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Abstract

We employ Wilson's renormalization group procedure in an attempt to classify and
understand the physics of the continuum limits of scalar field theories. Analysis of
the flows near the Gaussian fixed point reveals the existence of an infinite set of
asymptotically free continuum limits. We study the associated physics by calculating
scattering cross sections and the i-loop effective potential. Examination of the latter
provides evidence for the existence of a phase boundary in parameter space between
those theories with broken symmetry and those with unbroken symmetry. We extend
the flow analysis near the Gaussian fixed point to Bose/Fermi theories possessing
arbitrary internal symmetries. Fermionic interactions are found to decouple in pa-
rameter space. The behavior of renormalization group trajectories near the Gaussian
fixed point is solely determined by the Bosonic structure of the theory.
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Chapter 1

Introduction

1.1 Renormalization Group and Its Uses

The Renormalization Group procedure (RG) is a method for relating a field theory
defined at one energy scale to a physically equivalent "effective" theory at a different
energy scale. By examining the high energy limits of sequences ("flows") of such
theories, we obtain "continuum" theories that describe interactions at arbitrarily
high energies. All continuum limits are thought to be "fixed point" theories, upon
which the renormalization group operation has no effect. The quantum field theory
that best describes the universe is believed to lie at or near a fixed point.

Both a search for fixed points and a study of the directions of approach to them in
the space of theories are important. In addition to helping us understand why renor-
malization works, such analyses may provide us with physical predictions. Present day
quantum field theory assumes that the Gaussian fixed point (free theory) is the fixed
point of interest. In such a scheme, certain unknown parameters, such as masses and
couplings, are inputs and cannot be predicted ab initio. A non-Gaussian fixed point
could provide such information. In an ideal scenario, the existence of a non-Gaussian
fixed point in the Standard Model would tell us all of the eighteen "fundamental"
parameters in terms of one unknown parameter. The beauty of such a solution is that
it would come from within the Standard Model. Most other theories that have the
potential to explain the fundamental masses and couplings treat the Standard Model
as an approximation to a more general theory. The renormalization group approach
has the potential to explain the Standard Model from only a few basic assumptions.

1.2 Goals and Methods

When we first embarked on the present course of research, the primary intention was
to locate new fixed points, and, ideally, use these to compute physical quantities such
as the Higgs mass. It soon became apparent that such an approach was fraught with
difficulties. In particular, the space of theories that we were required to consider was
large and intractable. We could not restrict ourselves to a simpler subspace without
jeopardizing the validity of our calculations. This precluded a search for non-Gaussian



fixed points. However, we were able to show that near the Gaussian fixed point a
simplified calculation was legitimate. In that case, it was valid to restrict ourselves
to a simple subspace of theories. We used the Wegner-Houghton infinitesimal RG
equations to study the flows projected into this subspace. From this, all of our results
followed by straightforward analysis.

1.3 Preview

For a detailed summary of results, we refer the reader to chapter eight. Here we only
provide a general preview of the most salient points.

While examining the renormalization group flow structure of O(N) symmetric
scalar field theories near the Gaussian fixed point, we discover an infinite set of asymp-
totically free eigentheories, many of which exhibit symmetry breaking. By proving
that the space of theories under consideration is closed at linear order near the Gaus-
sian fixed point, we demonstrate that the theories discovered are true eigendirections
rather than artifacts. We calculate, to lowest order in a perturbation expansion, the
scattering amplitudes and cross sections for the new theories, and we find the high
energy scaling of the cross sections to differ significantly from that of ordinary ¢4
theory. This could have important ramifications for the behavior of the Higgs sector
of the Standard Model.

Examination of the one-loop effective potential reveals the existence of a phase
boundary in parameter space between symmetry broken and unbroken theories.

We extend our renormalization group flow calculations to theories consisting of
Bose and Fermi fields with arbitrary internal symmetries and find that the eigenstruc-
ture near the Gaussian fixed point depends only on the internal symmetry structure
of the Bose interactions.

1.4 Prospectus

This thesis is divided into two parts. The first part provides a general discussion of
the renormalization group (chapter 2) and its application to renormalization theory
(chapter 3). No prior knowledge of the subject is assumed, although some knowledge
of quantum field theory is necessary. The second part of the thesis is an exposition
of the author's research on the renormalization group flow structure of field theories
near the Gaussian fixed point. A derivation of the infinitesimal flow equations for
scalar field theories leads to the discovery and classification of asymptotically free
nonpolynomial theories (chapter 4). The scattering amplitudes and cross sections
for such theories are computed at lowest order perturbatively (chapter 5), and the
one-loop effective potential is examined- revealing some interesting symmetry break-
ing behavior (chapter 6). We begin to extend the subject of this thesis to theories
possessing Fermi and Bose fields and arbitrary internal symmetries (chapter 7). A
summary of the results obtained, along with a discussion of possible future directions
of research, is provided in chapter 8.



The author's intention is that each chapter be as self-contained as possible. To
this end, results and concepts are often replicated between chapters. Certain calcu-
lations and explanations that are not central to the thesis have been relegated to the
appendices (appendices A, B, and C). A summary of useful mathematical formulae
is provided (appendix D). For easy reference, a list of notations (appendix E) and a
glossary of terms (appendix F) are also included. In an effort to increase readability,
chapters have been subdivided to the greatest extent possible.

1.5 Basic Notation and Conventions

In this section, we describe most of the notation and specific terminology that is
employed throughout the thesis. We defer some definitions to later sections, as it
makes little sense to discuss objects prior to development of the concepts upon which
they are predicated. A comprehensive glossary of symbols is provided in appendix E.

* We work in d-dimensional Euclidean space-time. All objects are analytically
continued from (integer) n-dimensions and are Wick rotated. The metric is
positive definite.

* Most calculations are performed in momentum space rather than position space.
Momentum space objects are obtained by fourier transforming their position
space counterparts.

* For part of the thesis, our system will be bounded by a space-time box of side
L. This allows us to perform calculations that would otherwise be ambiguous.
A space-time boundary imposes a lattice structure in momentum space, with
lattice spacing 2.-L-

* Scalar fields are denoted Oi(x), with i an index over field components. The
Fourier transform is denoted qi(k) in the infinite volume case and qi,k in the
finite volume case. See appendix D.7 for our fourier transform conventions in
both cases. Except in chapter 7, we work with theories possessing an O(N)
internal symmetry, often with N = 1. All scalar fields are real.

* Fermion fields, which appear only in chapter 7, are denoted 0 (x) and ~ (x).
They are complex grassman variables, with a denoting both spinor and internal
indices. The fourier transforms are 0 (k) and O (k).

* A theory is defined by both an action S[O]-a general functional of the fields-
and a cutoff A. The cutoff is a sphere in Euclidean momentum space such that
if k2 > A2 , Oi(k) = 0. This spherical domain is denoted Q. The most general
scalar theory we consider has action

S[0]1•J Ed fd ...qX 2•.n (X.i..), (1.1)
n=where the may be distributions rather than functions.

where the u (n ) may be distributions rather than functions.



* We assume the action to be parametrizable by a set of parameters that span
a linear vector space. If we add the non-kinetic part of two actions, we expect
the associated parameters to add as well. In general, the set of parameters
will be nondenumerably infinite. Note that each u(") in the general action 1.1
encompasses an infinite number of parameters. These may be extracted by
expansion in a complete set of basis functions (or distributions). However, such
a basis may be difficult to specify.

* Most of our research involves a restricted subspace of theories. These theories,
herein referred to as "local, non-derivative theories," have actions of the form

S= Jdd [aij4 i (x) i9j(x) + U(q(x))] (1.2)

for bosons, and

S = Jddx[b~~, (x)Q lW(x) + U(Q(x), l*(x))] (1.3)

for fermions. These general forms are employed in chapter seven. In all other
sections, we consider O(N) symmetric bose theories. For these,

S = Jddx[ 1O,0k(x)8a"(x) + U(q$(x)q$(x))]. (1.4)

* The fields, parameters in the action, positions, and momenta in our theory
are dimensionless. The associated dimensional parameters may be obtained
through scaling by appropriate powers of the cutoff A. Because the action is
dimensionless to begin with, A will not appear in our calculations. Our use
of dimensionless parameters is equivalent to a choice of A = 1 as the unit
of momentum. For the purposes of exposition, we will sometimes employ A
explicitly. It will be clear from the context that this is for explanatory reasons
only.



Chapter 2

Renormalization Group

Contained herein is a brief introduction to the renormalization group and its applica-
tion to particle physics. No prior knowledge of the renormalization group is assumed,
although some acquaintance with field theory is necessary.

2.1 Historical Introduction

The renormalization group is the culmination of a series of attempts to use scaling as
a tool for studying critical phenomena. Researchers were aware for many years that
there is an important connection between the scale of density fluctuations in a system
and critical phenomena. As a phase transition is approached, density fluctuations in
the order parameter (the density, magnetism, etc.) grow very long. Points that are
widely separated become correlated and influence one another's behavior. Sometimes
this behavior manifests itself in spectacular ways, such as when a transparent fluid
spontaneously becomes opaque. In that case, the density fluctuations are on the order
of optical wavelengths.

In the early 1970's, Wilson[23] consolidated the ideas of Kadanoff and others, and
formulated in concrete mathematical terms the renormalization group procedure for
studying scaling behavior. In its original formulation, the RG involved successive
coarse grainings of spins on a lattice. This is now referred to as the position space
RG. One examines a system of discrete points at lower and lower resolutions. For
example, starting with a lattice of magnetic spins, one defines a block lattice on
which each spin is an average over several of the spins on the original lattice. This
is similar to the method employed in defining such classical fields as polarization,
magnetization, and fluid density. Since most classical systems are discrete at small
enough scales, one typically defines a field as an average over discrete points. The
RG does this repetitively and asks the question: How do short distance correlations
(eg. between spins) influence long distance correlations? Answering this and other
similar questions provides much information about the nature of critical phenomena.
In particular, one can identify theories that are unchanged by coarse graining. In such
theories the length scales decouple, and a phase transition may be present. Wilson[23]
used the RG procedure to find, among other things, such a "fixed point" in magnetic



systems that was not obvious from conventional analyses.
One may formulate the renormalization group in terms of energy scales rather than

position scales by noting that short distances correspond to high frequencies. The
momentum space RG is the counterpart of the position space RG but with everything
fourier transformed. Wilson[23], Wegner and Houghton[22], and others developed
techniques for examining the momentum space RG. Lattices are discrete, but the
momentum space RG can be made continuous by studying infinitesimal changes in
energy scale. These and other practical considerations make the momentum space
RG easier to study analytically than the position space RG. Much research, driven
primarily by Lattice QCD, is performed using computers to study the position space
RG. However, since we will primarily be concerned with analytic results, this thesis
will focus on the momentum space RG.

Once the renormalization group procedure was developed, condensed matter the-
ory saw enormous growth. It had been empowered with the ability to perform a
large variety of new calculations. Unfortunately, the RG techniques- so exciting to
condensed matter theorists- were largely ignored by particle theorists. Renormal-
ization had been used successfully for over two decades and few researchers actively
tried to fathom the reasons for its success. Several people developed scaling equations
connecting renormalized parameters at different energy scales. Among others, the
Callan-Symanzek equation and Gellman-Low equation have found great application
in particle physics. Much of the terminology (including the name "renormalization
group") was adapted from condensed matter physics. However, the basic idea and
technique of the Wilson RG went unused. In 1984, Polchinski[18], in keeping with
some comments Wilson had made regarding applications to renormalization[23], used
the RG to prove, simply and intuitively, certain theorems about renormalizability
that had previously required elaborate diagrammatic arguments. After this, an ever
increasing number of workers have turned their energies toward application of the
RG to particle physics. As will be discussed in the next chapter, renormalization cast
into the language of the RG no longer seems mysterious. Although it is difficult to
prove general theorems about the validity of renormalization, the intuitive picture
thus provided makes plausible a technique of an otherwise dubious nature.

In the past few years a number of efforts have focused on finding new fixed points
which, as will be described, may represent new physical theories. The primary ob-
stacle is the difficulty of calculation. Even scalar field theories present substantial
hurdles, and a successful RG analysis of gauge theories remains elusive. Ironically,
the position space RG, though intractable analytically, provides a natural vehicle for
studying gauge theories.

2.2 Basic Idea
A "theory" consists of an action, characterized by a point p in parameter space, and
a cutoff A. The renormalization group procedure is a prescription for constructing
a theory p' at a cutoff A' < A that is physically equivalent to p at energy scales
E < A'. The high energy degrees of freedom are absorbed into a modification of



Initial Theory
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High energy degrees
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Figure 2-1: Illustration of the general idea behind the RG procedure.

the parameters in the action, and we are left with an "effective" low energy theory.
Greens functions with external momenta less than the lower cutoff are identical, up
to a field scale factor, in the two theories.

2.3 Notation

We parameterize the RG procedure with a real number b > 1 which denotes the scaling
of the effective cutoff A' = A. For infinitesimal scaling, we define b - et 1 + t with
t > 0. The fields are separated into "fast" components, with momenta greater than
A', and "slow" components, with momenta less than A':

¢(k) = ¢s(k) + f(k)
¢s(k) = ¢(k)0(A' - kl)
f (k) = 0(k)O(Ikl - A'),

with O(x) defined to be one if x > 0 and zero otherwise.
kl < A by 0Q.

(2.1a)

(2.1b)
(2.1c)

We denote the shell A <
b

2.4 Procedure

The basic principle of the RG procedure is depicted in figure 2-1. Consider an object
of physical interest represented as a functional integral

G [...e-S [(] , k f ... kn)
G(kf D eS)f [D¢]e-s[e]

->

(2.2)



where F is some function of the slow1 fields and momenta.
The renormalization group procedure consists of three steps. The first involves

integration over the fast degrees of freedom-the fields f (k). This results in a modified
action S'[O,].

G .. f[D s][Df e-Sls+f1F(s, k1 ... k ,k)

f [D s][Df]e-s[(±,+f1

S[f [D0s]e-S'[s]F(0S,k ' k) (2.3)
[DS] - 'i ]  (2.3)

This must hold for any F, so

S'[Q] -In f[Df ]e- s [s+f].  (2.4)

The field interactions are of three types: slow-slow, fast-fast, and slow-fast 2 . Be-
cause our physical quantities only depend on 0,, the fast-fast interactions do not
contribute to G. Through integration, we have converted the fast-slow interactions
amongst the fields into a modified set of slow-slow interactions.

The second step involves a rescaling of the cutoff. As defined in our initial theory,
A (chosen to be 1) serves a dual role. It is both the momentum space cutoff and the
momentum scale (unit of mass). The ability to perform successive RG operations
depends on our restoring the former to its initial value. Integration lowers the mo-
mentum space cutoff to A. Therefore, we must scale the momentum space cutoff to
A. No reference is made in the RG procedure to the momentum scale. We work with
dimensionless objects so it should never arise. Therefore we are free to redefine our
unit of momentum so that the cutoff has the value A = 1 once again. This affects
how we recover physical quantities from the dimensionless ones, but has no impact
on the RG procedure itself.

The final step consists of a rescaling of the field. The first two steps may have
modified the kinetic term in the action. In order to maintain canonical fields, we must
restore proper normalization. We scale the fields, and this leads to a redefinition of the
parameters in the action. It is this scaling that gives rise to the anomalous dimensions
of couplings. Denoting by Z the requisite scaling factor, the combined effect of the
second and third steps may be expressed as

01(k) Z - (2.5a)
S" ['] - S'[1s ]. (2.5b)

Of course, any fields that appear in Greens functions must be modified as well. If
G(") is a Greens function that involves a product of n fields (with ki < 1),

1It is not useful to apply the RG procedure to objects involving fast fields because its effect will
then be specific to the object in question.

2Here, "slow" and "fast" refer respectively to any product of /, fields and any product of f fields.



G() (kI ... kn) = Zn"Gc" -... (2.6)new "'b b-'

2.5 Physical scales and Energies

The renormalization group procedure involves a redefinition of the unit of mass.
Consider an energy E. Before the RG operation, E is measured in units of A, which
serves as both the cutoff and the unit of mass. After integration, the cutoff is Ab
and the unit of mass remains A. E is defined relative to the unit of mass, so it is
unchanged. When we scale the cutoff back to A, the unit of mass scales to A. In the
new units, the same physical energy has the value bE.

A simple way to visualize the rescaling is by focusing on the surface of the cutoff
sphere. Initially, the surface corresponds to energy A. After the RG procedure, it
corresponds to physical cutoff A but has the same value A. Therefore, the values of
the physical energies have scaled as E -+ bE.

2.6 Infinitesimal Flows and Trajectories

Given an initial point po in parameter space at cutoff A, the RG procedure associates
with each b > 1 a theory p(b). This defines a trajectory in parameter space.

Performing functional integrals over a macroscopic shell is generally not tenable.
If it were, we could solve the field theory directly. Infinitesimal transformations are
calculable and provide some information about the scaling behavior of theories. An
infinitesimal RG transformation is the tangent to the RG trajectory at a given point
in parameter space. This tangent is unique. Mathematically, we are calculating

dp 1 dp
(2.7)db b1 =dt t=o

The latter parameterization is more convenient for infinitesimal analyses. The in-
finitesimal "flow equations" are of the form

dpd- = f(p), (2.8)dt t=o
where both p and f are vectors in parameter space. The flow comprises a (infinite)
set of autonomous nonlinear first-order differential equations.

2.7 Mathematical Issues

Before discussing the nature of flows in parameter space, there are certain mathe-
matical issues that should be addressed. We do not attempt a rigorous exposition, as
such does not exist.



2.7.1 Closure

Consider the effect of the RG procedure on a pure 04 theory. New terms (see chapter
4) arise that weren't present in the original action. These, in turn, modify the ¢4

interactions during successive RG transformations. A space of theories p is "closed"
under the RG procedure if it comprehends all interactions that can arise. Otherwise,
the flows move out of the space into a larger space. Because the flow equations are
coupled, interactions that have not been accounted for can influence the projection of
the flow onto a subspace. We cannot study a subspace of theories in isolation unless
that subspace is closed. If we are employing an approximation, we must ensure that
the space is closed to whatever order we are calculating.

2.7.2 Invertibility

Although the RG procedure defines a unique trajectory for b > 1, it is not obvious
what happens when we attempt to invert it. We may ask the question "What theories
at cutoff A give rise to a given theory at cutoff A under the RG operation?" The
infinitesimal RG gives us a tangent vector at each point in parameter space. In any
finite dimensional space, such information would divide space into non-intersecting
orbits and we could trace our trajectory backward as well as forward. Therefore, we
might be led to believe that the RG procedure is invertible. It is easy to see that this
is not the case. Consider a macroscopic transformation. We integrate out an infinite
number of degrees of freedom over a finite shell. There are many ways to restore
these without altering the low energy behavior. The RG procedure loses information,
and is not invertible. So why were we deceived in the infinitesimal case? We are
not dealing with a finite dimensional space. The smallest closed space of interacting
theories is infinite dimensional. At every point in this space, there is a confluence of
an infinite number of flows. We attempt to depict this in figure 2-2.

2.8 Fixed Points and Eigendirections

2.8.1 Fixed Points

There exist points in parameter space at which the tangent to the flow vanishes.
At these "fixed points," the renormalization group procedure has no effect. It is
commonly believed that all trajectories begin and end on such points, although no
rigorous proof to this effect is extant. The defining equation for a fixed point p* is

dp*dt f (p) = 0. (2.9)
dt t=o

2.8.2 Eigendirections

As with any system of first order autonomous differential equations, we study the
behavior of flows near a fixed point by examining the eigenstructure of the linearized



Figure 2-2: An attempt to depict the infinite number of trajectories converging at
every point in parameter space. The arrow points in the direction of increasing b
(decreasing cutoff).

equations. Let p* be our fixed point and let p = p* + p' be a point nearby3 :

dp
dt t=o (p)

d(p* + p')
dt f (p* + p').dt =

At the fixed point

dp*
d t=o (p *) = 0,dt t=o

so

dp'
d- = f(p* + p').dt t=o

Linearizing, we obtain (the index is over parameters)

dt = Mjpj + O(p'2) (2.10a)

A j- . (2.10b)

The eigenvalues of the matrix M determine the flow structure near the fixed point.
Suppose m is an eigenvector of M, with eigenvalue A. If we start with a theory a
distance r along m, the linearized RG flow is (with p(O) - rm)

3Though there is no metric on parameter space, the concept of "linear order" in the parameters
is well defined.



Figure 2-3: An example of flows near a fixed point. The arrows point in the direction
of decreasing effective cutoff. Flows in are "irrelevant" and flows out are "relevant."

p(t) = (reAt)m (2.11)

Theories along eigendirections with positive eigenvalues flow away from the fixed
point under the RG procedure, while theories with negative eigenvalues flow toward
the fixed point. The former are termed "relevant" directions by particle theorists
and the latter are termed "irrelevant" directions4 . An eigendirection with eigenvalue
A = 0 is termed "marginal" and corresponds to flow within a dense structure of
fixed points. A simple example of flows near a fixed point is provided in figure 2-3.
Complex eigenvalues are unphysical because the action is real.

2.8.3 Gaussian Fixed Point

The origin in parameter space, corresponding to a free massless theory, is a fixed
point of any physical theory, and is called the "Gaussian fixed point." Standard
perturbation theory is an asymptotic expansion to the Gaussian fixed point. In four
space-time dimensions, no other fixed points are known to exist in any physical theory.

2.8.4 Condensed Matter vs. Particle Physics limit

Condensed matter theorists are interested in the long wavelength correlations that
characterize critical phenomena. Therefore they study low energy approaches to fixed
points. To a condensed matter theorist, an eigendirection with negative eigenvalue
is relevant because theories along that direction approach the fixed point in the low

4The opposite terminology is employed by condensed matter theorists.



energy limit.
A particle theorist, on the other hand, is interested in finding continuum limits.

The object is to lift the cutoff and study high energy behavior. Continuum lim-
its correspond to high energy approaches to a fixed point. To a particle physicist
eigendirections with positive eigenvalue are relevant.

2.8.5 Searching for Fixed Points: Closure

A general search for fixed points is difficult. While restriction to a closed parame-
ter subspace may simplify the problem, rarely is such a subspace easily identifiable.
Therefore, it is important to understand what information may be obtained by re-
stricting analysis to an unclosed subspace. Examples of such subspaces include the
space of local, non-derivative theories and the two dimensional space of pure 04 the-
ories.

Let us refer to the subspace of interest as G spanned by parameters g, and to
the other parameters as h. For the purposes of discussion, we choose h = 0 in the
subspace G. A point in parameter space is denoted (g, h) and a point in G is denoted
(g, 0). The equations that define a fixed point of the full theory are

dg - dh = 0, (2.12)
dt (g*,h*) dt (g-,h*)

while the analogous equations for the restricted theory are

dg I  = 0. (2.13)
dt (g*,o)

The equations defining a fixed point of the full theory include those defining a
fixed point of the restricted theory. Not every solution of the latter is a solution of
the former. In fact, it is possible that there are no common solutions. However, every
solution for the full theory that obeys h* = 0 must be a solution for the restricted
theory. Therefore, if there are no fixed points of the restricted theory, there are no
fixed points of the full theory that lie in the subspace G. In summary,

* A fixed point of the restricted theory is not necessarily a fixed point of the full
theory.

* All fixed points of the full theory that lie within the restricted subspace must
be fixed points of the restricted theory.

Note that if G is a closed subspace, the equation

dh =0 (2.14)
dt (g,o)

is obeyed, and any fixed point of the restricted theory is also a fixed point of the full
theory.



2.9 Wegner-Houghton Approach

Shortly after Wilson's seminal papers[23] on the renormalization group, Wegner and
Houghton developed a functional equation for the infinitesimal RG flow[22]. In this
section we provide a qualitative discussion of the basic method, reserving detailed
derivations for later.

2.9.1 Basic Idea

Consider the exponent that appears in the integration step of the RG procedure,
equation 2.4. We Taylor expand5 S[q, + f] in f:

S[8+ f] = S[b]A + s fn,k
n,k 0 fn,k f= 0

1 82S
+ 1 2fn,k'fm,k + .. (2.15)

n,m,k,k' afn,k' fm,k f=O

Wegner and Houghton [22] proved that no terms in this series with more than two
derivatives contribute to the infinitesimal flow equations ( i.e. at O(t)) and that, of the
terms with two derivatives, only those with matching (k, -k) momenta contribute.
A heuristic justification and discussion of the Wegner-Houghton claims are provided
in appendix A. The part of the Taylor series that contributes to S' to O(t) is

S[s 8 + f] = S[,81 + E• fn,k
n,k 1 n,k f=0

1 82S
+- fn,-kfm,k. (2.16)

2 n,m,k afn,-kafm,k f=0

The functional integral over fast components is now Gaussian. We may perform
the integral explicitly, take the logarithm, and obtain an expression for S'[q,] in terms
of the functional derivatives of S. The result is the lowest order term in an expansion
of S'[O,] in powers of t. Equivalently, it is the tangent to the RG flow, as described
earlier.

Computing S'[q,] from equation 2.4 is equivalent to a diagrammatic expansion.
The vertices are the terms in S. Each external line corresponds to 8, and each
internal line corresponds to f. In this language, the Wegner-Houghton claim is that,
to O(t), the only diagrams that contribute to S' are tree (without any branches) and
1-loop, and that the external momenta at each vertex must sum to zero. The latter
requirement is equivalent to demanding that the loop momentum remain uniform
throughout the loop.

5 For ease, we put our system in a box so that k is discrete. We treat f(k) and f(-k) = f*(k) as
independent complex variables and require ko > 0 in all sums.



2.9.2 Limitations

The Wegner-Houghton flow equations suffer a severe analytic limitation. They cannot
be integrated. Because we demand that the partial sums of momenta be zero, we lose
information that is essential for extension of the calculation beyond linear order in t.
Consequently, we cannot integrate our tangent vectors to construct the flows. This
is a problem with the sharp cutoff that we have employed. It leads to ambiguities
involving nonlocal terms that arise, and it prevents us from extending our calculation
to higher orders in t. Other cutoff schemes have been studied[16] but invariably
render calculation intractable. Unfortunately, it is the very aspect of the sharp cutoff
scheme which makes calculation feasible that is also responsible for the higher order
ambiguities. Only by separating the degrees of freedom into disjoint sets, such as fast
and slow components, can we reduce the information necessary to define an effective
theory. Such a sharp division always leads to analytic ambiguities at the boundary.



Chapter 3

Renormalization

3.1 Introduction

Historically', renormalization was developed to extract physically useful information
from seemingly divergent theories. Early in the development of quantum field theory
it was realized that a Lagrangian with finite mass and coupling parameters leads to
divergent scattering amplitudes. The origin of this problem2 is the incorporation of
interactions with arbitrarily high energies. Suppose we regulate the theory by im-
posing a Euclidean momentum-space cutoff on the fields. A propagator in a diagram
corresponds, in the language of yesteryear, to a virtual particle. If we allow this vir-
tual particle to possess arbitrarily high energies, the diagram may diverge when we
lift the cutoff.

If we note that the fields and Lagrangian parameters are not directly observable,
renormalization presents itself as a natural solution to the problem. We can absorb the
divergences into a scaling of the fields and parameters order by order in perturbation
theory. Generally, this is done by regulating the theory with a cutoff, imposing a set of
normalization conditions (choices of experimentally determined scattering amplitudes
and masses), and choosing the "bare" Lagrangian parameters and fields so that when
we lift the cutoff, the theory obeys the normalization conditions.

An intuitive picture is often presented to help in understanding this process. An
isolated particle in a free theory is "bare." If we add couplings, but still consider a
single particle state, interactions of the particle with itself via virtual particles (self
energy diagrams) polarize the vacuum and "dress" the particle. A measurement of
the mass or charge of the particle by an observer would be modified by the shell of
polarization, and is "renormalized." The higher the energy of our probe, the closer
we get to the particle and the less the polarization shields it. Thus, as we raise the
energy our measurements approach the bare values.

We have no reason to believe that field theory accurately describes physics at
arbitrarily high energies. However, the success of renormalization indicates that at
low energies an effective field theory describes the world surprisingly well. This will

1This chapter is a supplement, rather than prerequisite, to the remainder of the thesis.
2We do not consider infrared divergences here.



be expanded on shortly, when we examine the same issue in the context of the renor-
malization group.

Once renormalization was adopted, its success was astounding. An entire ma-
chinery of diagrammatic analysis and dimension counting was developed to classify
theories as renormalizable or non-renormalizable. Renormalizable theories are those
in which one can absorb all of the divergent behavior into a finite number of bare pa-
rameters. Renormalizability was raised to the status of an axiom. As an assumption,
its basis remains pragmatic. Nobody has successfully performed physically interesting
calculations in a nonrenormalizable theory.

Part of the reason perturbative renormalization works is that the energy scale at
which renormalization corrections become significant is extraordinarily high. People
often claim that renormalized parameters are small and that bare parameters are
divergent. They then proceed to manipulate the bare parameters as if these too were
small. Surprisingly this works, and one reason for this is that at a cutoff equal to
the energy scale of the entire universe the bare and renormalized parameters differ
only slightly[20]. The bare parameters do diverge, but only at physically unattainable
energies.

So far, in keeping with historical development, we have linked renormalization to
perturbation theory. However, renormalization is far more fundamental than this.
Perturbative divergences are only one manifestation of the need for it. There is no
interacting theory in which the "masses" and "couplings" in the Lagrangian are those
measured by experiment. Even in a field theory with no divergences (a "superrenor-
malizable" theory), we need to express our bare parameters as functions of physically
measurable quantities. Otherwise, when we calculate scattering cross sections, the
results will be functions of the unmeasurable bare parameters, and of little use. This
is a reason why renormalization is necessary even outside of perturbation theory.

There is a yet deeper meaning to renormalization. This concerns the decoupling
of theories at different energy scales or different length scales. The basic idea is that
physics below an energy scale E can be described by an effective theory with a cutoff
at E[17]. Virtual particles with energies higher than E have little effect on physics
below E.

Whichever view we take, renormalization is a fundamental part of field theory.
Through the renormalization group, this seemingly mysterious process finds a beau-
tiful and intuitive expression.

3.2 Renormalizability

In its most basic form, renormalizability is the requirement that it be possible to
extract finite physical quantities from a theory. All physical quantities are deriv-
able from Greens functions, so these provide a natural vehicle for the mathematical
expression of this requirement. The Greens functions are defined as

Gu")( X... X a ) = e (OTl (xz) ... w (xn)i0). (3.1)

Our intention is to define a renormalized theory with finite Greens functions. Let



us denote the Greens functions obtained from a theory with parameters g and cutoff
A by G(")(g, A, {x1---.. }). We use go and q0 to denote bare parameters and fields3 .
A theory is renormalizable if it is possible to define scale factors Z and renormalized
parameters gr at energy scale E

r = r (A, E, go) (3.2a)

Z (") = Z(n)(A, E, go), (3.2b)

such that the renormalized Greens functions G, obtained from

G(n)(go, A, {X " " zn}) = Z(")G")(gl, E, {xl r x,}) (3.3)

are finite as A -+ oo00.
The idea is that all the divergent behavior of the Greens functions may be incor-

porated in scaling factors Z(") and a redefinition of the parameters. The gr are finite
and the Z are divergent as A -+ oo00. Note that the statement of renormalizability is
not trivial; it is possible that the divergences involve x dependencies and cannot be
absorbed into Z and gr.

A more restricted, and pragmatic, definition of renormalizability is often used.
This requires that the aforementioned condition hold for a theory with a finite number
of bare and renormalized parameters. In practice, we usually fix the renormalized
parameters gr at energy scale E via a set of "normalization condition." Then, we
choose the bare parameters go(A) to obey the normalization conditions at energy E.

For the purposes of our renormalization group discussion we adopt the following
associated definition of renormalization: Given a set of normalization conditions at
energy scale E, we define a set of bare parameters go(A) such that the theory obtained
from go(A) with cutoff A obeys the normalization conditions to vanishing order in
E/A. We will use O(E/A) to denote a function that vanishes as E/A -+ 0. Such a
"weak" E/A dependence need not be linear.

3.3 Renormalization in the Language of the RG

3.3.1 Basics

The renormalization group procedure relates theories with different cutoffs, and pro-
vides a natural and elegant framework for the discussion of renormalization. For the
purpose of exposition, we consider theories near the Gaussian fixed point; analogous
analyses can be performed near other fixed points. The parameter space P may be
written as a direct product of two spaces, G and H. We will later specify these as
the spaces spanned respectively by the relevant4 and irrelevant eigendirections to the
Gaussian fixed point. We denote by either p or (g, h) a point in P. By a "bare"
theory we refer to a point (g, 0) E G and employ the notation g - (g, 0). To make

3i.e. the parameters and fields appearing in the action.
4and marginal



contact with traditional renormalization theory, we take G to be finite-dimensional.
To renormalize we must specify a sequence of bare theories g at progressively

higher cutoffs A such that certain normalization conditions at energy E are satisfied
to O(E/A). At any cutoff A there are numerous theories that exactly obey the
normalization conditions at energy E. Let us denote the associated set of points in
parameter space PA.

There are two approaches to constructing the requisite sequence of bare theories.
They differ in the manner by which the O(E/A) weak cutoff dependence is incorpo-
rated. One approach involves scaling PA' backwards to A > A' under the RG and
requiring that the resultant set of theories come within O(E/A) of the space G, while
the other approach5 involves constructing a sequence g(A) that scales under the RG
to within O(A'/A) of PA'. The latter approach is most closely linked to conventional
renormalization.

The remainder of this section consists of a more detailed description of both
viewpoints followed by a brief discussion of how renormalizability is related to the
RG eigenstructure near the Gaussian fixed point. The explanations provided are
intended to aid in forming an intuitive understanding of renormalization. They are
plausibility arguments only. It is also important to keep in mind that the space P is
infinite dimensional; for it is from this that most of our arguments derive.

3.3.2 Viewpoint 1: Backward
The set of theories at cutoff E that satisfy the normalization conditions exactly at
energy E is pE. For n normalization conditions, this set is a strip of codimension n
in the space P. As mentioned in chapter 2, there exist multiple theories at cutoff A
that give rise to a particular theory at cutoff A' < A under RG scaling. This means
that if we trace PE backwards, we generate an ever expanding "cone" of theories'.

Renormalization is possible only if there exists a sequence of theories p'(A) E PA
that lies within O(E/A) of G. If we denote p'(A) = (g'(A), h'(A)), then we require
that h'(A) be O(E/A).

This notion of renormalization is illustrated in figure 3-1. Although the "cone" is
depicted as being of fixed dimension, it is really a complicated object involving bifur-
cations and expansions into an ever-increasing number of dimensions. Rather than
approaching G asymptotically (as is implied in the figure), it does so by increasing in
dimension. It is difficult to develop intuition for an infinite-dimensional object, and
this illustration is not intended to be an accurate depiction.

3.3.3 Viewpoint 2: Forward

Given a point g E G at cutoff A, we may trace forward along an RG trajectory
until we reach energy E. Consider a sequence of theories g(A) E G. Under the RG

5 This view of renormalization was developed by Polchinski[18].
6 We use the word "cone" for lack of a better term; the set generated is actually a complicated

union of trajectories in the infinite-dimensional space of theories.



Figure 3-1: "Cone" of theories, with progressively higher cutoffs, that are physically
equivalent to the original theories PE at energy scale E. At E' > E, the cone comes
within O(E/E') of the g axis (the space of bare theories).

operation, this flows to a sequence of theories p'(A) at energy E. Renormalization
is possible only if there exists a sequence g(A) whose associated sequence p'(A) lies
within O(E/A) of PE*

An illustration of this approach to renormalization is provided in figure 3-2. It is
adapted from the paper by Polchinski[18].

3.3.4 Renormalizability

So far, we have recast the idea of renormalization into the language of the renor-
malization group via two different approaches. The question of renormalizability has
not been addressed. We are now in a position to determine the characteristics that
distinguish a renormalizable theory from a non-renormalizable one. As mentioned,
we provide a heuristic discussion only7 . For details we suggest the pioneering paper
by Polchinski[18]. We denote by n the dimension of the space spanned by the relevant
eigendirections to the Gaussian fixed point.

Flows converge toward the n-dimensional space of relevant directions as they ap-
proach the Gaussian fixed point. To within O(E/A) all information is absorbed into
the relevant parameters. A large number of theories at high cutoff coalesce at low
cutoff8 . Consequently, the low energy behavior of a theory is governed by only n
parameters9 .

7Also see Peskin's book[17].
8This is a property of the region near the fixed point, and complements the information loss

described in chapter 2.
9"Relevance" is a purely local concept in the space of theories, but renormalizability is not.
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Figure 3-2: Bare Parameters for A4 > A3 > A2 > A1 > E. The trajectory passing
through g(Ei) scales down to within o(E/Ei) of p at energy scale E.

Suppose that we impose n normalization conditions on the Greens functions at en-
ergy E. These fix the low energy behavior of our theory because we need only n pieces
of information to do so. A bare theory at cutoff A obeys these normalization condi-
tions to within O(E/A). The O(E/A) correction is the penalty for ignoring irrelevant
parameters in our bare theory. The Greens functions at low cutoff are finite. Any
corrections that arise from raising the cutoff (employing a bare theory) are O(E/A).
Therefore the Greens functions remain finite and the theory is renormalizable.

Now suppose that we wish to include irrelevant parameters in our space of bare
theories. Let m be the total number of parameters in our bare theory space. The
imposition of m > n normalization conditions requires that we fix m - n irrelevant
parameters at low energy. The strip PE, of codimension n, still specifies the low-energy
behavior of the theory. Any irrelevant parameters present in a theory at cutoff A will
contribute at O(E/A) to the low-energy behavior of the theory. In order for them
to significantly contribute to the low-energy behavior, they must be initially large
enough to compensate for the O(E/A) scaling. However, far away from the Gaussian
fixed point the eigenstructure is lost. It is not possible to have a few irrelevant
parameters that are huge and expect the other irrelevant parameters to remain small
under scaling toward E. But this is what would be required in order to construct
a sequence of bare theories. As a result, the specification of m > n normalization
conditions on the Greens functions leads to an infinite number of bare parameters. If
we artificially ignore all but a finite number of bare parameters, the Greens functions
contain a strong A dependence and diverge.

To summarize: In addition to the information loss associated with RG scaling,

Rather, it is the local manifestation of a global property.



there is a compression of irrelevant parameter information due to the eigenstructure
near the Gaussian fixed point. As a result, we only have enough information to
specify the relevant parameters of the low-energy theory. Specification of irrelevant
parameters requires an infinite number of bare parameters.

3.4 Triviality

Renormalization involves the solution of a set of simultaneous equations relating the
bare parameters to the renormalized parameters. It is not always possible to solve
these equations. An example is massive ¢4 theory. There does not exist a solution
go(A) for any non-zero choice of renormalized coupling. Perturbatively, this manifests
itself as the "Landau singularity." The bare coupling diverges for a finite value of
A unless the renormalized coupling is chosen to be zero. In terms of renormaliza-
tion group flows, triviality arises because there are no relevant eigendirections to the
Gaussian fixed point except for the mass-axis.

Until recently, it was widely believed that there are no non-trivial scalar field
theories in d = 4 dimensions. As will be discussed, our research leads to a different
conclusion.

3.5 3 Functions

In particle theory, a set of "renormalization group" equations have been developed1 o
relating renormalized parameters at different energy scales. Renormalized parameters
(or normalization conditions) are chosen at some energy scale E. One then asks which
choice of renormalized parameters at a different energy scale E' would lead to the
same physics (i.e. same bare parameters). In analogy to the Wilson RG procedure,
one can trace flows in the space of renormalized parameters- the only difference
being that this space is usually finite-dimensional. The tangents to the flows are
referred to as p-functions.

A natural question to ask is what, if any, relationship exists between the Wilson
RG flows and the flows in renormalized-parameter space? In particular, do the Wilson
RG flows provide us with enough information to determine the p-functions? Both
approaches provide us with scaling information about Greens functions. Therefore,
we expect that there is some relationship. However, it turns out that the Wilson
RG flows alone are not enough to determine the renormalized-parameter /-functions.
In addition, we need to know the relationship between the bare and renormalized
parameters at some energy scale E.

10For a comprehensive listing, see the books by Zinn-Justin[24] and Amit[2].



3.6 Asymptotic Freedom

A relevant eigendirection to the Gaussian fixed point corresponds to an asymptotically
free theory. In the high energy limit, the trajectory moves into the fixed point and
the bare parameters vanish. Since the renormalized parameters scale the same way
as the bare parameters along an eigendirection, these vanish in the high energy limit
and the theory is asymptotically free. The reasons for such asymptotic freedom are
very different from that of non-abelian gauge theories. In our case, the continuum
limit happens to be the Gaussian fixed point. In the gauge case, the gauge fields
induce a negative vacuum polarization.



Chapter 4

Scalar Theories Near the Gaussian
Fixed Point

4.1 Overview

In this chapter we present our research[6, 7] on the flow structure of O(N) symmetric
scalar field theory near the Gaussian fixed point. We begin by providing a detailed
derivation of the infinitesimal flow equations for scalar field theories. We note that
the smallest closed space of interacting theories involves non-local couplings that can-
not be unambiguously identified within our sharp cutoff scheme. This renders our
methods unsuitable for the study of non-Gaussian fixed points. Near the Gaussian
fixed point, we linearize the equations and examine the resultant flow eigenstructure.
After demonstrating that to linear order near the Gaussian fixed point the space of
local, non-derivative interactions is closed, we identify those eigendirections that lie
within this space. We find that, in addition to a set of irrelevant directions corre-
sponding to polynomial potentials, the eigenvectors include an infinite set of relevant
directions corresponding to asymptotically free nonpolynomial theories. Some of the
nonpolynomial theories exhibit symmetry breaking. For these we compute the bro-
ken potentials. In two space-time dimensions, the eigenpotentials are shown to be
Sine-Gordon potentials.

Although we provide an unexpurgated derivation of the flow equations and eigen-
structure, we relegate the calculation of symmetry-broken potentials to appendix B.
Many of the mathematical tools necessary to reproduce our computations are pro-
vided in appendix D.

4.2 Infinitesimal Flow Equations

4.2.1 Basics

To derive infinitesimal flow equations, we employ the Wegner-Houghton approach
described in section 2.9. Certain ambiguities arise if we do not impose a spatial
boundary. Where necessary we will assume that the system lies within a space-



time box of volume V = Ld with periodic boundary conditions. As mentioned, we
work with dimensionless parameters, fields, and momenta. For convenience, we write
02 _= Ei Oii, as we are presently only examining O(N) symmetric theories. Although
much of our calculation is applicable to more general classes of theories, we restrict
our attention to the space of local, non-derivative interactions, considering issues of
closure afterward and deferring a discussion of general scalar theories until chapter 7.

4.2.2 The Action

Our object is to determine the functions f(p) in the flow equations 2.8. The general
O(N) symmetric action is

00

S[] = S2n (4.1a)
n=1

S2n = d dd ... dx2n (X)l (Xi).. 1 2) (2• ) (2n 2n 2n (1 .. 2n) (4. 1b)
The parameters p in equation 2.8 are actually the coefficients of an expansion of

the u2n (X1 ... ,2n) in a complete set of functions1 . However, to avoid the difficult
task of determining a complete set of basis functions, we work directly with the
U2n (1 ' .. 2n). We expect the theory to be translationally invariant 2, and require u2n
to be a function of (x2 - xl) -. -(2n - x2n-1) only.

The infinite-volume momentum-space form of equation 4.1 is

ddkl ddk 2 O o()Sf2=(2-- -- ¢, (k()27, (kd) • d

in (k2n_-1)in (k2n)u2n, (k ...k2n)(d) ( Ij), (4.2)

where U2n(-ki ... - k2n)(2ir)dj(d) (Eki) is the fourier transform of u2n (x1 ·... 2n). The
6 function arises from the invariance of U2n ( 1 ... X2n) under space-time translations.

4.2.3 Bounding Box

We begin by constructing a finite-volume action that attains the form 4.1 in the
infinite volume limit. For convenience, we list our finite-volume fourier conventions
and the transition maps between finite and infinite volume objects. The symbol N
denotes equivalence in the infinite volume limit. kdisc and kcon• are respectively the
finite-volume and infinite-volume momenta.

1 The u2n are really distributions, but we will refer to them as functions for simplicity.
2We impose this and other space-time symmetries despite their explicit violation by our cutoff

and bounding box. The justification comes when we verify that the symmetry restricted space of
actions is closed under the RG.
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Because we explicitly separated the momentum conserving 6 function from the
fourier transform of u2n, the transition properties of u2n(kl ... k2n) will involve volume
factors:

VU2n,kl-...k2,nki - u2n(ki . .. k2n)(27)d6d(k ... " k2n). (4.4g)
From these limit rules, we obtain the finite-volume momentum-space action3 :

00

S[O]= S2n (4.5a)
n=1

S2n = V1- 2n  6ykhiki ' ci k2nU2n,ki-..k 2n. (4.5b)
kl..k2nl <1

The U2n associated with a local, non-derivative action have the form

U2,k,k 2 = -k - k22  u2  (4.6a)

U2n,ki...k2n = U2n. (4.6b)
Because of the 6 ki+k 2 in the action's quadratic term, U2,kl,k 2 may be written U2,k

2k2 + u2 . Where convenient we shall use r -- 2u 2, in keeping with conventional
notation for the mass term.

4.2.4 Modus Operandi

In deriving the infinitesimal flow equations, we consider a "fast shell" that involves
momenta 1 > jkl > 1 - t, and we perform calculations to O(t). Our goal is to

3For simplicity we use 6k to denote 6k,o0



determine4

d
U2n,ki .. k 2 n,

dt t=o

as a function(al) of the u's.
As discussed in section 2.4, the renormalization group procedure involves three

steps: integration, dimensional scaling, and field normalization. Consider an infinites-
imal RG transform (t < 1). This generates a modification of u2n:

U2n,kl...k 2n = U2n,k...k2n + tAu2n,k...k 2 + O(t2). (4.7)
Each step may be thought of as an operator acting on the action. Let us, for tem-

porary illustrative purposes only, call A the integration operator, B the dimensional
rescaling operator and C the field normalization operator. The RG procedure may
be summarized as

S' = CBAS. (4.8)

For infinitesimal RG transforms, all three operators produce O(t) corrections to
the action. We may write them as the identity, I, plus an operator that is O(t):
A = I+ta, B= I+tb, and C= I+tc. Then,

S' = (I + ta)(I + tb)(I + tc)S

Z S + t(a + b + c)S + O(t 2). (4.9)

The point of this exposition is that to O(t) we may consider the three steps of the
RG procedure as acting independently on the original action. The effect of the RG
procedure may be summarized, with A's denoting operators, as

dS
= (Ai=nt + Adim + Anorm)S. (4.10)

dt t=o
Although the A operators can mix parameters, we will use

S U2n,kl...k2n-= AintU2n,kl...k2n - AdimU2n,ki...k2 ndt t=o
+AnormU2n,ki...k 2n (4.11)

as a notation for the modifications to the parameters.

4As mentioned, we are implicitly considering the space of theories that are translationally invari-
ant. We have not shown this space to be closed but, as will be evident, in none of our steps do
nonhomogeneous interactions arise.



4.2.5 Step 1: Integration

The first step of the RG procedure involves integration over the fast components fk
with 1 > Ikl > 1 - t. A/ntS is the O(t) part of equation 2.4, the discretized form of
which is

S'[] = -InJ dfke- S[0k+f]. (4.12)
kE89

Volume factors that arise from the discretization of the functional integral con-
tribute a constant to the action, and we ignore them. Taylor-expanding the action in
the fast fields f, we only keep the following terms5 :

S[~, + f] e S[s,] + E fs ,k
n,k afn,k f =0

1 82S
+- fn,-kfm,k. (4.13)

2 n,m,k afn,-kafm,k f=0

Let us rewrite this as

S[q, + f] • S[¢,] + E [Bk f- + ½f-kAkfk], (4.14a)
kE8Q

with

(Ak)nm S (4.14b)
Ofn,-kOfm,k f=0

(Bk) -=- (4.14c)
Ofn,k f=o

Our space-fields O(x) are real, so their fourier transforms obey

0-k = 01. (4.15)

S is real, so

Ak = Ak (4.16a)

Bk = Bk. (4.16b)

We may treat fk and f* as independent variables of integration in equation 4.12
if we restrict k0o > 0. We denote this half-shell domain Q0+. Equation 4.14 may be
rewritten

S[ks + f] e S[¢s] + E [Bk . fk + B" -f* + f*Akfk]. (4.17)
As discussed in section 2.9, all other terms contribute to S+ at O(t 2) or higher.

5As discussed in section 2.9, all other terms contribute to S' at 0(t 2 ) or higher.



The functional integral is a product of decoupled Gaussian integrals over the
variables fk and fk:

S'[¢,] = -In J dfkdf e -S[ ']-' kE8k+[B ' k+B 'fk+fAkfk]

kEd6+

S-ln e - s i H Jdfkdfek-[Bfkkl+B'f±fAkfk." (4.18)
kEOQ+

Using the formulae for Gaussian integrals provided in appendix D.2, we obtain

fkdkdf e-[Bk-fk+B*-f*+f*Akfk] -= eBkA2 Bk. (4.19)
f kdet Ak

The modified action, to within an insignificant constant, is (using det A = etrlnA)

S'[, 8] = S[, 8] +±E [tr InAk - BkA'1B*]. (4.20)
kEO9+

The sum Ekean+ is proportional to the volume of the shell, and is O(t). This is
readily seen in the infinite volume limit, where the Ek becomes an integral over a
shell of width t.

At this point, we could derive a general expression for AintU2n by substituting
the action 4.5 into equation 4.20 and extracting contributions with 2n fields. We
defer such an analysis to chapter 7 where it is conducted in much greater generality.
At present we only consider the space of local, non-derivative interactions; so the
U2n,ki...k2n have the form given by equation 4.6. Denoting by A2n and B 2n those terms
in A and B that derive from S2n, we find

(A2n,k)ij = 2nV 1- 2n"  6Ek, (mjki•m,,k 2  .. _-2,._n-,kn-.n-,k2n-4)
kl .. k2n-2<1-t

S[(2n - 2 )¢i,k2n-_3 j,k2n-2 + 6ij1L,k 2n-3¢1,k2n-2]U2n

(A2,k)ij = V- 16ij(k 2 + 2u 2 )

(B2n,k)i = 2nV 1-2n Z 6k+Eki (Omi,ki Omi,k 2
kl ...k2n-1<1-t

-... - ,kn-,2 n _ . ,k2n 2, ) i,k2n_1 U2n (4.21)

(B2,k)i = 0.

The last result arises from differentiating f(-k)f(k) with respect to f(k) and
setting f = 0. Note that, at the order to which we are calculating, k2 = 1 on the
shell. So



(A2,k)ij = V-'Sij(1 + 2u2 ). (4.22)

We could proceed to expand Ak and Bk around their quadratic parts, insert the
expansions into equation 4.20, and obtain a rather unwieldy expression. Since we will
eventually work in linear approximation, we defer expansion until then. For now, we
note that the result we would have obtained is a sum over products of Ak,2n and Bk,,
factors.

4.2.6 Step 2: Dimensional Rescaling

To O(t) we need only consider the effects of dimensional rescaling on S[O,]. From
equation 4.5,

00

S[9,] = E S 2n, [ (4.23a)
n=1

S2n [s] = V1- 2n IE Jki~k "'' k2nU2n,k-...k 2n. (4.23b)
k'i ..k2n <1-t

We define6

k1 = ki(1 + t) (4.24a)

'(k') - q(k'(1 - t)) = q(k). (4.24b)

We must treat the 6 function carefully. If we scale the density of momentum
space, the discrete 6 will contribute for more choices of kl ... k2 n. The proper manner
in which to deal with the discrete 6 is deducible from the analogous behavior of the
Dirac 6. From the transition relations 4.4 we see that the two types of 6 functions
scale the same way, so

6k'(1-t) = (1 + t)6 k. (4.25)
Likewise, we expect the summations to be changed by a scaling of the momentum

space density (they will now over-count by the scale factor). Again, from the tran-
sition relations we see that the sum scales like an integral in the limit. So for any
function F,

Z Fk = (1 - t)d E Fk'(1t). (4.26)
k<l-t k'<1

Substituting these into equation 4.23, we find

6This definition is only precise in the infinite volume limit. For a finite volume, k is discrete and
we assume the momentum lattice spacing to be sufficiently small to render our scaling equivalent.
We later take the infinite volume limit anyway, so this is reasonable.



S2n[¢s]-- (1 + t)d(l _ t) 2ndV1- 2 n E (6Ek Okk•". 'l%2tl2n,k(1-t)'...k•(1-t). (4.27)
kI...-kn <

1

We Taylor expand U2n as if the variables were continuous':

U2n,k'(1-t)--.k'(1t ) = 1 - t k kd j 2n,k-k--'k + O(t2) (4.28)

Combining these and extracting the O(t) part, we obtain

S2dim ['] = S2 [0s] (4.29)
'22n,

-- V1-2" E &•:¢•,k ' 'y, k 1 - 2ndt + dt - L kil,•nk -, .
kV - Uk k < 1 i=1 2

We read off Adim from this as the coefficient of the O(t) term:

2n 2
dim = -2nd + d -2 ki + . (4.30)i=1 k

This analysis may seem somewhat contrived; that is because we worked in a finite
volume. This step may be performed without ambiguity in the infinite volume limit
and then appears more natural.

4.2.7 Step 3: Field Normalization

We must now determine the effects of the first two steps on the kinetic term. As
is evident from equation 4.21, there is no part of AijtS from which a term of the
form ki - k, (with k < 1 - t) could arise. The only dependence on ki that appears
in the modified U2n is through products of 6 functions. The A 2 term involves k2,
but this is evaluated on shell (k 2 = 1). There is no place from which momentum
dependent Aint corrections can arise in a local, non-derivative theory. The only
possible modification to the kinetic term is from momentum scaling. Applying Adim
to U2:kin,k,k = - k•k k2 , we find

AdimUkin = -(d + 2)Ukin. (4.31)

The requisite scaling is

Sy2rm["] = S[0- ] (4.32a)

" - ZOs (4.32b)

Z= 1 - (d + 2)t, (4.32c)

7From the transition relations 4.4 it is evident that this does not give rise to volume factors.



and using the form 4.5 for S2n we have

S'rm[=" ] = [1 + n(d + 2)t + 0(t 2)]S2,[€"], (4.33)

from which we read off AnormU2n

AnormU2n = n(d + 2)u2n. (4.34)

4.2.8 Propagation of Constraints

Before removing our bounding box, we should address a perplexing difficulty that
arises. Suppose we perform an infinitesimal RG transformation on a local, non-
derivative theory. Our calculations show that the integration correction to u2n is
momentum dependent. For example, there is a modification to U4,k ...k4 of the form
6 kl+k 2 (this multiplies the overall 6 kl...k 4 ). In position space an example of a term that
arises (at O(t)) is8

S[f dx 2, (4.35)

which contributes to Aintu4,k ...k4 -
Such a term is highly nonlocal and cannot be expanded in derivative interactions.

In fact, no derivative interactions ever arise from a local, non-derivative theory. The
delta function interactions represent constraints. In diagrammatic language, Wegner
and Houghton's theorems demand that each vertex have vanishing total external
momentum. Each vertex, rather than each diagram, carries a momentum conserving
delta function. The implication is that the space of local, non-derivative interactions
is not closed.

One might be tempted to broaden the initial theory to include such delta function
interactions in the hope that the enlarged space is closed. It is not. Delta function
interactions breed theta function interactions and these proliferate wildly. The sharp
cutoff, through the Wegner-Houghton theorem, renders analysis feasible. At the same
time it leads to a propagation of constraints (delta and theta interactions).

The situation, however, is worse than this. Not only is the smallest closed inter-
action space huge and its interactions uncategorizable, it is ambiguous as well. In the
infinite volume limit, non-local terms of the type described are not well defined.

Many attempts have been made to extract the local part of the delta function
interactions[6, 8, 16, 13]. Usually, the individual external momenta are set to zero
(as if the AU2n,ki ...k2 are Taylor expandable) and the resulting expression employed.
Unfortunately, in the infinite volume limit the "local" part, ill-defined to begin with,
vanishes in this analysis.

It may seem that all is lost. The sharp cutoff that makes calculation tractable
also appears to make it useless. Indeed, we cannot search for fixed points or study

8This arises from the tr(A-1 ,A 4 )2 term in the expansion of equation 4.20 about the part of A
from Skinetic. See section A.3 for details.



general flows using this scheme. However, there is one significant calculation to which
this method is well suited. To linear order near the Gaussian fixed point, the flow
equations are unambiguous. It is this case that we now proceed to examine.

4.3 Near the Gaussian Fixed Point

4.3.1 Linearized equations

We treat the entire action-except the kinetic term- as small. For convenience,
we denote' linear order in all parameters (u2 , u4 .. ) by O(r) (recall that r = 2u 2).
The third step of the RG procedure ensures that the kinetic term remains unaltered.
Therefore we refer to this term as 0(1). From equation 4.21 we know that B2 is zero.
The only 0(1) contribution to A or B is from the kinetic term, so B - O(r). A does
receive a contribution from the kinetic term. We divide A into a kinetic part Akin
and a non-kinetic part A' (note that u2 is contained in A').

(Akin)ij = Vij (4.36)

Both A and A- 1 are 0(1). The BA-'B* term in Aint is O(r2), and may be
neglected. The logarithmic term can be expanded:

tr In A = tr in Akin + tr In(I + A "',A')

~ tr In Akin + tr(Ad,',A') + O(r 2)
= tr In Akin + tr(VA') + O(r2). (4.37)

The (tr In Akin) term contains no q dependence, and we ignore it. The integration
correction to the action is

Sint - S = V tr A'. (4.38)

Using equation 4.21, and noting that tr I = N,

Sint - S = V E E 2nV 1-2n Eki mi,ki mi,k 2
kEa•+ n=1 ki .. k2n-2 <l-t

S... m,1,,k2n-3 n- 1,k2n-2 [(2 n - 2) + N]u2n. (4.39)

The modification to S2n-2 comes from A2n. Recalling that S2n- 2 is defined as

S2n-2 = V3 - 2n E kiki ''...' k2n-2U2n-2,ki...k2n- 2 , (4.40)
The parameters are all indepe k2n-2

9The parameters axe all independent; this is just a convenient notation.



the effect of the integration step is

AintU2n = I(2rn+2)(2n+N)[ u2n+2 (4.41)

Combining this with the results of the second and third steps,

AU2n= (2n + 2)(2n + N) U U2n+ 2 - t(2nd - d - n(d+ 2))u 2n

= (2n + 2)(2n + N) ]U2n2 + t(2n + d - nd)U2n. (4.42)

4.3.2 Removing the Box

The bounding box has served its purpose, and we may now take the infinite volume
limit using the transition relations 4.4:

Au2n = (2n + 2)(2n + N)[ (2)d U2n+2 + t(2n + d - nd)u2n. (4.43)

The integral is half the volume of a d-dimensional shell of radius 1 and width t.

J ddk Sd (4.44)(27)d 2'
an+

where

21-d .r
Sd= (). (4.45)

Finally, we obtain

dt 2  =Sd(n + 1)(2n + N)u2n+2 + (2n + d - nd)u2n. (4.46)
dt t=o

4.3.3 Closure

Local, non-derivative theories have been shown to give rise to delta function inter-
actions under RG transformations. The space of local, non-derivative interactions is
not closed in general. However, to linear order near the Gaussian fixed point it is
closed. The delta function interactions arise from the compounding of vertices, each
of which has its own momentum conserving delta function. At linear order, there are
no products of vertices. Therefore, no nonlocal interactions arise. We have already
seen that no derivative interactions arise in either case.

The closure of the space of local, non-derivative interactions at linear order near



the Gaussian fixed point means that we can perform calculations at this order without
worrying about influences from "outside" directions that we neglected to incorporate.
Any eigendirections we find in this restricted subspace are true eigendirections of the
full theory. If the subspace weren't closed at this order, outside interactions might
affect the eigendirections and render our calculations invalid. Of course, regardless
of whether the subspace is closed, there exist other eigendirections that do not lie in
the subspace. These needn't concern us, as they supplement rather than exclude any
eigendirections we might find.

4.4 Eigenpotentials

4.4.1 Derivation

Having calculated the infinitesimal flow equations to linear order near the Gaussian
fixed point, we are in a position to study the flow eigenstructure. As discussed in
section 2.8.2, the object of interest is the matrix M, defined by

du2n M
dU2n = MnmU2m (4.47)
dt t=o

From the flow equation 4.46 we observe that all elements of M are zero except for
those which lie either on the diagonal or immediately to the right of the diagonal:

Mr1 1 M12  0 0

M = 0 M22  23 M34 .. (4.48a)

with
M,n = (2n + d - nd) (4.48b)

Mn,n+1 = (n + 1)(2n + N)Sd. (4.48c)

The eigenvectors of this matrix can be determined recursively. For eigenvalue A,

(Mnm - A6nm)U 2m = 0. (4.49)

This constitutes an infinite set of simultaneous equations

(2n + d - nd - A)u2n + Sd(n + 1)(2n + N)u2n+2 = 0 (4.50)

and, for any real eigenvalue A, recursively defines an eigenvector

A A + nd - d - 2n ]A(4.51)u2n+2 (n + 1)(2n + N) Sd 2n

We may solve this for u2n in terms of an initial condition u2. In the interest of
clarity, we employ r = 2u 2 as our initial parameter and define a new eigenvalue label



a(d-2) a(d-2) 2r2
U4 = 2(N+2)SdU2 U4 U4(+2) U4 3

S(a+l)(d-2) _ a(a+l)(d-2)2  44 a( a +
U6 " 7- 3(N4)SdU 4  U 6 - 12(N+4)(N+2)S r u 6  9 + 1)r

(a+2)(d-2) U a(a+l)(a+2)(d-2) 6
U8= 4(N+6)Sd U6 8 48(N+6)(N+4)(N+2)S r 8  45 a(a + 1)(a 2)r
a. b. Ic.

Figure 4-1: Examples of coefficients: a. Recursive definition, b. As functions of
r = 2u 2 for general d and N, and c. As functions of r for d = N = 4.

A-2a -
d-2

The parameters a distance r along an eigendirection labeled by a are10

a - r d - 2)n-l=a
2n 2 2Sa

(4.52)

(4.53)

We note that complex eigenvalues yield complex eigenvectors and are unphysical.
Some examples of coefficients are provided in figure 4.4.1.

The eigenpotential associated with an eigenvector is

00

Ua(q(x)) = E (()()) n"

n=1
(4.54)

These eigenpotentials have a closed form expression in terms of our vocabulary of
special functions. Substituting equation 4.53 into equation 4.54, one finds that

NSd
ua (2((x)) 1)(d- 2) (4.55)

(d - 2) 2

where (see appendix D) M(a, b, z) is Kummer's function, a type of confluent hyper-
geometric function defined by

(4.56)

For easy reference, we recall the definitions of all parameters in the eigenpotential:

* N is the number of field components.

* d is the number of space-time dimensions.

* r = 2u2 is the distance along the eigendirection.
d

* Sd = 2ld)

Sa -2 where -oc < A < oo is the associated eigenvalue.• da-2

10 withx! =_ P(x + 1).

(a + n - 2)!(N)!
(a - 1)!(" + n - 1)!n!

(a b, ) -(b- 1)! 1 z n (a + n - 1)!

(a- 1)! Y=o n! (b + n - 1)!



4.4.2 Truncations and Polynomials

The vast majority of eigenpotentials are nonpolynomial. They behave like exponen-
tials for large field amplitudes. If we had truncated our eigen-calculation at any finite
order, regardless of how large, we would not have found these solutions.

There is a small set of polynomial eigenpotentials. If there exists an integer n > 0
for which A + nd - d - 2n = 0, the recursion relation 4.51 truncates and all higher
coefficients vanish. The condition is that A = (-nd + d + 2n), or a = (1 - n), for
some n > 0. The case a = 0 (A = 2) corresponds to a massive free field theory. If
a = 1 - n, the eigenpotential is a polynomial in ¢2 of order n.

4.4.3 Relevant and Irrelevant Directions

An eigenpotential is proportional to r and scales in the same manner as does r under
RG transforms. Along an eigendirection with eigenvalue A, this scaling is (t > 0)

r(t) = roeAt. (4.57)
As discussed, an eigendirection with positive A is relevant. Since renormalized

parameters also scale like r, such a direction of approach to the Gaussian fixed point
is asymptotically free.

The relevant directions correspond to A > 0 or a > -2". In d = 4, this means
a > -1. The lower bound on relevant a's decreases toward -oo as d -- 2+.

Polynomial eigenpotentials correspond to nonpositive integers a. In d = 4 the only
relevant polynomial theory is the free theory a = 0. As d decreases toward d = 2, the
number of relevant polynomial theories increases. For example, in d = 3 directions
with a > -2 are relevant, and the ¢4 polynomial theory with a = -1 is relevant. In
d = 4 all relevant interacting eigenpotentials are nonpolynomial.

4.4.4 Marginal Direction and Wilson Fixed Point
The marginal direction A = 0 (a = -2) corresponds to motion within or tangent to
a dense region of fixed points. In general, the associated eigenpotential is nonpolyno-
mial. However, in d = 4 it is a b4 theory and points in the direction of Wilson's fixed
point[23] in the u2 - u4 plane. In d = 4 - E dimensions, Wilson's fixed point is O(e)
away from the Gaussian fixed point. As d -+ 4, it moves toward the Gaussian fixed
point, merging with it in d = 4. The marginal eigendirection in d = 4 points along
the path by which the two fixed points merge. The direction is

-U 2
4 2 (4.58)

(2 + N)Sd

4.4.5 Symmetry Breaking

Certain eigenpotentials exhibit symmetry breaking. No closed form expression exists
for the zeros of the Kummer function, so we test for symmetry breaking by examining
the low and high field behaviors.



Figure 4-2: Plots of the eigenpotential for various a between -1 and 0. The shallowest
curve corresponds to a = -1.

The potential U is zero when r = 0. For small ¢, U is dominated by its first
derivative:

dUa ( 1
d( 2) = -r. (4.59)
d(02) 02=0 2

For r < 0 and q small, U is a decreasing function of q. Symmetry breaking
occurs if U is an increasing function at large 0, because the global minimum will
then be finite. Using the asymptotic formula for the Kummer function provided in
appendix D, we find

S ()! za-l

r-( 2 z 2 (4.60a)(d -2) (a - 1)! (4.60a)

with

(d - 2) 2

z 2Sd (4.60b)

The power and exponential factors are positive. The potential is positive for r < 0
if (N•2) < 0, so symmetry breaking requires that (a-1)! be negative. (a- 1)! = r(a)

is negative iff -2n - 1 < a < -2n for non-negative integer n. Symmetry breaking is
present when a E [-1, 0), a E [-3, -2), etc..

In d = 4, the only symmetry-broken relevant eigenpotentials are those with -1 <
a < 0. A sequence of these potentials is plotted in figure 4-2.



Figure 4-3: The progression of potentials in d = 4 from a = -1 to a = 0.

4.4.6 How the potentials vary from a = -1 to a = 0 in d = 4

In d = 4, there is a progression from a symmetry-broken 04 theory at a = -1
through a sequence of nonpolynomial symmetry-broken theories -1 < a < 0 to an
unbroken free theory at a = 0. The 04 theory, a = -1, exhibits the shallowest
symmetry breaking of the lot. As we increase a, the minimum moves downward and
outward until a = 0, where the potential is a negative parabola"1 . This progression
is illustrated in figure 4-3.

4.4.7 Sine-Gordon Potentials in d = 2, N = 1

To treatl 2 the case d = 2, we return to our original recursion formula 4.51

+2 A-2 ]u (4.61)
un+2n (n + 1)(2n + N)Sd 2n,

with S2 = 1. Solving for uA,

= (A2 2 nl ( )!]u 2  (4.62)U2n = 2S2 n!( N + n - 1)!

For one field component (N = 1), this is

Un A= A 1• 21  1  2 . (4.63)
2S2n

"It is negative because we chose r < 0, appropriate to symmetry breaking; for the free theory,
r > 0.

12The ideas and results in this section were contributed by Immirzi[10].

~

a=-- 1 a=O



Noting that (2x)! = (x - )!x! and ()! = ", we find (in terms of r = 2u 2)

2A-4)n-1

un = r (2n)! (4.64)

The associated eigenpotential is

UA(q) = r S2 4) (2A - 4)n2 1 02n, (4.65)

which sums to a cosine

U'() = r (S2 [cos ( ) -2 1

r(2A - 4)

4ir(A•- 2) cos 47r(A - 2)) - 1]. (4.66)

This is the Sine-Gordon potential. In d = 2, our eigenpotentials are Sine-Gordon
potentials.

4.4.8 Broken Eigenpotentials

We observed that certain eigenpotentials exhibit symmetry breaking. In d = 4 these
correspond to -1 < a < 0. For such theories, it is the broken potential expanded
around the vacuum, rather than the eigenpotential itself, that is of physical interest.
Calculation of the broken potentials is straightforward but involved, and we defer a
detailed derivation to appendix B. Unlike the eigenpotential, the broken potential
involves terms with odd powers of the field.

Let q = p be the location of the minimum of the eigenpotential U. No analytic
expression for p exists, so we define it implicitly by

d = 0. (4.67)

Substituting equation 4.55 and using the derivative relations for Kummer func-
tions described in appendix D, we find the defining condition to be

M (a, N/2 + 1, (d-2)p2 0. (4.68)

To obtain the broken potential, we expand the eigenpotential in a new dynamical
field, $', around the minimum p:

UV() = U(p + 0') E V(('). (4.69)

We parameterize this in the same manner as we did U, but allowing for odd terms
as well.



00

V(¢') = E v¢' n. (4.70)
n=O

The couplings v, are obtained from U by Taylor expanding equation 4.69.

1 d"U
n = d (4.71)

n! dpn

The vn may be computed by expanding U in U2n, differentiating n times, and
resumming. The Kummer function takes p2, not p, as its argument, so the differenti-
ation relations of appendix D are not directly applicable. The vn in the case N = 1
have a particularly simple form, and it is this which we calculate in appendix B.
There, we find that

v2n = u2nM(a + n - 1, p2 (d - 2) (4.72a)
2' 2Sd

V2n±1 =PU2 (2(d-2) )(a+n-i 3 p 2 (d-2) (472b)
S+ 2n + 1 u2S 2Sd

4.5 Summary

1. We showed that the space of local, non-derivative interactions, though not closed
in general, is closed to linear order near the Gaussian fixed point.

2. We studied the flow structure near the Gaussian fixed point and found the
eigenpotentials to be

NSd (d - 2)042
U((x)) = [M(a- 1, N/2, (d - ) - 1 (4.73)

(a - 1)(d - 2) 2Sd

where

* N is the number of field components.

* d is the number of space-time dimensions.

* r = 2u 2 is the distance along the eigendirection.

* Sd = 21- .

* a = -2 where -oo < A< co is the associated eigenvalue.

* M is Kummer's function.

3. We classified the eigendirections as follows for general dimension d (n is any
odd positive integer and m is any positive integer):



a IA IBehavior

0 2 Free theory
2 0 Marginald-2

>-2 > 0 Asymptotically free
[-n, -n + 1) [2(n + 1) - nd, 2n - d(n - 1)) Symmetry Broken

1 - m 2 + (d - 2)(1 - m) Polynomial

and for d = 4,

a A Behavior
0 2 Free theory

-1 0 Marginal
> -1 > 0 Asymptotically free

[-n, -n + 1) [2- 2n, 4- 2n) Symmetry Broken
1 - m 4 - 2m Polynomial

4. In the case d =
potentials.

2, N = 1, the eigenpotentials were shown to be Sine-Gordon

5. We outlined the procedure for determining symmetry-broken potentials, and
stated the results for N = 1:

v 2n=u 2 nM(a+n-( 1 p2 (d- 2))
)( )( 2Sd

Sd 2n + 1 2) 2Sd

(4.74a)

(4.74b)



Chapter 5

Scattering

5.1 Overview

Our analysis of the flow eigenstructure near the Gaussian fixed point revealed the
existence of asymptotically free scalar field theories corresponding to nonpolynomial
potentials. In this chapter and the next, we calculate physical quantities within
these theories[5]. In the present chapter, we compute scattering amplitudes and
cross sections to lowest order in perturbation theory and analyze the high energy
scaling behavior of the cross sections. Approaches to and difficulties with higher order
calculations are discussed. We conclude with a summary of the results obtained.

Several of the calculations constitute lengthy digressions and are presented in
appendix C. These include some of the scattering amplitude computations as well as
a derivation of the kinematic part of the cross sections.

Throughout this chapter, the next chapter, and appendix C we work in d = 4
dimensions with a single component (N = 1) scalar field theory. Extension of our
calculations to general dimension d and to O(N) symmetric theories is straightforward
but combinatorially involved.

5.2 Diagrammatic Difficulties

Even lowest order calculations require the evaluation of an infinite series of diagrams.
Diagrammatic perturbation theory is adapted to potentials consisting of a finite num-
ber of monomial interactions. Nonpolynomial theories involve an infinite number of
different vertices. An example of the consequent proliferation of diagrams is illus-
trated in figure 5-1. A single-vertex graph is shown, along with some of the other
graphs that contribute at the same order. These graphs are obtained from the orig-
inal by attaching self-contractions to the vertex. Worse types of sums appear at
higher order. As will be discussed, the self-contracted sum of figure 5-1 can be dealt
with by employing "resummed" vertices, rather than those obtained directly from the
potential. However, the nastier higher order sums are not so easily circumvented.

To properly deal with nonpolynomial potentials, a new form of perturbation the-
ory must be developed, as the standard diagrammatic techniques prove inadequate.



Figure 5-1: A single-vertex 4-point diagram and its self-contracted brethren.

However, at lowest order we can successfully compute scattering amplitudes using
ordinary perturbation theory. Although involved, the calculation is tractable.

5.3 Scattering Amplitudes

To compute lowest scattering amplitudes we must evaluate the n-point analogue of
the series of diagrams depicted in figure 5-1. We work in Euclidean momentum space
and with dimensionless objects (the cutoff A = 1). The Euclidean space Feynman
rules are provided in figure 5-2. As mentioned, we consider the case of one field
component (N = 1) and d = 4 space-time dimensions.

5.3.1 Unbroken Potential

The scattering amplitudes for an unbroken theory are'

= (2j + 2n)!A2n = E U2j+2nl j  2j + (5.1)
j=0 2J!

where I is the self-contracted propagator. I is independent of the external momenta
and can be computed (in terms of r = 2u2):

I 1 (21r)4k2 _+ r  (21± ). (5.2)

We can substitute the eigenpotential parameters u2n from formula 4.53 into equa-
tion 5.1 and evaluate the resultant series. This involves some tricky combinatorics
and is performed in appendix C. The result is

A2n = 2n(2n)- r In r (5.3)

'The sum is over the number of self-contractions.



Figure 5-2: The Euclidean space Feynman rules.

5.3.2 Broken Potential

The calculation of scattering amplitudes for symmetry broken potentials proceeds
analogously to that for the unbroken potentials, but with three important differences:
(i) there are odd vertices, so there are scattering amplitudes involving odd numbers of
particles, (ii) the calculation is more difficult because the coefficients vn are themselves
computable as infinite series (Kummer functions), and (iii) the propagator is modified
because the mass term in the broken potential is not r. From equation 4.72, we have

r 1 p2
v2 = 2M (a, ,2 -S4) . (5.4)

For convenience we define f, the broken analogue of r, as

= 2v 2 = rM(a, ,I ). (5.5)

The broken propagator is

I' 1 d4k 1 + f In (5.6)
(27r) 4 k 2 + f k 2 1+

and the scattering amplitudes are

• (n + 2j)! (5.7)
j=0

We must treat the even and odd amplitudes separately. Again, the calculation
is combinatorially messy and we defer it to appendix C. There, the amplitudes are

1

2
k +2u

(2n2

) n2( .-

= U2n (n=2...)

(2n)



found to be

SI-n"22n-2(a + n -2)! 1 l-a-nM ( 1 p 2
(a - M a + n 1- 1 2' -S4ln

S4-n22"(a + n r )-a-n a 2
A2n r (a- 1)1 1 + 2 2 -S4 2n (5a)

5.4 Field Scaling

There appears to be a significant problem with the scattering amplitudes 5.3 and
5.8. The closer our approach to the Gaussian fixed point, the larger the amplitudes
grow. As we let t -+ -oo, r(t) - O0. We are examining relevant eigendirections, so
the scattering amplitudes diverge in the high energy limit. Though this may seem to
indicate a serious flaw in our programme, it is actually not a problem. A simple field
renormalization removes the divergences. The field that appears in the action is not
the physical field; to obtain the physical field, we must scale it. The renormalized
field, potential, and parameters are

Or - Z¢ (5.9a)

Ur (Or) U U() (5.9b)

Ur (Or) = 2n Ur0•2n (5.9c)
n=1

u, = Z-2n 2n. (5.9d)

There is also a kinetic counterterm. The Greens functions for the two theories are
related by2

G(n)(x I ... X,) = (0o T(x 1 ) ... 0 (x) 0) (5.10a)

GPn) (X .. Xn) = (01TQr (x1) .- , r(xn)1) 0 (5.10b)

GCr)(xn l . .. x) = Z G(n)(x .... x,). (5.10c)

The propagator also scales, because it is the free two-field VEV. Denoting the
propagator by P(k) and the free field by 7f,

P(k) = J dxeik-x Tb f (x)f (0) 0 (5.11a)

Pr(k) = Z 2P(k). (5.11b)

The scattering amplitudes are amputated Greens functions- ordinary Greens

2 The actions are the same for the two theories. We have simply changed what we call "the
interacting part." However, the Greens functions differ because of the field scaling.



functions divided by external propagators. Therefore they scale differently from the
Greens functions:

1 1
A2n (ki n)= .. ... (2n )(kl ... k2n) (5.12a)P(ki) P(k-2n

A2,(ki . .. k2n) = Z-2A2n(k ... k 2n). (5.12b)

As we scale the cutoff to infinity, r -+ 0 and Z diverges. Both U2n and u2n
approach the Gaussian fixed point. However, the couplings are no longer of direct
physical significance in a nonpolynomial theory. Rather, it is the scattering ampli-
tudes that concern us. As r -+ 0 the renormalized amplitudes vanish, demonstrating
the expected asymptotic freedom.

5.4.1 Unbroken Potential

From equation 5.3 it is evident that the scale factor

Z = (5.13)
-rln r1+r

removes the divergences in an unbroken theory. The renormalized scattering ampli-
tudes are then

An, = u2n(2n)! ( r In (5.14)

which converge as r -+ 0 for a < 2.

5.4.2 Broken Potential

The scale factor obtained from equation 5.8 is

1
Z = 1 , (5.15)

where we recall that

S= rM(a, I, ).  (5.16)

The renormalized scattering amplitudes from equation 5.8 are

S41-n 2 2n-2(a + n - 2)! f In 1-a1 p2A 2n. = r ( n M1 - (5.17a)
(a - 1)! 1+ f a n, 2' -S4f In i

A 2n+1 =rp S (a ) In M a+n, , ) . (5.17b)



We may express these more concisely using the broken coefficients vn. The v, are
functions of the minimum p. Let us write this dependence explicitly as vn(p). We
recognize the Kummer function of equation 5.17 as that appearing in the expression
for v,(p), but with p replaced by pr - Zp. Of course, p, is not a minimum of U; but,
it is perfectly valid to evaluate v,~(pr).

Recognizing the coefficient in equation 5.17 to be v,(Pr),

A = vn (r) (n!)(- In f1 )+ (5.18)

There remains one divergence. As r -+ 0, Pr -+ oo. The Kummer function behaves
like an exponential for large values of its argument, so the divergence has the form
of an exponential. This divergence has an interesting physical explanation. A broken
theory has two wells. In an ordinary symmetry broken theory (eg. $4), scattering
amplitudes are calculated in one of the two wells. They possess no knowledge of the
other well. Unfortunately, each scattering amplitude in our theory has contributions
from v• with arbitrarily large n. The vn is the nth derivative of the classical potential
U at the minimum. Because our scattering amplitude involves derivatives of all orders,
it is not "local" in field space. By contrast, the scattering amplitudes of symmetry
broken ¢4 theory involve only a finite number of derivatives of the classical potential
and are "local" in field space. Our scattering amplitudes see tunneling contributions
from the other side of the hump. This is a direct consequence of the exponential
nature of the walls of the well. To summarize, we cannot construct a symmetry
broken theory in which the physics arising from the two vacua are isolated.

The location of a minimum remains fixed as r -+ 0; it is independent of r. However,
the depth of the minimum is proportional to r. Consequently, as r -+ 0, the depth-
width ratio vanishes. Tunneling effects become progressively more significant. This
leads to strange behavior on the part of the scattering amplitudes. The inability
of perturbation theory to account for the tunneling effects manifests itself as an
exponential divergence in the broken theory's scattering amplitudes.

5.4.3 Defining a Resummed Vertex

The series of graphs in figure 5-1, summed to compute the scattering amplitudes, gives
us a clue as to how we might simplify higher order calculations should we attempt
them. Associated with any diagram is a series of kindred diagrams that differ solely
in the number of self-contractions on the vertices. If we replace our ordinary vertex
with a "resummed" vertex, defined as the sum of all self-contracted vertices with
the same number of external lines, the diagrammatic expansions simplify drastically.
Unfortunately, higher order calculations still involve infinite sums, and convergence
issues are difficult- if not impossible- to deal with.

An intuitive notion of these difficulties presents itself. In ordinary perturbation
theory we think of the lowest order scattering amplitude as an individual vertex.
For a single-vertex theory this makes sense, but for a nonpolynomial theory it is no
longer true. It is the resummed vertex, rather than the plain vertex, that is the lowest
order scattering amplitude. Self-contracted vertices of all orders affect lowest order



scattering, and we can no longer interpret an individual vertex in the usual manner.
In computing an n-point amplitude, we obtained a factor of n! from counting the

permutations of external lines. This is unnecessary if we are computing a resummed
vertex. Therefore, we divide the n-point amplitude by n! to obtain the associated
resummed vertex. We denote the resummed vertices u' and v', and incorporate the
aforementioned field scaling.

In the unbroken case

u n = 2 n - r In , (5.19)
1+r

and in the broken case

vn = V (Pr) - f In 1+ f (5.20)

Although we incorporated the original two-point interaction into the propagator,
an independent resummed two-point vertex arises. If we are calculating to higher
order, we may also incorporate this in the propagator.

5.5 Scattering Cross Sections

The computation of scattering cross sections is straightforward. We are dealing with
a single particle theory, so decays are kinematically disallowed3 . In the unbroken
theory, the simplest scattering is 2 -+ 2. In a symmetry broken theory, odd vertices
are present, but the simplest kinematically allowed scattering is still 2 -+ 2. We
therefore compute this cross section.

5.5.1 Kinematics

The cross section at energy E in the center of mass frame is (see, for example, Itzykson
and Zuber[11])

o2- (E)= (2E 2  4m (A)2 d3pl d3p 2

2 2E E2 - 2 (2)2w, (27r) 32w,2
.(27r) 4 13(il + 2)6(Wpl1 + Wp2 - E). (5.21)

At lowest order, the scattering amplitudes are momentum independent, and the
phase-space integral is purely kinematic:

o2-+2(E) = KE(Ar)2 , (5.22)

where KE is the kinematic factor. In appendix C we find KE to be

3In the center of mass frame, a particle cannot decay into multiple particles of the same mass.



KE- 32= E2  (5.23)

Noting that, from equation 4.53,

ra 4r 2ra
U4  , (5.24)

6S4 3

and substituting equations 5.23 and 5.14 into the cross section 5.22, we obtain

32a
2

r
2

ir
3 ( in r) 2- 2 a

a2-+2(E) = 2 - r In (5.25)

The scattering cross section in a symmetry broken theory is obtained analogously
by employing the broken amplitude 5.18 instead of the unbroken one.

= 32a 2r 27r3  ± 1 p2)2( n f)2-2a
a2->2(E) = E2 M a + 1, 2 n  (5.26)

5.5.2 Scaling behavior

Consider an eigenpotential (broken or unbroken) with associated eigenvalue A. We can
choose a point at a distance ro along this direction and associate with it a physical
energy scale E0 . The choice of Eo is arbitrary; we cannot constrain it within our
theory. As discussed in section 2.5, the mass scale changes under the RG operation
and the energy E scales as E = Eoet. We can use this to obtain the scaling of r with
energy4 E,

r(E) = ro (5.27)

The cross section has units of inverse momentum squared and scales as E0/E 2 .
For r small (E large), we approximate

r In r In r. (5.28)
1+r

The scaling behavior of the cross section as a function of the energy E for large
energies is:

92-+2(E) t [8(A - 2)27 3r6-AE -\A4-] EA2-6A-2(ln E)4-A (5.29)

for the unbroken case, and

(2-+2(E) e [8(A - 2)2r3 r - E 4 A - M a + 1, 2M a, , 2

-EX 2 -6A-2(ln E) 4-A (5.30)

4F scales the same way.



for the broken case. The scaling behavior in both cases is given by (with c some
constant)

a2-+2(E) cEA2-6A--2(ln E) 4- -. (5.31)

The cross section diverges at large energies unless A2 - 6A - 2 < 0. We therefore
require that 6.32 > A > -. 317. Outside this range our calculation is invalid.

5.6 Summary

We have computed, at lowest order in perturbation theory, the scattering amplitudes
for both symmetry broken and unbroken eigentheories. The nonpolynomial nature of
the potentials makes higher order calculations intractable. Even at lowest order, an
infinite series of diagrams had to be evaluated. The results required a field renormal-
ization to be physically useful. The 2 -+ 2 scattering cross section was computed and
its high energy scaling found to be (for both broken and unbroken theories, and with
6.32 > A > -. 317)

o2-+2(E) , cE 2-61-2(ln E)4- X . (5.32)



Chapter 6

Effective Potential

6.1 Overview

We noted in chapter 5 that perturbative calculations are intractable beyond lowest
order. This severely limits our ability to compute quantities of physical interest. One
of the few significant calculations we can perform is that of the i-loop effective poten-
tial. This is rendered feasible by Jackiw's functional method[12]. In such functional
approaches lies our greatest hope for understanding the physics of nonpolynomial
theories.

Because no closed form expression exists for the zeros of a Kummer function, most
of the results relating to the 1-loop effective potential must be obtained numerically.
Nonetheless, certain physically interesting properties manifest themselves. Partic-
ularly, we can identify a phase boundary between symmetry broken and unbroken
theories[5].

We begin by carrying analytic calculation of the effective potential as far as possi-
ble. We then examine the effect of radiative corrections upon the classically symmetry
broken and unbroken eigenpotentials. We demonstrate that radiative corrections sup-
press classical symmetry breaking in a wide range of theories. However, we find no
instances of radiatively induced symmetry breaking. After identifying a phase bound-
ary between symmetry broken and unbroken theories (in r - a parameter space), we
discuss the possible implications for particle theory. As in the preceeding chapter, we
work in d = 4 dimensions and with N = 1 field component.

6.1.1 Jackiw's Method

With cutoff A = 1, Jackiw's functional formula[12] for the i-loop effective potential
V is (see, for example, [9])

1 U" () u( 1In )) (6.1)
V() = U() + 3 + In U") . (6.1)

An eigenpotential is proportional to the small parameter r. For convenience, we
isolate this dependence by defining a function f that is independent of r,
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Figure 6-1: Some effective potentials with -1 < a < 0.

U(O) - rf (). (6.2)

The 1-loop effective potential has three parts: O(r), O(r2 1n Inr), and O(r 2). Again,
we may isolate the r dependence by defining

V(¢) = rho(¢) + (r2 In Irj)hj(¢) + r2 h2 (¢), (6.3)

with

ho = f + f" (6.4a)

(f") 2hi -4 2  (6.4b)647r2
(f,")2 ( 1

-2 6+4n In (6.4c)
2 6472 2

A sequence of effective-potentials, with a varying from -1 to 0 and r fixed, is
plotted in figure 6-1.

6.1.2 Qualifiers

We note that the function V(O) in equation 6.1 is only the effective potential for
101 > jIminl, where Cmin is the location of the minimum of V. For 1I1 < I~minJ,
the Legendre transform used to construct the effective potential must be defined
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geometrically' and does not correspond to equation 6.1. The V of Jackiw's method,
however, is fine for our purposes if we consider only the real part and are careful
about the domain of applicability.

A more significant consideration is the range of validity of our calculation as a
function of r. Our derivation of the eigenpotentials was valid to linear order in r.
Any calculation of a physical quantity from such a potential should not be able to
be carried beyond linear order. Beyond this order, nonlinear RG corrections might
affect the results. Our i-loop calculation is carried to O(r2 ). We do not expect the
0(r 2) part to be accurate, because the RG will generate nonlocal corrections at that
order. However, there is no mechanism for the RG to generate logarithmic corrections.
Therefore, we have reason to believe that the O(r 2 n Inrl) part of the 1-loop effective
potential is valid. Although we include the O(r2) part in our discussion, it does not
affect the results. The radiative corrections are primarily effected through the 0(1)
and logarithmic terms.

6.2 Location and depth of minima

Radiative corrections affect both the location and depth (and sometimes existence) of
the classical minimum. We can expand the location of the minimum of V in powers
of r,

0min -. o + (r In Ir •)4 + r• 2. (6.5)
Note that ¢0 is the minimum of ho(4), not of U(¢). Because there is an 0(1)

correction to the potential, we expand around the minimum of the 0(1) term rather
than of the classical potential. The corrections are

h'
01= - (6.6a)

hl
2= h" (6.6b)

Noting that

hl = ' + 3•f' (6.7a)

h = 32 (6.7b)1 3272

h= 32 In If", (6.7c)
3272

this is (with f and its derivatives evaluated at o0)

1See, for example, [3].



(a) (b) (c)
Figure 6-2: Comparison of classical potential U and effective potential V for (a)
r = -0.02 and a = -0.5, (b) r = -0.05 and a = -0.9, and (c) r = 0.05 and a = 0.5.

f'f"
1 = (6.8a)

f",- f'

f'f"
q 2 = I ln f"/. (6.8b)

f, - fl

The shift in location of the minimum affects the depth only at O(r3 In Ir) 2), and
we ignore it. The depth of interest is not V(4min), because V(0) is no longer zero.
What we are really interested in is the difference

AV - V (Omin) - V (0) V(o0) - V(0). (6.9)

From equation 6.3 we obtain

AV = r[(ho(0o) -ho(0))+(r In Ir1) (h (qo) -hi (0)) + r(h2( o)- h2(0))] +O(r2 (ln Ir1) 2).

Using equation 6.4, this becomes (using f' to denote f'(0) and f' to denote f'(0o))

S 1 f"112 12 f2 f012

S+ (f - f)+(rlnI) I Inf" In f
32 f (r 647 2  64wT2  647r2

(6.10)
This is as far as we can carry analytical calculation. To further study the properties
of V, we must resort to numerical methods.

6.3 Phase Transition Boundary

Figure 6-2 compares the classical and effective potentials for three choices of (r, a).
In the first case, the effective potential maintains but dampens the broken nature
of the classical potential. In the second, the classical potential exhibits symmetry
breaking but the effective potential does not. In the third case, the classical potential

I I

I



is unbroken, as is the effective potential. As is evident from the second case, radiative
corrections can suppress classical symmetry breaking in our theories.

To determine whether symmetry breaking occurs, we examine AV. If a theory is
classically broken, there remains a nontrivial minimum in the effective theory, but it
may no longer be the global minimum. If AV > 0, the nontrivial minimum is local,
¢ = 0 is the global minimum, and no symmetry breaking is present. If AV < 0,
symmetry breaking is present.

Classical symmetry breaking occurs in the range of asymptotically free theories
-1 < a < 0. Numerical analysis of this region for various small r < 0 reveals a
boundary between broken and unbroken theories. A theory is parameterized by the
coupling parameter r, and the choice of eigendirection a. In a classical theory, the
r axis and a axis are boundaries between broken theories (a < 0, r < 0), unbroken
but unphysical theories (r < 0, a > 0 and r > 0, a < 0), and unbroken theories
(a > 0, r > 0). These boundaries remain; no radiatively induced symmetry breaking
is observed in numerical calculations. However, a new boundary appears. For -1 <
a < ac - -0.585, there is an r(a) such that symmetry breaking occurs if 0 > r > r(a)
and does not if occur if r < r(a). This boundary is plotted in figure 6-3. A comparison
of the classical and 1-loop phase boundaries is provided in figure 6-4.

Our calculation is valid for small r, so we expect only the small band of theories
close to the a-axis to be accurately described. Most of the phase boundary is beyond
the scope of our theory. Our calculation has alerted us to its existence and provided
clues as to its qualitative nature. In particular, one oddity is evident. If we choose
an eigendirection with -1 < a < ac, and send r -+ 0 (raise the cutoff), we pass from
an unbroken theory to a broken theory. Symmetry breaks as we go to higher energy.
This is the opposite of the usual state of affairs. The significance of this is unclear,
and we continue to explore the physical implications of this strange behavior.



Figure 6-3: Symmetry broken and unbroken regions for -1 < a < 0 and r < 0. The
region to the left of the curve is unbroken.
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Chapter 7

General Bose/Fermi Theories

All of our work thus far has been restricted to O(N) symmetric scalar theories.
While these are useful in modeling an approximate isolated Higgs sector, any realistic
analysis of a physical theory must involve more general scalar interactions, fermion
fields, and gauge fields. Gauge theories are beyond the scope of this thesis. A realistic
analysis of them is wanting and promises to prove treacherous. As a first step toward
understanding physical theories, we ignore gauge fields and only consider matter
fields. We allow our theory to possess both Bose and Fermi fields, as well as arbitrary
internal symmetries.

Realistically, there is no reason why gauge fields should not significantly influence
the flow structure of parameter space. We have already seen that artificial restrictions
to unclosed subspaces are not reliable. Why then should we consider the matter
interactions in isolation? The reason is twofold. First, it is the only analysis we can
perform. The sharp cutoff scheme, essential for calculation, explicitly violates gauge
invariance. No analogous gauge invariant cutoff scheme is extant. Second, there is a
small chance that gauge couplings are not as important as matter couplings. At any
stage of our process, we can imbue our theory with gauge structure via the minimal
coupling prescription. Covariant derivatives act like normal derivatives under the
RG operation. No derivative interactions arise in a local, non-derivative O(N) scalar
theory, and a similar result holds for general local, non-derivative matter interactions.
Therefore, it may be sensible to study a modified RG procedure that consists of the
three RG steps preceeded by deactivation of minimal coupling, and followed by its
reinstitution. This is not meant to be a proof that we can ignore gauge fields; it is
merely a plausibility argument.

In this chapter, we derive the linearized flow equations near the Gaussian fixed
point. The eigenstructure depends on the internal symmetries of the particular theory
under consideration. However, we are able to show that fermionic interactions act
independently in theory space. The Bose field symmetry structure alone determines
the significant aspects of the flow eigenbehavior near the Gaussian fixed point.



7.1 Overview

To study a general bose/fermi theory, we employ the same Wegner-Houghton flow
equations as were used for O(N) symmetric theories. Similar problems with constraint
propagation obstruct any search for fixed points. We can avoid replicating the details
of our previous calculation by noting that (1) the Wegner-Houghton theorems, rooted
in the sharp cutoff, hold for arbitrary bose/fermi theories, and (2) volume factors
arise and cancel one another in the same manner as they did for the O(N) theory.
Therefore, we work directly with infinite-volume fields.

We allow for two types of fields: real scalar and complex grassman. All spinor
and internal indices are collected in a single index. It is implicit that the action and
couplings obey whatever symmetries, internal or space-time, have been imposed. We
allow the couplings and kinetic terms to be very general. As before, the flow equations
are only unambiguous in linear approximation near the Gaussian fixed point. We will
employ this approximation at the earliest opportunity.

7.2 General Wegner-Houghton Equation

Denoting the scalar fields ¢ and the grassman fields 0 and V)*, the most general action
we consider is'

o00

S =•S2n,m•, (7.1a)
n,m=l1

with

S2n,m = dj dki "... ddk 2nd dpl . dmd dmdd ... dq (Eki + Ep - Eqi)

.oil (k,) ... qf 2n (k2n)?,P (q,)41  (p1) ... V)Pm (qm) O (Pm)

u .:::,(" (ki .l. k2nn .pl. Pm, q1. . qm). (7.1b)

Space-time homogeneity is implicit. The action is real and a Lorentz scalar. Ac-
cordingly, we only incorporate terms with equal numbers of 0 and ?* factors. The
q's appear in the momentum-conserving delta function with a minus sign because the
associated fields are complex-conjugated.

As before, we split the fields into slow and fast components

0(k) = ,s(k) + f(k) (7.2a)

Cs(k) = ¢(k)9(A' - 1kl) (7.2b)

f (k) = 0(k)O(IkI - A') (7.2c)

1We will sometimes use u(n) as an abbreviated notation for the full coupling function
i...• 2, (ki .. k2np .. "Pm,q1 q . m)

U0l...a,, * . , m. .f1·l"'nm



V(k) = pl,(k) + g(k)
Vs(k) = V(k)O(A'- Ikl)
g(k) = O(k)8(IkI - A'),

(7.3a)
(7.3b)

(7.3c)

and integrate over the fast components

S'[0,, q ,, sj ] = - In[Df][Dg*][Dg]e-s[I,+f ,'+9,I;+g*] (7.4)

The Wegner-Houghton theorem is based on domains of integration and is inde-
pendent of the symmetry structure of the theory. Therefore, the contributing terms
in a Taylor expansion of the action are

S[~, + f, O + g PO* + g*] S[O,,V4,, V;] + ddk fa (k) f k + ga(k)6g6 ,() _

+ g*(kg(k) S + 6fi(k) fj(-k)f 6f k)
=g=f=g= f==O

SS 1 2S6 2S+ (k) -f(k) f(-(-k)kg(k)f=g=0 f===0

+ -g(k)gp(-k) +•(-g(kg)(-k )

+ go•k(k)gk (k) + fk)go(-k) 62S

g(k)g(k) fg=0 f=g=O

+ fi (k) g* (k) ==o
Jg* (k)6 fj (k) f~g=0

Let us define

6SAi (k) i IA(k) 6 f (k) f

S 6S
Ba(k) = I)Jgo, (k)

62SCj(k) 6f (k)6f (-k) f=g=o

62S
Dpa (k) 62( 6gO(-k)6ga (k) f=9=0

62S
Epa(k) g ) (k

6gý(k)6ga(k) f =g=0

f=g=0

(7.5)

=g=0

f=g=0

(7.6a)

(7.6b)

(7.6c)

(7.6d)

(7.6e)

=0



Fai (k) 6 f . (7.6f)
-6g(-k)6 f(k) f=9=o

We note that

* A(-k) = A*(k).

* C(-k) = C*(k).
* C(k) = Ct(k).
* D(-k) = -DT(k).

* E(k) = Et(k).

* A, C, D, and E are even in the number of grassman variables and commute (in
the grassman sense) with everything.

* B and F are odd in the number of grassman variables and anticommute (in the
grassman sense) with each other and with other grassman variables.

Applying the grassman relations of appendix D, equation 7.5 becomes

S[q, + f, 4, + g, ?* + g*] m S[, 8, Os, ¢;]

+ j ddk [f (k)- A(k) + g(k) -B(k) + B*(k) g*(k)

1 1 1
+ - fT (k)C(k)f*(k) - -g T (-k)D(k)g(k)+ g*(-k)D*(k)g*(k)

2 2 2

- g*T (k)E(k)g(k) + g T (-k)F(k)f(k) - g*T(k)F*(-k)f(k)j. (7.7)

The fields at k and -k interact, so we can only separate the k components if we group
k and -k together and integrate over a half-shell OQ+. We define a composite field

g - g(-k) (7.8a)

and the composite matrices and vectors

M _ [E(k) 0 (7.8b)

1[ 0 D(-k) (7.8c)
2 D(k) 0

[ B*(k)+ F*(-k)(k) (7.8d)
SB*(-k) + F*(k)f(-k) (7.8d)

which obey

M= Mt (7.9a)



NT = -N. (7.9b)

Equation 7.7 is then

S[, 8 + f, s, + g, O + g*] S[,, 4,, ,O + j d dk[f(k) -A(k)+ f(-k) A(-k)

+ 1 f (k)C(k)f*(k) + 2 f (-k)C(-k)f*(-k)

- g*TMg - gTNg + g*TN*g* -- *g - g*'] (7.10)

The gaussian integral decouples in different components of k. We may consider
this as a product of integrals, one for each k. Using the formulae of appendix D, we
can evaluate the Gaussian integrals over g*g. Equation 7.4 evaluates to

S'[i, , •,;] = S[, 4i, *] - In [[Dfi[D[f *][Dg][Dg*] (7.11)

(e- f+ ddk[f.A+f*.A*+fTCf*]e¼ fa- ddkRTG-Rdt)]

where

H det G = ef ddktrlnG, (7.12)
k

and (Mr denotes the real part of M, Na is the antisymmetric part of N, etc.)

M[ + 2N A MT + 2N,•a
i-Mr+2Nr MI-2Ny

=[ -2iq77i
2i•r '

and it is understood that the functional integral is over components of f and g that
lie in the half-shell D~+.

To perform the Df integration, we must extract the f-dependent part of R. The
(det G) does not depend on f so we may pull it outside the integral. Performing the f
integral at this point is messy and leads to unenlightening results. We are interested
in the flow eigenstructure, so it is appropriate to implement the linear approximation.

The most general local, non-derivative theory has parameters

l.:::.2 (kl .. Pi kP., q ... qm) = 1(7.13a)
I13--3m il""3m

for n > 1 and m > 1, and quadratic terms

u ij  aijk 2 + bij (7.13b)

uag (,pk, + ap. (7.13c)



As mentioned, all the spinor indices and internal field indices are combined in a
and p. In the cases of physical interest, aij = iSij, and (4 is the direct product of yA
with some matrix in the internal indices. However, we have no need to specialize the
equations at this point. It is notationally cleaner to maintain our present generality.

Using O(r) to denote linear order in all couplings, the kinetic coefficients ( and
a are 0(1), and all other terms are O(r). We implement the same approximate
translation and Lorentz symmetries as in earlier chapters. In order for the action to
be a scalar we require that the grassman variables occur in conjugate pairs. Only
even powers of the scalar fields are included. As always, we must retroactively justify
our restrictions by proving closure of the subspace that they define.

One consequence of our restrictions is that the parameters A ... F can be classi-
fied by order in the couplings. The only possible 0(1) contribution to any of these
derivatives is from the kinetic terms. The kinetic terms do not contribute to A or
B because differentiation leaves one fast field factor, which vanishes when we set the
fast fields to zero. The kinetic terms are purely f*f and g*g. Therefore they cannot
contribute to D or F either. The categorization is as follows:

* A, B, D, and F are O(r).

* C and E are 0(1).

The RG-1R contribution from the grassmanian integration is O(r 2) and may be
discarded. This simplifies calculation dramatically because this term would have
contributed to the exponent in the scalar integration. The remaining integrals are
independent of the grassman result. Using the formulae of appendix D, we obtain

S[Df]e-f ddk[f.A+f*.A*+f* .f] _ n e .T C-1A
Sdet C . (7.14)

The A*TC-1A term is O(r 2), and we discard it. Plugging our result into equa-
tion 7.11 and ignoring constants, we have (to O(r))

S'[~,, 0b8, Vz] = S[qO, S7, V )] - II det C

= S[,, , *] - dk tr In G -trl In C . (7.15)

We separate G and C into kinetic parts and non-kinetic parts, and further subdi-
vide the non-kinetic part by parent term in the action:

G = Gkin + G' (7.16a)

G'= E Gn,m (7.16b)
n,m=l

C = Ckin +C' (7.16c)



00

C'= -E Cn,m. (7.16d)
n,m=l

Where appropriate, we designate with ' the non-kinetic part of other matrices as
well. We expand the logarithms as2

tr In C = tr In Cki, + tr In(I + Cji C')

tr In Ckin + tr(CýlnC') + O(r 2) (7.17a)

tr In G = tr In Gkin + tr ln(I + GT G')

tr In Gkzn + tr(G7-G') + 0(r 2 ). (7.17b)

The tr In Ckin and tr In Gkin terms contain no slow-field dependence. They con-
tribute constants to the action, and we ignore them. The modified action from the
integration step of the RG procedure is

--- ddk [- tr(G-1 G') - tr(C C')]. (7.18)

We are not finished. There is a crucial simplification that follows. The trace
is over internal indices. The only k dependence is in Ckin and Gkin because there
are no derivative interactions and the other parts of C and G arise from constant,
local-interaction terms. We may explicitly perform the integration. The shell is of
infinitesimal width t and radius 1, so

d ddk = t dk, (7.19)

where f dk denotes an angular integral. While it is natural to use the half shell 0Q+
for the f's (f(-k) = f*(k)), it is not natural to do so for the g's. This is partly what
led to our messy expression for G. We can derive Gkin from equation 7.13. Unraveling
the definition 3,

Dkin = 0 (7.20a)

Ekcin = ("k, (7.20b)

Vki n = 0 (7.20c)

kin 0 -(/ ku

2We needn't worry about ordering since the G's commute (in the grassman sense).
3Note that ( is real.



= [ 0 -I] (7.20d)0 -1

= ((Ik,) 1 [I 0

1 0"k, [1 0 (7.20e)
k2 0 -I

Gkin = Mkin Mkin

= -kinI] (7.20g)Gkil - ki I 0

tr(GL G') = 2 tr(Mj7 M')
1 k OE'(k) 0= k tr 1[ 0 -OE'(-k) (7.20h)

Because all non-kinetic terms are non-derivative, E'(k) is independent of k, and
E'(k) = E'(-k). Therefore the trace vanishes.

The point of this digression is that the O(r) contribution from the tr In G term
vanishes because the fermion kinetic term is odd in the momentum. We integrate
over the shell, and contributions from opposite points cancel. This was masked in our
calculation since it was necessary to group the k and -k together for the Gaussian
integrals to decouple. Evaluating4 Ckin = 2aij, the final result of the integration step
is:

S'[q,, 4OS , 1 ] = S[0 8, 97, 7s] + ItSd tr(a-'C'). (7.21)

We now assume that the kinetic matrix a is (as appropriate to scalar fields)

1
aij = 6 ij. (7.22)

After differentiating equation 7.1 to obtain C, the integration contribution to the
u's is

n i .::: . = 2S. ..i.:::iq-' I,,...,i,-_ 1, ,-,i2.+2 (7.23)Aintu = ''.. m --- 2Sd ... m (7.23)01.--3m q<r=1.--2n+2 31---0m

4There is a volume factor that we omit here. A careful analysis of the discretized case shows
that, as in earlier calculations, the volume factors eventually cancel.



The contribution to u(2) is from U(2m) and involves a sum over all possible
contractions of a pair of indices.

Dimensional scaling and field scaling are straightforward. The calculation pro-
ceeds analogously to our earlier development. However, there is one important dif-
ference. The canonical dimension associated with a Fermi field is (d+), whereas that
associated with a scalar field is (d+2. The fermion kinetic term has one k factor, so
the fields must have different dimensions to make the action dimensionless. uji.:::...2

is associated with 2n factors of the scalar field and 2m factors of the fermi fields, so
after appropriate analysis, we find

Anorm+dimnail:::2 -= t[-nd - md + d + 2n + m]u• :::... (7.24)

7.3 Fermionic Decoupling

A very important simplification follows from equation 7.23. Because the tr In G term
vanishes at O(r), the only contributions to (in) are from u(m) and itself. In a
theory with potential (with indices implicit)

U(07, 07, *) = E Um()O* -... '*0, (7.25)

the different m terms decouple. The bosonic interactions govern the eigenstructure
of the theory. The fermi interactions decouple. Each Um acts like an independent
scalar field theory. The presence of fermion fields is unimportant. At linear order,
the scalar fields, and the scalar fields alone, determine the flow eigenstructure.

7.4 Role of Symmetries and Invariants

As is evident from the renormalization group equations, the flow eigenstructure near
the Gaussian fixed point depends heavily on the internal symmetry structure of the
theory. To classify the independent parameters in action space, we must determine
the set of invariants of the internal symmetry group. Given a theory with a set of
fields that transform according to a certain set of representations of a group, we
may construct the invariant field polynomials by using a Clebsch-Gordon expansion.
Consider a product of n fields. An invariant polynomial of degree n will transform as
a singlet representation of the group. We take a direct product of the representations
by which the fields transform, and decompose it into a direct sum of irreducible
representations. A few examples of such Clebsch-Gordon decompositions are provided
in appendix D. We must also include the SO(3, 1) spinor structure of fermion fields
in the couplings.



7.4.1 Pure scalar O(N) symmetric theory
To make contact with our previous results, we consider the case of a pure scalar field
theory with an O(N) symmetry. The couplings (the invariant polynomials of O(N))
are then

u". =2"n 6ipl 'P2S iP2(7.26)
p(il ... i2n)

where p(il ... i2n) is a permutation of the indices. The only fundamental invariant
polynomial is qiji, so we could just as well choose

u - 2rn! 1,i2"" 5i2n-1)i2n" (7.27)

7.5 Remarks

Although further calculation is beyond the scope of this thesis, some comments about
possible continuations are in order. The exact dependence of the eigenstructure on the
particular symmetries and field representations of a theory has yet to be determined.
There are a number of simple models to which the results of such a study may be
applied. Finally, it would be very interesting to see whether a fruitful analysis of the
Standard Model could be carried out along these lines.



Chapter 8

Conclusions

8.1 Concise summary of results

* We have shown that, though not closed in general, the space of local, non-
derivative theories is closed to linear order near the Gaussian fixed point.

* We have discovered a set of asymptotically free eigendirections, corresponding
to nonpolynomial potentials, near the Gaussian fixed point in O(N) symmetric
scalar field theory. Some of these theories exhibit symmetry breaking.

* Our eigenpotentials are Sine-Gordon Potentials in d = 2, N = 1.

* In d = 4, N = 1, we computed 2 -+ 2 scattering cross sections and found
that they scale as E,2-6A-2(ln E) 4- at high energies for an eigentheory with
eigenvalue A.

* Radiative corrections at one loop are found to suppress symmetry breaking
in some cases, giving rise to a phase boundary between broken and unbroken
theories in r - a parameter space. No cases of radiatively induced symmetry
breaking are observed.

* In theories possessing Bose and Fermi fields with arbitrary internal symmetries,
the eigenstructure near the Gaussian fixed point is found to depend only on the
Bose symmetries. The Fermi interactions decouple from one another.

8.2 Comprehensive summary of results

We have used the Wegner-Houghton infinitesimal renormalization group equations to
study the flow eigenstructure near the Gaussian fixed point. The following are our
results:



8.2.1 Local, Non-derivative Field Theories
* The space of local, non-derivative field theories (Bose or Fermi) is not closed un-

der the RG operation in general. Nonlocal interactions arise, but no derivative
interactions arise (sections 4.2.8 and 4.3.3).

* The space of local, non-derivative field theories (Bose or Fermi) is closed at
linear order near the Gaussian fixed point. Any eigenvectors that lie within this
subspace are exact eigenvectors of the complete theory (section 4.3.3).

* The flow eigenstructure near the Gaussian fixed point is governed entirely by
the Bose symmetry group composition. Different Fermi interactions do not
influence one another under the RG flow at linear order (section 7.3).

8.2.2 O(N) Symmetric Scalar Theory
All results are from section 4.4.

* The eigenpotentials of O(N) symmetric local, non-derivative scalar field theory
near the Gaussian fixed point are

NSd [M( lN/ 2 (d - 2) (8.1)
Ua(M(x)) = r 2 (- 1)(d- 2)M(a - 12Sd ) - 1 , (8.1)2(a - 1)(d - 2) 2Sd

where (see appendix D) M(a, b, z) is Kummer's function, a type of confluent
hypergeometric function defined by

(b-l)! z " (a + n - 1)!

M(a, b, z)= - 1) n (+n(8.2)
(a - 1)! = n! (b + n - i)!

and

> N is the number of field components.

> d is the number of space-time dimensions.

> r = 2u2 is the distance along the eigendirection.

2
1

-dyr-
> Sd P7-)r(d)

Sa = ,-2 where -oo < A < oo is the associated eigenvalue.

* The associated coefficients are

U(O(x)) = U2n i X, i )n (8.3)
n=l

S (d-2'"-l[ (a-n-)l(N.u2 =r d - 2d -[ (a + n - 2 1)!n"
2n 2 2Sd (a - 1)!( + n - 1)!n! (84)



* The eigenpotentials are classified as follows for general dimension d (n is any
odd positive integer and m is any positive integer):

a A Behavior
0 2 Free theory
2 0 Marginald-2

>-2 > 0 Asymptotically free

[-n, -n + 1) [2(n + 1) - nd, 2n - d(n - 1)) Symmetry Broken
1 - m 2 + (d - 2)(1 - m) Polynomial

and for d = 4,

a A Behavior
0 2 Free theory

-1 0 Marginal
> -1 > 0 Asymptotically free

[-n, -n + 1) [2- 2n, 4- 2n) Symmetry Broken
1 - m 4 - 2m Polynomial

* For the case d = 2, N = 1, the eigenpotentials are Sine-Gordon potentials.

* The symmetry-broken potentials for a < 0 and N = 1 are

V2n - u2nM (a 2'1 p2(d - 2)
2n-l, 2Sd

3
+ n, 21

8.2.3 Scalar Theories with N = 1, d = 4

* The physical scattering amplitudes for the unbroken theory, after the requisite
field renormalization, are (section 5.4)

Ar = u2n(2n)!(- r 1n 1)r (8.6)

e The analogous amplitudes for the symmetry-broken theories are (section 5.4)

A• = Vn (pr)(n!) - In 1f 1-a (8.7)

* At high energies, the cross sections scale like (for both broken and unbroken
theories, but with 6.32 > A > -. 317) (section 5.5.2)

V2n+1 = PU2n
p2 (d- 2)

2Sd

(8.5a)

(8.5b)
(2(d- 2) (a +n-1) M

Sd 2n+ 1M



c2-+2(E) " cE 2-6A-2(ln E)4- A

* Radiative corrections to the one-loop effective potential have not been found
to induce symmetry breaking, but have been found to suppress it. A phase
boundary r(a) in r - a parameter space has been shown to exist. For r < r(a),
symmetry breaking is suppressed. For 0 > a > -0.585, symmetry breaking is
never suppressed.

8.3 Discussion

The main result of this thesis is the existence of a set of relevant approaches to the
Gaussian fixed point of scalar field theory. Previous studies had restricted themselves
to 04 theory, arguing that higher interactions were non-renormalizable and there-
fore unphysical. Little research focused on nonpolynomial interactions- more for
practical reasons than due to concerns regarding renormalizability.

As mentioned, the space of 04 theories is not closed in general. To linear order
near the Gaussian fixed point it is closed, and it is this regime that research has
typically focused on. In any such restricted analysis, the only eigendirections are
the mass-axis and the marginal direction. Scalar theories appear to be trivial since
perturbative calculation yields a bare coupling that diverges at finite cutoff unless the
renormalized coupling is chosen to be zero. This triviality limits the utility of scalar
theories in describing physics.

Our research has demonstrated the existence of relevant eigendirections to the
Gaussian fixed point. These eigendirections correspond to nonpolynomial potentials.
However, the renormalizability condition 3.3 is satisfied'. Because the eigendirections
are relevant, they represent high energy limits. Triviality is no longer a problem.
There exist renormalizable scalar field theories with well-defined high-energy limits.

There is no obvious feature that allows us to identify a particular eigendirection
as special. Each eigentheory describes certain physics. This has implications for the
Higgs sector of the Standard Model, which may be described approximately by an
isolated scalar field theory. The physics of the Higgs sector must be recomputed using
the new eigentheories. No longer is pure 04 the only candidate for the physical Higgs
theory.

8.4 Future Directions

Our original intention in pursuing the present course of research was to sufficiently
restrict the class of continuum theories to be able to determine some of the parameters
ab initio. Unfortunately, practical aspects of calculation made such a determination
infeasible in the class of theories we studied. However, it is possible that a similar

'This relation is obtained directly from the RG mapping between Greens functions at different
effective cutoffs.

(8.8)



analysis of the Standard Model will reveal the existence of a discernable continuum
limit. As mentioned, it is the possibility of such a case that endows the renormal-
ization group method with the potential to determine the fundamental masses and
couplings.

Even if one entirely restricts oneself to the cases we have studied, there is inter-
esting physics. We have demonstrated the existence of non-trivial scalar theories.
The implications for the Higgs sector of the Standard Model must be explored. The
physical significance of the decoupling of Fermi interactions near the Gaussian fixed
point is also of interest. We have only begun to explore a field that is vast and rich,
a field that has the potential to provide a deeper understanding of field theory than
has previously been possible. We have demonstrated that, even in the simplest the-
ories, the renormalization group procedure provides unexpected insights. When first
disembarking, an explorer cannot chart the mysterious realms before him. At best,
he can suggest those directions that seem most promising. Here are our suggestions
for future directions:

* Extend the analysis to gauge theories. Attempt to study the Standard Model
in its entirety.

* Calculate the physics of a Higgs sector governed by one of the nonpolynomial
potentials. This entails constructing a new form of diagrammatic perturbation
theory.

* Study the case of two dimensions, examining the role of vortices.

* Examine the nonlocal delta-interactions as correlated particles. In particular,
look for an analogy with Cooper pairs in superconductivity.

* Try to examine the RG equations beyond linear order.

* Study the role of the sharp cutoff and determine whether there are ways to
avoid the nonlocal ambiguities that arise.

* Understand the dependence of the eigenstructure near the Gaussian fixed point
on the group structure of the underlying theory.

* Rigorously examine the issues relating the RG to renormalization theory that
are discussed in chapter three.



Appendix A

Wegner-Houghton Theorem

Our ability to derive infinitesimal renormalization group equations rests heavily on
a result proved by Wegner and Houghton. They demonstrated that to O(t) we need
only consider a part of the action that is quadratic in the fast fields. This is a direct
consequence of the use of a sharp cutoff. Although Wegner and Houghton originally
proved their claims using combinatoric and cumulant arguments[22], there is a simple
heuristic justification for their theorem using Feynman diagrams. We first explain the
basis for a Feynman expansion in the context of the RG analysis, and then proceed
to expatiate on the Wegner-Houghton results.

A.1 Diagrammatic Language

The integration step in the RG procedure modifies the action:

S'[4,] = -n f [D f]e - s ,+f]. (A.1)

Divide S into a quadratic part So and an "interacting" part S1:

S[0 8 + f] = So[~, + f] + S1[~, + f]. (A.2)
The quadratic part So has the form (requiring translation invariance)

Sol] = / ddk(q4k)u2 (k). (A.3)

0,(k) and f(k) are defined in disjoint domains of momentum space, and the
quadratic part of the action decouples in ¢, and f,

SoS[s + f] = So[qs] + S0 [f]. (A.4)

We can interpret the integral in equation A.1 as the expectation value of a function
over a probability distribution. The appropriate distribution is

e-Solf]
[f] Df]eSo[f] (A.5)

f[ D f]e-so[l1'



with the expectation value of a function A[f] defined by

(A[f]) - [Df]p[f]A[f], (A.6)

and normalization

Zo [Df ]e- so[ (A.7)

In this language, equation A.1 can be written

S'[q,] = - n [Zo(e-solS-sv[s1+1,f]] (A.8)

the important (q,-dependent) part of which is

S'[q5] = So[q,] - In (e-s1[0k+f]. (A.9)

The logarithmic term is the same as that present in the usual Wick expansion in
perturbation theory. There, we also consider a quadratic distribution in the fields.
A corresponding diagrammatic expansion is applicable here. The couplings from S1,
Taylor expanded in f, are the vertices. The 0, are external lines and the f are
internal (contracted) lines. Note that single-f vertices do arise. The modified action
S' is the sum over connected diagrams. S2n is the sum over connected diagrams
with 2n external lines. This is entirely analogous to calculation of the 2n-point
amputated connected Greens function of ordinary perturbation theory, except that
the propagators are constrained to lie in the fast momentum shell 0Q.

The diagrammatic scheme we have described holds for finite as well as infinitesimal
RG transforms. If we restrict ourselves to the latter, the propagators must lie on an
infinitesimal shell in momentum space. This is the basis for the Wegner-Houghton
claims. In diagrammatic language, the claims are:

1. Diagrams containing vertices that possess more than two internal lines do not
contribute to the infinitesimal flow equations. It follows that no diagrams with
more than one loop contribute.

2. The only diagrams with one loop that do contribute to the infinitesimal flow
equations are those with uniform propagator momentum throughout the loop.
This is equivalent to requiring that the external momenta at each vertex sum
to zero.

Our strategy for justifying these claims is to show that those diagrams which are
excluded contribute to equation A.9 at O(t 2) or higher.

A.2 Verification of the Claims

Consider a diagram with n vertices and L loops. Let pi be the total external momen-
tum at the i th vertex, and let ki be the ith propagator momentum. An example is
provided in figure A-1.
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Figure A-i: An example of a one-loop diagram.

Let us denote by P(k) the propagator in our theory. The contribution from an
n-point diagram is proportional to

fanddki . . ddk"kP(k i ) . . P(kn)6(ki +pl - k 2 ) .. .6(k, +pn - kl). (A.10)

This expression involves n propagator integrals and should be O(t"). However,
a 6-function can cause an integral over a domain of O(t) to evaluate as 0(1). The
integral over a volume, however small, of a delta function that lies within that volume,
is 1. Therefore, to determine whether it is possible that a given diagram contributes
at O(t), we must count the number of integrals minus the number of delta functions.
Any diagram with more integrals than delta functions cannot contribute at O(t). One
of the delta functions must correspond to overall momentum conservation, so at least
two integrals are not canceled and such a diagram is at best O(t 2).

Associated with every vertex, there is a momentum conserving delta function
and at least one propagator (internal line). No diagram can have fewer propagator
integrals than delta functions. The only diagrams possessing the same number of
integrals as delta functions are those with exactly one internal line per vertex. Each
vertex must have either two internal lines and lie inside a chain, or have one internal
line and terminate a chain. Therefore, only vertices with one or two internal lines
contribute. An immediate corollary is that no diagrams with more than one loop can
contribute at O(t).

The one loop diagrams that have not been excluded have no tree extensions. Such
diagrams have the same number of delta functions as propagator integrals. For an
n-point diagram to contribute at O(t), we require that n - 1 of the delta functions

P6
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Figure A-2: A simple two-point one-loop diagram.

lie within the domains of the integrals'. The remaining delta function corresponds to
overall momentum conservation.

For simplicity, consider a two-vertex diagram, as depicted in figure A-2. The
associated integral is

an ddkiddk 2P(k,)P(k2)6(ki - k2 + p2)6(k 2 - ki + p,) (A.11)

The integral only contributes if P2 = -pl and p2 lies in the domain of k2 - kl. Let
us fix k2 . If P2 - k2 E 09, the integral over k, yields

6(p1 + P2) lja ddk 2P(k 2 - p2)P(k 2) (A.12)

which is an integral over the shell and obviously O(t). We now determine which
values of k2 satisfy p2 - k2 E 862. The range of values of k2 is O(t), so the double
integral is at best O(t 2). It would seem that one-loop diagrams do not contribute at
O(t). However, there is one exception. If Pi = P2 = 0, the integral A.11 is obviously
O(t). The situation is illustrated in figure A-3.

Our analysis can be extended to n-point graphs. A one-loop graph will contribute
only if the total external momentum at each vertex is zero. This is equivalent to
demanding that the propagator momentum throughout the loop be uniform.

A.3 Example of Nonlocal Term

In this section we derive the form of the sample nonlocal term 4.35 that arises under
the RG operation. We assume that our initial theory is pure 04 . The integration
modification to the action is given by equation 4.20:

S'[qs] = S[qs] +E [trlnAk - BkAk'B*]. (A.13)

'The explanations of this section are really a heuristic justification for our sloppiness in multi-
plying distributions.

I

I

I
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Figure A-3: a. The domain of P2 - k2 . b. The overlap of domains of P2 - k2 and k1.
c. The overlap of the domains when P2 O(t).

We only wish to examine a particular nonlocal contribution from the In term. Let
us denote the part of A obtained from the kinetic piece of the action by Akin. The
remainder of A we will denote A' and expand in a series A' _- ~, A2n, where A2n
is the contribution to A from S2n (except for A 2 which is from the non-kinetic part
of S2). The kinetic part of A is

(Akin)ij = V . (A.14)

The modification to S from the In term is

AS[¢,] = tr ln(Akin + A')

/ 1 )! L~~:in, .·· -- 1·i

SZ tr[ln(Aki) + ln(I + A-iA')]

E= tr[- In V + In(I + VA')] (A.15)

1
= Z tr[-In V + VA'- V 2 A 2 +...].

kE2+ 2

One of the contributions from the tr A'2 term is

AexampleS cx V 2 E tr(A ). (A.16)
The matrix A4Ea+ is given by

The matrix A4 is given by



(A4)ij = V-3u 4 E 6kl+k 2,O[4 6ijkkl,mck 2,m 8 8 kl,iCk2,j],
kl,k2

from which we find

tr(A ) = V-6U2 6k1i+k2,06k3+k4,0
kl"...k 4

[¢kl,m k2,m7k 3,n k4,n(16N + 64)
+ qk1,mOks,mOk2,nak4,n (64)]

We recall that

V- 6k1+ks,00ki,i k2,i = J d XOk(x),i(X)

and that

to obtain

(A.20)
kEO(+

t
AexampleS C

v
This is the nonlocal contribution mentioned in the text.

(A.17)

(A.18)

(A.19)

(A.21)[ida (x)91()2].



Appendix B

Derivation of Broken Potentials

In this section we derive the symmetry broken potentials for the case N = 1, as
described in section 4.4.8. The broken potential can be parameterized as

00

V(q') = E v '" . (B.1)
n=O

The coefficients v, are given by

1 d"U(' + p) (B.2)vfl = , (B.2)

where p is the location of the minimum of the eigenpotential U. The eigenpotential
evaluated at the minimum is

00

U(p) = 2n•2n, (B.3)
n=l

with the coefficients u2n given by equation 4.53:

r d- 2 n- 1 (a + n - 2)!( )!U2n = -. 2 (B.4)u2f = 2--Sdd (a- 1)!(n - !)!n!

Substituting the expansion B.3 into equation B.2, we obtain

1 0 (2m)! 2m-n
Vn = EU2m (2m - (B35)

n! =[ (2m - n)!(B.5)

where [x] denotes the greatest integer < x. Substituting expression B.4 for the U2n,
we get

t r nd - 2 m-1 (a + m - 2)!( tha
= _2 \ 2Sd (a - 1)!(m - f)!m! (2m - n)!n!" (B.6)

Noting that



22m
(2m)! = -ý

2

00

Vn =

S=[n+l

m=[f -- ]

d - 2 m-1

2SdI

r d - 2 m- 1

2 2Sd

(a + m- 2)!22m-1 ]2m-n
(a - 1)!(2m - n)!n!

(a + m - 2)!2-1V ]p2m-n,
(a- 1)!(m - )!(m - - n

To proceed, we must distinguish between the case of n even and of the case n odd.

B.1 Even n

We consider n = 2j even, so equation B.9 becomes

0 r d _ 2
V2j m= 2 2Sdm=3

m1[ (a + m- 2)!22j-1 V ] p2m-2j

(a - 1)!(m - j)!(m - j - )!(2j)!

We apply formula B.7 to (2j)! and shift the index from m to p = m - j, to obtain

" r(d - 2)P+-
1

P=o 4 2Sd

(a + p + j - 2)!r

d2 (d- 2)P (a + p +j- 2)!

2Sd P! (P -2
The sum is now in a form that we recognize as the familiar Kummer function.

Recalling the definition

(ab, =(b-l)! 0 z n (a + n-1)!
M(abz) = (a - 1)! n (b + n - 1)

the coefficients v2j can be expressed as

2 -7r d-2-4 (2Sd
11

-1
' 2'

p2(d - 2)
2Sd)

(B.12)

(B.13)

and

we find

(B.7)

(B.8)

(B.9)

(B.10)

] 2p (B.11)

7r d - 2 j- 1 0"

4 2S (a - 1)!j!(j - p=0

3 1 (a+j- 2)! (a+j
(a - 1)!j!(j - !)!2



The factors to the left of the Kummer function we recognize as the expression for
u2j from formula B.4. So

V2j = u2 M (a
1

+ 2'
p2 (d - 2)

2Sd )
(B.14)

B.2 Odd n

We can derive v2j+l easily from v2j using equation B.2

1 d
v2j+1 = 2 +1 (B.15)

Applying the Kummer function differential relation from appendix D, we obtain

[2(a + J - 1)(d - 2)]V2j+ pU2j (2j + 1)Sd
3

+ 3, -,2
p2 (d -2) (B.16)



Appendix C

Scattering Calculations

C.1 Scattering Amplitudes

C.1.1 Useful Information

Before computing scattering amplitudes from our eigentheories, we reiterate some of
our earlier results and provide some useful mathematical relations:

* The coefficients from the unbroken eigenpotentials in the case d = 4, N = 1 are

rUn -n (a+n-2)!xV
U2n- 4 4  (a-1)!n!(n- !)!

= rS1-n22 -2 (a + n - 2)!
(a- 1)!(2n)! (C.1)

* z! - r(x + 1).

* (2x)! =' (x- -)!x!

* Kummer's function:

M(a,,z) (a + n- 1)!(b - 1)!z"

n=o (a -1)!(b + n -1)!n!



C.1.2 Unbroken case

The scattering amplitudes for an unbroken eigentheory are

S u (2j + 2n)!A2n - E U2j+2n~j 2 j!j=0 2!

We substitute the expression for u2n provided in section C.1.1 to obtain

A =r rfF M (2j + 2n)!(a + j + n - 2)!
A2n + S4s .=4 = (a- 1)!(n + j)!(n + j - !)!2Jj!

Expanding (2j + 2n)!, this simplifies to

r(A2n = S - j-- J

4 j=0

rS~-"22n-2 o

(a - 1)! =_

a+ j + + n - 2)!22j+2n

(a - 1)!2jj!

T2I)J (a + j + n - 2)!S4y!

Noting that

(a + j + n- 2)! = (a + n
jr = (a + n 2)!a +j+n-2)- 2 ! , (C.5)

we can apply the binomial relations of section C.1.1 to reduce the scattering ampli-
tudes to the form

A rS-n2 2 2 (a + n - 2)! -21
A2n = 4(a -1! _n S4

(C.6)a -n

and perform the summation

rS1-"22n-2(a + n - 2)! (1

(a- 1)!

We recognize this to be

21) 1-a-n

S4
(C.7)

A 2n = u2(2n)! (1 (C.8)

Recalling that

+ r In r+r) (C.9)

we obtain

A 2n = 2n(2n)! (- rln 1 r)1- a- n

1+ r
Note that the binomial series has unit radius of convergence.

(C.10)
In order for our

(C.2)

(C.3)

(C.4)

J-V

21 1-a-n
S4

S4 1I = s 12
2



manipulations to be valid, we require

2I r2 = 1 +rln <1. (C.11)
S4  1+r

This in turn requires that

- 2 < r In < 0. (C.12)
1+ r

Our eigenpotentials were derived by requiring r to be small. As r -+ 0, the radius
of convergence is approached. This is the reason that we have a divergent field scaling
factor Z in section 5.4.

C.1.3 Broken case

In the case of a symmetry-broken potential, we must compute even and odd scattering
amplitudes separately. In either case we have

Am (m+ 2j)!
Am= 2E Vm+2jI j  23j! (C.13)

j=0

For m = 2n even,

00 (2n + 2j)!
A2n = v2n+2jlj 2j (C.14)

j=0

The v2n, calculated in appendix B, are Kummer functions. For our purposes, their
series form, equation B.11, is more useful. Adapted to d = 4 dimensions and with
index 2n + 2j, the formula is

V2n+2j = S4r l-n-
44 (a - 1)!(n + j)!(n + J - )! •!p p  p  p  -

(C.15)
Recalling that

2 2n+j
(2n + 2j)! = (n + j)!(n + j - .)! , (C.16)

the amplitude is

A2n \ 22n+2jSln-3 1 2pSP(a + p + n - - 2)! I'F

A2n = 4 1: E 2 p 2pS p 4"1 1
j= Op=O (a - 1)! p(p- )! 2j!

= vWr22n- 2S1-na- 1EE (-  2 ) 41 j 1+p+n-! 2)! (- ) (C.17)
(a - 1)! j= op=O vS4 p!(p -N)! S4

We perform the sum over j first. Noting that



( (21'• (a+p+n-j -2)!
Sj=

j=O S4 j!

oo

= (a+p+n-2)!
j=0

=(a+p+n-2)

= (a+p + - 2)

=0

j=0

S-21' ) 1-a

21' 1-a-p-n

S4

-2)

p-n)

(C.18)

the amplitude reduces to

A 2n = VFr22n-2Sl-n 21 )-a-n
r(a- S4

- p2 )P(a+p+n-2)!
p=0 S4(1S4 P! (P

Noting that the sum is a Kummer function and that

21' r
1 - = -P In r

S4  1+

we obtain

A 2n = /r2 2n- 2S1-" (-

-.M(a+ n-

(a + n - 2)!
= r2 2n-2S ( -((a - 1)! £

1 p2

2' -S 4 Iln

fln f 1-a-nM

which is the result quoted in the text.
The odd amplitudes can be directly derived from these. The general formula for

an odd amplitude is

• (2n + 2j + 1)!A2n+1 =E 2n+2j+1I 2!
j=0 2Oji

The odd vertices v2n+2j+1 are easily obtained from the even ones by

(C.22)

1 d
nl (2n + 2j + 1) dp2n+2j.

(C.23)

Therefore, we may write

(C.19)

(C.20)

SIn f )-a-n (a + n- 2)!
ln1--• (_)

(C.21)

a+n - 1
12
'2'

p2

- S4 In f

3(a+p+n-j
i



d •• .(2n + 2j)!
A2n+= V2n+2j3 2j! (C.24)

Note that the differentiation does not apply to I'. It is simply a mechanism for
properly counting the factors of p in the v2n+2j. The sum is just A2n, so

d
A2n+1 = dA2n. (C.25)

dp

Using the formula from appendix D for differentiation of a Kummer function, we
obtain the result stated in the text:

S4-n22n(a + n 1)!

(a - 1)!
SIn 1• ) - a- nM(7InM a 3 p2

2' -S4 In1+f

C.2 Cross Section Kinematic Factor

We need to calculate

KE =1 1 2)
2 2Ev/E2- 4m2

f d31 d3p2 (27)4 (3)
o (2r) 32w (2) 32wP 2 )4 (3)

Performing the integral over pl, and using wp = p-2 + m 2 , we find

1
KE = 32r 2

_ 1
32w2

( )s1 d)jWpl (2w, - E)2EVE2 - 4m2 0WP2

( I 44(2EvE2 - 4m2) dp 2 +2 2p 2 +m 2

We can use the relation

to obtain

S1 1 E -2 + 2

32 2 2ERE 2 - 4m p 2 + 72 2p
16- 2ERE2 - 4m2 v 2 + m2

where

(C.26)

P( 2 + f)6(wpI + Wp2 - E).

(C.27)

-E). (C.28)

6(f (x))g(x)dx = E (xi)
ilf(,x.)=0 f'(xi)

(C.29)

(C.30)



p E 2/4 - 2 (C.31)

is the solution to the delta function constraint. Substituting this, we obtain

1 1 2 E 2

E = 327 EVE2 - 4m 2 E 4
1

= 327E 2 . (C.32)



Appendix D

Compendium of Useful
Mathematical Relations

We present here some mathematical relations relevant to the calculations performed in
the thesis or of importance in reproducing or extending our work. The topics covered
are (1) Grassman Algebra, (2) Gaussian integration, (3) Results involving matrices,
(4) Combinatoric relations, (5) Confluent hypergeometric functions, (6) Irreducible
representations and invariants of Lie groups, (7) Fourier transforms, and (8) Finite
vs. infinite volume objects.

D.1 Grassman Algebra

We use 0 and ¢ to denote Grassman variables. All other symbols represent commuting
numbers. Many of the relations in this section are from Zinn-Justin[24].

D.1.1 Basic properties
* 02 = 0.

* A Grassman polynomial in an algebra with
terms.

* Every Grassman polynomial is multilinear

* Polynomials containing only even numbers
with all polynomials.

* Polynomials containing only odd numbers
mute with each other.

N generators contains at most N+ 1

in the generators

of generators in each term commute

of generators in each term anticom-

* Any real function of a finite number of Grassman variables is a polynomial.



D.1.2 Complex Conjugation
* 0 "real" means 0* = 0.

* (0192)* = *0e•.

* A product of n real Grassman variables is not real in general. It is only real if
n(n-1) is even. If not, the product is pure imaginary.

2

D.1.3 Differentiation

The left derivative of a monomial with respect to a Grassman variable is 0 if the
monomial does not contain the variable, and is obtained by anticommuting the vari-
able to the leftmost position and removing it if the monomial does contain it. The
right derivative is defined analogously.

* L(1 (e...e 9) = (-1)k-101 ... •k-1ek+1 ... O.

* dk•(1 R ... On) = (-1)n-k 1" ... Ok-1lk+l ... On

* Differentiation does not commute with complex conjugation. For a real mono-
mial f, of n Grassman variables,

df df*

dui dOý
* When taking multiple derivatives, one must consider whether the later variables

would have had to be anticommuted through the earlier ones.

)= 1.

dOn, - dO1

* Second derivatives anticommute with complex conjugation.

( d02  , = ( d*
d9 1d92 ,)\ d9rd9

D.1.4 Integration

* For Grassman variables (indefinite) integration and differentiation are the same.

0

J(dO)0 = 1

/(dO) = 0.



* Change of variables:

dO1-.. "dOnf (01 .. .On) = d 1 ' .. do, (det i

D.2 Gaussian Integrals

D.2.1 C-number

* If a is a matrix with positive definite real part and x is real,

Se-_ T az+b-.dX 7r 2 bT a-lb
0eTa bxddx = e4

where as is the symmetric part of a.

* Let
z -x + iy

and

f dz*dz -
fOO

-00 dxdy-OO

Then, if a is a hermitian matrix with positive definite real part,

[dz*dze*Taz-zT bz-Z*Tb*z+c*-z*+c.z - 7n  NTM- 1N
where (a denotes the real part of a, bisthesymmetric part of b, etc.)

where (a, denotes the real part of a, bs is the symmetric part of b, etc.)

-a, - 2b'
ar - 2b'

2cr)
-2c, ) "

* When b = 0 and a is hermitian, the previous case reduces to

Sdz*dzez*T az+c*.z*+c.z (2i7r)n ejc*Ta- 1cdz"dzedet a e4

D.2.2 Grassman
* Let

-x + iy

and

f di*d? J f dxdy

P(0(¢)).

(D.1)

(D.2)

(D.3)

ar +- 2b"f

(a, - 2b'



with V, 0*, x, and y Grassman variables. Then, if a is a hermitian matrix that
commutes with Grassman variables and r is a vector that anticommutes with
Grassman variables,

/d*dJee *  +
7

Tb - *  * 
7

*+r '+ ' = e RT G§Rdet Ga, (D.4)

where (ar denotes the real part of a, ba is the antisymmetric part of b, etc.)

G i ( a + 2ba ar + 2ba

S -a +2br a, - 2b

(-2irhI

D.3 Square Matrices

Much of the information in this section is from the books by Richards[19] and
Wedderburn[21].

D.3.1 General

* If a is a 2n x 2n matrix composed of n x n submatrices of the form a = d

det a = (det b)(det d).

* The inverse of a 2n x 2n matrix composed of n x n submatrices and of the form

M = (a ) is (assuming the requisite matrices are invertible)

a b [a - bd- 1c]-1 [c - db-'a]- 1  (D.5)
c d -[b - ac-d]-1 [d - ca-lb]-  (D.5)

* The following identity for the matrix A holds under appropriate conditions:

(I - A)-' + (I - A-) -1 = I. (D.6)

D.3.2 Hermitian

* If A = a + ib is hermitian, the real part a is symmetric and the imaginary part
b is antisymmetric.

* The eigenvalues of a hermitian matrix are real.

* If A = a + ib is an n x n hermitian matrix, it behaves like the real symmetric

2n x 2n matrix P = ( -b). There is a one-to-one correspondence between



the real eigenvalues of A and those of P ([21],101). It follows that det P =
(det A) 2 .

* The similarity transformation necessary to bring a hermitian matrix to diagonal
form is unitary.

* The transpose and the complex conjugate of a hermitian matrix are equal and
hermitian themselves.

* The inverse of a nonsingular hermitian matrix is hermitian.

* The product of two hermitian matrices is hermitian iff the matrices commute.

* An n x n hermitian matrix consists of n2 real parameters.

D.3.3 Symmetric

* The eigenvalues of a real symmetric matrix are real.

* The similarity transformation necessary to bring a symmetric matrix to diagonal
form is orthogonal.

* The inverse of a nonsingular symmetric matrix is symmetric.

* The product of two symmetric matrices is symmetric iff the matrices commute.

* An n x n real symmetric matrix consists of n(n•1) real parameters.

D.3.4 Real Antisymmetric

* The eigenvalues of a real antisymmetric matrix are imaginary and exist in con-
jugate pairs.

* The similarity transformation necessary to bring an antisymmetric matrix to
diagonal form is orthogonal.

* The product of two antisymmetric matrices is antisymmetric iff the matrices
anticommute.

* An n x n real antisymmetric matrix consists of (-') real parameters.

D.4 Combinatorics

The relations in this section are mostly from Abramowitz and Stegun[1] and Grad-
shteyn and Ryzhik[4].
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D.4.1 Gamma function

* x! - r(x + 1).

Sz! = x(x - 1)! and F(x + 1) = xP(x).

* (2x)! = 2(x - )!x!.

* F(1) = 0! = 1.

D.4.2 Binomials

* = (_1)k(k--1).k k
* Zo aj() = (1 + a) z if JLal < 1.

D.5 Confluent Hypergeometric Functions

* Kummer's function:

M(a, (a + n - 1)!(b - 1)!z"
n=o (a- 1)!(b + n- 1)!n!

dM( ) - (a +n- 1)!(b - 1)!M(adM(a, b, z) = b M(a + n, b + n, z).dzn  (a - 1)!(b + n - 1)!

M (a,b,z) = M(a + 1, b + 1, z).
dz b

* As Iz -+ o00 with Rz > 0,

(b- 1)! zab.M (a, b, z) (b - 1)! ezza-b

( (a + n)!1 z
z= 2n =a!M a+l,'+1 .

D.6 Some Lie Groups

We provide the Clebsch Gordon rules for decomposing a direct product of two irre-
ducible representations into a direct sum of irreducible representations for several Lie
groups of interest.
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D.6.1 U(1)

The irreducible representations are labeled by one real number a as (a). The C-G
rule is

(a) (3) = (a± +)-

D.6.2 SU(2)

The irreducible representations are labeled by a non-negative integer n as (i). The
C-G rule is

m+n

® = @ (k).
k= Im-ni

D.6.3 SO(3, 1)

The irreducible representations are labeled by two non-negative integers n and m as
(Q, M) and behave like a direct product of SU(2) groups. The C-G rule is

m+n i+j

(2 2 2 2= (kl).
k= I-nij It-il

D.7 Fourier Transforms

Here, we describe our Fourier transform conventions and provide some useful rela-
tionships.

D.7.1 Continuum
ddk -ik-x(x) = (2d (k)ei (D.7a)

¢(k) = Jdd()e- ikx (D.b)

D.7.2 Momentum space cutoff

4(k) = 0 if Iki > A. The sharp cutoff imposes a lattice-like structure in x-space.
However, we still use Fourier integrals since these make life easier. The relations are
identical to the infinite cutoff case.

Sddk ik.
(x) = (27) d(k)ei (D.8a)

(k) = ddx(x)e- ikx (D.8b)

102



D.7.3 Spatially bounded with momentum space cutoff

Space sits in a box of side L with periodic boundary conditions.

O(x) = L E Ok-ik-x (D.9a)
k

k dd(x) - ik.x (D.9b)

D.7.4 Useful relations

These are several relations useful in determining Fourier normalizations.

Sdxeikx = (2r)5(k) -- Lk,o (D.10)

rin = LS() (D.11)
n=-oo

dzeikx =ik= (27)6(k) + o ) L6J,o + 0 (D.12)

e L= LS(x) +0 (D.13)

D.8 Infinite Volume Limit

Here we describe the transitions between finite volume objects and infinite volume
objects.

We use ~ to denote equivalence up to the next order in 1/V. kdi,, denotes the
discrete k's (( ) and kcont the infinite-volume k's.

V 6 k,p ' (2ir)d6(d)(k - p) (D.14a)

1 f ddk
S (2)d (D.14b)

kdisc kcont (D.14c)

_ 0
S (D.14d)

akdise 8kcont

Ok 0 (k) (D.14e)

¢ 6
V a ( (D.14f)84Ok J 6(k)
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Appendix E

Glossary of Symbols

Symbol

,A 2 n, A2,k, etc.
kin, A'
2n, An
r
n

, B 2, B 2n, etc.

kin, C7' Cn,m

' Dkin, D'

int, /Adim, Anorm
V

,I

E, Ekin, E'•
E, E 0, etc.
<>

f
F
(g, h)
goA, gA
g
G, H
G
Gkin, G', Gn,m
G(n) (k, ... ks), etc.

Description
Intermediate vector.
Second derivative matrices.
Kinetic and non-kinetic 2nd derivatives.
Scattering amplitudes.
Field-scaled Amplitudes.
Eigenvalue parameter.
Phase boundary eigenvalue.
Kinetic matrix.
Intermediate vector.
First derivative vectors.
RG scaling factor.
Mass matrix term.
Intermediate matrix.
Intermediate matrices.
Space-time dimension.
Intermediate matrix.
Kronecker delta 6k,O.
Operators that effect RG steps.
Depth of valley in effective potential.
Intermediate vector.
Intermediate matrix.
Physical energies.
Expectation over distribution.
Eigenpotential divided by r.
Intermediate matrix.
Point in parameter space.
Bare parameter sequence.
Composite fast fermi field.
Subspaces of parameter space.
Intermediate matrix.
Intermediate matrices.
Greens function.
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Symbol Description
'

Field-scaled Greens functions
Parts of effective potential.

G(n), etc.
ho,hl,h2
f dk
I
I,
k, p, etc.
kdise

kcon t
KE
L
A
A
m
M(a, b,z)
M
M
n
N
N
o(E/A)
O(r)

8 +
p(il .. i2n)

p
PA, PE

p*
P
P(k)
Pr (k)
O(x), etc.
0,(k), f(k), etc.
02
Sf

Omzn

cr

51, S2

V/(x), V*(x), etc.
0s(k), g(k), etc.
r

9;

Symbol
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F Description
Description

Angular integral.
Integration over propagator.
Integration over broken propagator.
Momenta.
Finite volume k.
Infinite volume k.
Kinematic part of cross section.
Length of bounding box side.
Momentum space cutoff.
Eigenvalue.
Number of bare parameters.
Kummer's function.
Flow matrix.
Intermediate matrix.
Number of relevant eigendirections.
Number of field components.
Intermediate matrix.
Greatest vanishing order as A -+ oc.
Linear order in couplings.
Momentum-space domain.
Shell of integration.
Half-shell of integration.
Permutation of indices.
Point in parameter space.
Theories obeying norm. conditions.
Fixed point in parameter space.
Parameter space.
Propagator.
Field-scaled propagator.
Scalar field.
Slow and fast scalar fields.
Sum over components of Oiji.
Free field.
Minimum of effective potential.
Renormalized Field.
Minimum of 0(1) part of effective potential.
Radiative corrections to location of min. of eff. pot..
Dynamical symmetry-broken field.
Fermion Field.
Slow and fast fermi fields.
Mass parameter.
Symmetry broken mass parameter.

Page
53
60
72
51
52
Ubiquitous
32
32
56
10
10
18
28
43
18
69
27
10
69
25
40
10
14
35
75
13
26
17
25
53
53
10
14
32
53
60
53
61
61
47
10
68
33
52--



Description
r(a)

S
d im

S2n
S2n,m

Sd

cap
U2--+2

t
O(x)
OIL

Snorm, Sint .

... kn), etc.
-k2n)

U ...in (ki
U2n(ki"
U2n

SA 7a
2n , U•n

U2(k)
U2

u'2n

Ukin

un

u L:::r, (ki ... qm)
71"'12n

UQI...Qm

U• rn

uZ3, u~P
U

Ua, UA
Ur
V
V, Va, etc.
V
Vn

vn (p)
Vn

[x]
X!
Z
Z

Q"to

Symbol
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Phase boundary curve.
Location of Minimum of classical potential.
Scaled location of Minimum.
Intermediate vector.
Action.
Intermediate form of action.
Intermediate forms of action.
Term in S with 2n field factors.
Action term with 2n bose and 2m fermi fields.
Surface area of d-dim. sphere with Fourier factor.
Mass matrix term.
Cross section.
Equivalence in infinite volume limit.
Infinitesimal RG scaling increment.
Theta function.
Inverse kinetic matrix.
General couplings.
O(N) symmetric couplings.
Local, non-derivative couplings.
Eigenvector.
Local, non-deriv. quadratic term.
Local, non-deriv mass term.
Resummed vertex.
Kinetic part of u2 (k).
Field-scaled parameters.
General bose/fermi coupling.

Local, non-deriv. bose/fermi coupling.

A fermi/bose coupling.
Quadratic couplings.
Potential
Eigenpotential.
Field-scaled potential.
Effective Potential.
Symmetry broken potential.
Volume of bounding box.
Symmetry broken coupling.
Broken parameter with p dependence explicit.
Resummed broken vertex.
Greatest integer < x.
F(x + 1).
Field scaling factor.
Normalization.
Kinetic matrix.

67
70
11
43
53
59
47
32
48
55
56
87
43
53
15
70

Page



Appendix F

Glossary of Terms

Closed Subspace: A subspace of parameter space that is closed under the renor-
malization group procedure. The trajectory through a point in the subspace
lies entirely within the subspace.

Cutoff: A sphere of unit radius in Euclidean momentum space outside of which the
fields are identically zero.

Effective Cutoff: The radius of the sphere in Euclidean momentum space outside of
which the fields are zero in units of the initial cutoff. After the renormalization
group procedure, the effective cutoff is lowered, while the cutoff is restored to
unity by dimensional scaling.

Fixed Point: A point in parameter space corresponding to a theory on which the
renormalization group procedure has no effect.

Flow equations: The infinitesimal RG equations corresponding to the tangent to
a trajectory.

FP: Acronym for fixed point.

Gaussian Fixed Point: The origin in parameter space. All dimensionless param-
eters are zero.

Irrelevant Direction: In our usage, an eigendirection to a fixed point with negative
eigenvalue. As the effective cutoff is lowered, the flow moves toward the fixed
point along such a direction.

Local, Non-derivative Theory: An action containing no non-local or derivative
interactions.

Marginal Direction: An eigendirection with zero eigenvalue. Such a direction
corresponds to motion within a dense region of fixed points.

Parameter Space: A linear vector space of parameters that define the action. The
sum of the non-kinetic part of two actions corresponds to vector addition.
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Relevant Direction: In our usage, an eigendirection to a fixed point with positive
eigenvalue. As the effective cutoff is lowered, the flow moves away from the
fixed point along such a direction.

RG: Acronym for renormalization group.

Trajectory: The set of points in parameter space corresponding to renormalization
group transformations of a theory with varying values of the cutoff scaling factor
b>1.
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