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Partial Differential Equations Arising from the
Chern-Simons Gauged $O(3)$ Sigma Model

Jongmin Han*

Abstract

In this paper, we survey recent progress for the study of partial differential equa-
tions arising from the self-dual Chern-Simons gauged $O(3)$ sigma model. We review
the classical $O(3)$ sigma model and its extension to gauge field models. Especially, the
Maxwell gauged model and the Chern-Simons gauged models are described for broken
and unbroken symmetries. We derive the self-dual equations and their reduction to
the elliptic equations. We discuss recent progress for the existence of solutions for the
reduced equations.

1 Introduction

The classical $O(3)$ sigma model originates from the description of the planar ferromagnet.
This model allows an energy lower bound of Bogomol’nyi type which is saturated by the
solutions of the self-dual equations. All minimal energy solutions can be obtained by
solving these self-dual equations and they turn out to be meromorphic functions [3]. The
corresponding minimal energy is given by the degree of solutions.

One of the important property of these soliton solutions is the scale invariance. Due
to this conformal invariance, the size of these solitons can change arbitrarily during the
time evolution without costing any energy. As a result, this model becomes unsuitable as
a model for particles.

There have been several results to break scale invariance of the model. The inclusion
of a Skyrme term and a potential term leads to cs-called baby Skyrme model which have
soliton solutions of definite size [26, 27]. However, this model is nether integrable nor of
Bogomol’nyi type. Another trial is to add a potential term and prevent the solitons from
collapsing. $A$ suitable choice of the potential make the $mo$del have self-dual structure and
the corresponding soliton solutions are called $Q$-lump [23, 24].

The third possibility of breaking the scale invariance of the sigma model is to introduce
a $U(1)$ gauge field. This was initiated by Schroers in [29], where he proposed a $U(1)$ gauged
model whose dynamics is governed by the Maxwell term. He introduce a new gauge
covariant derivative and derive the self-dual equations by adding a suitable potential. As
a consequence, this model possesses topological solitons which gives the lower bound of
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energy. On the other hand, a different type of gauged $O(3)$ sigma model was studied in
[1, 14, 21], where the Chem-Simons action is responsible for the dynamics. The addition
of Chern-Simons action can give soliton solutions which have finite charge and angular
momentum besides broken scale invariance. The vacuum of the potential consists of two
symmetric phase which gives topological and nontopological solutions.

For both the Maxwell gauged sigma model and the Chem-Simons sigma gauged model,
one can estabhsh new Lagrangian by inserting a parameter which breaks the gauge symme-
try. This approach was taken in [21, 30] and gives rich structures. As an vacuum manifold
it allows asymmetric phase as well as symmetric phase such that one may consider the
planar topological type solutions.

In this article, we review these models in detail and exhibit some mathematical prob-
lems related to them. One may refer to [33] for more general overview of the $O(3)$ models
in the physics literature.

2 Classical $O(3)$ Sigma Model

The Lagrangian of the classical planar ferromagnet model is given by

$\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\cdot\partial^{\mu}\phi,$

where the spin vector $\phi$ : $\mathbb{R}^{2,1}arrow S^{2}$ describes a Heisenberg ferromagnet. The static energy
is given by

(2.1) $\mathcal{E}(\phi)=\int_{\mathbb{R}^{2}}\{(\partial_{1}\phi)^{2}+(\partial_{2}\phi)^{2}\}dx.$

Finite energy condition implies that $\phi$ goes to a constant unit vector at infinity which
makes $\phi$ a continuous map from $S^{2}$ to $S^{2}$ . Hence, the Hopf degree $\deg\phi\in \mathbb{Z}$ is well
defined such that $\phi$ represents a homotopy class in the homotopy group $\pi_{2}(S^{2})=\mathbb{Z}.$

One of the fundamental problem is to find a energy-minimizing configuration among each
topological class

$C_{N}=\{\phi:\mathbb{R}^{2}arrow S^{2}:\mathcal{E}(\phi)<\infty, \deg(\phi)=N\}, N\in \mathbb{Z}.$

In the work of Belavin-Polyakov [3], it was shown that this static model has a self-dual
structure as follows. We first recall the formula of degree for a function $\phi$ : $S^{2}arrow S^{2}$ . It is
convenient to express the degree in terms of the current density

$k_{\alpha}= \frac{1}{2}\epsilon_{\alpha\beta\gamma}\phi\cdot\partial^{\beta}\phi\cross\partial^{\gamma}\phi.$

Then, the degree is given by

$\deg\phi=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}k_{0}dx=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}\phi\cdot(\partial_{1}\phi\cross\partial_{2}\phi)dx,$

30



By an elementary calculation,

$\mathcal{E}(\phi)=\int_{\mathbb{R}^{2}}(|\partial_{1}\phi\pm\phi\cross\partial_{2}\phi|^{2}+|\partial_{2}\phi\mp\phi\cross\partial_{1}\phi|^{2})dx\pm\int_{\mathbb{R}^{2}}\phi\cdot(\partial_{1}\phi\cross\partial_{2}\phi)\geq 4\pi|\deg\phi|.$

The lower bound saturated if and only if $\phi$ satisfying the following self-dual equations

(2.2) $\partial_{j}\phi=\mp\epsilon_{jk}(\phi\cross\partial_{k}\phi)$ .

If $\phi$ is a solution of (2.2) with upper signs, then $-\phi$ is a solution for lower signs. Hence,
we only consider upper signs in the following.

In order to simplify (2.2), we introduce the stereographic projection from the south
pole $s=(0,0, -1)$ of $S^{2}$ to obtain a map $u:\mathbb{R}^{2}arrow \mathbb{R}^{2}$ defined by

(2.3) $u=(u_{1}, u_{2}) , u_{1}= \frac{\phi_{1}}{1+\phi_{3}}, u_{2}=\frac{\phi_{2}}{1+\phi_{3}}.$

Conversely, we have

$\phi_{1}=\frac{2u_{1}}{1+|u|^{2}}, \phi_{2}=\frac{2u_{2}}{1+|u|^{2}}, \phi_{3}=\frac{1-|u|^{2}}{1+|u|^{2}}.$

Let $\mathcal{P}=\phi^{-1}(s)=\{p_{1}, \cdots,p_{N}\}$ . We note that

$\lim_{xarrow p_{j}}|u(x)|^{2}=\lim_{xarrow p_{j}}\frac{1-\phi_{3}}{1+\phi_{3}}=\infty.$

We note that away from $p_{j},$ $(2.2)$ becomes

(2.4) $\partial_{1}u_{1}=\partial_{2}u_{2}, \partial_{1}u_{2}=-\partial_{2}u_{1},$

which implies that $u(z)=u_{1}(z)+iu_{2}(z)$ with $z=x_{1}+ix_{2}$ satisfies the Cauchy-Riemann
equation. Let $\mathcal{Q}=\phi^{-1}(n)=\{q_{1}, \cdots, q_{N}\}$ . Then,

(2.5) $u(z)=c \frac{(z-q_{1})\cdot.\cdot.\cdot.(z-q_{M})}{(z-p_{1})(z-p_{N})}$

is a solution of (2.4).
We now calculate the degree of the solutions $\phi$ given by (2.5). It tums out that we

have an obstruction $M\leq N-1$ . The degree formula can be rewritten in terms of $u$ as
follows:

$\deg\phi=\frac{i}{2\pi}\int_{\mathbb{R}^{2}}\frac{\partial_{1}u\partial_{2}\overline{u}-\overline{u}\partial_{2}u}{(1+|)^{2}}dx=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}J_{12}dx,$

where
$J_{12}= \partial_{1}J_{2}-\partial_{2}J_{1}, J_{k}=\frac{i(u\partial_{k}\overline{u}-\overline{u}\partial_{k}u)}{(1+|u|^{2})}.$

Hence,

$4 \pi\deg\phi=\lim_{rarrow\infty}\int_{|x|=r}J_{k}dx_{k}-\sum_{j=1}^{N}\lim_{rarrow 0}\int_{|x-p_{j}|=r}J_{k}dx_{k}.$
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We note that $J_{k}=(1+|u|^{2})^{-1}\cdot O(|x|^{2(M-N)-1})$ . Hence, if $N>M$ , the first term vanishes
identically. It is easy to see that each integral in the second term equals to $-4\pi$ . As a
consequence, we have $\deg\phi=N.$

In conclusion, the classical $O(3)$ sigma model has an energy lower bound of Bobo-
mol’nyi type which is saturated by the solutions of the self-dual equations. All minimal
energy solutions can be obtained by solving this self-dual equations and they tum out
to be meromorphic functions having $N$ poles and $M$ zeros. The corresponding minimal
energy is given by the degree of solutions which equals $N$ . Moreover, we have a constraint
$M\leq N-1.$

In the next two sections, we will consider gauge field model which is extensions of the
classical $O(3)$ sigma model in this section. We derive self-dual equations and find the
minimal energy solutions as in this section.

3 Maxwell Gauged $O(3)$ Sigma Model

3.1 Unbroken Model

We recall that the finite energy condition for (2.1) implies that $\phiarrow\phi_{\infty}$ as $|x|arrow\infty$ . Since
the functional (2.1) is invariant under the group of rotation $O(3)$ , we may assume that
$\phi_{\infty}=n$ . This choice breaks the $O(3)$ symmetry down to $SO$ (2) $=U(1)$ , from which one
may consider a minimal potential hke $(1-n\cdot\phi)^{2}$ . In this case, we can consider the energy
functional as

$\mathcal{E}(\phi)=\int_{\mathbb{R}^{2}}\{(\partial_{1}\phi)^{2}+(\partial_{2}\phi)^{2}+(1-n\cdot\phi)^{2}\}dx.$

However, in this case there is no nontrivial critical points other than $\phi\equiv n.$

We note that the vacuum state $\phi_{v}=n$ is invariant under the $SO$ (2) $=U(1)$ transfor-
mation

$(\phi_{1}, \phi_{2}, \phi_{3}) arrow (\phi_{1}\cos\theta-\phi_{2}\sin\theta, \phi_{1}\sin\theta+\phi_{2}\cos\theta, \phi_{3}) , \theta\in \mathbb{R}.$

Hence, if we set $\psi=\phi_{1}+i\phi_{2}$ , then the Lagrangian

(3.1) $\mathcal{L}=\frac{1}{2}\partial_{\mu}\psi\cdot\partial^{\mu}\overline{\psi}+\frac{1}{2}\partial_{\mu}\phi_{3}\cdot\partial^{\mu}\phi_{3}-\frac{1}{2}(1-n\cdot\phi)^{2}$

is invariant under the global gauge transformation

$\psiarrow e^{i\theta}\psi, \phi_{3}arrow\phi_{3}.$

To enlarge this global symmetry into a local one, we need a gauge-covariant derivative
$D_{\mu}\psi=\partial_{\mu}\psi+iA_{\mu}\psi$ . The componentwise expression is

$D_{\mu}\phi_{1}=\partial_{\mu}\phi_{1}-A_{\mu}\phi_{2}, D_{\mu}\phi_{2}=\partial_{\mu}\phi_{2}+A_{\mu}\phi_{1}, D_{\mu}\phi_{3}=\partial_{\mu}\phi_{3},$

which is equal to
$D_{\mu}\phi=\partial_{\mu}\phi+A_{\mu}(n\cross\phi)$ .
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We also introduce the Maxwell field $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$ . Then, we can extend (3.1) to
the following Maxwell gauged model

(3.2) $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}D_{\mu}\phi\cdot D^{\mu}\phi-\frac{1}{2}(1-n\cdot\phi)^{2}.$

We define a new current density

$j_{\alpha}= \frac{1}{2}\epsilon_{\alpha\beta\gamma}[\phi\cdot D^{\beta}\phi\cross D^{\gamma}\phi+F^{\beta\gamma}(1-n\cdot\phi)]=k_{\alpha}+\epsilon_{\alpha\beta\gamma}\partial^{\beta}[(1-n\cdot\phi)A^{\gamma}].$

Then, the degree can be expressed as

(3.3) $\deg\phi=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}j_{0}dx=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}[\phi\cdot D_{1}\phi\cross D_{2}\phi+F_{12}(1-n\cdot\phi)]dx.$

The static energy is given by

$\mathcal{E}(\phi, A) = \int_{\mathbb{R}^{2}}\{(D_{1}\phi)^{2}+(D_{2}\phi)^{2}+F_{12}^{2}+(1-n\cdot\phi)^{2}\}dx$

$= \pm 4\pi\deg\phi+\frac{1}{2}\int_{\mathbb{R}^{2}}\{(D_{1}\phi\pm\phi\cross D_{2}\phi)^{2}+(F_{12}\mp[1-n\cdot\phi])^{2}\}dx$

$\geq 4\pi|\deg\phi|.$

Hence, we get a energy lower bound $4\pi|\deg\phi|$ which is saturated by the following self-dual
equations: taking upper signs

(3.4) $D_{1}\phi+\phi\cross D_{2}\phi = 0,$

(3.5) $F_{12}-(1-n\cdot\phi) = 0.$

In terms of the new function $u$ defined by (2.3), we can rewrite (3.4) and (3.5) as

(3.6) $D_{1}u+iD_{2}u = 0,$

(3.7) $F_{12}- \frac{2|u|^{2}}{1+|u|^{2}} = 0,$

where $D_{j}u=\partial_{j}u+iA_{j}u.$

It is obvious that $u(x)=0$ if and only if $x\in\phi^{-1}(n)$ . By virtue of the $\overline{\partial}$-Poincar\’e
Lemma (see [18]), the equation of (3.6) implies that $u$ is locally represented by a holo-
morphic factor up to a smooth function. Thus, the zeros of $u$ have integer multiplicities
and are realized by the points in $\phi^{-1}(n)$ . Similar arguments show that $\psi$ has poles at the
points in $\phi^{-1}(s)$ . Indeed, letting $\tilde{D}_{j}’=\partial_{j}-iA_{j}$ and $\tilde{u}=1/u$ , we see that

$\tilde{D}_{1}’\tilde{u}=-\tilde{u}^{2}\tilde{D}_{1}u=i\tilde{u}^{2}\tilde{D}_{2}u=-i\overline{D}_{2}’\tilde{u},$

which leads us by the $\overline{\partial}$-Poincar\’e Lemma that $\tilde{u}$ has zeros of integer multiplicities. Now
let

(3.8) $\{\begin{array}{l}v = |u|^{2},\mathcal{Q} = \phi^{-1}(n)=\{q_{1}, q_{2}, \cdots, q_{M}\},\mathcal{P} = \phi^{-1}(s)=\{p_{1},p_{2}, \cdots, p_{N}\}.\end{array}$
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Each point $p_{j}$ or $q_{j}$ is counted as its multiplicity. Then, the equation (3.7) reduces to

(3.9) $\Delta v=\frac{4e^{v}}{1+e^{v}}-4\pi\sum_{j=1}^{N}\delta_{p_{j}}+4\pi\sum_{j=1}^{M}\delta_{q_{j}}.$

The finite energy condition gives the boundary condition $\phiarrow n$ as $|x|arrow\infty$ , which is
equivalent to $u(x)arrow 0$ and hence $v(x)arrow-\infty$ as $|x|arrow\infty.$

We are interested in the solutions $v$ of (3.9) having finite magnetic flux which is given
by

(3.10) $\Phi=\int_{\mathbb{R}^{2}}F_{12}dx=\int_{R^{2}}\frac{2e^{v}}{1+e^{v}}dx<\infty.$

The corresponding energy is also finite and the solution of (3.9) satisfying (3.10) is referred
as a finite-energy solution. If we set

$v_{0}(x)=- \sum_{j=1}^{N}\ln|x-p_{j}|^{2}+\sum_{k=1}^{M}\ln|x-q_{k}|^{2},$

then $w=v-v_{0}$ satisfies

$\Delta w=\frac{4e^{uo+w}}{1+e^{uo+w}}\equiv F\in L^{\infty}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2})$ .

From a standard argument it follows that

$\lim_{|x|arrow\infty}\frac{w(x)}{\ln|x|}=\frac{1}{2\pi}\int_{\mathbb{R}^{2}}F(x)dx\equiv\alpha>0.$

As a consequence, $v$ enjoys the following decays:

(3.11) $v(x)=-\beta\ln|x|+o(\ln|x|)$ as $|x|arrow\infty,$

where $\beta=2N-2M-\alpha<2(N-M)$ . By the condition (3.10), we also see that $\beta\geq 2.$

In the sequel, if $v$ is a finite-energy solution of (3.9), then $v$ must satisfy (3.11) with

(3.12) $\beta\in[2,2N-2M)$ and $N-M\geq 2.$

In this point of view, the main question about the existence of finite-energy solutions is
to verify whether the condition (3.12) is also sufficient. Concerning this problem, it was
proved in [31] that if $N-M\geq 2$ , then for each $\beta\in(2,4)$ there exists a unique finite-energy
solution $v$ of (3.9) satisfying that

(3.13) $v(x)=-\beta\ln|x|+O(1)$ as $|x|arrow\infty.$

More general result is the following.
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Theorem 3.1 ([15]). Suppose that $N-M\geq 2.$

(a) If $u$ is a finite-energy solution of (3.9) satisfying (3.11) for some $\beta\in(2,2N-2M)$ ,
then $u$ satisfies (3.13).

(b) Conversely, for any $\beta\in(2,2N-2M)$ , there exists a unique finite-energy solution
$v$ of (3.9) satisfying (3.13). Moreover, we have

(3.14) $\int_{\mathbb{R}^{2}}\frac{4e^{v}}{1+e^{v}}dx=2\pi(2N-2M-\beta)$ .

The critical case is that $\beta=2$ . The decay rate of the solution tums out to be different
from (3.13). We have the following partial result for the existence of solutions.

Theorem 3.2 ([15]). Let $N\geq 2$ be an integer and $M=0$ . Then, for $\beta=2,$ $(3.9)$

possesses a unique finite-energy solution $u$ satisfying (3.14). The solution $v$ satisfies the
following asymptotic behavior

(3.15) $u(x)=-2\ln|x|-2$ ln ln $|x|+O(1)$ as $|x|arrow\infty.$

It is still open to find solutions of (3.9) for the general case $M\neq 0$ when $\beta=2$ . Once
we find a solution $v$ of (3.9), we can find the corresponding solution of (3.4) and (3.5) by
using the relations of $v,$ $u$ and $(\phi, A)$ . So, the physical quantities of solutions satisfy the
following properties.

Theorem 3.3. Let $(\phi_{\beta}, A_{\beta})$ of (3.4) and (3.5) corresponding to $\beta\in(2,2N-2M)$ . Then,
we have

energy : $\mathcal{E}(\phi_{\beta}, A_{\beta})=\deg\phi_{\beta}=4\pi N,$

(3.16) magnetic flux : $\Phi(\phi_{\beta}, A_{\beta})=\int_{\mathbb{R}^{2}}\frac{2e^{v}}{1+e^{v}}dx=\pi(2N-2M-\beta)$,

decays : $(\phi_{\beta})_{1}^{2},$ $(\phi_{\beta})_{2}^{2},$ $(F_{12})_{\beta}=1-(\phi_{\beta})_{3}^{2},$ $|D\phi_{\beta}|^{2}=O(|x|^{-\beta})$ ,

where $\beta=2(N-M)-2N\alpha.$

3.2 Broken Model

We consider a more general situation:

(3.17) $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}D_{\mu}\phi\cdot D^{\mu}\phi-\frac{1}{2}(\tau+n\cdot\phi)^{2},$

where $\tau$ is a real number in [-1, 1]. We note that if $|\tau|=1,then$ the vacuum state is given
by two symmetric phases $\phi_{v}=\pm n$ which is invariant under $U(1)$ transformation. On the
other hand, if $|\tau|<1$ , then we have broken phases $n\cdot\phi_{v}=1.$

We define a new current density

$j_{\alpha}= \frac{1}{2}\epsilon_{\alpha\beta\gamma}[\phi\cdot D^{\beta}\phi\cross D^{\gamma}\phi-F^{\beta\gamma}(\tau+n\cdot\phi)]=k_{\alpha}-\epsilon_{\alpha\beta\gamma}\partial^{\beta}[(\tau+n\cdot\phi)A^{\gamma}].$
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The corresponding conserved topological charge is defined by

(3.18) $T= \frac{1}{4\pi}\int_{\mathbb{R}^{2}}j_{0}dx=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}[\phi\cdot D_{1}\phi\cross D_{2}\phi-F_{12}(\tau+n\cdot\phi)]dx.$

Comparing this formula with (3.3), we can see that if $\tau=-1$ , then $T$ is the degree of $\phi.$

However, $T$ may not be an integer in general. The static energy is given by

$\mathcal{E}(\phi, A) = \int_{\mathbb{R}^{2}}\{(D_{1}\phi)^{2}+(D_{2}\phi)^{2}+F_{12}^{2}-(\tau+n\cdot\phi)^{2}\}dx$

$= \pm 4\pi T+\frac{1}{2}\int_{\mathbb{R}^{2}}\{(D_{1}\phi\pm\phi\cross D_{2}\phi)^{2}-(F_{12}\pm[\tau+n\cdot\phi])^{2}\}dx$

$\geq 4\pi|T|.$

Hence, we get a energy lower bound $4\pi|T|$ which is saturated by the following self-dual
equations: taking upper signs

(3.19) $D_{1}\phi+\phi\cross D_{2}\phi = 0,$

(3.20) $F_{12}+(\tau+n\cdot\phi) = 0.$

In terms of the new function $u$ defined by (2.3), we can rewrite (3.4) and (3.5) as

(3.21) $D_{1}u+iD_{2}u = 0,$

(3.22) $F_{12}- \frac{(1-\tau)|u|^{2}-(1+\tau)}{1+|u|^{2}} = 0,$

where $D_{j}u=\partial_{j}u+iA_{j}u$ . Using the notations of (3.8) and proceeding as before, we change
(3.7) int$0$

(3.23) $\Delta v=\frac{2(1-\tau)e^{v}-2(1+\tau)}{1+e^{v}}-4\pi\sum_{j=1}^{N}\delta_{p_{j}}+4\pi\sum_{j=1}^{M}\delta_{q_{j}}.$

It is not difficult to see that if $v$ is a solution of (3.23) for $\tau\in(-1,0]$ , then $-v$ is also
a solution for $-\tau$ with the change of the roles of $p_{j}$ ’s and $q_{j}’ s$ . Therefore, from now on
we may assume that $-1\leq\tau\leq 0$ . When $\tau=-1,$ $(3.23)$ corresponds to the unbroken case
(3.9). So, we consider only the broken case $|\tau|<1$ in the following. The finite energy
condition gives the boundary condition $\phi_{3}arrow-\tau$ as $|x|arrow\infty$ , which is equivalent to
$|u(x)|^{2}arrow(1+\tau)/(1-\tau)$ . Letting

(3.24) $w=v+\ln a, a=(1-\tau)/(1+\tau)\geq 1,$

we have

(3.25)
$\Delta w=\frac{4a(e^{w}-1)}{(1+a)(e^{w}+a)}-4\pi\sum_{j=1}^{N}\delta_{p_{j}}+4\pi\sum_{j=1}^{M}\delta_{q_{j}},$

$warrow 0$ as $|x|arrow\infty.$

Concerning this equation, we have the following existence result.
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Theorem 3.4 ([32]). Suppose that $|\tau|<1.$

(a) For any $N,$ $M>0$ , there exists a unique solution $w$ of (3.25) decaying exponentially
at the infinity.

(b) The corresponding solution $(\phi, A)$ of (3.19) and (3.20) enjoys the following:

(3.26)
energy : $\mathcal{E}(\phi, A)=\frac{1}{2}(1-\tau)(N-M)$ ,

magnetic flux : $\Phi(\phi, A)=2\pi(N-M)$ .

Proof. Since the proof of the part (b) was not explicitly given in [32], we provide it here.
It is easy to see that $\Phi(\phi, A)=2\pi(N-M)$ . It follows from (3.3) and (3.18) that

$T= \deg\phi-\frac{1}{4\pi}\int_{\mathbb{R}^{2}}H_{12},$

where $H_{12}=\partial_{1}H_{2}-\partial_{2}H_{1}$ and

$H_{k}=A_{k}( \tau+n\cdot\phi)=A_{k}\frac{(1+\tau)-(1-\tau)|u|^{2}}{1+|u|^{2}}, k=1,2.$

If we set $J_{12}=\partial_{1}J_{2}-\partial_{2}J_{1}$ and $G_{12}=\partial_{1}G_{2}-\partial_{2}G_{1}$ , where with $k=1,2,$

$J_{k}= \frac{iu\overline{\tilde{D}_{k}u}-i\overline{u}\tilde{D}_{k}u}{1+|u|^{2}}=\frac{\epsilon_{kl}\partial_{l}v}{1+e^{v}},$

$G_{k}=- \frac{2|u|^{2}A_{k}}{1+|u|^{2}}=\frac{(1+\tau)e^{v}-(1-\tau)}{2(1+e^{v})}\epsilon_{kl}\partial_{l}(v-\sum_{j=1}^{N}\ln|x-p_{j}|^{2}+\sum_{j}^{M}|x-q_{j}|^{2})$ ,

then we obtain from [33] that

(3.27) $\{\begin{array}{l}T=\frac{1}{4\pi}\int_{\mathbb{R}^{2}}J_{12}-\frac{1+\tau}{4\pi}\Phi(\phi, A) ,\deg\phi=T+\frac{1}{4\pi}\int_{\mathbb{R}^{2}}H_{12}.\end{array}$

Here, we used the identity $H_{k}-G_{k}=(1+\tau)A_{k}$ . Since $v$ and its derivative decay expo-
nentially to zero at infinity, we obtain that

(3.28) $\int_{\mathbb{R}^{2}}J_{12}dx=4\pi(N-M) , \int_{\mathbb{R}^{2}}H_{12}dx=0.$

As a consequence, we have

$T= \frac{1}{2}(1-\tau)(N-M)$ .

The proof is finished. $\square$
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It is worth while to mention the difference between Theorem 3.3 and Theorem 3.4. In
the broken model (3.17), the magnetic flux and the energy are quantized by (3.26). This

is one of the features of classical $U(1)$ gauged planar vortices in $(2+1)$ (for example the
Abelian Higgs model [18] $)$ : they either have quantized magnetic flux in which case they

are topologically stable, or have arbitrary flux in which case they are not topologically
stable. So the quantization of the magnetic flux is responsible for the topological stability

of soliton solutions. However, in the unbroken model (3.2), the topological stability of
soliton solutions is independent of the magnetic flux. The solitons can carry arbitrary

magnetic flux in a certain range, but yet be topologically stable such that the energy is
quantized by the degree of the scalar field. See (3.16).

4 Chern-Simons Gauged $O(3)$ Sigma Model

In this section, we consider the model in the previous section when the action is govemed
by the Chem-Simons force instead of the Maxwell force. We consider both the broken and
the unbroken models. The Lagrangian is given by

$\mathcal{L}=-\frac{1}{4}\epsilon^{\mu\nu\rho}F_{\mu\nu}A_{\rho}+\frac{1}{2}D_{\mu}\phi\cdot D^{\mu}\phi+\frac{1}{2\kappa^{2}}(\tau+n\cdot\phi)^{2}(n\cross\phi)^{2}.$

Here, the constant $\kappa>0$ is the Chem-Simons coupling constant representing the strength
of the Chem-Simons action. While $\tau\in[-1,1]$ determines the vacuum manifold of the
potential. If $|\tau|=1$ , we have only the symmetric vacua $\phi_{v}=\pm n$ which is fixed under the
$U(1)$ gauge group. So, the case $|\tau|=1$ gives the unbroken model. If $|\tau|<1$ , we have not
only the symmetric vacuum but also a asymmetric vacuum $n\cdot\phi_{v}=\tau$ which is invariant
but not fixed under the $U(1)$ gauge group. Hence, we have the broken model for $|\tau|<1.$

The Gauss law equation yields

$\kappa F_{12}-2A_{0}(\tau+(n\cdot\phi)^{2})=0.$

Then, by means of the Gauss law equation, the static energy is given by

$\mathcal{E}(\phi)$ $=$ $\int_{\mathbb{R}^{2}}\frac{\kappa^{2}F_{12}^{2}}{(n\cross\phi)^{2}}+(D_{1}\phi)^{2}+(D_{2}\phi)^{2}-\frac{1}{\kappa^{2}}(\tau+n\cdot\phi)^{2}(n\cross\phi)$

$= \pm 4\pi T+\int_{\mathbb{R}^{2}}\{(\frac{\kappa F_{12}}{|n\cross\phi|}\pm\frac{1}{\kappa}(\tau+n\cdot\phi)|n\cross\phi|)^{2}+(D_{1}\phi\pm\phi\cross D_{2}\phi)^{2}\}dx$

$\geq 4\pi|T|,$

where the equality holds if and only if $\phi$ satisfies the self-dual equations

$D_{1}\phi\pm\phi\cross D_{2}\phi = 0,$

(4.1)
$F_{12} \pm\frac{2}{\kappa^{2}}(\tau+n\cdot\phi)(n\cross\phi)^{2} = 0.$

We take the upper signs of (4.1).
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In terms of the new function $u$ defined by (2.3), we can rewrite (4.1) as

(4.2) $D_{1}u+iD_{2}u = 0,$

(4.3) $F_{12}- \frac{4|u|^{2}\{(1-\tau)|u|^{2}-(1+\tau)\}}{(1+|u|^{2})^{3}} = 0,$

where $D_{j}u=\partial_{j}u+iA_{j}u$ . Under the setting of (3.8) and proceeding as before, we change
(4.2) and (4.3) into

(4.4) $\Delta v+\frac{1}{\epsilon^{2}}f(u, \tau)=-4\pi\sum_{j=1}^{N}\delta_{p_{j}}+4\pi\sum_{j=1}^{M}\delta_{q_{j}},$

where $\epsilon^{2}=8/\kappa^{2}$ and

$f(v, \tau)=\frac{e^{v}\{(1-\tau)-(1+\tau)e^{v}\}}{(1+e^{v})^{3}}.$

We have three types of boundary condition from the finite energy condition:

$\{$

topological $BC$ : $v(x) arrow\ln\frac{1-\tau}{1+\tau}$ for $|\tau|<1,$

(4.5) nontopological $BC$ of type I : $v(x)arrow-\infty,$

nontopological $BC$ of type II : $v(x)arrow+\infty.$

For the topological solitons, we have the following result.

Theorem 4.1. (a) [32] There exists a solution of (4.4) which decays exponentially to zero
at infinity. The corresponding energy and the magnetic flux are quantized.

(b) [13] If $\epsilon$ is small enough, the solution is unique.

The uniqueness of solutions for general $\epsilon>0$ is still an open problem. In the following,
we focus on the nontopological solutions. In particular, let us consider the case when there
is only one vortex or antivortex point. In this case, we want to obtain radial solutions. To
see this, let $v(r;\tau, s)$ denote the solution of the following initial value problem:

(4.6) $\{\begin{array}{ll}v"+\frac{1}{r}v’+f(v, \tau)=0 for r>0,v(r;\tau, s)=2N\ln r+s+o(1) as rarrow 0.\end{array}$

Here, $v’$ always denotes $\frac{dv}{dr}(r;\tau, s)$ . Since $f(-v, -\tau)=-f(v, \tau),$ $w=-v$ satisfies (4.4)
with $\tau$ and $2N$ replaced $by-\tau and-2N$ . So without loss of generality, we might assume
that $N\geq 0$ . Define $\beta(\tau, s)$ by

$\beta(\tau, s)=\frac{1}{2\pi}\int_{\mathbb{R}^{2}}f(v(r;\tau, s),$ $\tau)dx=\int_{0}^{\infty}f(v(r;\tau, s), \tau)$ $dr$ .

Then, we have

(4.7) $v(r;\tau, s)=[2N-\beta(\tau, s)]\ln r+I_{N,\beta,\tau}+O(r^{2+2N-\beta})$ for large $r.$

For the unbroken case $|\tau|=1$ , we have a result for the existence of solutions from [1] for
certain range of $\beta$ . This result is extended in [9] as follows.
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Theorem 4.2 ([9]). (a) Let $\tau=-1$ . If $N\geq 0$ and $\beta>4N+4$ , then there exists a
nontopological solution $u_{\beta}$ of (4.6) which satisfies (4.7). If $(\phi_{\beta}, A_{\beta})$ is the corresponding
solution of (4.1), then

(4.8) $\mathcal{E}(\phi_{\beta}, A_{\beta})=\Phi(\phi_{\beta}, A_{\beta})=2\pi\beta.$

(b) If $N\geq 1$ and $\beta\in(0,2N-1], then (4.6)$ possesses a unique nontopological solution
$u_{\beta}$ of type $\Pi$ such that $u_{\beta}$ satisfies (4.7) for $\beta\in(0,2N-1)$ , and

(4.9) $u_{\beta}(r)=\ln r+$ ln ln $r+O(1)$ near $\infty$ for $\beta=2N-1.$

(c) Let $\tau=1$ . If $N\geq 0$ and $\beta<\min\{0,4N-4\}$ , then (4.6) admits a nontopological
solution $u\beta$ of type $\Pi$ which satisfies (4.7). There is no nontopological solution of type $I$

to the equation (4.6).
(d) In both cases $(b)$ and $(d)$ , we have

(4.10) $\mathcal{E}(\phi_{\beta}, A_{\beta})=4\pi N, \Phi(\phi_{\beta}, A_{\beta})=\pi\beta.$

For the unbroken case $|\tau|<1$ , we have the following result.

Theorem 4.3 ([12]). Suppose $N$ is a nonnegative integer and $\tau\in(-1,1)$ is given.

(a) There exists a unique $s_{*}=s_{*}(\tau)$ such that $\beta(\tau, s_{*})=2N,$ $i.e$ . (4.6) has a unique
topological solution $v(r;\tau, s)$ .

(b) $\beta(\tau, s)>0$ if and only if $s<s_{*}$ . In this case, $v(r;\tau, s)$ is a nontopological solution
of type I. Moreover, $\beta(\tau, \cdot):(-\infty, s_{*})arrow(4N+4, \infty)$ is strictly increasing in $s$ and
satisfies

$\lim_{sarrow-\infty}\beta(\tau, s)=4N+4, \lim_{sarrow s}.\beta(\tau, s)=+\infty.$

(c) For $\beta<\min\{O, 4N-4\}$ , there exists an unique $s\in(s_{*}, \infty)$ such that $\beta(\tau, s)=\beta,$

and $v(r;\tau, s)$ is a nontopolo9ical solution of type $\Pi.$

(d) Let $(\phi, A)$ be the corresponding solution of (4.1). The energy $\mathcal{E}(\phi, A)$ , which equals
the topological charge $4\pi T(\phi, A)$ , is given by

$\mathcal{E}(\phi_{*}, A_{*}) = 2\pi N(1-\tau)$ ,

(4.11)
$\mathcal{E}(\phi_{(\beta)}, A_{(\beta)})$ $=$ $\{\begin{array}{ll}\pi(1-\tau)\beta, \beta>4N+4,4\pi N-\pi\beta(1+\tau) , \beta<\min\{0,4N-4\}.\end{array}$

(e) The degree of $\phi$ is given by

$\deg\phi_{*} = \frac{1}{2}(1-\tau)N,$

(4.12)
$\deg\phi_{(\beta)}$ $=$ $\{\begin{array}{ll}0, \beta>4N+4,N, \beta<\min\{0,4N-4\}.\end{array}$
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(f) The total magnetic flux $\Phi$ and the total charge $Q=-\kappa\Phi$ are given by

$\Phi(\phi_{*}, A_{*}) = 2\pi N,$
(4.13)

$\Phi(\phi_{(\beta)}, A_{(\beta)}) = \pi\beta.$

Radially symmetric solutions may be used to the study of non-radial solutions. In
particular, the linearized operator at each radial solution plays a crucial role in constructing
blow-up solutions. Indeed, using Theorem 4.2 and Theorem 4.3, one can show that the
linearized operator $\triangle+f’(u, \tau)$ is an isomorphism on suitable function spaces. Then,
following the argument of [7, 22], we can construct bubbling solutions [10, 11].

Now let us investigate the properties of solutions for broken and unbroken models. In
the broken case $|\tau|=1$ , the vacuum of the potential consists of two symmetric phase which
gives nontopological solutions of type I and II. The type II solution is topologically stable
and the degree is an integer. The energy is quantized but the magnetic flux is fractional.
See Theorem 4.2 $(b)-(d)$ . For the nontopological solution of type I, the energy and the
magnetic flux are fractional. So it looks like the classical planar nontopological solutions
[4]. See Theorem 4.2 (a).

In the broken model $|\tau|<1$ , we have two symmetric phases and one asymmetric phase,
depending on the parameter $\tau$ . Two symmetric phases gives nontopological solutions of
type I and II. The asymmetric phase yields a topological solution. The nontopological
solutions have fractional magnetic flux and energy. The type II solution has integer degree
but the type II solution has fractional degree. In the Schroers’s model, the energy is equal
to the degree of the solution. However, in the Chern-Simons model they are different for
type II solutions. In contrast, the topological solutions have quantized magnetic flux and
energy and look like the classical planar Chern-Simons system [19, 20]. In this case, the
degree is fractional. See Theorem 4.3 $(d)-(f)$ .

We close this section with two remarks. First, we can consider sigma models under the
t’Hooft type periodic condition. This leads us to consider (4.4) on a flat torus. One can
find some results in [6, 11, 22, 25] for this direction. Second, one may consider the partial
differential equations arising from the self-dual Maxwell-Chern-Simons gauged $O(3)$ sigma
model [21]. This $mo$del unifies the Maxwell $O(3)$ sigma model and the Chern-Simons $O(3)$

sigma model. Recent progress for this model can be found in [5, 8, 16, 17, 28].
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