it vanishes by taking the semi-circular contour in the lower-half
plane. The integral for the second line vanishes by a similar reasoning for α = 1. So we
can sum over α at this point. This leaves:

Xζ = −kBT
∑
n≥0

∫
dε

[
1

[ε− i~ωn + εd − µ](ε+ i g2

2~vF
+ ζ~ω0)(ε+ i g2

2~vF
)

− 1

[ε+ i~ωn + εd − µ](ε− i g2

2~vF
− ζ~ω0)(ε− i g2

2~vF
)

]
(C.73)

By further application of the residue theorem we may show:∫ ∞
−∞

dε
1

[ε+ εd − µ− iπkBT (2n+ 1)](ε+ i g2

2~vF
+ ζ~ω0)(ε+ i g2

2~vF
)

=
−2πi

( g2

2~vF
+ πkBT (2n+ 1) + i(ε− µ))( g2

2~vF
+ πkBT (2n+ 1) + i(ε− µ− ζ~ω0))

(C.74)

and∫ ∞
−∞

dε
1

[ε+ εd − µ+ iπkBT (2n+ 1)](ε− i g2

2~vF
− ζ~ω0)(ε− i g2

2~vF
)

=
2πi

( g2

2~vF
+ πkBT (2n+ 1)− i(ε− µ))( g2

2~vF
+ πkBT (2n+ 1)− i(ε− µ+ ζ~ω0))

. (C.75)

After substituting these last two results into (C.73) the sum over n can be converted into
digamma functions Ψ by using the relation:

∞∑
n=0

1

(n+ a)(n+ b)
=

1

a− b [Ψ(a)− Ψ(b)]. (C.76)
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C.4. The I1(t) calculation

This gives:

I1(t) =
V0e

2g2

4π~2vF

∑
ζ=−1,1

ie−iζω0tXζ (C.77)

where:

Xζ =
−ζ
~ω0

{[
Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ− ζ~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)]

+

[
Ψ

(
1

2
+

g2

2~vF
− i(εd − µ+ ζ~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
− i(εd − µ)

2πkBT

)]}
(C.78)

For brevity let us use a shorthand notation:

ψ(x, y) = Ψ

(
1

2
+

g2

2~vF
+ ix(εd − µ+ y)

2πkBT

)
(C.79)

The conjugation property for polygamma functions Ψ (n)(z∗) = [Ψ (n)(z)]∗ implies that the
following holds:

ψ(n)(+, y) = [ψ(n)(−, y)]∗ (C.80)

where + (−) in the arguments alone indicates 1 (-1). Consider taking the conjugate for
the ζ = 1 term in the sum over ζ:{

ie−iω0t( −1
~ω0

) [(ψ(+,−~ω0)− ψ(+, 0)) + (ψ(−, ~ω0)− ψ(−, 0))]
}∗

= ieiω0t( 1
~ω0

) [(ψ(−,−~ω0)− ψ(−, 0)) + (ψ(+, ~ω0)− ψ(+, 0))] . (C.81)

But this is exactly the ζ = −1 term so we are adding a function to its complex conjugate
in (C.65). With some further algebra we arrive at:

I1(t) =
eV0

~ω0

e · ( g2

2~vF
)

π~
Im
{
e−iω0t[ψ(+,−~ω0)− ψ(+, 0) + ψ(−, ~ω0)− ψ(−, 0)]

}
=
eV0

~ω0

e · ( g2

2~vF
)

π~
Im

{
e−iω0t

∑
α=1,−1

[ψ(α,−α~ω0)− ψ(α, 0)]

}
(C.82)

In hindsight we could have rewritten the integral before integration to arrive at this
result with less effort. Picking up from (C.65) we rewrite it as:

I1(t) =
−V0e

2g2

4π~4ω0

Re

[
e−iω0t

∫ ∞
−∞

dεGK
co(ε)(G

r
dd(ε+~ω0) −Gr

dd(ε) +Ga
dd(ε−~ω0) −Ga

dd(ε))

]
(C.83)

by using the properties Gr = (Ga)∗ and GK = −(GK)∗.
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C.4.1 I1(t) dc limit

For the dc limit we may continue from (C.77)-(C.78). By grouping terms appropriately
we notice that the limit ω0 → 0 just gives the definition of the derivative, e.g.:

lim
ω0→0

1

ω0

[
Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ− ~ω0)

2πkBT

)
− Ψ

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)]

=
−i~

2πkBT
Ψ (1)

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)
. (C.84)

where Ψ (n) is the nth derivative of the digamma function (Ψ (1) is the ‘trigamma’), along
with one for each e±iω0t factor. In general, using the shorthand ψ, we have:

lim
ω0→0

ψ(α, β~ω0)− ψ(α, 0)

ω0

= i
αβ~

2πkBT
ψ(1)(α, 0) (C.85)

Repeated reapplication of this leads to:

I1,dc = −V0
2e2

π~

g2

2~vF
2πkBT

Re

[
Ψ (1)

(
1

2
+

g2

2~vF
+ i(εd − µ)

2πkBT

)]
(C.86)

C.4.2 I1(t) zero temperature limit:

Picking up from (C.67) we can find the zero temperature limit I1(t, T )→ I1(t, 0).

I1(t, 0) =
iV0e

2g2

4π~2vF

∑
ζ,α=−1,1

αe−iζω0t

∫ µ−εd

−∞
dε

1

(ε+ iα g2

2~vF + αζ~ω0)(ε+ iα g2

2~vF )

=
ie2g2V0

4π~2vF

∑
ζ

e−iζω0t

∫ µ−εd

−∞
dε

−2ε(ε1 + ε2)

(ε2 − ε21)(ε2 − ε22)
, where ε1 = ig2

2~vF + ζ~ω0, ε2 = ig2

2~vF

=
ie2g2V0

4π~2vF

∑
ζ

e−iζω0t

[
ln(ε2 − ε21)− ln(ε2 − ε22)

ε1 − ε2

] ∣∣∣∣µ−εd
−∞

, for ω0 6= 0

=
ie2g2V0

4π~3vFω0

∑
ζ

ζe−iζω0t ln

ε2 − [(ig2/2~vF ) + ζ~ω0

]2
ε2 − ( ig2

2~vF )2

∣∣∣∣∣∣
µ−εd

−∞

=
ie2g2V0

4π~3vFω0

e−iω0t ln

ε2 −
(

ig2

2~vF + ~ω0

)2

ε2 − ( ig2

2~vF )2

− eiω0t ln

ε2 −
(

ig2

2~vF − ~ω0

)2

ε2 − ( ig2

2~vF )2



∣∣∣∣∣∣∣
µ−εd

−∞

=
ie2g2V0

4π~3vFω0

e−iω0t ln

(εd − µ)2 −
(

ig2

2~vF + ~ω0

)2

(εd − µ)2 − ( ig2

2~vF )2

− eiω0t ln

(εd − µ)2 −
(

ig2

2~vF − ~ω0

)2

(εd − µ)2 − ( ig2

2~vF )2


− lim
D→∞

e−iω0t ln

D2 −
(

ig2

2~vF + ~ω0

)2

D2 − ( ig2

2~vF )2

− eiω0t ln

D2 −
(

ig2

2~vF − ~ω0

)2

D2 − ( ig2

2~vF )2





=
ie2g2V0

4π~3vFω0

e−iω0t ln

(εd − µ)2 −
(

ig2

2~vF + ~ω0

)2

(εd − µ)2 − ( ig2

2~vF )2

− eiω0t ln

(εd − µ)2 −
(

ig2

2~vF − ~ω0

)2

(εd − µ)2 − ( ig2

2~vF )2




(C.87)
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C.5. The I2(t) calculation

1CK mapping at T = 0

To map onto the single channel Kondo model at the Toulouse limit we can set µ = εd.

I1CK
1 (t) =

ie2g2V0

4π~3vFω0

[
e−iω0t ln

(
( ig2

2~vF
+ ~ω0)2

( ig2

2~vF
)2

)
− eiω0t ln

(
( ig2

2~vF
− ~ω0)2

( ig2

2~vF
)2

)]

=
ie2g2V0

2π~3vFω0

[
e−iω0t ln

(
1− 2i~2vFω0

g2

)
− eiω0t ln

(
1 +

2i~2vFω0

g2

)]
(C.88)

For the dc limit (ω0 → 0) we may use standard Taylor expansions for the logarithms since

we satisfy the condition
∣∣∣2i~2ω0vF

g2

∣∣∣ < 1.

I1CK
1, dc(T→0) = lim

ω0→0

ie2g2V0

2π~3vFω0

[
(1− iω0t+ . . . )(−2i~2ω0vF

g2 − 1
2
(2i~2ω0vF

g2 )2 + . . . )− (ω0 → −ω0)
]

= lim
ω0→0

ie2g2V0

2π~3vFω0

[
−4i~2ω0vF

g2
+O(ω2

0)

]
=

4e2V0

h
(C.89)

C.5 The I2(t) calculation

Resuming from the integral in energy space, derived by the ‘useful identities’ described
earlier in this appendix, we isolated a non-vanishing part called h3 leading to the expres-
sion:

I2(t) =
−e2g4V0

8π~6ω0

∑
ζ=−1,1

ζe−iζω0t

∫
dh3(ε, ζ~ω0)) (C.90)

with:

h3(ε1, ε2) =
∑

α=1,−1

GK
co(ε1)G

ξα
dd(ε1)(G

ξα
co(ε1) −G

ξ−α
co(ε1−αε2))G

ξ−α
dd(ε1−αε2) (C.91)

Consider the fragment S(ε) =
∑

ζ,α=−1,1 ζe
−iζω0th3(ε, αζ~ω0):

S(ε) =
∑

ζ,α=−1,1

ζe−iζω0tGK
co(ε)G

ξα
dd(ε)(G

ξα
co(ε) −G

ξ−α
co(ε−αζ~ω0))G

ξ−α
dd(ε−αζ~ω0)

= e−iω0t[Gr
dd(ε)(G

r
co(ε) −Ga

co(ε−~ω0))G
a
dd(ε−~ω0) +Ga

dd(ε)(G
a
co(ε) −Gr

co(ε+~ω0))G
r
dd(ε+~ω0)]G

K
co(ε)

− eiω0t[Gr
dd(ε)(G

r
co(ε) −Ga

co(ε+~ω0))G
a
dd(ε+~ω0) +Ga

dd(ε)(G
a
co(ε) −Gr

co(ε−~ω0))G
r
dd(ε−~ω0)]G

K
co(ε)

(C.92)

Using the identities (Gr
dd(ε))

∗ = Ga
dd(ε) and GK

dd(ε) = −(GK
dd(ε))

∗, consider

[e−iω0tGr
dd(ε)(G

r
co(ε) −Ga

co(ε−~ω0))G
a
dd(ε−~ω0

GK
co(ε))]

∗

= −eiω0tGa
dd(ε)(G

a
co(ε) −Gr

co(ε−~ω0))G
r
dd(ε−~ω0)G

K
co(ε) (C.93)
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and

[−eiω0tGr
dd(ε)(G

r
co(ε) −Ga

co(ε+~ω0))G
a
dd(ε+~ω0)]

∗

= e−iω0tGa
co(ε)(G

a
co(ε) −Gr

co(ε+~ω0))G
r
dd(ε+~ω0)G

K
co(ε), (C.94)

This allows us to write

S(ε) = 2 Re{e−iω0t[Gr
dd(ε)(G

r
co(ε) −Ga

co(ε−~ω0))G
a
dd(ε−~ω0)G

K
co(ε)

+Ga
co(ε)(G

a
co(ε) −Gr

co(ε+~ω0))G
r
dd(ε+~ω0)G

K
co(ε)]} (C.95)

Using Gr,a
co(ε1) −G

a,r
co(ε2) = ∓ i

vF
for all ε1, ε2, we find:

S(ε) =
2

vF
Im[e−iω0t(Gr

dd(ε)G
a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))G

K
co(ε)] (C.96)

which, when reinserted into the I2(t) integral, gives the form quoted in the text:

I2(t) =
−e2g4V0

4π~6vFω0

Im

{
e−iω0t

∫ ∞
−∞

dε(Gr
dd(ε)G

a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))G

K
co(ε)

}
(C.97)

We can complete the integrals in a similar manner to those for I1(t). Immediately we
can write for the integral:∫ ∞

−∞
dε(Gr

dd(ε)G
a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))G

K
co(ε)

=
2i

vF

∫ ∞
−∞

dε(Gr
dd(ε)G

a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))n

(c)
F (ε) (C.98)

by integration shifts, and then for the Fermi function we use the Matsubara form again.

In an identical manner to the I1 calculation above, where we were reasonably explicit,
the integral may be computed to give infinite sums by appropriate use of the residue
theorem with semi-circular contours. Then we sum to infinity to find:

2i

vF

∫ ∞
−∞

dε(Gr
dd(ε)G

a
dd(ε−~ω0) −Ga

dd(ε)G
r
dd(ε+~ω0))n

(c)
F (ε)

=
2~2

vF

( g2

~vF
+ i~ω0)

( g2

~vF
)2 + (~ω0)2

∑
α=1,−1

[ψ(α,−α~ω0)− ψ(α, 0)] (C.99)

where ψ was defined in (C.79). The final result is:

I2(t) =
−eV0

~ω0

e

2π~
( g2

~vF
)2

( g2

~vF
)2 + (~ω0)2

Im

{
e−iω0t( g2

~vF
+ i~ω0)

∑
α=1,−1

[ψ(α,−α~ω0)− ψ(α, 0)]

}
(C.100)

where ψ(x, y) was defined earlier in Eq. (C.79).
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Appendix D

Detailed calculations - Chapter 5

Here we include some calculations specific to Chapter 5. The details for the set-up of the
linear response and most of the information for the Green functions directly carries over
from Chapter 4 and may be found in the previous Appendix.

D.1 Keldysh set-up

To keep the notation compact we can introduce the eight-component spinor

Āk = (ψ̄fk+, ψ̄fk−, ψ̄sfk+, ψ̄sfk−, a+, a−, b+, b−)

and a similar one for fields without the bar so that the action becomes:

S =
∑
k

∫
dtĀk



i~∂t − εk(t) 0 v1/

√
L 0

0 i~∂t − εk v2/
√
L vb/

√
L

v1/
√
L v2/

√
L δk,0i~∂t 0

0 v∗b/
√
L 0 δk,0i~∂t

⊗ σ3

Ak (D.1)

The generalisation of the Keldysh rotation for a 2N -component spinor may be written as:

((Ā
(1)
+ , Ā

(1)
− ), . . . , (Ā

(N)
+ , Ā

(N)
− )) = ((ψ̄

(1)
1 , ψ̄

(2)
2 ), . . . , (ψ̄

(N)
1 , ψ̄

(N)
2 ))·(1N×N⊗Uσ3) = ψ̄[1N×N⊗Uσ3]

(D.2)

((A
(1)
+ , A

(1)
− ), . . . , (A

(N)
+ , A

(N)
− ))ᵀ = (1N×N ⊗U) · ((ψ(1)

1 , ψ
(2)
2 ), . . . , (ψ

(N)
1 , ψ

(N)
2 ))ᵀ = [1N×N ⊗U ]ψ

(D.3)
Using this, where 1N×N is the N ×N identity matrix, we rotate to find:

S =
∑
k

∫
dtψ̄k(14×4 ⊗ Uσ3)



i~∂t − εk(t) 0 v1/

√
L 0

0 i~∂t − εk v2/
√
L vb/

√
L

v1/
√
L v2/

√
L δk,0i~∂t 0

0 v∗b/
√
L 0 δk,0i~∂t

⊗ σ3

 (14×4 ⊗ U)ψk

=
∑
k

∫
dtψ̄k



i~∂t − εk(t) 0 v1/

√
L 0

0 i~∂t − εk v2/
√
L vb/

√
L

v1/
√
L v2/

√
L δk,0i~∂t 0

0 v∗b/
√
L 0 δk,0i~∂t

⊗ 12×2

ψk (D.4)

by using the mixed product property (A⊗B)(C ⊗D) = (AC)⊗ (BD) twice. Converting
this to a local problem by integrating out all fermions other than those at site zero from
the partition function amounts to discarding the sum and kronecker deltas:

S → S =

∫
dtψ̄



i~∂t − ε0(t) 0 v1 0

0 i~∂t − ε0 v2 vb
v1 v2 i~∂t 0
0 v∗b 0 i~∂t

⊗ 12×2

ψ (D.5)
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D.2 Summary of Green functions inherited from Chapter 4

For convenience we list here the equilibrium Green functions that carry over from Chapter
4 for the 2CK model studied in Chapter 5.

G(a,b)o(ε) =

( ~
ε+i0+ 0

0 ~
ε−i0+

)
(D.6)

G(s,f)o(ε) =

( i
2vF

− i
vF

(1− 2nF (ε))

0 − i
2vF

)
+O(Λ−1) (D.7)

D.3 Linear response result extracted from S&H ’96

From “Solution of an ac Kondo Model” [9] by S&H we adapt the following expression for
the charge current to match our study in Ch. 5:

Ic(t) =
e

~
Γ1 Im

{
ei(eV0/~ω) sin(ω0t)

∞∑
k=−∞

e−iω0ktJk(
eV0

~ω0
)g(k~ω0)

}
(D.8)

for the harmonic potential V (t) = V0 cos(ω0t), where

g(x) =

∫
dε

π
Gaa(ε+ iη)[nF (ε)− nF (ε− x)] (D.9)

where the retarded Majorana Green function is:

Gaa(ε+ iη) =
1

ε+ iΓa
(D.10)

and Jk are Bessel functions of the first kind. For the linear response regime in V0 one has:

Ic(t) = Ic(V0 = 0) +
∂Ic(t)

∂V0

∣∣∣∣
V0=0

V0 +O(V 2
0 ) (D.11)

The zeroth order term in V0 is zero. It is easily shown with the integral representation of
the Bessel functions,

Jk(x) =
1

2π

∫ π

−π
ei(kτ−x sin(τ)) dτ, (D.12)

that only the k = 0 mode for Jk(x = 0) is non-zero (it is 1). From this point g(k~ω = 0)
is straightforwardly zero due to the vanishing integrand in (D.9). For the first order
contribution to the current in V0, by a similar line of reasoning we immediately write:

∂Ic(t)

∂V0

∣∣∣∣
V0=0

V0 =
eV0

~
Γ1 Im

{ ∞∑
k=−∞

e−iω0kt

[
∂Jk(

eV0

~ω0
)

∂V0

]∣∣∣∣
V0=0

g(k~ω0)

}
.

(D.13)

Differentiating the same integral representation of the Bessel function gives:

∂Jk(
eV0

~ω0
)

∂V0

∣∣∣∣
V0=0

=
e

2~ω0

(δk,1 − δk,−1) (D.14)
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D.3. Linear response result extracted from S&H ’96

This leads to,

∂Ic(t)

∂V0

∣∣∣∣
V0=0

V0 =
e2V0

2~2ω0

Γ1 Im[e−iω0tg(~ω0)− (ω0 → −ω0)]

=
e2V0

2~2ω0

Γ1 Im
∑
ζ=−1,1

ζe−iζω0tg(ζ~ω0) (D.15)

In conclusion, the linear response result for the charge current according to the paper [9]
by S&H is:

Ic(t) =
e2V0

2~2ω0

Γ1 Im
∑
ζ=−1,1

ζe−iζω0tg(ζ~ω0) (D.16)

Zero temperature limit

The zero temperature limit is easily expressed in terms of just elementary functions be-
cause the Fermi functions become step functions so the energy integrals can be completed
by hand.

From (D.16) we extract:

Im[e−iζω0tg(ζ~ω0)] = Im

{
e−iζω0t

∫ ∞
−∞

dε

π

(
ε− iΓa
ε2 + Γ2

a

)
[nF (ε)− nF (ε− ζ~ω0)]

}
= −

∫ ∞
−∞

dε

π

(
Γa cos(ω0t) + sin(ζω0t)ε

ε2 + Γ2
a

)
[nF (ε)− nF (ε− ζ~ω0)]

(D.17)

At temperature tends to zero one has the following limits for the integrals:∫ ∞
−∞

dε
nF (ε)− nF (ε− ζ~ω0)

ε2 + Γ2
a

→ 1

Γa

[
arctan

(
µ

Γa

)
− arctan

(
µ+ ζ~ω0

Γa

)]
(D.18)

∫ ∞
−∞

dε
ε[nF (ε)− nF (ε− ζ~ω0)]

ε2 + Γ2
a

→ 1

2
ln

(
µ2 + Γ2

a

(µ+ ζ~ω0)2 + Γ2
a

)
(D.19)

The resulting current in the T = 0 limit is:

Ic(t, T → 0) =
e2V0

2~2ω0

Γ1

{[
arctan

(
µ+ ~ω0

Γa

)
− arctan

(
µ− ~ω0

Γa

)]
cos(ω0t)

− ln

(
(µ2 + Γ2

a)
2

[(µ+ ~ω0)2 + Γ2
a][(µ− ~ω0)2 + Γ2

a]

)
sin(ω0t)

2

}
(D.20)

We get the ac conductance by the chain rule

G(ω0) ≡ dIc(t)

dV (t)
=

1

cos(ω0t)

dIc(t)

dV0

(D.21)

=
e2

2~2ω0

Γ1

{[
arctan

(
µ+ ~ω0

Γa

)
− arctan

(
µ− ~ω0

Γa

)]
− ln

(
(µ2 + Γ2

a)
2

[(µ+ ~ω0)2 + Γ2
a][(µ− ~ω0)2 + Γ2

a]

)
tan(ω0t)

2

}
. (D.22)
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Appendix D. Detailed calculations - Chapter 5

Setting µ to zero gives:

G(ω) =
e2Γ1

2~2ω

[
2 arctan

(
~ω
Γa

)
− log

(
Γ2
a

(~ω)2 + Γ2
a

)
tan(ωt)

]
(D.23)

We can extract the leading low-ω term in a power series around 0 and compare to the

low-ω asymptote from the NRG calculation. This means using Γa → Γ1 ∼
J2
⊥

~vF
≡ Γ, due

to the emergent spin isotropy at the low energy crossover, and considering time t = 0.
This gives:

G(ω) =
e2

h

(
1− (~ω)2

3Γ2
+O(ω4)

)
(D.24)
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