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"There's so much fun to be had .... I don't want you to take this stuff too seriously. 
I think we should just have fun imagining it, and not worry about it- there's no 
teacher going to ask you questions at the end."(R. P. Feynman) 

1 Chern-Simons theory 

Chern-Simons theory has come to play an important role in three-dimensional 
topology because of its connections with Ray-Singer analytic torsion [47], the 
Gauss linking number [25], [14], [57], the Jones polynomial in knot theory [35] 
and its generalizations [63], [23], and three-manifold invariants [63], [12]. Recently, 
Chern-Simons forms and actions over noncommutative spaces [7] have been de
fined [45], [6] and turn out to provide a unifying perspective for topological gauge 
theories in odd and even dimensions [6]. 

The comparatively trivial abelian pure Chern-Simons theories (which repro
duce the Gauss linking number and analytic torsion) have turned out to be fun
damental building blocks for a theory of the fractional quantum Hall effect [61], 
[31], [59], [20], [29], [49]. This effect is one of the more exciting effects in condensed 
matter physics, discovered and explored between 1980 and the present [58], [54], 
[9], [44]. It has also been observed that SU(2)-Chern-Simons theories come up in 
problems of condensed matter physics connected with the theory of spin liquids; 
see e.g. [26]. 

Thus, it is well justified to start this report with a short review of the defini
tion and some mathematical properties of Chern-Simons theory. 

Let M be an oriented, framed three-manifold (the framing of M corresponds 
to a choice of a trivialization of the tangent bundle of M). Below, we shall consider 
the example where M = JR3 . Let G be a compact Lie group, or let G = IRN. Let 
E denote the total space of a principal G-bundle with base space M, and let V7 
be a connection on E. Locally, we may describe V7 in terms of its components, 
A (the "gauge potential"), in some local trivialization of E. These components 
are 1-forms on M with values in Lie G (the Lie algebra of G). The Chern-Simons 
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3-form on M is defined, locally, by the formula 

2 
CS(3)(A) = tr (A 1\ dA + '3 A 1\ A 1\ A), (1.1) 

where tr(·) is a trace on Lie G that is invariant under the adjoint action of G on 
Lie G. The Chern-Simons action functional Sis defined, formally, by 

S(A) = ~ J CS(3)(A). 
47r 

M 

(1.2) 

Unfortunately, this definition does not make sense in general. To understand the 
problems with (1.2), we consider the example where M = 8 3 and G = SU(N). 
We choose an orthonormal basis {Ta}~:1 , DN = N 2 - 1, in AN_1 =Lie SU(N) 
and choose tr(-) such that 

k 
tr (Ta T{3) = - 2 Oaf3, (1.3) 

k E R Because 1r3(G) = Z, the action S(A) in eq. (1.2), with tr(·) as in (1.3), 
is defined only modulo 21rkZ. It follows that exp i S(A) is a well-defined, single
valued functional of the connection \7 if and only if k E Z. Similar remarks apply 
to general compact Lie groups. 

Assuming now that tr(·) has been chosen such that exp i S(A) is a well
defined functional of \7, quantized Chern-Simons theory is defined as a mathemat
ically precise interpretation of the formal Feynman "functional measure" 

dP (A) := z-1 exp i S(A) VA, (1.4) 

where VA is a formal Lebesgue measure on the affine space of connections on 
E, and the normalization factor Z (the partition function) is chosen such that 
J dP(A) = 1. One would hope to extract from (1.4) a precise definition of dP(A) 
as a complex measure on the space A of orbits of gauge potentials under the action 
of the group of gauge transformations. 

The functional exp i S(A) does not require choosing a metric on M, and one 
might expect, therefore, that dP(A) is independent of a choice of a metric on 
M. Unfortunately, this is a wrong expectation. The definition of "VA" involves 
the choice of a metric on M, and, in order to eliminate dependence of dP(A) on 
that metric, one must add to S(A) a "counterterm", which is given by the Chern
Simons action of the Levi-Civita spin connection [63], [5]. One may then hope to 
arrive at a definition of dP(A) that depends only on the framing of M and hence 
yields what is called a topological gauge theory [63], [62]. 

The kinds of functionals on A one would like to integrate with the "measure" 
dP(A) are Wilson loops: let C be a loop in M (i.e., a smooth embedding of 8 1 in 
M), and let R be an irreducible, unitary representation of G. We define 

WR[C] := TrRR [P exp ( J A], 
.c 

(1.5) 
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where P indicates path ordering, and ( is some positive constant ("field strength 
renormalization" constant) to be determined. For a smooth Lie G-valued 1-form 
A, the R.S. of (1.5) can be defined via Chen's iterated integrals, i.e., through its 
Dyson series. 

As it stands, the expression on the R.S. of eq. (1.4) is nonsense. A conventional 
strategy used to make sense of (1.4) is to fix a gauge and apply the Faddeev-Popov 
procedure [10] to interpret VA. "Fixing a gauge" consists in choosing connection
dependent, local trivializations of E in such a way that the gauge potentials A 
satisfy certain constraints. We wish to exemplify gauge fixing in a special case, 
following [23]: we choose G = SU(N) and M = JR3 . Points x EM are represented 
by (Cartesian) coordinates (x+, x-, t), with x+, x-, tin R We expand the gauge 
potential A in the basis { dx +, dx- , dt} of 1-forms: 

A(x) = a+(x)dx+ + a_(x)dx- + a0 (x)dt, (1.6) 

where ai(x) E AN-1, i = +, -, 0. We choose a basis {Ta}~:1 in AN-1 and a trace 
tr(-) on AN_1 as specified in (1.3). Then 

DN 

ai(x) = L ai(x) Ta, 
a=1 

where af(x) is a function on M, Vi, a:. One easily shows that the condition 

a_(x) = 0 (1. 7) 

fixes a gauge (called "light-cone" or "axial" gauge). In this gauge, the Chern
Simons action S of eq. (1.2) takes the form 

(1.8) 

This action is quadratic in A. One may therefore attempt to interpret the measure 
dP(A) in (1.4) as a "complex Gaussian measure". Well, it actually is a "complex 
Gaussian", but it isn't a measure. However, all we really need to be able to do 
is to calculate moments of dP(A). Let ((·)) denote formal integration J dP(A)(·) 
with respect to dP(A). The first moments (af(x)) vanish and the second moments 
(ai (x) aj (y)) can be expressed in terms of the partial derivative of a Green function 
of the d'Alembertian 8+8- with respect to x+. Together, they determine all higher 
moments ("Wick's theorem"). It is advantageous to complexify the planes {t = 

const. }, use complex coordinates, z = x+ E <C, z = x- E <C, and analytically 
continue the moments of dP(A) in x+. The physicists call this "Wick rotation". 
Wick rotation is convenient, but not indispensable, in the following calculations. 
The Wick-rotated second moments are: 

(a'=-(x) aj(y)) 

(a+(x) a!(y)) 

(a~(x) ag(y)) 

0, for all j, o:, (3, 

0, for all a:, (3, 

0, for all a:, (3, 
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1 
(a~(z, t) ag(w, s)) = 2>. 8'-'f3 8(t- s) --, 

z-w 
(1.9) 

with >. = -1/k. Expectations ((·)) of more complicated functionals of A can be 
calculated from (1.9) by using Wick's theorem. In particular, we may calculate 
expectations of "Wilson lines" and Wilson loops from (1.9) (e.g. by expanding 
them in a Dyson series). 

Let h, ... ,Im be a partition of {1, ... ,n}, m = 1,2, ... , n = 1,2, .... To 
every index set Ie we assign a representation Re of SU(N). Each index j E Ie 
labels a smooth curve 

in the complex plane that determines a smooth curve Oj(t) in IR.3 given by 

Oj(t) = { (Re Zj(t'), Im Zj(t'), t') : Zj(t') E "(j(t), to~ t' ~ t}. 

We define a "Wilson line operator" wj(t) by setting 

wj(t) := Re[Pexp( j A], 
<Jj(t) 

(1.10) 

(1.11) 

where ( > 0 is a field strength renormalization constant. This operator is a holo
nomy matrix of the connection V' with components A and acts on the representa
tion space VRe of SU(N). It is easy to see that 

(1.12) 

where 
t 

aj (t) := dRe[j {a+ (zj (t'), t')zj(t') + a0 (zj (t'), t')} dt'], 
to 

with z(t) = dz(t)/dt, and dRe the representation of AN-1 determined by Re; 
j E Ie, £ = 1, ... , m. 

The basic object in a mathematically precise definition of SU(N) pure Chern
Simons theory on IR.3 is 

(1.13) 

which is an endomorphism of the vector space 

(1.14) 

with R(j) = Re, for j E Ie, n = 1, 2, 3, .... One may attempt to calculate cf>n(t, t 0 ) 

by deriving a differential equation for it. We define 

DN 
nij := L n Q9 .•• Q9 dR(i)(Ta) Q9 •.• Q9 dR(j)(Ta) Q9 ••• Q9 n, (1.15) 

a=l 
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for all i,j, with 1 ~ i < j ~ n. Using (1.12), one shows- see [23]- that 

¢n(t, to) = "" L (1.16) 
1-<:;i<j<:;n 

where""= ( 2 ,\. Eq. (1.16) is the celebrated Knizhnik-Zamolodchikov equation[38]. 
An alternative method to calculate ¢n(t, t 0 ) would be to expand all Wilson line 
operators Wj(t) in their Dyson series and to calculate the resulting terms by using 
Wick's theorem and (1.9) [16]. 

Let Mn denote the subset of en consisting of n-tuples, ;;: = ( Z1' ... 'Zn)' of 

complex numbers, with Zi # Zj, for i # j, and let Mn be the universal cover of 

Mn. Let K be the space of Vn-valued functions on Mn. On K we may define a 
connection 1-form w by setting 

w = "" L d log(zi- Zj) Dij· 
1-<:;i<j<:;n 

(1.17) 

This connection is called the Knizhnik-Zamolodchikov connection. It is easy to 
verify that w is fiat, i.e., 

dw + w 1\w = 0. 

This is a consequence of the infinitesimal pure braid relations 

(1.18) 

where i, j, k, and 1! are all distinct. Eq. (1.16) may now be written as 

(1.19) 

which is the equation for a parallel transporter. 
Let ( z1, ... , Zn) be a point in Mn, and let 1r be an arbitrary permutation of 

{1, ... , n} leaving the subsets h, ... ,Im invariant. Let CYj = CYj (tl) be a curve in 
~3 , as in (1.10), starting at the point (Re Zj, Im Zj, to) and ending at (Re Zrr(j)' 
Im Zrr(.j), tl), for j = 1, ... , n. The family of all n-tuples { cr1, ... , ern} of such curves 
that do not intersect each other is a union of disjoint homotopy classes of curves 
labelled by elements b of a subgroup Bn(h, ... , Im) of the braid group, En, on n 
strands defined by the property that the cosets of elements of Bn(h, ... , Im) mod-
ulo the normal subgroup of pure braids are permutations 1r of { 1, ... , n} leaving 
h, ... ,Im invariant. Let bE Bn(h, ... ,Im), and let {cr1, ... ,crn} ben curves in 
the homotopy class b. Let ¢n(b; h, t 0 ) be a solution of the Knizhnik-Zamolodchikov 
eq. (1.16) for the curves {cr1, ... ,crn}, with initial condition ¢n(b;to,to) =IT lvn· 
Then 

(1.20) 

defines a representation ¢n of Bn(h, ... , Irn) on Vn. This is a consequence of the 
identity 
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(representation property) and the flatness of the Knizhnik-Zamolodchikov connec
tion w. 

Let 
g r-+ R(n)(g) := RC 1l(g) 0 .. · 0 R(nl(g), g E SU(N), 

be the representation of SU(N) on Vn. Because the Knizhnik-Zamolodchikov con
nection w is SU(N)-invariant, the representation ¢n of Bn(I1 , ... , Im) on Vn com
mutes with the representation R(n) of SU(N) on Vn· Let In be the subspace of Vn 
consisting of SU(N)-invariant tensors, i.e., for~ E In, R(n)(g)~ = ~' 'ig E SU(N). 
The space In inherits the scalar product of Vn. It is an invariant subspace for ¢n· 
It is interesting to ask whether the representation ¢n of Bn(h, ... Jm) on Vn, or 
its subrepresentation ¢n lzn, are unitary in the scalar product of Vn- The answer 
is that they are not unitary. However, ¢n may contain a unitary subrepresentation: 
suppose that 

1 
li = ± -k--' k = 1,2,3,. 00' + C2 

(1.21) 

where c2 is the eigenvalue of the quadratic Casimir operator in the adjoint rep
resentation of the group G, normalized such that c2 = N, for G = SU(N). Let 
Uq(Lie G) denote the usual quantum deformation of the universal enveloping al
gebra of Lie G with deformation parameter q = exp inli [34]. We assume that 
the representations R£, C = 1, ... , m, have positive q-dimensions; see e.g. [21]. One 

may then define a certain quotient I~q) of Vn of Uq (Lie G)-invariant tensors, which 
is expected to be invariant under the representation ¢n of Bn(h, ... , Im); see e.g. 
Chapter 6 of [21]. The miracle is that ¢n lz~q) appears to define a unitary repre-

sentation of Bn(h, ... Jm) on I~q). For G = SU(2), proofs have been sketched in 
[52], [39]. More details can be inferred from the explicit formulas in [23], [11] and 
the general results in Chapters 5 and 6 of [21]. For G = SU(N), N 2:: 3, a proof 
may, perhaps, be constructed on the basis of the results in [23], [21], [60], [37], 
but has apparently not appeared in the literature. The result described above is 
expected to hold for arbitrary compact, simple Lie groups G, but proofs are not 
available yet. The mathematical setting within which a proof might be constructed 
is that of braided tensor categories (more precisely "quantum categories" [21]) and 
of generalized hypergeometric functions [46]; see also the contributions of Felder 
and Wasserman to these proceedings, and references given there. A mathemati
cally precise definition of quantized pure Chern-Simons theory on M = JR3, with 
lias in (1.21), would consist of converting the conjectures just described into the
orems. Quantum-mechanical state vectors of this theory would be vectors in the 
spaces I~q), n = 0, 1, 2, ... (Ibq) := C), and it would determine unitary represen

tations ¢n of the groups Bn(h, ... Jm) on I~q), for all h, ... Jm, and all n. The 
"physics-inspired" literature on these matters is somewhat confusing, with many 
incomplete proofs for fairly obvious conjectures. 

The analysis sketched above for G = SU(N) becomes very simple when 
G = JRN, N = 1, 2, ... (abelian pure Chern-Simons theory). See Section 3. Chern
Simons theories with G = IRN are the basic building blocks in the theory of the 
fractional quantum Hall effect. (It will turn out that G is actually given by !RN jr, 
where r is an integral Euclidian lattice.) 
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Chern-Simons theory becomes a more interesting, dynamical quantum field 
theory if the manifold M is a full cylinder (and k = 1, 2, 3, ... ). In this situation, it 
is equivalent to Lie G Kac-Moody algebra at level k and its representation category. 
See [63], and [43], [24], [16] for more details. In the context of the quantum Hall 
effect, the Kac-Moody currents acquire physical significance as "edge currents". 

But let us return to the representations cPn of the braid groups En (h, ... , Im) 
on the spaces In, for generic values of the parameter K,, and sketch their connection 
with polynomial invariants of knots and links. We choose n = 2p to be an even 
integer and assume that 

R(J+p) = R(j)v, j = 1, ... ,p, (1.22) 

where Rv is the representation of SU(N) conjugate toR. Let 1r be a permutation 
of {1, ... , 2p} with 1r(j + p) = j + p, R(1r(j)) = R(j) (j and 1r(j) are in the same 

subset Ie of {1, ... , 2p}) for j = 1, ... ,p. Let { eSR)} be an orthonormal basis of 

the representation space Vn. We define vectors ~(1r) E I 2P by setting 

(1.23) 

Let b be an element of the braid group B 2P with the property that the coset of b 
modulo pure braids on 2p strands is given by the permutation 1r. We consider the 
scalar products 

(1.24) 

These numbers are invariants of framed links. Quotients of these scalar products 
by analogous scalar products, with SU(N) replaced by JR, yield the evaluation 
of an invariant of oriented links on the oriented link determined by the clement 
b E B 2p and colored by the representations R(l), ... , R(P). The special case where 

R(l) = · · · = R(P) = R is theN-dimensional, fundamental representation of SU(N) 
has been analyzed in detail in [23], with generalizations appearing in Section 6.3 
of [24]. 

The scalar products (1.24) can be calculated perturbatively, by expanding 
cP2p(b; t 1 , to) in a Taylor series inK,. The Taylor coefficients can be found by either 
solving the Knizhnik-Zamolodchikov equation for ¢2P iteratively (see the appendix 
in [23]) or, equivalently, by expanding the Wilson line operators wj(t) defined in 
(1.11) in their Dyson series, plugging the Dyson series into the R.S. of (1.13) and 
using Wick's theorem and (1.9). These Taylor coefficients are given in terms of 
multiple integrals along the curves 0"1 ( t), ... , 0"2p( t). They are special cases of what 
has become known under the name of Vassiliev invariants [56]: If, in eq. (1.19), 
a specific Knizhnik-Zamolodchikov connection w is replaced by the "universal flat 
connection" defined by ( 1.17), with { Oij} the "universal solution" of ( 1.18), one 
obtains the Vassiliev invariants of links. 

It is natural to conjecture that the invariants built from (1.24) depend on the 
choice of the gauge group G in a nontrivial and interesting way. For a review of 
recent results concerning this topic sec e.g. [2]. 

Now it is time to shift gears and talk about physics. 
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2 Quantum Hall effect and integral lattices 

Experimentally, the quantum Hall effect is observed in two-dimensional systems of 
electrons confined to a planar region 0 and subject to a strong, uniform magnetic 
field Be transversal ton, as indicated in Figure 1. 

Figure 1 

By tuning they-component Iy of the total electric current to some value and then 
measuring the voltage drop Vx in the x-direction of the plane of the system, i.e., 
the difference in the chemical potentials of the electrons at the two edges R and 
L, one can calculate the Hall resistance 

Vx 
Iy ' 

(2.1) 

and finds that, for a fixed density n of electrons and at temperatures close to 0 K 
(absolute 0), the value of RH is independent of the current Iy. It depends only on 
the external magnetic field Be. If the electrons are treated classically one finds, by 
equating the electrostatic to the Lorentz force, that 

(2.2) 

where Be is the z-component of Be perpendicular to the plane of the system, e is 
the elementary electric charge, and c is the velocity of light. 

By also measuring the voltage drop Vy in the y-direction, one can determine 
the longitudinal resistance, RL, from the equation 

Vy 
RL = T" 

y 
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Neither classical nor quantum theory makes simple predictions about the behavior 
of RL, but RL > 0 means that there are dissipative processes in the system. 

Two-dimensional systems of electrons are realized, in the laboratory, as in
version layers that form at the interface between an insulator and a semiconductor 
when an electric field (gate voltage) perpendicular to the interface, the plane of 
the system, is applied. An example of a material is a sandwich (a "heterojunc
tion") made from GaAs and GaxAl1_xAs. The quantum-mechanical motion of the 
electrons in the z-direction perpendicular to the interface (identified with the x-y 
plane) is then constrained by a deep potential well with a minimum on the in
terface. Quantum theory predicts that electrons of sufficiently low energy, i.e., at 
low enough temperatures, remain bound to the interface and form a very nearly 
two-dimensional system. 

In a theoretical analysis of the Hall effect it is advantageous to consider 
the connection between the electric current density j(x) = (j 1 (x),j 2 (x)) and the 
electric field E(x) = (E1 (x),E2 (x)) at an arbitrary point x = (x1 ,x2 ) = (x,y) of 
0 which is given by the Ohm-Hall law 

E(x) = p j(x), p ( Pxx 
PH 

-PH) 
Pyy ' 

(2.3) 

where Pxx = RL(f!y/f!x), Pyy = RL(f!x/f!y) are the two longitudinal resistivities, 
PH = RH is the Hall resistivity, and f!x, f!y are the widths of the system in the x
and y-directions, respectively. This is a phenomenological law valid on macroscopic 
distance scales and at low frequencies. 

It is convenient to introduce a dimensionless quantity, the so-called filling 
factor v, by setting 

v = nj(eB,)hc), (2.4) 

where l~c is the quantum of magnetic flux. Then the classical Hall law (2.2) says 

that R}/ rises linearly in v, Rj/ = ~ v, the constant of proportionality being given 
2 

by a constant of nature, 71-· Because, experimentally, Be can be varied and n can 
be varied (by varying the gate voltage), this prediction of classical theory can be 
put to experimental tests. Experiments at very low temperatures and for rather 
pure inversion layers yield the following very surprising data shown in Figure 2 
[58], [54], [9]. 
These data tell us the following: 
(1) O"H := -J!:z R}/ (the dimensionless Hall conductivity) has plateaux at certain 

rational heights. The plateaux at integer height occur with an astronomical 
precision of 1:108 (defining a new standard for conductivity and yielding 
perhaps the most precise experimental value for the fine structure constant 
a = 27r e2 /he c::::: 1/137). The plateau quantization is insensitive to sample 
preparation and geometry. 

(2) When (v, O"H) belongs to a plateau the longitudinal resistance RL very nearly 
vanishes. This means that, for such values of v and O"H, there are no dissipa
tive processes in the system. 
The remarkable nature of these facts has been expressed by Laughlin [41] as 

follows: "The exactness of these results and their apparent insensitivity to the type 
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Figure 2 

or location of impurities suggest that the effect is due, ultimately, to a fundamental 
principle." 

It is the main purpose of this lecture to uncover some aspects of that principle. 
We shall be modest and focus our attention on the explanation of why (J'H must be 
a rational number when RL vanishes, which rational numbers may occur, and what 
properties the system has when RL = 0 and (J'H takes an allowed rational value. 

As a first step, we formulate the classical electrodynamics of a two-dimen
sional system of electrons in an external electromagnetic field ( E, Btot . ) when 
RL = 0, and for an arbitrary value of (J'H· Here E is an external electric field, 
and Btot. = Be+ B, where Be is a constant, external magnetic field transversal 
to the plane of the system, and B is a small, nonconstant perturbation of Be. As 
long as we do not describe the dynamics of the spins of the electrons - which are 
quantum-mechanical degrees of freedom- the laws of electromagnetism in such a 
system only involve E = (E1 , E2), the component of E parallel to the plane of the 
system, and Btot. = Be + B, the component of Btot. perpendicular to the plane 
of the system. Because RL is assumed to vanish, eq. (2.3) can be rewritten as 

(i) Hall's law. 
jk(x) = (J'H c:k£Et(x), X= (x,t), with k,£ = 1,2, and c = el ~),in units 
where e = h = 1. 

More fundamental are the following two laws: 
(ii) Charge conservation. 

gt j 0 (x) + V · j(x) = 0 (continuity equation for the electric charge density j 0 

and the electric current density j). 
(iii) Faraday's induction law. 

fft B(x) + V t\ E(x) = 0. 
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Combining (i), (ii), and (iii), we find that 

ft j 0 (x) = CJH gt B(x). 
Defining j 0 to be the difference between the total electric charge density and the 

uniform background density, n, we obtain the following result [20]. 
(iv) Charge-flux relation. 

j 0 (x) = CJH B(x). 
The laws (i)-(iv) are generally covariant and metric independent (topological) [20]. 
Integrating (iv) over all of spaceD, we conclude that 

(2.5) 

where qcl = In d2x j 0 (x, t) is the total (excess) electric charge of the system, and 

<I>= In d2x B(x, t) is the total (excess) magnetic flux passing through the system. 

These simple, beautiful laws, (i)-(iv), are the starting point of our analysis. 
They remain valid in a quantum-mechanical treatment of the electrons, see Section 

3, that leads to rather remarkable conclusions. Let me anticipate the main results 

of our analysis and discuss their consequences. To do this, I must recall what 

integral Euclidian lattices are. 
Let V be a vector space over the rational number field equipped with a 

positive-definite inner product(-,·). In V we choose a basis {ei}~ 1 , N =dim V, 
with integral Gram matrix K, where 

(2.6) 

for all i, j = 1, ... , N. The basis { ei}~ 1 generates an integral Euclidian lattice r 
defined by 

N 

r = { q = L qi ei : qi E .z::, v i} . (2.7) 
i=1 

The lattice f* dual to r, i.e., the lattice of integer-valued linear forms on r, is 
given by 

N 

r* = { n = L ni Ei : ni E .Z::, l;f i}, 
i=1 

where {c:i}~ 1 is the basis of V dual to {ei}~ 1 , i.e., 

and 

where 

(K-1 )ii 

N 

L (K-1 )ij ej ' 

j=1 

~ = det K = I r* ;r I 

is the discriminant of r, and K is the matrix of cofactors (Kramer's rule). 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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The matrix K is positive-definite, with rank (K) = N, if and only if (·, ·) 
is positive-definite. The lattice r is called odd iff it contains an element q, with 
(q, q) E 2 Z + 1. Thus, r is odd iff Kii is odd, for at least one i E {1, ... , N}. 

We are now in a position to state our main contention. Consider a two
dimensional system of electrons in a uniform, external magnetic field Be at a 
temperature T ~ 0 K, with the property that RL vanishes. Following Laughlin, 
we call such a system an incompressible quantum Hall fluid, abbreviated as IQHF. 
We claim that the physics of an IQHF on very large distance scales and at very 
low frequencies (i.e., in the so-called scaling limit) is coded into the data (r e, Qe) 
and (rh, Qh), where 

(i) r e and rh are two integral, odd Euclidian lattices, and 
(ii) for X = e, h, Qx is a primitive, odd vector in r~. 

A vector Q E r* is called primitive, or visible, iff g.c.d. ( ( Q, e1)) ;=l 
is called odd iff 

(Q,q) = (q,q) mod2, \fqEr. 

The dimensionless Hall conductivity UH is then given by 

where 

1, and Q 

(2.12) 

(2.13) 

(2.14) 

This proves immediately that uH is a rational number. We shall denote it by 

nH 
UH = dH , with g.c.d. (nH, dH) = 1. 

At this point, there is the danger that our theory predicts far too many 
possible rational values of uH. However, what our theory really says is that if 
RL = 0 then UH must belong to a certain subset §of the rational numbers, and 
that if RL = 0 at some value of uH belonging to§ then the properties of the system 
are encoded in some pair, (r e, Qe) and (r h, Qh), of integral Euclidian lattices and 
primitive vectors in their duals. Typically it happens that there are many pairs, 
(r e, Qe) and (r h, Qh), corresponding to a given value of u H in §. Whether a 
pair (re, Qe), (rh, Qh) describes an incompressible quantum Hall fluid that can be 
realized in a laboratory is a complicated analytical problem of quantum mechanics 
to which our theory can only give a tentative answer! Thus, it is very likely that 
many points in§ do not correspond to the Hall conductivity uH of a real IQHF. 

The subscripts "e" and "h" refer to the following physics: the basic charge 
carriers in a quantum Hall fluid (QHF) can be mobile electrons of electric charge 
-e. If RL ~ 0 the fluid is then described by a pair (re, Qe). They could also 
be mobile holes ("missing electrons") of charge +e, in which case the IQHF is 
described by (rh, Qh). Finally, an IQHF could be composed of two fluids, one 
consisting of mobile electrons, the other one consisting of mobile holes. It is a 
natural, physical idea that, for small values of the filling factor, these two fluids 
do not mix. We shall assume this henceforth (but see [22], [27] for a more general 
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analysis also involving (indecomposable) Lorentzian lattices). The IQHF is then 
described by a pair (r e, Qe), (rh, Qh)· As the electric charge of an electron is -e 
and the one of a hole is +e, there is a relative minus sign between a e and ah in 
eq. (2.13) 1 . As there is a complete symmetry between electrons and holes, it is 
sufficient to develop the theory of QH fluids composed of electrons, and we set 
aH := ae and drop the subscript "e" henceforth. 

A pair (r, Q), where r is an integral, odd Euclidian lattice and Q is a 
primitive, odd vector in f* satisfying (2.12), is called a chiral quantum Hall lat
tice(cQHL). Our task is to classify cQHL's and to compare the predictions of the 
theory with experimental data. 

The success of the theory is quite impressive: In Figure 3 we display measured 
values of aH when RL ~ 0 (i.e., for IQHF's) in the range 0 < aH ::; 1 that 
have been reported in the literature [9], [53] (for so-called single-layer, narrow-well 
IQHF's). We divide the data into separate "windows", :EP, p = 1, 2, 3, ... , and 
each window :Ep is the union of a left window :E_;: and a right window :Ej;. Well
established plateau values of aH (i.e., values of aH corresponding to some IQHF) 
are indicated as a •· Values of aH where RL has a clearly visible local minimum 
~ 0, and aH has an inflection point as a function of the filling factor v are indicated 
as a o. Very weak, or controversial data are indicated by .. Finally, the symbol p.t. 
indicates that, to such a value of aH, there correspond several distinct IQHF's, 
i.e., there are phase transitions between two or more different IQHF's with the 
same aH. 

The remarkable fact is that these data - in particular the absence of data 
points - are very accurately reproduced by our theory of cQHL, see [28], [22], 
[27], if a heuristic principle of stability of a cQHL is introduced: the stability of a 
cQHL is intended to be a measure for the stability of the corresponding quantum
mechanical state of an IQHF under small perturbations, such as changes of the 
filling factor v, see (2.4), or of the density of "impurities" in the system, etc. In 
order to formulate our stability principle for cQHL's mathematically, we must 
introduce some numerical invariants of cQHL's. The most primitive invariant of a 
cQHL (r, Q) is the dimension N of the lattice r. Next, let 

k 
r = EB rj 

j=l 
(2.15) 

be the finest decomposition of the lattice r into an orthogonal direct sum of 
sublattices rj,j = 1, ... 'k, and let 

k 

Q = 2.: Q(j), Q(j) E r* 
J' 

(2.16) 
j=l 

be the decomposition of Q associated to (2.15). We say that a cQHL (r, Q) is 
primitive iff Q(j) is a (nonvanishing) primitive vector of r;, for all j = 1, ... , k. This 

1 Historically, the existence of holes in semiconductors was first discovered in measurements 
of the sign of RH! 
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Figure 3. Observed Hall fractions aH in the range 0 < au :5:: 1 and their experi
mental status in single-layer quantum Hall systems. 

means that the pairs (r j, Q(j)) are indecomposable cQHL 's. Every indecomposable 
cQHL (r0 ,Q0 ) has a basis {q1 , ... qN0 } with the property that (Q0 ,qc) = -1, for 
all£= 1, ... , N 0 . The set of all such bases is denoted by B(f0 , Q0 ). We then define 
an invariant Rrnax. (called "relative-angular-momentum invariant" [28]) by setting 

Rmax.(fo,Qo) := (2.17) 

If (f, Q) is a decomposable, primitive cQHL, i.e., 

(r, Q) = £ (r , q(Jl), 
j=1 .7 

(2.18) 

as in (2.15), (2.16), we define 

Rmax.(f,Q) (2.19) 

Our stability principle for cQHL's says that an incompressible quantum Hall fluid 
corresponding to a primitive, chiral quantum Hall lattice (r, Q) is the more stable, 
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the smaller the value of the invariant €max. (r, Q) and the smaller its dimension 
N. Available experimental data suggest that 

€max (r, Q) ::; 7, (or 9), (2.20) 

for an arbitrary cQHL (r, Q) describing a physically realizable IQHF. This is con
firmed, qualitatively, by heuristic theoretical and numerical arguments [27]. Fur
thermore, there are fairly convincing, but heuristic theoretical arguments suggest
ing that, for a real IQHF with a nonzero density of impurities of finite strength, 
the dimension N of the corresponding cQHL is bounded above by a finite integer, 
N*, depending on the filling factor v, the density of electrons, and the density and 
strength of the "impurities", with N* --> oo, as the density of "impurities" tends 
to 0. 

It is an elementary result in the theory of chiral quantum Hall lattices that 

the total number of cQHL's, (r, Q), with €max. (r, Q) ::; €* and N =dim r ::; N*, 
for arbitrary finite values of €*, N*, is finite (though rapidly growing in €*, N*). 

A simple consequence of the Cauchy-Schwarz inequality tells us that the Hall 
conductivity CJH of an IQHF corresponding to a cQHL (r, Q) obeys the inequality 

(2.21) 

This bound has interesting consequences (confirming a prejudice of Mark Kac 

[36]): if CJ H E 2:p, i.e., 

< uH(r,Q) < 
2p + 1 2p ~ 1' 

1 1 

then 
€max. (r, Q) ~ 2p + 1. (2.22) 

Our stability principle for cQHL's then says that the most stable IQHF's with 

CJH E I:v are those described by cQHL's (r, Q) satisfying 

€max.(r,Q) = 2p+ 1 (N as small as possible). (2.23) 

Combining the universal upper bound (2.20), i.e., €max. (r, Q) ::; 7, with the bound 
(2.21), we conclude that there should not exist any physically realizable IQHF's 
with !JH < %, and that, for !JH in the window 2:3, €max. (r, Q) must take the small
est possible value compatible with (2.21), i.e., €max.(r,Q) = 7. These conclusions 
are compatible with the data displayed in Figure 3. 

The family of all primitive cQHL's (r, Q), with uH(r, Q) E I:v and 
€max.(r,Q) = 2p+ 1 (the smallest possible value), is henceforth denoted by Hp. 
In [22] we have proven an easy, yet remarkable theorem that says that there exist 
bijections, called "shift maps", 

1, 2, 3, ... ' (2.24) 
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between the cQHL's in H 1 and those in Hp+ 1, with the properties that 

and 
Rmax. (Sp(f, Q)) = Rmax. (r, Q) + 2p. (2.25) 

Furthermore, we have proven a somewhat deeper, but still rather easy uniqueness 

theorem[22]: let 

(2.26) 

Then all the cQHL's (r, Q) in Hi arc known explicitly: the possible values in ~i 

of the Hall conductivity a-H corresponding to IQHF's described by cQHL's in Hi 
are given by the formula 

N 
(J -

H - 2pN + 1' 
(2.27) 

and to each N = 1, 2, 3, ... , with rJH given by (2.27), there corresponds a unique 
cQHL, (rN,p, Q), of dimension N, and there are no further cQHL's in Hi! 

Note that it follows from the bound (2.20) on Rmax. that Hi contains all 

possible cQHL's with rJH E ~i (as given by (2.27)), for p = 3. 

The lattices (rN,p, Q) with a-H(rN,p, Q) = (Q, Q) = N(2pN + 1)-1 can be 

described as follows: the lattice f N,p has a basis { q, 81, ... , eN -1} with the property 

that 
(Q,q)=-1, (Q,e1)=0, j=1, ... ,N-1, 

and with a Gram matrix K given by 

-1 
2 

-1 
-1 

2 -1 

-1 

(2.28) 

(2.29) 

where 2p+ 1 = (q, q), and Ki+1,J+1 = (ei, e1) are the matrix elements of the AN-r 
Cartan matrix. Thus, the Witt sublattice [8] of rN,p is the AN-1-root lattice, and 

it is natural to call the series (r N,p, Q) E Hi, N = 1, 2, 3, ... , of cQHL 's the 

fundamental A-series in the window ~p· The cQHL's (rN,p, Q) described here are 

typical examples of a general class of so-called maximally symmetric cQHL's [28], 

[27], which can be classified. The shift map SP_1 acts on the A-series in 'H~ by 

replacing K 11 = 3 by K 11 = 2p + 1 and leaving the other matrix elements in the 

Gram matrices unchanged. 
If you compare these results with the data in the windows ~i of Figure 3 

and recall that an IQHF is the less stable, the larger the values of p and N of the 

corresponding cQHL, the agreement between theory and experiment is remarkable. 

Is there a problem with the data point at a-H = 141 E ~~? There are no cQHL's 
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with CYH = 141 and t'max. = 3, but there actually are at least two distinct, low

dimensional cQHL's, with CYH = 141 and t'max. = 5(!), one obtained by applying 
the shift map 5 1 to the lattice Z EB 3Z, hence of dimension 2, and another one 
of dimension 7 (among, perhaps, further lattices of high dimension). Because, for 
these lattices, t'max. does not have the minimal value, 3, allowed in the window I:1, 
an IQHF with a-H = 141 is expected to be quite unstable against perturbations. 

To the mathematician, the results just described may look disappointing, 
because they do not involve interesting lattices. The situation changes when we 
study the cQHL's belonging to the family H; := Hp \ H:j;, corresponding to the 
range 2::; of values of a-H. Because the shift map Sp_ 1 is a bijection between 

Hi and H;, p = 2, 3, 4, ... , the classification of the most stable cQHL's with 
CYH E 2::;, that is of all the lattices in H;, reduces to the classification of lattices 
in Hi. But this is not an easy job. Although the number of cQHL's in Hi of 
dimension N < N. is finite, it grows rapidly inN •. 

In order to make progress, one may attempt to translate physical properties 
of IQHF's (related e.g. to electron spin, or to the spectrum of quasi-particles in 
such systems) into mathematical properties of quantum Hall lattices (related to 
the structure of their Witt sublattices and of the so-called glue group; see [28], [22], 
[27]). This enables one to introduce subfamilies of quantum Hall lattices, likely to 
describe physically realizable IQHF's, whose classification is feasible. 

A prominent finite series of cQHL's in Hi is the one corresponding to the 
values 

2 3 4 5 6 
CJH = 3' 5' 7' 9' u· (2.30) 

It is called the E-series, for the following reasons. Let 0 EB rw denote the Kneser 
shape [8] of an integral lattice r, 

0 EB rw <:::: r <:::: r* <:::: 0* EB rrv, 

where rw is the Witt sublattice generated by vectors of squared lengths 1 and 
2. To every a-H in the E-series (2.30) there corresponds a cQHL (r, Q) with the 
property that the 0-sublattice in its Kneser shape is a one-dimensional, odd lattice, 
denoted ok, rw = rEk is an Ek-root lattice, with k = 7, 6, 5, 4, 3, and Q E 0~ is 
orthogonal to rw [28]. Here we define the lattices rEk as the root lattices of the 
Lie algebras corresponding to the following Dynkin diagrams: 

+---> o~o~o--o-o-o 

I ' 
E6 +---> o~o~o-o-o, 

I 
0 0 

D5 +---> o-o-o-o , 
I 

0 

and 

0 

There is also a cQHL with a-H = 173 and t'max. = 3. It has a two-dimensional 0-
sublattice, and its Witt sublattice is the A1-root lattice. This cQHL may be viewed 
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as an irregular endpoint of theE-series. For there is no cQHL with aH = 185 and 
£max. = 3 in dimension N :::; 4, or with discriminant 6. :::; 15 and N :::; 9. 

A lattice r is obtained from its Kneser shape, 0 EB rw, by gluing, namely by 
adding cosets of vectors in 0* EB rw, to 0 EB rw. The lattices rk obtained from 
ok EB r Ek' where r Ek is the Ek-root lattice, k = 7, 6, 5, are unlikely to correspond 
to physically realizable IQHF's, as their dimensions (and the number of quasi
particles of the corresponding IQHF's) are large. However, they contain quantum 
Hall sublattices, with the same values for a H and Cmax., which are realistic. For 
example, fork= 7, aH =~'the cQHL obtained from 0 7 EBrE7 by gluing contains 
a decomposable, two-dimensional QH sublattice, 3Z EB 3Z, and an indecompos
able, three-dimensional QH sublattice, whose Witt sublattice is the A1-root lattice 
which, physically, could describe electron spin [28], or an internal symmetry that 
we call "isospin" symmetry - as well as less realistic sublattices of dimension 
4, 5, 6, and 7. All these sublattices yield cQHL's with aH = ~' Cmax. = 3. We 
thus predict that there should be at least three rather stable IQHF's with aH = ~
They differ from each other in the role played by electron spin (which can be tuned 
by tilting the external magnetic field Be) or by "isospin". One therefore expects 
a magnetic-field driven phase transition between different IQHF's with aH = ~
These predictions of our theory are in remarkable agreement with experimental 
data. 

There is also aD-series of cQHL's, leading, e.g., to values of aH = ~Z with 

an even denominator dH: aH = ~ (arbitrary Dn), and aH = 12:_n, corresponding 
to rw = rDn with n :S; 7. Let (r, Q) be a primitive cQHL. It has been shown in 
[28] that the sublattice of r orthogonal to Q cannot contain any self-dual lattice. 

Besides the D- and theE-series, there is also an AN_ 1-series of cQHL's in 
H[ that could describe single-layer IQHF's if N is an odd integer ;:::: 5. They yield 
the values 

of the Hall conductivity ( ~, 171 , 193 , ... ) . 

N 

N+4 
(2.31) 

Furthermore, we have classified all two-dimensional, three-dimensional, and 
four-dimensional cQHL's in 'Hf; see [27]. (With an efficient computer program one 
could extend these results toN= 5, 6.) They correspond to the values~'~'~'~' 173 
(N 3) d 2 3 3 4 4 5 6 5 5 6 8 10 11 13 14 6 d 26 (N 4) 

= 'an 3, 4, S' S' 7, 7, 7, S' 9, IT' IT' IT' 13' 17' 19' 21' an 31 = · 
Besides the lattices discussed above, there are plenty of decomposable cQHL's 

in 'Hf obtained as the direct sum of two cQHL's of the fundamental A-series of 
cQHL's in 'Hr They correspond to the sequence 

4NM+N+M 
(2N + 1)(2M + 1) ' 

N,M 1, 2, 3, ... ' (2.32) 

of values of the Hall conductivity. Because there is a very stable single-layer IQHF 
with aH = 1, described by (r = Z, Q = 1), one does not expect to see plateaux 
in the Hall conductivity around the points given in (2.32), for values of Nand M 
larger than 2 or 3. 
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Finally, our theory provides candidates of IQHF's described by pairs (f e, Qe) 
and (rh, Qh) of cQHL's corresponding to values of CJH =ere -crh in the window .Ej>. 
These IQHF's would be charge-conjugate to those described by the fundamental 
A-series in Hf. They arc obtained by setting fe = Z, Qe = 1, rh = fN, 1; see 
(2.27), (2.28). One finds that 

= 1-
N 

2N + 1 
N = 1,2,3, .... (2.33) 

For N ::; 6, these values of CJH coincide with the ones of the E-serics. The ex
istence (and uniqueness) of these pairs of cQHL's makes it plausible that CJH = 
161 , t3 , 185 , 197 are values of the Hall conductivity of physically realizable IQHF's. 

Those values of cr H that correspond to several cQHL 's in Hi (e.g. ~, t, ~, ¥, 
... ) tend to be values where, experimentally, phase transitions are observed. 

We emphasize that, logically, our theory predicts the values of CJH that cannot 
appear in IQHF's ~ indeed, it predicts plenty of gaps if bounds on fJmax. and N 
are imposed. (For example, it tells us that values of CJH = ~Z, with dH very 
large, require large values of either fJrnax. or N and hence should not be observed!) 
Furthermore, it tells us that if an allowed value of CJH is observed in an IQHF, the 
structure of the IQHF can be described by a certain set of cQHL's. That's all our 
theory does if no heuristic principles arc added to it. 

Next, we propose to sketch how the physics of IQHF's leads us to study the 
mathematics of chiral quantum Hall lattices. 

3 From incompressible quantum Hall fluids to chiral quantum Hall 
lattices via Chern-Simons theory 

The starting point of our analysis is the idea to look for a theoretical description 
of the physics of an IQHF in the limiting regime of large-distance and long-time 
(low-frequency) scales. This limiting regime is called the scaling limit of the sys
tem, and experience shows that the theoretical description of physical systems 
simplifies in the scaling limit. An IQHF can be characterized by the following 
physical properties. 

(Pl) The temperature T of the system is close to 0 K. The longitudinal 
resistance, RL, of an IQHF at T = 0 K vanishes, and the total electric charge is 
a good quantum number to label quantum-mechanical state vectors of the system 
[28], [19]. The charge of the groundstatcs of the system is normalized to be zero. 

(P2) In the scaling limit, the total electric charge and current densities of 
an IQHF are the sum of N = 1, 2, 3, ... separately conserved charge and current 
densities describing electron and/or hole transport in N separate "channels" dis
tinguished by conserved quantum numbers. In our analysis, N will be treated as 
a free parameter. (Physically, N turns out to depend on the filling factor v and 
other parameters characterizing the system.) 

(P3) In units where e = h = 1, the electric charge of an electron/hole is 
-1/1. A local excitation of the system composed of electrons and holes and of 
total electric charge qel. satisfies Fermi-Dirac statistics if qcl. is odd and Bose
Einstein statistics if qel. is even. 
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The quantum statistics of any local excitation of the system of electric charge 
qel. E 2 Z + 1 must be Fermi-Dirac statistics (i.e., the Pauli principle must hold), 
and if qel. E 2Z it must be Bose-Einstein statistics. 

(P4) The quantum-mechanical state vector describing an arbitrary physical 
state of an IQHF is single valued in the position of all those excitations that are 
multi-electrons/-holes. 

The properties (P1)-(P4), believed to be true in every IQHF, are physical 
properties. Part of the art of theoretical physics is to translate physical properties, 
deduced from experiments, into precise mathematical hypotheses. This cannot be 
done in the form of theorems and requires intuition. But once this exciting part of 
the job is completed, one must attempt to use mathematical theorems to derive 
new predictions on the behavior of a physical system. 

The assumption that the longitudinal resistance RL of an IQHF vanishes 
is translated into the mathematical assumption that the energy spectrum of the 
quantum-mechanical Hamiltonian describing the dynamics of the system exhibits 
what is called a mobility gap 8 above the groundstate energy which is strictly 
positive, uniformly in the size of the system. This is actually an assumption that one 
can try to derive from the underlying microscopic Schrodinger quantum mechanics 
of nonrelativistic electrons. This is a difficult, but not hopelessly difficult, problem 
of analysis; see [15] and references given there. 

The quantum-mechanical electric charge and current densities of a physical 
system are operator-valued distributions 

(3.1) 

where d is the dimension of physical space, and x = (x, t) is a space-time point. 
They satisfy the continuity equation (conservation of electric charge) 

8 0 ~ ~ 
8tj (x)+V'·j(x) = 0. 

Let J(x) = *j(x) be the d-form dual to j. Then (3.2) says that 

dJ(x) = 0. 

(3.2) 

(3.3) 

For a two-dimensional system confined to a disk n ~ JR.2 , the Poincare lemma tells 
us that (3.3) implies that 

J(x) = db(x), (3.4) 

where b(x) is a 1-form; b is determined by J up to the gradient of a scalar distri
bution x, i.e., b has the properties of an abelian gauge field. By property (P2) 

N 

J(x) = L Qi Ji(x), (3.5) 
i=l 

where Qi is the unit of electric charge transported by the current Ji, and Ji 
satisfies the continuity equation 

0, for i = 1, ... , N, (3.6) 
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so that, by Poincare's lemma, 

P(x) = dbi(x), i = 1, ... ,N. (3.7) 

The key idea is to describe the physics of an IQHF in the scaling limit in terms 

of an effective field theory of the gauge fields b( x) = ( b1 ( x), ... , bN ( x)) T. Because, 

by property (P1), an IQHF has a strictly positive mobility gap b, that effective field 

theory can only be a topological field theory. The presence of a nonzero, external 
magnetic field transversal to the plane to which the electrons of an IQHF arc 

confined implies that the quantum dynamics of the system violates the symmetries 

of parity (reflections in lines) and time-reversal. The only topological field theory 

of the gauge fields b( x) breaking these symmetries and respecting in variance under 
the gauge transformations 

b(x) f-+ b(x) + dx(x) (3.8) 

is abelian Chern-Simons theory, with G = JR;_N. This has been shown in [29], [26]. 

(The same conclusion can be reached by starting from the laws (i)-(iv), Section 2, 

preceding eq. (2.5), of electrodynamics in quantum Hall fluids [20], or by studying 

gauge anomaly cancellations [59]. [26].) The action functional of abelian Chern
Simons theory is given by 

SA(b) = 4~ j bT 1\ Cdb + faA(b), 

A 

(3.9) 

where A = n X JR. is the three-dimensional space-time of the system, c = ( cij )fj=l 

is some metric on "field space" JR;_N, and r a A (b) is the two-dimensional, anomalous 

chiral action only depending on the restriction of the gauge fields b to the boundary 
8A of A; see [50]. Note that, individually, the two terms on the r.h.s. of (3.9) are not 
invariant under gauge transformations (3.8) not vanishing on 8A. The boundary 

action r a A (b) is chosen such that their sum is gauge invariant (and is essentially 

determined by this requirement [50]). It is quadratic in b laA· 
Quantum Hall fluids are quantum-mechanical systems, and hence the Chern

Simons theory, with action functional SA given in eq. (3.9), must be quantized. 
Because SA is quadratic in b, quantization may proceed via Feynman functional 

integrals. This task is not a big deal; see Section 1, and [25], [63], [23]. It turns 

out that the only dy"!!!..._mical degrees of freedom of the theory arc localized on 8A 

and describe chiral u(1)-currents [43], [16]. Their dynamics is described by the 
term r a A (b), (after having taken into account the equations of motion of Chern

Simons theory). The number of clockwise moving currents is equal to the number 

of positive (negative) eigenvalues of the metric C; the number of counterclockwise 

moving currents is equal to the number of negative (positive) eigenvalues of C, 
(depending on the direction of Be)· These are the experimentally observed edge 

currents first predicted by Halperin [32]. We shall focus our attention on the anal

ysis of IQHF's with edge currents of only one chirality. Then C may be chosen to 
be positive-definite. 
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As sketched in Section 1, states in the quantum-mechanical Hilbert space of 
Chern-Simons theory can be viewed as solutions ¢of the Knizhnik-Zamolodchikov 
equations [23] in n = 0, 1, 2,. . . variables. For our abelian Chern-Simons theory 
introduced in (3.9), these equations take the form 

where 
( 1 N)T mN qi = qi , · · · , qi E .IN.. , i = 1, ... ,n, 

are n N-tuples of charges, mathematically: characters oflRN, localized at the points 
z1, ... , Zn, resp., qao is anN-tuple of boundary charges, 

N 

( q, q') = L qiCijq'i, (3.11) 
i,j=l 

z1 ( t), ... , Zn ( t) are n paths in the domain 0 of the complex plane parameterized 

by a real parameter t, with zi(t) = dz~~t), and his a harmonic function on 0, with 

h' = ~~; see [16]. 
The solutions of eq. (3.10) are functions on the universal covering space Mn 

of the space on\V, where vis the diagonal {zi = Zj, for some i -1- j}. At t = tl, 
with Zi = zi(tl), fori= 1, ... , n, the solution ¢h = ¢(z1, q1, ... , Zn, qn) of (3.10) 
is given by 

¢(zbql,···,Zn,qn) =const. [ IT (zi-Zj)(q;,'l;)] 
l~i<j~n 

x exp (t (qi,qao) h(zi)), (3.12) 

with (z1, ... , Zn) viewed as a point of Mn, i.e., (z1, ... , Zn) stands for (z1(tl), ... , 
Zn(h)), together with the homotopy class of the path (z1 (t), ... , Zn(t) )tE[to,h]; see 
Section 1. 

To see that the characters qj, i 1, ... , N, are charges, we consider the 
charge operators 

(3.13) 

of the Chern-Simons theory, where Dj is a disk in 0 containing Zj, but not con
taining zk, k -1- j. From the results in [23] one easily derives that 

(j Ji)c/J(zl,ql,···,Zn,qn) = qj¢(zl,ql,···,Zn,qn), (3.14) 

DJ 
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i.e., ¢( z1, q1, ... , Zn, Qn) is an eigenvector of the ith charge operator I D. Ji, with 
J 

eigenvalue qj, for i = 1, ... , N, j = 1, ... , n. By eq. (3.5) the operator detecting 
the total electric charge in the disk Di is given by 

and, by (3.14), ¢is an eigenvector of I J with eigenvalue 
Dj 

(3.15) 

(3.16) 

Suppose that Qi = Qj = q, for some i # j. Let us continue the solution ¢ 

along the path (z1(t), ... ,zn(t)) from t = t1 tot= t2, assuming that zk(t) = 0, 

fork# i,j, t 1 :S t :S t2, and that (zi(t),zj(t))t <t<t exchanges Zi and Zj along 
1- - 2 

counterclockwise oriented arcs not including any point Zk, for k # i, j. Then 

(3.17) 

i.e., the half-monodromy (called "Aharonov-Bohm phase factor" by the physicists) 
of the solution ¢ of (3.10) in the pair Zi, Zj is given by 

(3.18) 

Similarly, if zi(t) = 0, t 1 :<;: t :<;: t 2, i # k, and (zk(t))t, <t<t2 describes a 
counterclockwise oriented loop around the point ze not inclucling any point zi, 
i cJ k, f!, then 

(3.19) 

i.e., the monodromy of the solution ¢of (3.10) in the pair zk, ze is given by 

exp ( i27r ( Qk, Qe)). (3.20) 

The groundstate of an incompressible quantum Hall fluid (IQHF) described 
by the Chern-Simons theory (3.9) is the vector¢= ¢ 0 = 1 (n = 0 in (3.12)); the 
charge densities Ji arc normalized such that 

j P¢o 0. 
n 

The states ¢(z1, q1, ... , Zn, qn) given in (3.12) might correspond to excited 
states of the IQHF. To make this idea precise, we must find conditions on the 
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characters, or charge vectors q1 , ... , qn that guarantee that properties (P1)-(P4) 
of an IQHF are valid. Thus, suppose that 

N 

qei.(%) = LQi q} = (Q,qj) 
i=l 

is an odd integer. By property (P3), a physical excitation with charges % must 
then satisfy Fermi-Dirac statistics. Hence the half-monodromy (3.18) must satisfy 

i.e., 
(3.21) 

Similarly, if ( Q, %) were even, the half-monodromy ( 3.18) would have to be + 1, 
and hence 

(%,%) E 2Z. (3.22) 

Summarizing (3.21) and (3.22), we have that 

(Q,q) = (q,q) mod 2, (3.23) 

whenever ( Q, q) E Z. 
Next, suppose that qei.(%) E Z, for some j (i.e., q1 corresponds to a multi

electron/-hole excitation of the fluid). By property (P4), the state vector ¢(z1 , q1, 
... , Zj, %, ... , Zn, qn) must then be a single-valued function of Zj (for fixed Zi, i -=/= 
j), provided q1 , ... , qn are the charge vectors of (finite-energy) physical excitations 
of the IQHF. Thus, by (3.20), 

(q1,qi) E Z, for all i -=/=j. (3.24) 

Next, if q is the charge vector of a localized physical excitation of an IQHF 
then so is -q, by a principle of charge conjugation. Furthermore, if q and q' are 
the charge vectors of two localized physical excitations of an IQHF then so is 
q + q', because one may let their positions approach each other arbitrarily closely. 
Thus, the charge vectors of localized physical excitations of an IQHF form an 
additive group, denoted r phys .· By (3.23) and (3.24), the charge vectors q with 
qei.( q) = \ Q, q) E Z form an integral sub lattice, r, in r phys .. Finally, by eq. (3.24) 
(which expresses property (P4)), 

rphys. ~ r*, 

where r* is the lattice dual to r. Because 

qei.(q) = (Q, q) E Z, for all q E r, 

(3.25) 

we conclude that Q E r*. Furthermore, a single electron or hole is a physical 
excitation of an IQHF. Thus, there exists a vector q E r, with 

(Q,q) = 1, 

i.e., Q is a primitive vector of r*. 
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Suppose that r phys . ~ r. Then there exists some local excitation of the 
IQHF with a charge vector q E r phys. such that q mod r -/=- 0. The electric 
charge qe1. ( q) = ( Q, q), of this excitation is then necessarily nonintegral (in units 
where e = 1), and its quantum statistics, as described by the half-monodromy 
exp(i1r(q, q)) -/=- ±1, is neither Fermi-Dirac nor Bose-Einstein statistics. It deter
mines abelian, unitary representations of the braid groups Bn, n = 2, 3, 4, ... , and 
is therefore called abelian braid statistics. Thus, if r phys. ~ r, there are local exci
tations in an IQHF with fractional electric charge and braid statistics ("Laughlin 
vortices"). 

Our analysis has enabled us to safely land on the notion of chiral quantum 
Hall lattices. It should be emphasized, once more, that the general analysis de
scribed here does not imply that r is a Euclidian lattice. The quadratic form ( ·, ·) 
could be indefinite; see [22]. For simplicity, this general situation is not considered 
here and is presumably not relevant physically. 

We are still missing one important point: that the Hall conductivity is given 
by 

aH = (Q, Q). (3.26) 

To prove eq. (3.26), we study the response of an IQHF to a perturbation given 
by a small magnetic field B in the interior of the region n. Let B be the compo
nent perpendicular to n, and let A = I:!=o AJ.Ldx~-' be an electromagnetic vector 
potential on A with 

B = (dA)l2. (3.27) 

Now, recall that Qi is the unit of electric charge transported by the current Ji. 
Thus, Ji couples to the electromagnetic vector potential A through a term 

1 J . 1 J . 
27f J' A Qi A = - 27f b' A Qi dA 

A A 

(up to a boundary term). The action functional of the IQHF in the scaling limit 
is therefore given by 

SA(b) = 2_jbT ACdb- 2_jbT AQdA, 
47f 27f 

A A 

up to a boundary term only depending on b laA and A laA· The equations of 
motion obtained by variation of SA with respect to b are found to be 

N 

difi (x) 2)c-1 )jiQi dA(x), (3.28) 
i=l 

for x in the interior of A. Thus, 

J12(x) = Qj Jf2 (x) = Qj(difih2 (x) 
N 

(~1 Qj(C- 1 )jiQi) (dAh2 (x) 

(Q, Q)(dA)l2 (x). 



100 R. G. Mu¢ 

Integrating this equation over n, we find, using (3.27), that 

qel. = J J12 = (Q, Q) J B =: (Q, Q) <I>. 

n n 

Comparing this identity with eq. (2.5), we conclude that uH = (Q, Q), which 
proves eq. (3.26). Following [51], [1], [4], one can show that UH can also be ex
pressed in terms of a first Chern number of a vector bundle of Chern-Simons 
groundstates on a two-dimensional torus of magnetic fluxes - this is physically 
somewhat contrived, though - or as a "generalized index", [20]. These matters 
will be discussed in more detail elsewhere. 

We conclude this report with a list of important invariants of cQHL's (r, Q) 
and their physical interpretations. For details and proofs, see [28], [22]. 

(I) Invariants of r 
Invariant Physical quantity 

dim r number of independently conserved 
currents ("channels"). 

6 =I r*/r I number of fractionally charged Laughlin 
vortices (assuming that r phys . = r*); 

6(Q,Q) mod 8 

genus of r monodromies, 
{ exp ( i 2n ( q, q' J) : q, q' E r*} offractionally 
charged Laughlin vortices. 

Witt sublattice, rw root lattice of simply laced Lie algebra 
of nonabelian symmetries of IQHF 
in scaling limit. 

(II) Invariants of (r, Q) 

Invariant Physical quantity 

UH = (Q,Q) Hall conductivity. 
orbit of Q under orthogonal assignment of electric charges 
trsfs. of r to quasi-particles. 

"level" £ = g.c.d. (6, 6 UH) 

R-max.(r, Q) (see (2.17)) relative angular momentum of 
a pair of electrons. 

q* = min I \Q,q) I smallest fractional electric charge "1- 0. 
qEr* 

( Q,q)#o 

These invariants and their physical counterparts permit us to elucidate fairly 
specific physical properties of IQHF's. But this goes beyond the present report. 
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4 Epilogue: Origins of the problems discussed in this lecture 

In 1986, we became interested in two seemingly unrelated topics: three-dimensional 
gauge theories with a Chern-Simons term in their Lagrangian (or action), and 
the braid statistics of charged particles described by such theories, on one hand, 
and the fractional quantum Hall effect, on the other hand. It had already been 
suggested that these two topics are related to each other [61], [31], but it appeared 
that nobody understood the relationship in precise terms. 

Between the fall of 1986 and 1990, we focused our attention primarily on 
the problems of understanding Chern-Simons gauge theory, the related two-di
mensional conformal field theories, the general theory of braid statistics and of 
quantized symmetries in two- and three-dimensional quantum field theory, and 
some mathematical problems in knot theory and the theory of braided tensor 
categories related to low-dimensional quantum field theory. Our main results on 
these topics appeared in [23], [21], [24], [17], [30]; see also [13], [42]. 

In studying Chern-Simons-Higgs theories [25], Frohlich and Marchetti un
derstood that abelian, pure Chern-Simons theory was, in essence, just a way of 
reproducing the Gauss linking number. In 1987, during a sabbatical at I.H.E.S., 
Frohlich was taught the basics of subfactor and knot theory by Jones. Jones ex
pressed the intriguing idea that, in analogy to the Gauss linking number, more 
general knot invariants should be calculable from some "field theories" defined on 
links. Thanks to the presence of Felder and Gaw!idzki at I.H.E.S., Frohlich also 
acquired some rudimentary knowledge in two-dimensional conformal field theory. 

These strands of ideas naturally merged and led to some preliminary un
derstanding of braid statistics in low-dimensional quantum field theory and its 
connection with the theory of knots and links [14]. Seminar notes of Jones and a 
preprint by Turaev [55] were very helpful in attempting to make those insights more 
precise. They soon led to the conjecture that, just as abelian pure Chern-Simons 
theory gives rise to the Gauss invariant of links, nonabelian pure Chern-Simons 
theory ought to give rise to more interesting link invariants. Apparently, Schwarz 
independently arrived at the same conjecture, around the same time (1987) [48]. 
Unfortunately, it appeared to be difficult to identify those invariants. It is well 
known that, in 1988, Witten independently came up with the same ideas, identi
fied the link invariants emerging from nonabelian Chern-Simons theory, and went 
on to define new invariants for three-dimensional manifolds [63]. His work provided 
new motivation for us (Frohlich and King) to return to the ideas leading to the orig
inal conjecture. We found a way of deriving the so-called Knizhnik-Zamolodchikov 
(KZ-)equations [38] from formal Chern-Simons functional integrals; see Section 1. 
We showed how to calculate some knot polynomials generalizing the Jones polyno
mial from solutions of the KZ-equations. The existence of appropriate solutions of 
the KZ-equations was proven by using convergent power series expansions in A = 
±(k+c2)-1 , where k is the level of some Kac-Moody algebra and c2 is the dual Cox
eter number of the underlying Lie algebra [23]. Our results gave substance to Jones' 
idea of constructing invariants of links from some "field theory" defined on links. 

The KZ-equations are the equations for horizontal sections of certain vector 
bundles equipped with fiat connections, called KZ-connections. The construction 
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of KZ-connections is based on solutions of the so-called infinitesimal pure braid 
relations (a special case of which are the classical Yang-Baxter equations [3]). In 
fact, every solution of the infinitesimal pure braid relations gives rise to a KZ
connection. Horizontal sections of vector bundles can be constructed, locally, with 
the help of Chen's iterated integrals, more appropriately called Dyson series by 
the physicists. This method was used in [23]. 

Later on, the results and methods of [23] - see also Section 6.3 of [24] - were 
confirmed and put in a more general context of Vassiliev invariants [56] in [40]. 

In 1990, Morf taught us the basic facts about the (fractional) quantum Hall 
effect. A paper by Halperin [32] made it clear to us that there is a fundamental 
relationship between the quantum Hall effect and the theory of Kac-Moody al
gebras. We found that the quantum Hall effect is actually described by abelian 
pure Chern-Simons theories [20]. This insight, combined with the theory of the 
chiral anomaly in two-dimensional gauge theory, provided a completely general 
explanation of Halperin's findings (in a more general context than the one he had 
envisaged); see also [26]. Similar results were found, independently and somewhat 
earlier, by Wen [59] and were later confirmed by many other groups; see e.g. [49]. 

The work of Frohlich and King on Chern-Simons theory now turned out to 
be very useful: it said that physical state vectors of incompressible quantum Hall 
fluids (RL = 0, aH on a plateau) could be constructed in terms of solutions of KZ
equations derived from certain abelian pure Chern-Simons theories. The known 
monodromy of solutions of the KZ-equations provided an essential clue to under
standing the role played by the theory of integral quadratic forms on lattices in 
the theoretical analysis of incompressible quantum Hall fluids. Our analysis led us 
to the notion of chiral quantum Hall lattices. A partial classification of those chiral 
quantum Hall lattices that appear in the analysis of incompressible quantum Hall 
fluids was accomplished in joint work of Frohlich and Thiran, with contributions by 
Kerler and Studer. Incidentally, such lattices also appear in algebraic topology ( al
gebraic surfaces in algebraic four-manifolds). Our enterprise has taken quite a lot of 
time and effort. We are grateful to L. Michel for explaining to us many basic facts 
concerning integral lattices. Our results have appeared in [29], [26], [28], [22], [27]. 

Now that the classification of incompressible quantum Hall fluids in terms 
of chiral quantum Hall lattices has reached a satisfactory stage, it would be time 
to develop analytical proofs of existence of incompressible quantum Hall fluids. 
Interesting ideas on this problem have appeared in [64]. The strategy followed 
there leads to rather beautiful variational problems on spaces of sections of some 
line bundles- somewhat similar to the vortex problems in Higgs models [33] -
which are described in [15]. 

Another line of research concerns the definition of Chern-Simons actions on 
noncommutative spaces, in the sense of Connes [7], and the analysis of the cor
responding Chern-Simons theories [6]. This leads to a unifying point of view on 
topological field theory [63], [62]. The interplay between noncommutative geometry 
and quantum field theory appears to be a promising area for future work [18]. 

I believe we had "fun imagining it" - even though the job has sometimes 
been pretty hard. 
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