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We propose a setup involving Majorana bound states (MBS) hosted by a vortex on a superconducting

surface of a 3D topological insulator (TI). We consider a narrow channel drilled across a TI slab with both

sides covered by s-wave superconductor. In the presence of a vortex pinned to such a channel, it acts as a

ballistic nanowire connecting the superconducting surfaces, with a pair of MBS localized in it. The

energies of the MBS possess a 4�-periodic dependence on the superconductive phase difference ’

between the surfaces. It results in the appearance of an anomalous term in the current-phase relation Iað’Þ
for the supercurrent flowing along the channel between the superconductive surfaces. We have calculated

the shape of the 4�-periodic function Iað’Þ, as well as the dependence of its amplitude on temperature and

system parameters.
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Since Majorana bound states (MBS) were predicted to
exist in solid-state systems, a number of different sugges-
tions on how to detect them have been made. MBS are
predicted to exist in systems characterized by both strong
spin-orbit coupling and superconductivity. Examples in-
clude the surface of a topological insulator (TI) covered by
s-wave superconductor with vortices [1] or electrostatic
defects [2], as well as ordinary semiconductor nanostruc-
tures with spin-orbit coupling and proximity-induced
superconductivity in the presence of a Zeeman field [3].
While there are numerous suggestions on detection of
MBS [1,4–9], no experimental success has been reported
yet. One more way to track down MBS in a superconduct-
ing proximity system is to observe an anomalous
4�-periodic phase dependence of a supercurrent [4]. It
was shown by Kitaev [10] that a specific 1D fermionic
chain hosting a pair of MBS switches its ground-state
fermionic parity under an adiabatic change of the super-
conducting phase difference ’ by 2�. Thus, if the chain
conserves fermionic parity, its behavior has to be 4�
periodic.

In this Letter we propose and study a system with rather
simple geometry, based on a TI sample covered by a
superconducting film, and calculate the anomalous
4�-periodic supercurrent it carries. More specifically, we
consider a flat thin slab of strong TI with both its surfaces
covered by an s-wave superconducting film. The slab,
together with the superconductive films, is pierced by a
cylindric hole of radius R; see Fig. 1. A single super-
conductive vortex with a flux quantum �0 ¼ hc=2e is
pinned to that hole. The two superconducting surfaces
(S) are connected far away from the hole, forming an
S-N-S circuit with the hole acting as a normal (N) region.
Below we demonstrate that MBS should be present in this
setup, and calculate the anomalous 4�-periodic component
Iað’Þ of the current flowing along the cylindric hole

between the superconductive surfaces. Related issues
were considered in [11] in terms of the Hopf invariant
and its relation to fermionic parity. Note that in the
S-N-S-like setup we consider, a Hopf invariant cannot be
defined since a part of the TI surface is not gapped.
In the simplest case of strong TI, realized in Bi2Se3 and

Bi2Te3, surface electrons are described by a single Dirac
cone with the HamiltonianH ¼ vF� � p� EF, where � is
the spin operator and EF is the Fermi energy of the surface
states of the TI. Below we consider the semiclassical limit
� � EF and put @ ¼ 1. For the upper and lower surfaces
covered by s-wave superconductor, a pairing term
�c yc y þ H:c: arises due to proximity effect [1]:

Ĥ ¼ ðvF� � p� EFÞ�z þ �ðrÞ½�x cos’ðrÞ þ �y sin’ðrÞ�:
(1)

The Pauli matrices � act in the Nambu-Gor’kov space,

K̂ denotes complex conjugation. For the Hamiltonians
Hu;l acting on upper and lower surfaces, one should replace

I

FIG. 1 (color online). The system. A slab of TI has both
surfaces covered by superconductor. A hole channel in the layer
hosting a vortex forms an S-N-S junction between the surfaces.
The superconducting surfaces are connected away from the hole,
completing an S-N-S circuit with supercurrent flowing through
the hole.
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�ðrÞ and ’ðrÞ in Eq. (1) with �u;lðrÞ and ’u;lðrÞ,
correspondingly. The operator Ĥ anticommutes with the

electron-hole conjugation operator � ¼ �y�yK̂; we em-

phasize that this property holds for any Bogoliubov–
de Gennes Hamiltonian with a most general form of
single-electron spectrum, including terms that break

time-inversion symmetry. The symmetry fĤ; �̂g ¼ 0 di-
vides the eigenstates of the Hamiltonian (1) into a set of
conjugate pairs c E; c�E ¼ �c E with opposite energies
(E;�E) and, possibly, a number of self-conjugate states
with zero energy. In the Majorana basis of self-conjugate
states �E1 ¼ c E þ c�E, �E2 ¼ iðc E � c�EÞ, all matrix

elements of Ĥ are purely imaginary. Indeed, for any �; �0
we get h�jHj�0i ¼ �h�j�H�j�0i ¼ �h�jHj�0i�. Since
Ĥ is also Hermitian, it has to be antisymmetric; therefore,
the Pfaffian (Pf) H can be defined. It is easy to see that
generically the existence of Pf H protects twofold degen-
erate zero-energy levels of H against splitting under adia-
batic variations of H. Indeed, consider a Hamiltonian with
a parametric dependenceHð’Þ such that it possesses a pair
of zero eigenstates at some ’ ¼ ’0. Then the determinant
of the matrix H has a double zero at ’0, i.e., ðPfHÞ2 ¼
detHð’Þ / ð’� ’0Þ2, thus PfHð’Þ / ’� ’0. Any small
perturbation of the Hamiltonian (assuming it obeys the

symmetry condition fĤ; �̂g ¼ 0) can only shift the value
of the crossing point ’0, but its very existence is robust.
Apparently, the above arguments are in contradiction with
well-known properties of Andreev levels in a usual super-
conductive quantum point, with energies given [12] by

E� ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T sin2ð’=2Þ

q
, so that an arbitrary small

reflection probability r ¼ 1�T leads to the splitting of
zero levels present at ’ ¼ � in the ballistic case T ¼ 1.
The origin of this contradiction lies in the spin degeneracy
present in usual systems without spin-orbit interaction: in
the presence of such a degeneracy the Pfaffian of the
ballistic contact has a double zero, PfHð’Þ � ð’� �Þ2,
which is not robust to weak perturbations. Below we con-
sider the generic case of strong spin-orbit coupling and
thus no spin degeneracy.

The sign of Pf H changes simultaneously with the
fermionic parity F0 of the global ground state of the system
[10,11]. Indeed, the two eigenstates jei; joi of the total
Hamiltonian, which become degenerate when Ee;o ¼ 0 at

’ ¼ ’0, have fermionic numbers differing by 1. As the
phase ’ passes ’0, the roles of the ground state and the
lowest excited state are interchanged. If the actual fermi-
onic parity F of the system cannot change due to conser-
vation laws (which we will assume to be the case), we
come to the following conclusion: each time a pair of
Majorana levels crosses E ¼ 0, the ground state jg0i is
transformed to the lowest excited state je0i, and vice versa,
je0i ! jg0i. We argue now that while the phase ’ changes
on the ð0; 2�Þ interval, an odd number of such crossings
occurs, i.e., after a 2� phase rotation our system does not
return to its original state.

Consider first the system shown in Fig. 1 without the
cylindric channel but with two point vortices present in
both superconductive films, on the upper and lower sur-
faces. Each of them hosts a single MBS [1]. Because of
finite thickness L of the slab, these two MBS �1;2 are

hybridized into a single complex fermion c ¼ �1 þ i�2.
The energy e0ð’Þ of this fermionic mode is proportional, in

general, to the amplitude of MBS tunneling ~t� e�L=�TI

between the surfaces. However, for ’ ¼ � the tunneling
amplitude vanishes due to destructive interference [13];
thus, a single level crossing at E ¼ 0 occurs as ’ varies
on the ð0; 2�Þ period. Let us now open the cylinder channel
across the slab. It results in a drastic increase of hybridiza-
tion between upper and lower superconductive surfaces,
and in the appearance of an even (due to Kramers degen-
eracy) number of conductive modes. Since these additional
modes appear in pairs only, the transformation g0 ! e0
occurs on each 2� period of ’ variation. The above argu-
ments prove the existence of the anomalous component
Iað’Þ of the Josephson current, which is odd under 2�
shift. Below we calculate its magnitude and temperature
dependence.
To find the current flowing along the hole channel, we

first calculate the subgap spectrum of the contact. We
assume that the tube’s radius R and length L (the latter
coincides with the thickness of our TI slab) satisfy the
conditions

p�1
F � R; L � �0; �sc; (2)

where �0 ¼ vF=�, pF is the Fermi momentum of surface

electrons of the TI, and �sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D=2�

p � �0 is the actual
‘‘dirty-limit’’ coherence length in the superconductive film
with diffusion coefficient D. Inequalities (2) mean, in
particular, that we consider a short S-N-S contact with
many transverse channels, Nch � pFR. To find the subgap
spectrum we solve Bogoliubov–de Gennes equations on
both surfaces of the TI in the presence of the induced gap
and vortices, and match obtained solutions with eigen-
modes living on the inner cylindric surface of the channel.
We use cylindric coordinates r, �, z with the z axis

coinciding with the tubes axis. The Hamiltonian (1) in
the presence of an Abrikosov vortex is

Ĥ ¼ vF� � ðp�z � r�=2Þ � EF�z þ �ðrÞ�x: (3)

The magnetic screening length is very long for thin films,
and the flux of the vortex is distributed over a radius much
greater than both R and �0; thus, we may neglect the
vector-potential term in (3). For a fixed angular momentum
� we get

� ¼ ei���i�z�=2
uðrÞ
vðrÞ

� �
;

with radial wave functions uðrÞ and vðrÞ given by

Ĥ��N=2 � 	 �ðrÞ
�ðrÞ �Ĥ�þN=2 � 	

 !
u
v

� �
¼ 0; (4)
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with Ĥm standing for vF½�xðpr � i
2rÞ þ �y

m
r � � EF. The

profile of the gap function near the vortex center is �ðrÞ �
r�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2�2

sc

p
. Equation (4) can be solved for 	 � �

[14]. In the first order in 	=� it yields

u ¼ ½c1e�i
wð1Þ
��1=2ðrÞ � ic2e

i
wð2Þ
��1=2ðrÞ�e�K; (5)

v ¼ ½�ic1e
i
wð1Þ

�þ1=2ðrÞ þ c2e
�i
wð2Þ

�þ1=2ðrÞ�e�K; (6)

KðrÞ ¼
Z r

0
�ð�Þd�; (7)


ðrÞ ¼ e2KðrÞ Z 1

r

�
	þ ��ð�Þ

pF�

�
e�2Kð�Þd�; (8)

wð1;2Þ
m ðrÞ ¼ e�ðim=2Þ Hð1;2Þ

m�1=2ðpFrÞ
iHð1;2Þ

mþ1=2ðpFrÞ

0
@

1
A: (9)

Hð1;2Þ in (9) denote Hankel functions. When �; 	 ¼ 0,
solutions (5) and (6) become exact [15]. Because of the
e�K factor in Eqs. (5) and (6), the wave function � is
localized in the vicinity of the tube within a length ��0.
Next we specify electronic eigenmodes in the channel. The
Hamiltonian for a cylindrical surface has the form [16]

Hc ¼
�
�zpz þ ��p� þ i

2R
�r

�
; (10)

with �� ¼ ��x sin�þ �y cos� and �r ¼ �x cos�þ
�y sin�. The eigenfunctions of (10) are

c ¼ eipzei��e�i�z�=2
cos2
i sin2

� �
; (11)

where  ¼ arctan �
Rp . The energy spectrum for positive

energies (counted from EF) is 	�;p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2=R2

p
.

The angular momentum is half-integer, � ¼ 1
2 þ n, due

to the Berry phase originating from the rotation of the
spin. We neglect the effect of the small magnetic flux
�R � �0 inside the cylinder. Note that the possibility to
find conductive channels with no magnetic flux inside is
due to the semiclassical condition pFR 	 1; on the con-
trary, in the ultraquantum limit pFR 
 1 the presence of a
�0 flux would be necessary to make the hole conductive,
see supplement to Ref. [17].

Now we have to match wave functions (5) and (6) on the
upper and lower surfaces with wave functions (11) (and
their analog for the hole component with 	 < 0) on the
boundaries between the cylinder and flat surfaces. The
proper matching condition for a sharp edge reads:

�1 ¼ exp

�
�i

�

2
ð� � n�Þ

�
�2: (12)

Here n� is the unit vector in the direction of the edge and �
is the rotation angle (equal to �

2 in our case). �1;2 are

4-component vector wave functions on both sides of the

edge. The operator in Eq. (12) rotates the spin by the angle
� around the direction n�. We provide an explicit form of
the matching equations and the derivation of the resulting
energy spectrum in [13].
The resulting levels with 	ð’Þ � � are [up to the ne-

glected terms ��"� ��=ðpFRÞ2]

	�kð’Þ ¼ �"0ð’� �� 2�kÞ � "1

�
arcsin

�

pFR
þ �L

2pFR
2

�
�
1� �2

ðpFRÞ2
��1=2

�
; (13)

where "1 � � and "0 � �=2 for the case �sc � �0 we
consider, j�j<pFR, and k is an integer. No propagating
modes in the tube exist at � > pFR; instead there is an
exponentially small overlap between the bound states re-
siding inside vortex cores on opposite surfaces. The ener-
gies of the global eigenstates with j�j> pFR are given by

	� ¼ � �
pF�0

log�0

�sc
up to exponentially weak ’-dependent

corrections. The result (13) is not applicable in the region

j�� pFRj � ðpFRÞ1=3 where the crossover between hybri-
dized and nonhybridized levels occurs.
The supercurrent through a short S-N-S contact in ther-

mal equilibrium can be expressed [12] in terms of Andreev

levels: Ið’Þ ¼ �2e
P

j:	j>0 tanhð	j2TÞ @	j@’ . This formula takes

all states into account, regardless of their parity. Ið’Þ scales
with the number of conductive channels in the hole: I �
e�pFR=@. To reveal any parity-related effects, we have to
consider thermodynamic ensembles with odd and even
numbers of quasiparticles separately. A standard route is
to introduce thermodynamic potentials �odd=even, describ-

ing odd and even numbers of quasiparticles correspond-
ingly [18]. Dividing the total current Ið’Þ into a sum
Inð’Þ þ Iað’Þ, where Inð’Þ is parity independent, we ob-
tain Ia ¼ ð�1ÞF0e @

@’ ð�odd ��evenÞ; see [13]. In terms of

the spectrum of Andreev levels, it reads

Iað’Þ ¼ ð�1ÞF0
2ef

1� f2
X
j

1

sinhð	j=TÞ
@	j
@’

; (14)

0

1.0

0.5

0.0

0.5

1.0

0Ia

e 0

FIG. 2 (color online). The anomalous current Iað’Þ is com-
puted for pFR ¼ 2 (dashed line) and pFR ¼ 3 (solid blue line).
Other parameters are fixed as pF� ¼ 10, pF�sc ¼ 5, pFL ¼ 6,
T ¼ 0:05�. The extrema of Iað’Þ occur whenever a pair of
conjugated levels crosses at 	 ¼ 0.

PRL 106, 077003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 FEBRUARY 2011

077003-3



where f ¼ Q
j tanh

	j
2T ¼ fhybfnon and both the products

and the sum are done over positive 	j. Factors fhyb and

fnon correspond to the hybridized (current-carrying) and
nonhybridized levels. The physical meaning of Ia is the
current difference between an odd and an even state of the
system. The normal current In � 2pF Re�=@ is 2� peri-
odic and is larger than 4� periodic Ia by the number of
conductive modes in the channel.

Equations (13) and (14) constitute our major quantita-
tive result. Two examples of the Iað’Þ dependence com-
puted using Eqs. (13) and (14) are presented in Fig. 2. Iað’Þ
experiences � 2pFR oscillations in the (� �;þ�) inter-
val and has opposite signs at ’ ¼ ��where the amplitude
of Iað’Þ is maximal. The approximations used to derive
Eq. (13) may lead to a deformation of the Iað’Þ depen-
dence, and to an inhomogeneous shift of its oscillating
pattern by �’� ðpFRÞ�1. It should not affect the maximal
value Imax

a of the anomalous current. The temperature
dependence of Imax

a is presented in Fig. 3.
To analyze the temperature dependence of Iað’Þ, we

consider Eq. (14) in several limits. In the range of T
much higher than the typical level spacing "1=pFR, the

subproduct fhyb � e��2TpFR=4"1 (see [13]). If, in addition,

T 	 E0 � � R
�0

ln�0

�sc
, then the subproduct fnon is also

small: fnon ¼ e��2T=2�, where � ¼ ð�=pF�0Þ ln�0

�sc
is the

typical level spacing within a single vortex core. Thus Ia
decays exponentially with temperature at T > T1 ¼
minð �

pFR
; �R�0

ln�0

�sc
Þ. At lower temperatures T � T1, we

find fhyb ¼ tanhð	1=2TÞ, where 	1ð’Þ is the lowest hybri-
dized level; therefore,

Iað’Þ ’ e"0fnon
cosh2ð	1=2TÞ � f2nonsinh

2ð	1=2TÞ
; (15)

with fnon ¼ exp½� 4e�E0=T

1�e��=T�. Simple analysis of Eq. (15)

leads to the second characteristic temperature T2 ¼
E0= lnðpF�0Þ. Depending on parameters, T2 may be both
higher and lower than T1. In addition, we mention the
existence of nonhybridized subgap states localized in the
superconductive films near vortex cores, which may lead
to some suppression of the crossover temperature T2;

however, we do not expect their effect to be drastic.
Usual parity-effect temperature T3 ¼ �= lnð�V�Þ,
Ref. [18], puts an additional restriction for the region
where an anomalous current could be observed.
Summarizing, we find that for the anomalous current Ia
to be detectable, the following condition must be met:

T 
 min

�
�

pFR
;
2�R lnð�0=�scÞ
�0 lnðpF�0Þ ;

�

lnð�V�Þ
�
: (16)

The temperature dependence of the anomalous current is
shown in Fig. 3 for the case of T2 < T1.
To conclude, we proposed a setup using strong topologi-

cal insulator covered by superconductive films, which
allows the detection of Majorana bound states through
the measurement of an anomalous 4�-periodic component
Ia of the Josephson current. The temperature dependence
of the Ia amplitude is calculated, and the conditions for the
proposed effect to be observed are found.
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for the same sets of parameters as in Fig. 2. Solid blue line and
dashed line correspond to pFR ¼ 3 and pFR ¼ 2, respectively.

PRL 106, 077003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 FEBRUARY 2011

077003-4

http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.105.046803
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://arXiv.org/abs/1004.4702
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.104.067001
http://dx.doi.org/10.1103/PhysRevLett.104.067001
http://arXiv.org/abs/cond-mat/0010440v2
http://arXiv.org/abs/1003.1964
http://dx.doi.org/10.1103/PhysRevLett.66.3056
http://dx.doi.org/10.1103/PhysRevLett.66.3056
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.077003
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.077003
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.79.224506
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevLett.105.036803
http://dx.doi.org/10.1103/PhysRevLett.105.036803
http://dx.doi.org/10.1103/PhysRevLett.69.1997


Supplementary material for ”Anomalous Josephson current via Majorana bound

states in topological insulators”

P. A. Ioselevich1,2 and M. V. Feigel’man1,2

1L. D. Landau Institute for Theoretical Physics, Kosygin str.2, Moscow 119334, Russia and
2Moscow Institute of Physics and Technology, Moscow 141700, Russia

(Dated: January 26, 2011)

1. Degeneracy of MBS at ϕ = π

Beside of the Ξ-symmetry inherent to Bogolyubov-de
Gennes equation, our model has a symmetry that is the
composition U of rotation R and time-reversal Θ. Indeed,
by rotating our system around an axis lying in the z = 0-
plane (the plane lying between the surfaces of our slab),
we arrive at the same system as by conjugating ∆, pos-
sibly with a phase shift. Selecting a gauge, in which the
superconducting phase is given by arg ∆(θ, z = L/2) =
θ = arg ∆(θ, z = L/2)−ϕ, we find that U commutes with
the BdG Hamiltonian if the axis of rotation forms a ϕ/2
angle with the x-axis. The part of R that acts on spin
variables equals −i[σx cosϕ/2 + σy sin ϕ/2], while Θ =
iσyK, where K stands for complex conjugation. Hence,
U ∼ sin ϕ/2+ iσz cos ϕ/2. The first term commutes with
Ξ ≡ σyτyK, while the second term does not, in general.
We see that U commutes with Ξ only if ϕ = π. The
commutation relations [H, U ] = 0; [U, Ξ] = 0; {H, Ξ} = 0
lead to the degeneracy of the E = 0 levels of our system
at ϕ = π.

2. The matching equations

Consider two surfaces – 1 and 2 – joining on a line
at the angle of θ0. Let Ψ1,2 be the wave function on
the edge of surface 1 and 2 respectively. We replace the
sharp boundary by a smooth cylindric transition with a
radius r. We use the natural cylindric coordinates of this
cylindric sector with θ = 0 at its boundary with surface
1. Next we decompose Ψ1,2 into the set of functions (11)
of the main text:

Ψ1 =
∑

p,µ

ap,µΨp,µ (1)

Ψ2 =
∑

p,µ

ap,µeiθµ−iσzθ0/2Ψp,µ (2)

with Ψp,µ = eipz

(

cos α
2

i sin α
2

)

. In the limit r → 0 we have to

choose µ = 0 since
√

p2 + µ2

r2 = ǫp,µ = const. This allows

us to write Ψ2 = e−iσzθ0/2Ψ1. The basis-independent
form of this equation is given by equation (12) of the
main text.

3. The spectrum equations

The set of equations defining our systems spectrum
consists of 8 equations - two sets of 4 matching equations
corresponding to the two ends of the cylindric hole. To
derive these equations, let we first write down the wave
functions for some fixed momentum ν ; we will do it in
linear approximation in small parameter 1

pfR
≪ 1. The

fixed angular momentum ν on the surfaces corresponds to
ν± = ν±1/2 in the channel: electron waves have µ = ν−,
while hole waves have µ = ν+. After we have chosen the
proper angular momenta, we only need to match wave
functions at some fixed angle, say, θ = 0. The w.f. in
the cylinder is a superposition of four waves, representing
electrons and holes propagating up and down the tube:

Ψcyl =
(

a↑u↑ + a↓u↓ b↑v↑ + b↑v↑
)T

.

u↑ = ei(pf +q)z cosα
−

(

cos α−/2
i sin α−/2

)

(3)

u↓ = e−i(pf +q)z cosα
−

(

−i sin α−/2
cos α−/2

)

(4)

v↓ = ei(pf−q)z cosα+

(

cosα+/2
i sin α+/2

)

(5)

v↑ = e−i(pf−q)z cosα+

(

−i sin α+/2
cosα+/2

)

(6)

α± = arcsin
ν ± 1/2

pfR
q ≡

ǫ

vf
(7)

Next we write out the surface wave functions. At r ≪ ξ
the solution (5,6) of the main text transforms into

u = c1e
−iφ0w

(1)
ν−1/2(r+) − ic2e

iφ0w
(2)
ν−1/2(r+) (8)

v = −ic1e
iφ0w

(1)
ν+1/2(r−) + c2e

−iφ0w
(2)
ν+1/2(r−) (9)

with r± = r(1 ± q/pf) and φ0 = φ(0) ≃ qξ0/2 +
ν

pf ξ0
log ξ0

ξsc
in the dirty limit ξsc ≪ ξ0. Using the asymp-

totics of Hankel functions with large arguments, we find
the w.f. on the upper surface at r = R, z = L, θ = 0,
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within ∼ 1/pfR accuracy (we neglect terms ∼ (pfR)−2):

Ψup(R) = C1









exp[iβ − 2iφ0 + ϕ]
i exp[−2iφ0 + ϕ]

1
i exp[−iβ]









+

+C2









exp[−iβ + 2iφ0 + ϕ]
i exp[2iφ0 + ϕ]

1
i exp[iβ]









(10)

with some coefficients C1, C2 and cosβ = ν/pfR. This
formula is correct unless |ν−pfR| <

∼ (pfR)1/3. Ψdown(R)
is obtained by introducing two new coefficients Q1, Q2

instead of C1, C2 and putting ϕ = 0.

Now we can construct the matching equations accord-
ing to the matching rule (12) of the main text. Acting
on Ψcyl(z = L) and Ψcyl(z = 0) by 1√

2
(1 − iσy) and

1√
2
(1 + iσy) respectively we finally get

A↑e
i(pf +q)L cos α

−

„

1
eiα

−

«

+ A↓e
−i(pf+q)L cos α

−

„

−eiα
−

1

«

= C1

„

exp[iβ − 2iφ0 + ϕ]
i exp[−2iφ0 + ϕ]

«

+ C2

„

exp[−iβ + 2iφ0 + ϕ]
i exp[2iφ0 + ϕ]

«

(11)

B↓e
i(pf−q)L cos α+

„

1
eiα+

«

+ B↑e
−i(pf−q)L cos α+

„

−eiα+

1

«

= C1

„

1
i exp[−iβ]

«

+ C2

„

1
i exp[iβ]

«

A↑

„

eiα
−

−1

«

+ A↓

„

1
eiα

−

«

= Q1

„

exp[iβ − 2iφ0]
i exp[−2iφ0]

«

+ Q2

„

exp[−iβ + 2iφ0]
i exp[2iφ0]

«

B↓

„

eiα+

−1

«

+ B↑

„

1
eiα+

«

= Q1

„

1
i exp[−iβ]

«

+ Q2

„

1
i exp[iβ]

«

Since α± = π/2−β within our approximation, the spinors
with coefficients A↑ and C1 in the first equation of the
system (11) are collinear. The same is true for the spinors
with coefficients A↓ and C2 in the same equation. A
similar statement is true for each of the other Eqs.(11).
Consequently, the system (11) splits into two simple sub-
systems:

A↑ = C1 exp[iβ − 2iφ0 + iϕ− i(pf + q)L cos α−] (12)

B↓ = C1 exp[−i(pf − q)L cos α+]

A↑ = Q2 exp[−iπ/2 + 2iφ0]

B↓ = Q2 exp[−iπ/2 + iβ]

and

A↓ = C2 exp[iπ/2 + 2iφ0 + iϕ + i(pf + q)L cos α−] (13)

B↑ = C2 exp[iπ/2 + iβ + i(pf − q)L cos α+]

A↓ = Q1 exp[−2iφ0 + iβ]

B↑ = Q1

These equations give the following set of the two spectral
equations

4φ0 = −2α ± (ϕ − π − 2πk) +

+(pf − q)L cos α+ − (pf + q)L cos α− (14)

where the upper/lower signs refer to the systems (12)
and (13) correspondingly. Since we assume L ≪ ξ0 and
R ≪ ξ, we neglect the ∼ qL term in the r.h.s of (14) and
the ν-dependent term in φ0, arriving at the final formula
(13) of the main text.

4. The anomalous current

The thermodynamic potential of a system with a fixed
parity can be written as

Ωodd/even = −T ln

∏

i

(

1 + e−βǫi
)

∓
∏

i

(

1 − e−βǫi
)

2
(15)

with β = T−1. The difference δΩ = Ωodd − Ωeven equals

δΩ = −T ln
1 − f

1 + f
with f ≡

∏

i

tanh
βǫi

2
(16)

Hence

Ia = eδΩ′
ϕ =

2Tef ′
ϕ

1 − f2
=

2Tfe

1− f2

∑

i

βǫ′i,ϕ

2 cosh2 βǫi

2
tanh βǫi

2

=
2fe

1 − f2

∑

i

ǫ′i,ϕ
sinhβǫi

. (17)

It is useful to divide f into factors corresponding to
the hybridized and non-hybridized parts of the discrete

spectrum.

f =
∏

|ν|<pfR

tanh
ǫν

2T

∏

|ν|>pfR

tanh
ǫν

2T
= fhybfnon (18)
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We neglect the exponentially small dependence of non-
hybridized energies on ϕ, so that

Ia =
2efhybfnon

1 − f2
hybf

2
non

J J =
∑

|ν<pfR|

∂ǫν/∂ϕ

sinh(ǫν/T )
(19)

First let us analyze fhyb. The typical level spacing
is ω0 ∼ ∆

pfR . If T ≫ ω0, we can write fhyb =

exp
[∫ ∞

0
ln tanh(ω0ν

2T
)dν

]

= exp
[

−π2T
4ω0

]

. For small L/R

and ϕ = π this gives exp
[

−
π2pf RT

2∆

]

In the opposite case

T ≪ ω0 we can write fhyb = tanh Eh

2T
, where Eh is the

lowest hybridized energy level.

Next we consider factor J . At T ≫ ω0 we use
sinh(ǫ/T ) ≃ ǫ/T at small energies and get J <

∼
∑T/ω0

n=1
T∆
nω0

= T∆
ω0

log T
ω0

. At T ≪ ω0 the amplitude of
J is dominated by the lowest hybridized level ǫ1 and we
get |J | = ∆

2 sinh ǫ1/T
.

Finally, we analyze fnon. The spectrum of the non-
hybridized de Gennes states is described by Enon =
∆

pf ξ ln
(

ξ0

ξsc

)

[pfR + n] = E0 + nδ with n = 0, 1, 2....

There are two copies of these series – one for the up-
per and one for the lower surface. If (T − E0) ≫ δ we
can rewrite

fnon = exp

[

2

∫ ∞

pf R

ln tanh
nδ

2T
dn

]

= exp

[

−
π2T

2δ
−

4T

δ

∫
E0
2T

0

ln tanhxdx

]

(20)

The second term can be neglected, if T ≫ E0. At low temperatures T ≪ E0 we have

fnon = exp

[

2
∑

n

ln[1− 2e−
En
T ]

]

= exp

[

−4e−
E0
T

∞
∑

n=0

e−
nδ
T

]

= exp

[

−4
e−

E0
T

1 − e−
δ
T

]

(21)

The low-temperature expressions derived for fhyb, fnon, J lead to formulae (15, 16) of the main text.
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