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The edges of quantum Hall fluids behave as one-dimensional conductors. This article reviews electron
transport into these edge states, covering both the theory based on the chiral Luttinger liquid and the
experimental findings using electron tunneling as the probe. The first part of the review presents a
basic description of this theory, including a derivation of the density of states, to provide a framework
and language for discussing the experimental observations. The signature of the chiral Luttinger liquid
is a power-law behavior for the density of states and the tunneling conductances. Experimentally, two
techniques have been applied to study the tunneling conductance, using a gated point contact between
two quantum Hall edges, or using a cleaved-edge barrier between an edge and a normal conductor.
The point-contact method exhibits resonant tunneling, which appears to show some aspects of the
Luttinger liquid, and the cleaved-edge method has yielded clear power-law dependences in the
off-resonance conductances. Power-law behavior over many orders of magnitude is observed,
confirming the Luttinger-liquid character of the edge states. However, the power-law exponents, while
in agreement with finite-size numerical calculations, can differ from the universal values predicted by
the Chern-Simon field theory. This disagreement is still not well understood. The review concludes
with a brief survey of other one-dimensional conductors that have been studied to look for
characteristics of the nonchiral Tomonaga-Luttinger liquid.
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I. INTRODUCTION

This article deals with electron transport in a new
state of matter, specifically, electron tunneling into the
chiral Luttinger liquid (CLL). The chiral Luttinger liq-
uid, also known as the chiral Tomonaga-Luttinger
liquid,1 is a particularly simple form of strongly interact-
ing one-dimensional (1D) metallic conductor. Its theo-
retical definition is a one-dimensional metal having el-
ementary excitations which propagate or circulate along
the boundary in one direction only; its practical realiza-
tion is by the edge states of quantum Hall effect conduc-
tors. The CLL is distinguished from conventional three-
dimensional (3D) metals by the absence of a single-
particle pole in the spectral density. Instead, the usual
pole is replaced by power-law dependences in momen-
tum and frequency. Experimentally, what this means is
that in a transport measurement where electrons are in-
jected into or removed from the 1D correlated metal
across a tunneling barrier, a power-law behavior is ob-
served. This behavior occurs either in the tunnel current
or in the differential conductance as a function of en-
ergy, where this energy may be set by a bias voltage or

1See, for example, Wen, 1990a, 1990b, 1991a, 1991b, 1992,
1995; Moon et al., 1993; Kane et al., 1994; Fendley et al., 1995a,
1995b; Kane and Fisher, 1995; Chang et al., 1996, 2001; Gray-
son et al., 1998.
©2003 The American Physical Society9
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by temperature. From the perspective of measurements,
the CLL is an extremely clean system. Residing at the
one-dimensional edge of the two-dimensional fractional
quantum Hall fluid, the CLL is realized in devices grown
by the molecular-beam epitaxy (MBE) growth tech-
nique, which offers extremely precise, atomic-scale con-
trol. This control extends beyond the growth of the me-
tallic electron system itself to include the tunnel barrier
as well. Furthermore, the nature of the CLL can be
tuned by changing the magnetic field and hence the fill-
ing factor of the fractional quantum Hall fluid. This tun-
ability leads to a rich variety of similar yet different Lut-
tinger liquids. In Fig. 1, we show the first set of current-
voltage (I-V) data with sufficient dynamic range to
establish a power-law dependence, obtained for electron
tunneling from a 3D, highly doped bulk GaAs metal
into the edge of a n51/3 fractional quantum Hall fluid
(Chang et al., 1996). Note that in the log-log plot, the
low-bias voltage range below 15 meV is dominated by
the thermal energy and is therefore linear. Above this
regime a power-law behavior with a range exceeding
three decades in current and 1.5 decades in voltage is
observable. This power law stands in direct contrast to
conventional metals, which exhibit an energy-
independent tunneling conductance and a linear I-V re-
lationship in the clean limit, reflecting the energy-
independent tunneling density of states. To date, both
on-resonance tunneling and off-resonance tunneling
have revealed signatures of this unusual power-law be-
havior (Chang et al., 1996, 1998, 2001; Grayson et al.,
1998, 2001).

FIG. 1. Current-voltage (I-V) characteristics for tunneling
from the bulk-doped n1GaAs into the edge of a n51/3 frac-
tional quantum Hall effect: 1, sample 1.1 in a log-log plot at
B513.4 T; d, sample 2 at B510.8 T. The solid curves repre-
sent fits to the theoretical universal scaling form of Eq. (178)
for a52.7 and 2.65, respectively. From Chang, Pfeiffer, and
West (1996).
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
The present strong interest in Luttinger liquids comes
from two major directions. First of all, interacting 1D
and quasi-1D systems are extremely interesting in their
own right, particularly in light of recent observations of
anomalous behaviors such as dc and frequency-
dependent conductivities, photoemission spectra,
nuclear magnetic resonance (NMR) relaxation, etc. The
systems in which they occur are quite diverse and in-
clude the CLL, 1D ballistic semiconductor wires
(Tarucha et al., 1995; Yacoby et al., 1996; Auslaender
et al., 2000), 1D organic conductors (Basista et al., 1990;
Dardel et al., 1993; Zwick et al., 1997; Schwartz et al.,
1998), blue-bronze-type conductors (Dardel et al., 1991;
Denlinger et al., 1999; Sing et al., 1999), and carbon
nanotubes (Bockrath et al., 1999; Yao et al., 1999; Bach-
told et al., 2001). Second, phenomenologically there ap-
pear to be considerable and unmistakable similarities
between the high-temperature superconductors (Bed-
norz and Muller, 1986; Wu et al., 1987) in their normal
state (Anderson, 1987, 1990, 1992; Varma et al., 1989;
Harris et al., 1992; Ando et al., 1995) and the 1D Lut-
tinger liquids. Most notable of these is the absence of a
single-particle pole as determined from angle-resolved
photoemission measurements (Anderson, 1987, 1990,
1992; Ding et al., 1997; Shen and Schrieffer, 1997). This
unambiguous and unusual feature has led to a tremen-
dous amount of speculation and investigation on two-
dimensional Luttinger-like correlated systems in which
the coupling to a gauge field (Baskaran and Anderson,
1988; Zou and Anderson, 1988; Kopietz, 1996; Lee et al.,
1998) leads to power-law correlations (Ren and Ander-
son, 1993; Rantner and Wen, 2001). Models have also
been proposed which assume outright the existence of
coupled-1D Luttinger stripes (Emery et al., 1999; Carl-
son et al., 2000) where the stripes form as a result of
phase separation.

One-dimensional Luttinger liquids could also prove to
be of interest down the road because of their possible
relevance to 111-dimensional conformal field theories
(see, for example, Voit, 1995). Conformal field theories
are central to the theory of superstrings, which are mod-
eled as one-dimensional objects. Furthermore, it is not
entirely unthinkable that the physics associated with the
chiral Luttinger liquid which exists at the edge of the
two-dimensional quantum Hall fluid may bear similarity
to the embedding of our 311-dimensional space-time at
the boundary of higher-dimensional spaces. Indeed, such
a possibility has recently been explored (Zhang and Hu,
2001).

The CLL belongs to a larger class of new, correlated
systems that are collectively termed non-Fermi-liquid
systems. By a non-Fermi-liquid, we mean in general
terms interacting fermion systems in which the elemen-
tary excitations cannot be described by the venerable
Fermi-liquid picture of long-lived quasiparticles, related
to bare electrons by a one-to-one correspondence via
the adiabatic principle. Non-Fermi-liquids come in many
varieties and are encountered in diverse systems. Out-
standing examples include (1) 1D Luttinger liquids and
Hubbard models, (2) 2D systems coupled to gauge
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fields, (3) systems with strong Fermi-surface nesting, (4)
composite-fermion systems in the fractional quantum
Hall fluids, (5) systems in the vicinity of critical fluctua-
tions or soft modes, and (6) Kondo systems or Anderson
Hamiltonian systems in which a local degree of freedom
couples to a continuum.

It is the purpose of this article to review the current
status of the field of chiral Luttinger liquids in a manner
that is intended to be self-contained and readily acces-
sible to experimentalists and theorists alike. To accom-
plish this it is necessary to include, in addition to the
major experimental results, a theory section in order to
provide the framework for the key concepts and novel
features associated with a Luttinger liquid. Written from
an experimentalist’s perspective, it is hoped that this
theory section could also serve as a starting point for
those readers interested in more in-depth theoretical
studies. The experimental sections will discuss the tech-
niques and advantages of the CLL system both from the
perspective of the phenomenon itself and from the per-
spective of device realization, highlighting the major re-
sults and the unusual power-law tunneling density of
states observed in both off-resonance and on-resonance
conditions. We shall also discuss recent tunneling cur-
rent noise measurements which shed light on the quasi-
particle fractional charge, and briefly survey other 1D
systems such as 1D quantum wires, carbon nanotubes,
and quasi-1D organic and blue-bronze conductors.

This review is organized as follows: Section II intro-
duces the basic theoretical framework for understanding
a chiral Luttinger liquid. Section III summarizes the ma-
jor experimental results in electron tunneling into the
fractional quantum Hall edge. This section includes a
discussion of the conditions under which the existence of
a chiral Luttinger liquid is established, particularly with
regard to the edge of the n51/3 fractional Hall fluid. We
present evidence that Luttinger-liquid-like tunneling be-
havior is not restricted to the edge of the special, incom-
pressible fractional quantum Hall fluid given by the
Laughlin (1983), hierarchical (Haldane, 1983; Halperin,
1984), or Jain series (Jain, 1989a, 1989b, 1990), but can
be observed at general filling fractions, including those
corresponding to compressible fluids. We discuss the
clear evidence of non-Fermi-liquid behavior in resonant
tunneling (as opposed to off-resonance tunneling),
where a resonant impurity level mediates the tunneling
process. Furthermore, we describe quantum shot-noise
measurements that probe the fractional charge of the
quasiparticles (De-Picciotto et al., 1997; Saminadayar
et al., 1997; Reznikov et al., 1999). In Sec. IV, the review
concludes with a survey of the latest developments in
other 1D conducting systems such as quantum wires,
single-walled nanotubes, and quasi-1D organic and blue-
bronze conductors.

II. THEORETICAL BACKGROUND

This section is devoted to an introductory review of
the key theoretical concepts used to describe a chiral
Luttinger liquid, presented from the point of view of an
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
experimentalist. The hope is to provide an appreciation,
particularly for those readers who are not familiar with
the theory of 1D interacting systems, of the unusual as-
pects of this new type of correlated electron fluid.

A chiral Luttinger liquid in one dimension is charac-
terized by bosonic elementary excitations (plasmons)
rather than the familiar Fermi-liquid quasiparticle/hole
excitations, and by the absence of a single-particle pole,
which is replaced by power-law behavior in the correla-
tion functions. The difference can be subtle. In particu-
lar, in the sector of Hilbert space spanning neutral exci-
tations at low energy (v→0) and small wave vector (q
→0), a Fermi-liquid description is still workable (Cas-
tellani et al., 1994; Carmelo and Castro Neto, 1996; Ng,
1997; Castellani and Di Castro, 1999). However, in the
charge sector in which the addition or removal of
charged carriers (electrons or holes) is involved, the
Fermi-liquid description breaks down, as evidenced in
the destruction of the quasiparticle pole and the vanish-
ing of the quasiparticle renormalization factor zk .

The basic and familiar picture of a Landau Fermi liq-
uid (Landau, 1956, 1957, 1958) will not be reviewed here
partially due to space constraints. Instead the reader is
referred to discussions in standard textbooks (Abriko-
sov et al., 1963; Nozières, 1964; Mahan, 2000). For a dis-
cussion with continuity to this review, see Chang (2002).
We begin our discussion with a summary of the main
reasons the Fermi-liquid picture breaks down in one di-
mension, placing emphasis on the unusual phase-space
structure which leads to the formation of a Tomonaga-
Luttinger liquid, or Luttinger liquid for short. We de-
scribe Haldane’s formulation (Haldane, 1979, 1981)
based on the bosonization technique (Tomonaga, 1950;
Matthis and Lieb, 1965; Luther and Peschel, 1974;
Haldane, 1981), which solves the original Luttinger
model (Tomonaga, 1950; Luttinger, 1963) exactly, and
the alternative g-ology model renormalization-group
analysis of the Luttinger fixed point (Solyom, 1979; Voit,
1995; Metzner et al., 1998). From there we proceed to a
consideration of the essential aspects of the theory of
the chiral Luttinger liquid. We start with the seminal,
effective-field formulation due to Wen (1990a, 1990b,
1991a, 1991b, 1992, 1995) for incompressible fractional
Hall fluid edges, and discuss the role of disorder (Kane
et al., 1994; Kane and Fisher, 1995) before moving to a
discussion of the compressible fractional fluids (Shytov
et al., 1998; Levitov et al., 2001). We summarize the uni-
versal scaling functions for the tunneling current and
conductance and in particular the Chamon-Fradkin scal-
ing function (Chamon and Fradkin, 1997) for off-
resonance tunneling. This scaling function, which covers
the entire range from weak to strong tunneling for the
case of incoherent, multiple point contacts, has proven
extremely useful in providing systematic fits to the ex-
perimental data and extracting reliable power-law expo-
nents. Lastly we touch on the case of on-resonance tun-
neling through an impurity level (Chamon and Wen,
1993; Kane and Fisher, 1994; Fendley et al., 1995b;
Geller et al., 1996; Kane, 1998). In view of the existing
discrepancy between experiment and certain predictions
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of these effective-field theories, we conclude with a dis-
cussion of recent numerical results on finite-size systems
(Goldman and Tsiper, 2001; Mandal and Jain, 2001,
2002; Wan et al., 2002).

Although the field of the chiral Luttinger liquid at the
fractional quantum Hall edge is relatively young, ap-
proximately 12 years old, the study of the Luttinger liq-
uid has had a long history dating back to the 1950s and
1960s, at least as far as theory is concerned. Many au-
thors have contributed to this exciting field and more
complete reviews of different aspects are available (Em-
ery, 1979; Solyom, 1979; Schulz, 1991, 1995; Voit, 1995;
Metzner et al., 1998). Excellent reviews of the theory of
the chiral Luttinger liquid can also be found in the ar-
ticles of Wen (1992, 1995). Once again, our goal here is
to provide a self-contained, fairly complete overview of
the transport properties, with an emphasis on describing
the key ideas in relatively simple terms. For more thor-
ough discussions of the theoretical issues we refer the
reader to these excellent reviews.

A. Breakdown of the Fermi-liquid picture in one
dimension and the Tomonaga-Luttinger liquid

The familiar Fermi-liquid picture in three dimensions
is based on the existence of long-lived quasiparticle/
quasihole excitations as the energy of excitation ap-
proaches zero or equivalently as the energy approaches
the Fermi energy. These quasiparticles (quasiholes) can
be traced back to bare electrons (holes) with a one-to-
one correspondence, starting from the noninteracting
situation followed by adiabatic turning on of the
electron-electron interaction. Phenomenologically sup-
posing the existence of such low-energy excitations,
Landau was able to account for a rich variety of physical
phenomena exhibited by conventional metals in the
presence of non-negligible interactions (Landau 1956,
1957, 1958). The Fermi-liquid picture finds more rigor-
ous justification in many-body perturbation theory
(Abrikosov et al., 1963; Nozières, 1964) through in-
depth analysis of (i) the quasiparticle lifetime, which var-
ies as uk2kFu22 when k approachs kF for D>2, or as
uE2EFu22 when E approaches the Fermi energy EF
(Luttinger, 1960), and (ii) the interaction operators g
and G (reduced operator), leading to the well-known
Ward identities reflecting underlying conservation
laws—e.g., continuity equations reflecting the conserva-
tion of charge and enabling us to relate vertex functions
and interaction operators to the Landau parameters.
The slow rate of decay for excitations near EF is central
to the success of the Fermi-liquid picture.

The Fermi-liquid picture breaks down in one dimen-
sion. This is a direct consequence of the unique phase-
space structure in one dimension, notably the fact that
the Fermi surface consists of two discrete points
(6kF) rather than a line or surface (or multiple lines or
surfaces), and that for each branch of the momentum-
energy dispersion—left- or right-moving—the 1D wave
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
vector uniquely determines the energy. Some of the
most significant, interrelated consequences include the
following:

(1) The reduced 1D phase space leads to a quasiparticle
scattering rate (Im@S(k,v)#)}uk2kFu and }v ,
rather than the uk2kFu2 and v2 dependences in two
and three dimensions, and to a logarithmic diver-
gence in Re(S) at E5EF (v→0) (Luttinger, 1960;
Voit, 1995; Metzner et al., 1998). Here S denotes the
self-energy. Note that the real and imaginary parts
of S are related by the Kramers-Kronig relations.

(2) Logarithmic divergences appear in the two-particle
interaction operator commencing in second-order
perturbation theory related to (1) above.

(3) A logarithmic divergence at EF directly implies that
the quasiparticle renormalization, or quasiparticle
weight, vanishes: zkukF

;„11]@Re@S#/]v#…21uEF

;1/ ln(v)→0! Hence the one-to-one correspon-
dence of the unperturbed k-electron state to the el-
ementary excitations of the interacting system is
lost.

(4) Low-energy electron-hole excitations arising from
interactions can occur about the two discrete Fermi
points at 6kF with small momentum transfer, q
!kF , or across the Fermi sea with momentum
transfer q'2kF . This indicates that as the excita-
tion energy approaches zero, there is a forbidden
region for electron-hole excitations at 0,q,2kF .
Generalizations to multiple electron-hole processes
yield a series of forbidden regions, 2(n21)kF,q
,2nkF , where n denotes the number of electron-
hole pairs.

(5) Spin-charge separation occurs, i.e., the spin and
charge bosonic elementary excitations propagate at
different velocities. The presence of low-energy, un-
gapped bosonic charge and spin modes is a direct
consequence of the finite spin and charge-density re-
sponses at low q and v.

All of these well-known behaviors point to the ines-
capable fact that the Fermi-liquid picture is not appro-
priate in 1D once electron-electron interaction is turned
on. The Fermi liquid cannot serve as an adequate start-
ing point for understanding certain aspects of this
strongly correlated system, particularly those processes
involving the so-called charge and spin sectors where
injection or removal of bare electrons takes place. In
contrast, thermodynamic properties, which depend on
the neutral excitations (e.g., e-h pairs, collective modes,
plasmons, etc.) at low v, and q(v!eF ,q!kF), can still
adequately be described by the Fermi liquid, albeit with
the caveat that the quasiparticle to bare electron one-to-
one correspondence is lost (Solyom, 1979; Schulz, 1991,
1995; Voit, 1995; Carmelo and Castro Neto, 1996; Ng,
1997; Metzner et al., 1998; Castellani and Di Castro,
1999).

Historically there have been two major parallel and
complementary approaches to the theoretical investiga-
tion of interacting metallic 1D systems, with their focus
centered on the idealized Tomonaga-Luttinger models
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(Tomonaga, 1950; Luttinger, 1963). One approach is
based on the bosonization technique (Tomonaga, 1950;
Matthis and Lieb, 1965; Luther and Emery, 1974; Luther
and Peschel, 1974; Haldane, 1981), and the other on the
so-called g-ology model in connection with
renormalization-group treatment (Menyhard and
Solyom, 1973; Solyom, 1979; Metzner et al., 1998). Note
that related models in the field-theoretic context have
also been explored (Heidenreich et al., 1975). A general
discussion of the topic of interaction in 1D encompasses
a rather diverse range of systems and phenomena. In
addition to metallic systems, other related systems such
as the 1D Hubbard model or models with strong back-
scattering are of great interest in their own right. Here
we confine our attention to metallic systems with weak
backscattering to avoid complications introduced by in-
sulating tendencies or by gapped behavior in the spec-
trum of low-energy excitation. The bosonization ap-
proach, first introduced by Tomonaga (1950), and
Matthis and Lieb (1965), and later on expanded upon by
Luther and Peschel (1974) and Haldane (1979, 1981),
indicates that a bosonic description is appropriate in one
dimension for interacting systems dominated by forward
scattering. The renormalization-group approach is basi-
cally a method for going beyond perturbation theory
and in many instances has the effect of summing up the
most relevant (logarithmically divergent) diagrams in a
systematic and controlled way. Because its implementa-
tion is invariably founded on many-body perturbation
theory, the usual many-body techniques play a natural
and useful role. These include using the Ward identities
arising out of conservation laws to connect the vertex
functions with physically measurable quantities,
equation-of-motion methods, and others. As a conse-
quence, this type of analysis has proven helpful in eluci-
dating the relation between a Fermi liquid and a
Tomonaga-Luttinger liquid, while at the same time al-
lowing clear-cut differentiation of the two systems. The
aforementioned signature difficulties in conventional
treatments of the 1D problem are simply indicative of
the fact that the fermion representation is not the appro-
priate basis for describing the essential low-energy phys-
ics and dynamics.

The Tomonaga and Luttinger models are idealized in-
teracting 1D models that are soluble. Their solubility is
based on (i) linearized dispersion about the two Fermi
points at 6kF ; and (ii) a forward-scattering interaction
only, with no backscattering terms. These original mod-
els do not include electron spin. Generalization to in-
clude spin is straightforward and will be discussed in the
g-ology model. Specifically the Tomonaga Hamiltonian
is given in second-quantized form by (Tomonaga, 1950;
Dzyaloshinskii and Larkin, 1973)

HTomo5(
k

k2

2m
ak

†ak1
1
2 (

k ,k8,q
lqak

†ak1qak8
† ak82q ,

(1)

where q is restricted to uqu!2 kF , or equivalently lq is
appreciable only for small q values and approaches zero
when q is of order 2 kF . The Luttinger model intro-
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duces massless Dirac fermions with linear dispersion,
which renders the problem more mathematically trac-
table. The introduction of Dirac fermions and a sea of
negative energy states does not qualitatively change the
low-energy physics, since excitations to the Fermi level
require large energies. The Luttinger Hamiltonian de-
fined on a line of length L is given by (Luttinger, 1963;
Matthis and Lieb, 1965; Luther and Peschel, 1974)

HLutt5Ho1HI , (2)

Ho5vFE
0

L
C†~x !szpC~x !dx

5vFE
0

L
@cr

†~x !pcr~x !2c l
†~x !pc l~x !#dx

5vF(
k

k~ar ,k
† ar ,k2al ,k

† al ,k!, (3)

HI52
lvF

L (
k ,k8,q

uq~ar ,k
† ar ,k1qal ,k8

† al ,k82q!. (4)

Here vF is the magnitude of the Fermi velocity, C†

5(c l ,cr), sz is the z component of the Pauli spin ma-
trix, and the subscripts l and r refer to the left- and
right-moving branches of the energy-momentum disper-
sion, respectively. Note that there are no backscattering
terms of the form ar ,k

† al ,k1qal ,k8
† ar ,k82q which scatter

particles between left- and right-moving branches. The
second-order perturbation calculation for the self-
energy S, corresponding to a diagram of the type shown
in Fig. 2, yields the well-known results that Im@S#;v
and Re@S#;v ln v, leading to the vanishing of the qua-
siparticle normalization factor, z→0 (Luttinger, 1960;
Metzner et al., 1998). This is a clear sign that conven-
tional perturbative treatment, so successful in demon-
strating the validity of the Fermi liquid in three dimen-
sions, is no longer valid in one dimension.

The two models exhibit essentially the same low-
energy physics. Tomonaga demonstrated that this type
of 1D interacting model supports bosonic sound-wave
excitations, which are plasmon oscillations with a linear
dispersion v5vqq where the interaction-dependent ve-
locity is given by

vq5AvF
2 1

2vF

p
lq. (5)

FIG. 2. Cooper (left) and zero-sound (right) diagrams for one
dimension: solid lines, the unrenormalized propagator for
right-moving electrons; dashed lines, the left-moving electrons.
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A similar conclusion was reached by Matthis and Lieb
(1965) for the Luttinger model. The Tomonaga and Lut-
tinger models can be solved two ways, by bosonization
(Tomonaga, 1950; Matthis and Lieb, 1965; Luther and
Peschel, 1974; Haldane, 1979, 1981) and by nonpertur-
bative many-body techniques such as renormalization-
group analysis and the use of Ward identities (Dzy-
aloshinskii and Larkin, 1973; Everts and Schulz, 1974;
Solyom, 1979; Metzner and Di Castro, 1993; Voit, 1995;
Metzner et al., 1998). It is convenient to work with the
Luttinger model since the introduction of massless Dirac
fermions allows a fully rigorous mathematical solution
of the problem.

1. Bosonization

In a sense, bosonization is a natural way to address
the 1D interacting system since, for models dominated
by forward scattering, the elementary excitations are lin-
early dispersing boson modes. The key idea of bosoniza-
tion lies in the central role played by the density opera-
tor:

r i ,q5(
k

ai ,k1q
† ai ,k , (6)

r i ,2q5(
k

ai ,k2q
† ai ,k , (7)

where q>0 and i5l ,r . This definition is not fully rigor-
ous and leads to ambiguities for q50, as pointed out by
Haldane (1979, 1981). For q50 it is sufficient to subtract
out the expectation value of r i ,0 in the ground state of
the filled Fermi sea:

r i ,q505(
k

@ai ,k1q
† ai ,k2^0uai ,k1q

† ai ,ku0&# . (8)

This well-defined operator also uniquely and correctly
accounts for quantities arising from the cancellation of
two divergent terms when the continuum limit is taken
to reflect infinite degrees of freedom. When used to
compute commutation relations between operators, this
subtraction is equivalent to a normal ordering with re-
spect to the ground state of a filled Fermi sea; operators
that annihilate the ground state are placed to the right
before the cancellation of divergent quantities is carried
out (Matthis and Lieb, 1965; Haldane, 1979, 1981). In so
doing one obtains the all-important commutation rela-
tion for the r’s:

@r i ,q ,r j ,2q8#52
sgn~ i !Lq

2p
d i ,jdq ,q8 , (9)

where sgn(i)511 for i5r , and sgn(i)521 for i5l . This
commutation relation immediately leads to the defini-
tion of harmonic-oscillator-type raising and lowering op-
erators for q.0:

aq
†5A 2p

Luqu
rr ,q , a2q

† 5A 2p

Luqu
r l ,2q , (10)

and
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aq5A 2p

Luqu
rr ,2q , a2q5A 2p

Luqu
r l ,q , (11)

respectively. The lowering operators annihilate the
ground state. Note that there is no q50 bosonic mode.
The q50 mode is represented by the number operator
in each of the two left- and right-moving branches given
above in Eq. (8). After normal ordering to properly sub-
tract out divergent contributions, the kinetic term of the
Hamiltonian, Ho5vF(kk@ar ,k

† ar ,k2al ,k
† al ,k# , can be

written in terms of the boson raising and lowering op-
erators as

Ho5vF (
q.0

uqu~aq
†aq1a2q

† a2q!1
vF

L
@~Nr!

21~Nl!
2# .

(12)

A generalized interaction term of the Tomonaga-
Luttinger type describing forward scattering only, Hfor ,
can be written as

Hfor5
p

L (
q

@Vq~rr ,qrr ,2q1r l ,qr l ,2q!

1Uq~rr ,qr l ,2q1rr ,2qr l ,q!# . (13)

In terms of the boson operators, the total Hamiltonian
takes the quadratic form (Haldane, 1981)

H5Ho1Hfor52
1
2 (

q
vFuqu

1
p

2L FvNS kFL

p
1Nr1NlD 2

1vJ~Nr2Nl!
2G

1
1
2 (

q
uqu@~vF1Vq!~aq

†aq1aqaq
† !

1Uq~aq
†a2q

† 1aqa2q!# , (14)

where the velocities vN5vF1V01U0 and vJ5vF1V0
2U0 characterize the propagation of the charge and cur-
rent modes associated with the symmetric and antisym-
metric combinations of Nr and Nl respectively, at low
energies, with N5(kFL)/p1Nr1Nl and J5Nr2Nl .
This quadratic form is readily diagonalized by a Bogo-
liubov transformation:

bq
†5cosh~fq!aq

†2sinh~fq!a2q , (15)

with fq5 1
2 tanh21@2Uq /(vF1Vq)#, yielding a Hamil-

tonian of noninteracting boson modes:

H5( vqb†qbq1
1
2 (

q
~vq2vFuqu!

1
p

2L
@vNN21vJJ2# , (16)

where vq5A(vF1Vq)22Uq
2 uqu, while the boson (plas-

mon) velocity, vq→vo5A(vF1V0)22U0
2 as q→0. Note

that the relationship vo
25vNvJ holds. This relation is im-

portant and will remain valid in the case of the Luttinger
liquid when interactions between boson modes are
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present. For this Hamiltonian both the quantum num-
bers N , reflecting total charge, and J , reflecting the total
current, are conserved. This form of the Hamiltonian
clearly illustrates that the low-energy excitations of this
1D interacting fermion system are bosonic modes. Fur-
thermore, it can be shown that the boson representation
generates a complete Hilbert space, equivalent to the
original fermionic Hilbert space (Overhauser, 1965;
Haldane, 1981). What remains is the need to introduce a
well-defined fermion operator, c i(x), in terms of the bo-
son operators. Luther and Peschel (1974) first discov-
ered such a representation. Although the original ex-
pression suffers from some ambiguities, it is nevertheless
useful for illustrating the main features of such an op-
erator. The Luther-Peschel expression for the fermion
field, cLP ,i(x), is given by

cLP ,i~x !5
1

A2pa
exp@ ikFx1if i~x !# , (17)

where i5r ,l and

f i~x !5
22pi

L (
q.0

e2aq/2

q
@r i ,2qeiqx2r i ,qe2iqx# . (18)

Note that the density operator in real space, r i(x), can
be written as

r i~x !5
1
L (

q.0
@r i ,2qeiqx1r i ,qe2iqx#

5lima→0S 1
2p

]xf iD . (19)

The above expression for the fermion field can readily
be shown to obey the appropriate anticommutation re-
lation by utilizing the standard identity, eAeB

5e [A ,B]eBeA for @A ,B# equaling multiple of the identity.
From such an expression it is possible to deduce all the
power-law correlations in the single-particle and multi-
particle Green’s functions (Theumann, 1967; Dover,
1968; Luther and Peschel, 1974; Efetov and Larkin,
1975; Finkelstein, 1977). The quantity fq , utilized in the
Bogoliubov transformation, governs the power law at
large distances. For the single-particle Green’s function,
the power-law exponent a is given by

a5cosh~2fo!5
vF1Vo

A~vF1Vo!22Uo
2

. (20)

We shall derive this result utilizing the alternative
equation-of-motion method in Sec. I.A.2 below. The
Luther-Peschel expression is in some ways ambiguous,
as it is necessary to take the limit of a→0. A full, well-
defined expression that properly takes into account the
q50 mode is quite involved and will not be discussed
here. Instead, we refer the interested reader to the origi-
nal papers by Haldane (1979, 1981).

2. Power-law behavior in the single-particle Green’s function

Ward identities derivable from either the equations of
motion (Everts and Schulz, 1974) or from skeleton dia-
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grams in a perturbation diagrammatic analysis (Dzy-
aloshinskii and Larkin, 1973) enable us to solve the cor-
relation functions, e.g., Green’s functions, in closed
form. These Ward identities are direct consequences of
conservation laws in the Tomonaga-Luttinger model. In
addition to the usual conservation of total charge, the
separate conservation of charge in the left- and right-
moving channels, as a result of an absence of back-
scattering processes coupling the two channels, leads to
additional Ward identities that together make an exact
solution possible. To illustrate these points, consider the
charge density in the left or right channel, r i(x), i
5r ,l :

r i~x !5
1
L (

q
r i ,qe2iqx. (21)

The evolution of this operator is governed by the equa-
tion of motion,

i
]r i~x !

]t
5@r i~x !,H# . (22)

Using the commutation relation between r i ,q and the
fermion operators, ai ,q ,

@r i ,q ,ai8,q8#52d i ,i8aq82q , (23)

and the commutator for the r i ,q’s [Eq. (9)] yields the
continuity equations

i
]rr~x !

dt
52q@~vF1Vq!rr ,q1Uqr l ,q# , (24)

i
]r l~x !

dt
5q@~vF1Vq!r l ,q1Uqrr ,q# , (25)

where the currents in the right and left channels are
proportional to the respective r i ,q’s. These equations re-
flecting separate right- and left-channel charge conserva-
tion give rise to the important Ward identities for the
density correlation functions Ri(k1 ,t1 ;q ,t ;k2 ,t2):

Ri~k1 ,t1 ;q ,t ;k2 ,t2!

5^0uT$ar ,k1
~ t1!r i ,q~ t !ar ,k2

† ~ t2!%u0&, ~k1 ,k2!.0,

(26)

and

Ri~k1 ,t1 ;q ,t ;k2 ,t2!

5^0uT$al ,k1
~ t1!r i ,q~ t !al ,k2

† ~ t2!%u0&, ~k1 ,k2!,0.

(27)

Note that we are only interested in k1 and k2 in the
neighborhood of kF . This restriction also avoids compli-
cations from the positron branch, which is irrelevant to
the physics of interest. To arrive at the Ward identities
we again use the usual relationship, i]Ô(t)/]t5@Ô ,H#
on the Ri’s, and Eqs. (24) and (25) to find
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@ i] t1sgn~ i !q~vF1Vq!#Ri~k1 ,t1 ;q ,t ;k2 ,t2!

1qUqRj~k1 ,t1 ;q ,t ;k2 ,t2!

5d i ,rdk2 ,k12q@d~ t2t1!G~k2 ,t12t2!

2d~ t2t2!G~k1 ,t12t2!# , ~k1 ,k2!.0, (28)

and

@ i] t2sgn~ i !q~vF1Vq!#Ri~k1 ,t1 ;q ,t ;k2 ,t2!

1qUqRj~k1 ,t1 ;q ,t ;k2 ,t2!

5d i ,ldk2 ,k12q@d~ t2t1!G~k2 ,t12t2!

2d~ t2t2!G~k1 ,t12t2!# , ~k1 ,k2!,0, (29)

where (i ,j)5$r ,l% but iÞj , sgn(i5r)511, sgn(i5l)
521, and G(k ,t) is the single-particle Green’s function.
The right-hand side in the equations comes from the
discontinuity of the time-ordered product evaluated at
equal times. Here the single-particle Green’s function is
given by

G~k ,t !5i^0uT$ar ,k~ t !ar ,k
† ~0 !%u0& , k.0, (30)

and

G~k ,t !5i^0uT$al ,k~ t !al ,k
† ~0 !%u0&, k,0. (31)

These Ward identities for the single-particle density cor-
relation function R , in conjunction with the usual equa-
tions of motion for the single-particle Green’s function
(Nozières, 1964, Chap. 3),

@ i] t2vFk1m#G~k ,t !

52d~ t !1i
p

L (
q

@Vq~Rr~k2q ,t1;2q ,t ;k ,0!

1Rr~k1q ,t2;q ,t ;k ,0!1UqRl~k2q ,t1;2q ,t ;k ,0!

1Rl~k1q ,t2;q ,t ;k ,0!# , ~k6q ,k !.0, (32)

and

@ i] t2uvFku1m#G~k ,t !

52d~ t !1i
p

L (
q

@Vq~Rl~k2q ,t1;2q ,t ;k ,0!

1Rl~k1q ,t2;q ,t ;k ,0!1UqRr~k2q ,t1;2q ,t ;k ,0!

1Rr~k1q ,t2;q ,t ;k ,0!# , ~k6q ,k !,0, (33)

form a closed set of equations. Here we are interested in
the situation where uku;kF , and uqu!kF . Upon trans-
forming into v-Fourier representation and eliminating
the R’s, one finds an integral equation for the single-
particle Green’s function (Dzyaloshinskii and Larkin,
1973; Everts and Schulz, 1974; Voit, 1995; Metzner et al.,
1998):
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@v1uvFku2m#G~k ,v!

511i
1
L (

q.0
E dv8G~k2q ,v2v8!

3
Vq@v81sgn~k !q~vF1Vq!#2sgn~k !qUq

2

2v21q2~vF1Vq!22q2Uq
2 . (34)

In the simplest case where the q dependence of Vq and
Uq are neglected but an ultraviolet cutoff L is intro-
duced, this integral equation is solved by transforming to
real space-time with

G̃~x ,t !5E dv

2p E dk

2p
G~k ,v!eikx2ivt (35)

and

K̃~x ,t !5E dv

2p E dk

2p

3
Vq@v81sgn~k !q~vF1Vq!#2sgn~k !qUq

2

2v21q2~vF1Vq!22q2Uq
2

3eikx2ivt, (36)

yielding

@] t6vF]x#G̃~x ,t !5d~ t !d~x !1K̃~x ,t !G̃~x ,t !. (37)

Equation (37) is solved by the ansatz

G̃~x ,t !5exp@L~x ,t !2L~0,0!#G̃o~x ,t ! (38)

with

L~x ,t !5ln@r2vFt1is~ t !/L#

2@~a11 !/2#ln@x2vot1is~ t !/L#

2@~a21 !/2#ln@x1vot1is~ t !/L# . (39)

Here L(0,0)5h ln(L), and

G̃o~x ,t !5
1

2p

1
x2vFt1i01s~ t !

, (40)

with s(t)511 for t.0, and 21 for t,0. The final form
for G̃(x ,t) exhibits the well-known power-law behavior:
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G~x ,t !5
1

2pLa21

1

@x2ut1is~ t !/L#~a11 !/2@x1ut1is~ t !/L#~a21 !/2 (41)

with the renormalized velocity vo5A(vF1Vo)22Uo
2 , where Vo5Vq , q→0 and Uo5Uq , q→0, and the exponent

a is given by

a511
1

2vo
@vF1Vo2vo# . (42)

The resulting density of states, D(v), also exhibits the hallmark power-law behavior:

D~v!}va21. (43)

Straightforward generalization to include spin yields

G~x ,t !5
1

2pLq
ac1as

1

@x2vct1is~ t !/L#~ac11 !/4@x1vct1is~ t !/Lq#~ac21 !/4

3
1

@x2vst1is~ t !/L#~as11 !/4@x1vst1is~ t !/Lq#~as21 !/4 , (44)
where the indices c and s refer to the charge and spin
modes, respectively.

Extensions beyond the idealized Tomonaga-Luttinger
model to take into account nonlinear energy-momentum
dispersion and weak backscattering lead to generalized
models that can be analyzed either by bosonization
(Luther and Emery, 1974; Haldane, 1981; Voit, 1995;
Metzner et al., 1998) or by the many-body techniques of
renormalization-group analysis and Ward identities
(Solyom, 1979; Metzner and Di Castro, 1993; Metzner
et al., 1998). The name ‘‘Luttinger liquid’’ was coined to
reflect the fact that the nonidealities lead to an interac-
tion between the boson modes away from q50, much in
the same way that interaction between quasiparticles
arises in a Fermi liquid (Nozières, 1964; Haldane, 1981).
The interested reader is referred to the literature for
details.

Bosonization has been further utilized in two direc-
tions, (i) to analyze the effect of nonlinear dispersion
(Haldane, 1981) and (ii) to solve a specific type of back-
scattering problem (Luther and Emery, 1974; Haldane,
1979). By introducing a quadratic energy-momentum
dispersion plus a third-order term to ensure the stability
of the Luttinger-liquid state, Haldane showed that a
Hamiltonian can be written in terms of the boson opera-
tors, bq , and number and current operators, N and J .
Nevertheless, several key features of the Luttinger
model are preserved for situations where J is still a good
quantum number. Haldane further argued that even if J
is not a good quantum number, the low-energy structure
is preserved: (1) vo5AvNvJ; (2) vN5vo exp(22fo); (3)
vJ5vo exp(2fo); and (4) fo still controls the power-law
falloff of Fermi Green’s functions at large distance.
However, the Fermi velocity is renormalized and be-
comes q dependent.

3. g-ology

The alternative route to a similar conclusion on gen-
eral, 1D interacting systems including weak backscatter-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
ing is based on renormalization-group analysis. As pre-
viously mentioned, forward scattering in the Tomonaga-
Luttinger model leads to a logarithmic contribution in
the second-order perturbative calculation of the self-
energy, and a logarithmic divergence in the interaction
operator at low energies, G}ln(v/L). The effect of
renormalization is to re-sum the perturbation series to
all orders, rendering the divergent physical quantities fi-
nite, by rescaling the divergences away with some cutoff-
dependent factors. The success of the renormalization in
this context of 1D interacting systems relies heavily on
Ward identities reflecting conservation laws and skel-
eton diagram analysis in many-body theory.

A successful renormalization-group analysis, called
g-ology for the study of the running coupling g , was first
put forth as an ansatz by Solyom (1979) and co-workers
(Menyhard and Solyom, 1973; Solyom, 1973; Solyom
and Zawadowski, 1974). They used a bandwidth renor-
malization scheme within a model of linearized energy-
momentum dispersion about the two Fermi points and a
model with a spin-dependent Hamiltonian, which may
include a backscattering term (H1). This is in addition
to the usual forward-scattering terms H2 and H4 , where
H2 contains density operators for both the right- and
left-moving branches, rr ,q ,s5(kar ,k1q ,s

† ar ,k ,s and r l ,q ,s

5(kal ,k1q ,s
† al ,k ,s , respectively, s denotes the spin, and

H4 involves density operators in one branch only. Um-
klapp processes (H3) relevant for lattice Hubbard-type
models at half filling will not be included here. The
Hamiltonian is given by (Solyom, 1979; Metzner and Di
Castro, 1993; Metzner et al., 1998)

H5Ho1H11H21H4 , (45)

where
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Ho5(
s

(
kF2ko,k,kF1ko

vFkar ,k ,s
† ar ,k ,s

2(
s

(
2kF2ko,k,2kF1ko

vFkal ,k ,s
† al ,k ,s , (46)

H15L21 (
s ,s8

(
q

g1'ds ,2s8(k
ar ,k1q ,s

† al ,k22kF ,s

3(
k8

al ,k82q ,s8
† ar ,k812kF ,s8 , (47)

H25~L !21 (
s ,s8

(
q

@g2ids ,s81g2'ds ,2s8#

3(
k

ar ,k1q ,s
† ar ,k ,s(

k8
al ,k82q ,s8

† al ,k8,s8

5L21 (
s ,s8

(
q

@g2ids ,s81g2'ds ,2s8#

3rr ,q ,sr l ,2q ,s8 , (48)

H45~2L !21 (
s ,s8

(
q

@g4ids ,s81g4'ds ,2s8#

3H (k1

ar ,k11q ,s
† ar ,k1 ,s(

k2

ar ,k22q ,s8
† ar ,k2 ,s8

1(
k18

al ,k181q ,s
† al ,k18 ,s(

k28
al ,k282q ,s8

† al ,k28 ,s8J
5~2L !21 (

s ,s8
(

q
@g4ids ,s81g4'ds ,2s8#

3@rr ,q ,srr ,2q ,s81r l ,q ,sr l ,2q ,s8# . (49)

Here for the right branch the summation is over kF
2ko,k,kF1ko ; while for the left branch, it is over
2kF2ko,k8,2kF1ko , with a bandwidth cutoff of
Eo5vFko . See Fig. 3. The notations i and ' denote

FIG. 3. Linearized dispersion for Tomonaga-Luttinger model,
about the Fermi points at 6kF . For convenience the Fermi
energy is set to zero. The bandwidth 2Eo is equal to 2vFko .
The allowed momenta are restricted to the regions within uk
6kFu<ko [left and right dashed boxed regions in (a)]. (a) The
energy dispersion before linearization. (b) Linearized disper-
sion for the two regions within the left and right dashed boxes
of (a), corresponding to the left- and right-moving branches,
respectively.
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scattering processes between parallel and antiparallel
spins, respectively. The bandwidth cutoff Eo turns out to
generate a multiplicative renormalization, which was
shown to hold, order by order, using perturbation
theory. The renormalization involves the multiplicative
parameters z , associated with the renormalization of the
single-particle Green’s function G , and the zj8’s, associ-
ated with the renormalization of the various dimension-
less interaction vertices G j , j51,2,4:

G→zG , (50)

and

G j→zj
21G j , (51)

when the bandwidth cutoff is reduced from Eo to Eo8 .
The coupling constants gj then transform as gj
→z22zjgj . The renormalizability amounts to demon-
strating that the quantities z and zj depend only on the
ratio Eo8 /Eo , and are independent of the energy and
momentum variables (v ,k), while G and the G i’s pre-
serve their analytic form before and after the renormal-
ization transformation. Even with the scaling analysis,
the computed scaling trajectories are valid only in the
weak-coupling limit of weak backscattering, ug1'u<g2i ,
while strong coupling flows out of the range of validity
of the scaling hypothesis. (See Fig. 4 and its caption be-
low.)

A full, modern-day renormalization-group analysis is
discussed by Metzner and Di Castro (1993) and Metzner
et al. (1998). Only two renormalization parameters, z
and zr , in addition to the coupling constants gi , are
necessary to renormalize the most singular correlation
functions of the fermion, boson (density-density), and
mixed types:

G2n ,l~$ki ,t i ,ki8 ,t i8%;$qj ,t j9%!

5~2i !n1l^0uT$ak1
~ t1! ¯ akn

~ tn!

3akn8
†

~ tn8 ! ¯ ak18
†

~ t18!rq1
~ t19! ¯ rql

~ t l9!%u0& . (52)

FIG. 4. Renormalization-group flow diagram for the g2i , g1 ,
g4 g-ology model, in a cut within the g2i-g' plane from (a)
second-order perturbation calculations, and (b) third-order
calculations. For ug1'u,g2i corresponding to weak backscatter-
ing, the trajectories scale to the Tomonaga-Luttinger fixed line,
for which g1'50 (no backscattering). For large ug1'u, the tra-
jectories flow away from the Tomonaga-Luttinger fixed line
into regimes where the perturbation calculations are no longer
valid. From Solyom, 1979.
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It is convenient to work in the Fourier-transformed rep-
resentation using the associated vertex functions
G2n ,l(K ,V), which equal the G2n ,l(K ,V) divided by the
external legs. Here (K ,V) denotes all the incoming and
outgoing external energy-momenta. It turns out that
only the four most singular vertices, G2, G4, G(0,2), and
G(2,1), need to be renormalized since all other higher-
order vertices do not exhibit logarithmic divergences in
a perturbation series. The renormalization is defined by

G21→zG21;G(2)→zG(2), (53)

G~4 !→z2G(4), (54)

G(0,2)→zr
2G(0,2), (55)

G(2,1)→z2zrG(2,1), (56)

g→ g̃ , (57)

where the renormalization occurs as the energy-
momentum cutoff is changed from L to L8, and the
renormalization factors z and zr , and the couplings gi ,
depend only on gi and the ratio L8/L , and not on the
external energy-momenta (K ,V), i.e.,

z5z~L8/L , g̃ !. (58)

The renormalization group is defined by

G̃2n ,l~K ,V ; g̃ ,l!

[ lim
L→`

zn~ g̃ ,l/L!zr
l ~ g̃ ,l/L!G2n ,l~K ,V ;g ,L!, (59)

with

G̃2n ,l~K ,V ; g̃8,l8!

5zn~ g̃ ,l8/l!zr
l ~ g̃ ,l8/l!G̃2n ,l~K ,V ; g̃ ,l!, (60)

and

z~g ,l8/l!5 lim
L→`

z~ g̃ ,l8/L!/z~ g̃ ,l/L!. (61)

The differential form for the renormalization-group flow
follows from Eqs. (60) and (61) when one considers in-
finitesimal changes, l85l1]l :

@l]l1b~ g̃ !] g̃2ng~ g̃ !1lgr~ g̃ !#G̃(2n ,l)~K ,V ; g̃ ,l!50
(62)

with b( g̃)5] g̃8/](l8/l)ul85l , g( g̃)5] ln z/](l8/l)ul85l ,
and gr( g̃)5] ln zr /](l8/l)ul85l . Note that a fixed point
of the renormalization group signifies that g̃ does not
change with l, or b50. Under such circumstances the
renormalization-group flow immediately yields

G̃(2n ,l)~K ,V ; g̃ ,l!5lng( g̃* )2lgr( g̃* ), (63)

where g̃* is the fixed point. The removal of all diver-
gences with this finite number of renormalization pa-
rameters indicates the renormalizability of the theory.

In this renormalization-group analysis, full usage is
made of the Ward identities reflecting the separate con-
servation of charge and spin in the right and left
branches, which severely constrains the theory and num-
ber of free parameters. Renormalization is usually com-
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puted perturbatively. For the simple case of only g2 cou-
pling with all other couplings equal to zero (a special
case of the Tomonaga-Luttinger model), computation to
second order (two loops) leads to unrenormalized g2
and zr and a renormalization of z (Solyom, 1979;
Metzner and Di Castro, 1993; Metzner et al., 1998):

z~l/L ,g !511
g2

2

8p2vF
2 ln

l

L
1O~g3!. (64)

It turns out that for g150 (g1'50), the set of arbitrary
g2 and g4 , namely, the Tomonaga-Luttinger model,
forms a fixed line of the g-ology model. For the general
case, however, all couplings scale (Solyom, 1979):

dg2i

dx
5

1
x S 1

pvs
g1'

2 1
1

2p2vs
2 g1ig1'

2 1 ¯ D , (65)

dg1'

dx
5

1
x S 1

pvs
g2ig1'1

1

4p2vs
2 ~g2i

2 g1'1g1'
3 !1 ¯ D ,

(66)
d~g2i22g2!

dx
50, (67)

d~g4i2g4'!

dx
5

1
x S 1

2p2vF
2 g2ig1'

2 1 ¯ D , (68)

and

d~g4i1g4'!

dx
50, (69)

where the last two expressions imply

dg4'

dx
52

1
x S 1

4p2vF
2 g1ig1'

2 1 ¯ D . (70)

These scaling trajectories plotted for a cut in the g2i-g1'

plane are shown in Fig. 4. For weak coupling (weak
backscattering), where ug1'u<g2i , the trajectories scale
to the Tomonaga-Luttinger fixed line of no backscatter-
ing, i.e., g1'

* 50. On the other hand, for strong coupling,
the trajectories scale away to a regime where the pertur-
bative treatment is no longer valid. Intuitively, under
sufficiently strong backscattering, insulating behavior
can be expected. For a specific strong-coupling (strong-
backscattering) problem, in particular under the condi-
tion of

2g2i

2pvF1g4i2g4'

5
3
5

, (71)

Luther and Emery (1974) showed that there is a decou-
pling of the charge and spin sectors, resulting in a
gapped behavior in the spin excitation spectrum. It has,
however, been argued that the Luther-Emery problem
does not represent a true backscattering problem
(Haldane, 1979). In addition to the solution of the weak-
backscattering problem, renormalization-group analysis
has been successful in showing that nonlinear energy-
momentum dispersion can be scaled away as it generates
irrelevant terms in the renormalization-group sense
(Metzner and Di Castro, 1993).
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B. Chiral Luttinger liquid

The chiral Luttinger liquid (CLL) theory of the frac-
tional quantum Hall edge, pioneered by Wen (1990a,
1990b, 1991a, 1991b, 1992, 1995), provides an effective
way to describe the low-energy dynamics at the bound-
ary of the strongly correlated 2D electron-gas system.
This theory is based on a model in which the 2D physics
of the fractional quantum Hall fluid is adequately de-
scribed by the Chern-Simon effective-field theories
(Girvin and MacDonald, 1987; Read, 1989; Zhang et al.,
1989; Wen and Niu, 1990; Frohlich and Zee, 1991; Wen,
1995), and the electron correlation built into the bulk
2D system is assumed to extend all the way to the
boundary. In the case of incompressible fluids, such as
the Laughlin or the hierarchical states, the bulk excita-
tion contains an energy gap and the edge is truly one
dimensional in nature. Tomonaga-Luttinger-liquid-type
behavior, characterized by power-law correlations and
gapless bosonic excitations, arises as a natural conse-
quence of strong correlation and one dimensionality.
Here, in contrast to the ordinary case, the magnetic field
introduces a sense of rotation in the propagation of edge
modes, dictated by the motion of semiclassical skipping
orbits at the boundary in the direction given by E3B,
where E is the effective electric field and includes the
contribution of the edge confinement potential. The re-
sulting Tomonaga-Luttinger liquid is therefore chiral. A
unique feature of the idealized chiral Luttinger liquid
investigated in effective-field theories is the universality
of the electron-tunneling exponent a. For incompress-
ible fractional Hall fluids belonging to the Laughlin frac-
tions, n51/m , where n is the filling factor and m is an
odd integer, a [defined by the tunneling current-voltage
(I-V) relationship I}Va,] is believed to be given by the
dimensionless Hall resistance, a5rxy /(h/e2). For 1/m
fractional fluids a is exactly equal to m . In other words,
for the n51/3 Laughlin fluid, a would equal 3 exactly.
This line of thought is based on the topological proper-
ties and characterizations of the fractional quantum Hall
states (Blok and Wen, 1990a, 1990b; Frohlich and Zee,
1991; Wen and Zee, 1992; Wen, 1995) and as such is
insensitive to the specific form of the electron-electron
interaction potential.

In complex incompressible fractional Hall fluids in-
volving the hierarchical sequence (Haldane, 1983; Halp-
erin, 1984; Jain, 1989a, 1989b, 1990), tunneling charac-
teristics have been proposed as an effective way to
classify and distinguish different states based on the to-
pological order of those states. This topological order
embodied in the K-matrix formulation (Frohlich and
Zee, 1991; Wen and Zee, 1992; Wen, 1995) in principle
enables us to differentiate among incompressible fluids
exhibiting the same Hall resistance (conductance). The
tunneling exponents for many hierarchical states with
complex, multibranch edge modes are a priori nonuni-
versal. The value of the exponent depends on the details
of the intermode mixing interaction. However, Kane,
Fisher, and Polchinski (Kane et al., 1994; Kane and
Fisher, 1995) have shown that residual disorder can re-
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store the exponent to universal values when sufficiently
strong. In particular, for the Jain sequence n5n/(np
11), where n51, 2, 3, etc., and p is an even integer,
mode mixing gives rise to one charged mode and (n
21) neutral modes. In this universal limit, the charged
mode propagates at one velocity while the (n21) neu-
tral modes, obeying an SU(N) symmetry, where N5n ,
all propagate at a different but shared velocity. The
charged and neutral modes thus behave analogously to
the charge and spin modes in the ordinary 1D
Tomonaga-Luttinger-liquid case. When all modes co-
propagate (i.e., travel in the same direction), e.g., for p
52, and 1<n<` corresponding to 1/3<n<1/2, the ex-
ponent remains constant and equal to p11, in this case
3. On the other hand, for p522, before mixing the out-
ermost edge mode and inner holelike modes propagate
in opposite directions. For example, at n52/3 the outer-
most edge mode is the usual electron mode familiar
from the integer quantum Hall fluid, while a 1/3 charged,
inner holelike branch propagates in the opposing direc-
tion. These counterpropagating modes, when mixed,
lead to a shake-up process and to a renormalization of
the exponent, which at a given filling fraction tends to a
universal value when sufficient disorder is present.

The experimental observation of Luttinger-liquid-like
behavior for compressible states (Chang et al., 1998)
came as somewhat of a surprise. At present the most
internally consistent theoretical description for the edge
dynamics of compressible Hall fluids and for their edge
tunneling characteristics is that put forth by Shytov,
Levitov, and Halperin (Shytov et al., 1998; Levitov et al.,
2001), based on a composite-fermion, Chern-Simon
effective-field-theory formulation. The result is a
Luttinger-liquid-like edge dynamic in which the finite,
nonzero diagonal resistivity rxx of the compressible fluid
slightly changes the exponent from the universal value
valid for rxx50. The idea is as follows. Since for high-
quality samples rxx is typically small, of order (1/10)rxy
or less regardless of whether the fractional Hall fluid is
compressible or incompressible, the corresponding diag-
onal conductance, sxx5rxx /@rxx

2 1rxy
2 # , is also small,

sxx<0.1sxy , where sxy5rxy /@rxx
2 1rxy

2 #'1/rxy is the
Hall conductance. As a result, when an external electron
is injected at the edge, its spreading proceeds much
faster along the boundary than in the perpendicular di-
rection into the bulk. Therefore the tunneling will still
appear Luttinger-liquid-like. For compressible fluids re-
sidual disorder or interaction also tends to drive the ex-
ponent to universal values. The inclusion of disorder re-
sults in an exponent for electron tunneling, a, which
when plotted as a function of reduced Hall resistance,
rxy /(h/e2), exhibits steplike plateaus on which it is
roughly constant, while varying in a linear fashion be-
tween plateaus. The plateaus are not perfectly flat due
to the nonzero rxx , and they occur when all edge modes
co-propagate, whereas the linear regions occur when
counterpropagating modes are present. The functional
dependence is an extension of the Kane-Fisher (Kane
et al., 1994; Kane and Fisher, 1995) result to continuous
values of the Hall resistance.
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What is summarized above constitutes the ‘‘effective-
field’’ description of the theory of the fractional quan-
tum Hall edge. This description is expected to hold rig-
orously when the wave function is of the Laughlin form
or its hierarchical derivatives, even in the presence of
the boundary. This means that nominally the interaction
between electrons is of the extreme short-ranged form
of d9(r), a second derivative of a delta function. The
leap to realistic, long-ranged Coulomb or partially
screened (e.g., dipolar) interactions can only be treated
in an approximate way (Imura and Nagaosa, 1997;
Zheng and Yu, 1997; Zülicke and MacDonald, 1997;
Levitov et al., 2001). Based on the topological nature of
the quantum Hall fluids, it is usually argued that the
range of the interaction is irrelevant. This remains an
open and extremely important issue, however. Recent
cumulative experimental evidence and suggestive nu-
merical results are raising the possibility of deviations
from universality, which will be fully discussed below in
Secs. II.B.8 and III.D.

1. Wen’s hydrodynamic formulation

As was seen in Sec. II.A, for the Tomonaga-Luttinger
liquids in one dimension, the commutator relationship
between density operators, @rq ,rq8#5cqdq ,2q8 , where c
is a constant (the so-called Kac-Moody algebra), and the
existence of a well-defined fermion operator, C(x)
;eif(x), where f(x) is a boson operator related to r(x)
by ]xf52pr(x), lead to bosonic soundlike low-energy
neutral excitations and power-law correlations in the
charged sector when electrons are added or removed,
provided forward scattering dominates and backscatter-
ing is irrelevant. The one-dimensional edge of the frac-
tional quantum Hall fluid is a strongly interacting system
in which backscattering is nearly completely suppressed,
particularly in the quantized regime. Therefore the exis-
tence of Luttinger-liquid-like edge dynamics is quite
natural.

Wen introduced several equivalent formulations to
motivate and derive the effective low-energy physics of
the fractional quantum Hall edge, based on hydrody-
namics or gauge invariance of the effective-field theory.
The most intuitive is the hydrodynamic approach, which
we shall describe in this section. We start with the sim-
plest case of the n51/m Laughlin Hall fluid, in which m
is an odd integer. Based on the observation that the frac-
tional Hall fluid is an irrotational, incompressible fluid,
Wen first wrote down a classical hydrodynamic theory
for a surface wave that travels in one direction only, fol-
lowed by canonical quantization of the momentum and
coordinate variables to obtain a quantum theory. Using
the 1D edge density r(x), he described the propagation
of the disturbance depicted in Fig. 5, by the wave equa-
tion

] tr~x !2v]xr~x !50. (72)

In an incompressible fluid, the vanishing of dissipation
(longitudinal conductivity sxx→0) and the presence of a
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nonzero Hall conductance, sHall5sxy , generates a per-
sistent current along the edge due to the boundary elec-
tric field:

j5sxyẑ3E5sxyẑ3@2¹V# , E52¹V , sxy5n
e2

h
,

(73)

where V is the edge potential. At the boundary the elec-
trons execute semiclassical skipping orbits and drift with
the velocity v5(E/B)c . Introducing the vertical dis-
placement h(x) at position x along the edge, related to
the edge density by

h~x !5r~x !n , n5n
eB

hc
, (74)

where n is the fractional Hall fluid average bulk density,
we obtain the Hamiltonian associated with the chiral
edge wave,

H5E dx
1
2

er~x !h~x !E

5
1
2 E dx@r~x !#2

e

n

5p\
v
n E dx@r~x !#2. (75)

Transforming to a momentum representation where

rq5
1

AL
E dxeiqxr~x !, (76)

r~x !5
1

AL
(

q
rqe2iqx, (77)

FIG. 5. (Color) Edge density plasmon wave at the boundary of
a fractional quantum Hall fluid. In the absence of a density
disturbance the boundary is depicted as a straight line. In the
presence of a plasmon wave at wave vector k52p/L , where L
is the length of the boundary, some regions accumulate excess
charge while others suffer a depletion of charge.
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we have

H52p\
v
n (

q.0
rqr2q . (78)

This yields a corresponding wave equation in k space of

ṙq52ivqrq . (79)

Hamilton’s equations for coordinates and momenta,

q̇q5
]H

]pq
, ṗq52

]H

]qq
, (80)

allow us to identify

qq5rq , k.0, pq5
ih

nq
r2q , k,0. (81)

The final step is to quantize the Hamiltonian by requir-
ing the canonical commutation relation

@qq ,pq8#5i\dq ,q8 , (82)

giving

@rq ,rq8#5
n

2p
qdq ,2q8 , (83)

@H ,rq#52qvrq . (84)

Aside from the extra factor n in Eq. (83), these expres-
sions bear considerable similarity to the corresponding
expressions for the ordinary Luttinger liquid. We can
indeed draw parallels with the ordinary Luttinger liquid.
Expressing the density operator in terms of fermion
creation-annihilation operators,

rq5
1

AL
(

k
ck1q

† ck , (85)

r~x !5
1

AL
(

q
rqe2iqx, (86)

and writing the fermion field operator c(x) in terms of
the annihilation operator,

c~x !5
1

AL
(

k
ckeikx, (87)

we arrive at the important commutation relation

@r~x !,c~x8!#52d~x2x8!c~x !, (88)

which is satisfied by a representation of c(x) in the form
c̃(x):

c̃~x !}ei~1/n! f, ]xf52p\r , (89)

where f(x) obeys the commutation relation

@f~x !,f~x8!#52ipn sgn~x2x8!. (90)

Note the similarity of Eq. (89) with Eqs. (17) and (19)
for the ordinary Luttinger liquid. For this form to be a
valid fermionic operator, c̃(x) must satisfy the usual an-
ticommutation relation, $c̃(x),c̃(x8)%50. Making use of
the operator identity
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eAeB5e [A ,B]eBeA (91)

between two operators A and B when their commuta-
tor, @A ,B# , is a c number, we find

c̃~x !c̃~x8!5~21 !1/nc̃~x8!c̃~x !, (92)

which requires 1/n to be an odd integer, consistent with
the condition for a simple fractional Hall fluid of the
Laughlin type (Tsui et al., 1982; Laughlin, 1983). As in
the case of the ordinary Luttinger liquid, the Green’s
functions can be evaluated in terms of the f boson fields
(Luther and Peschel, 1974; Wen, 1992, 1995). For the
1/m Laughlin fluids, we have

^f~x ,t !f~0,0!&5^0ueiHtf~x !e2iHtf~0 !u0&

5^0ue2i[~v/i ! ]x]tf~x !f~0 !u0&

5^0ue2i[vpx]tf~x !f~0 !u0&

52n ln~x2vt !1const. (93)

The single-particle Green’s function is then given by

^0uT$c†~x ,t !c~0,0 !%u0&

5expS 1
n2 ^f~x ,t !f~0,0!& D}

1

~x2vt !1/n , (94)

established using the operator relations

eAeB5eA1B1[A ,B]/2 (95)

and

^eA&5e ^A2&/2, (96)

where A and B are linear combinations of harmonic-
oscillator-type creation and annihilation operators, and
the average is in a harmonic-oscillator-type ensemble.
Notice that for the n51 integer fluid edge, the propaga-
tor is the conventional fermion propagator, and the edge
dynamics are Fermi-liquid-like, albeit still chiral. On the
other hand, for n,1 or m.1, the propagator exhibits
the unusual, power-law correlation that is the hallmark
of Luttinger-liquid behavior. In the (k ,v) representa-
tion, the single-particle Green’s function takes the form

G~k ,v!}
~vk1v!m21

vk2v
, (97)

leading to a power-law density of states with the univer-
sal exponent value of m21:

D~v!}uvum21. (98)

In particular, for the strongest, most robust fractional
Hall fluid, n51/3, m53, this theory predicts an exact
value of 2 for the exponent in the electron-tunneling
density of states. This in turn leads to an exponent a of
exactly 3 in the current-voltage (I-V) characteristics for
tunneling from a normal metal into the n51/3 fractional
fluid edge. This is a central result and a dramatic predic-
tion of the chiral Luttinger liquid model of edge dynam-
ics within the effective-field theory.

It is possible to generalize this type of dynamics to the
edges of more complex fractional Hall fluids. The sim-
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plest examples are the spin-polarized n52/5 and n52/3
fluids, each of which contains two fluid components re-
sulting in two edge modes. In the case of the 2/5 fluid
consisting of a n151/3 outer component and a n251/15
inner component of quasiparticle condensate (2/551/3
11/15), the edge modes consist of an e/3-charged outer
mode closest to the boundary and an e/5-charged inner
mode with both modes propagating in the same direc-
tion. In the case of the 2/3 fluid, the outer component is
a n151 fluid, while the inner component consists of a
nh51/3, ueu/3 quasihole condensate corresponding to an
e/3 quasiparticle condensate at n2521/3. Therefore the
edge modes consist of an outer, e-charged electron,
while the inner mode is an e/3 quasiparticle mode which
propagates in the opposite direction from the outer
mode (MacDonald, 1990; Wen, 1992, 1995; Kane et al.,
1994; Kane and Fisher, 1995). Note this important dis-
tinction of co-propagating versus counterpropagating
modes in the two cases. For instance, in the 2/5 fluid it
does not matter whether the modes propagate both in
the positive or negative directions, e.g., under magnetic
field reversal, or for a hole rather than an electron gas.
What matters is that they propagate in the same direc-
tion. Generalizing the edge Hamiltonian, we have (for
convenience, from here on we suppress the constant \)

H52p(
I

vI

nI
(
q.0

rI ,qrI ,2q , (99)

where I51,2 and refers to the Ith edge mode, and
(InI5n . For the Hamiltonian to be bounded from be-
low to yield a well-defined ground state, it is necessary
to have the condition nIvI.0. The commutation rela-
tionship between rI ,q’s is given by

@rI ,q ,rJ ,q8#5
nI

2p
qdI ,Jdq ,2q8 . (100)

The electron field operators can be written as

CI~x !5ei~1/nI! fI(x), (101)

where rI(x)5(1/2p)]fI(x). A straightforward compu-
tation of the electron propagators yields

^0uT$CI
†~x ,t !CI~0,0 !%u0&

5^0uexpS 1
n2 ^fI~x ,t !fI~0,0!& D u0&

5eikIx
1

~x2vIt !
1/nI

, (102)

where kI5rI /lo
2 and lo5A\c/eB , the magnetic length.

Being charged, the two edges can interact either through
Coulomb forces or through the mediation of disorder,
giving rise to an interaction term between r1 and r2 .
The resulting total Hamiltonian can be written as

H52pS (
I

UII (
q.0

rI ,qrI ,2q1(
IÞJ

VIJ (
q.0

rI ,qrJ ,2qD ,

(103)

where U contains the diagonal elements only and V con-
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tains the off-diagonal elements, i.e., VII50. At this point
it is convenient to introduce the scaled density opera-
tors,

r̃I[
1

AunIu
rI . (104)

The Hamiltonian becomes

H52pS (
I

UIIunIu (
q.0

r̃I ,qr̃I ,2q

1(
IÞJ

VIJAunInJu (
q.0

r̃I ,qr̃J ,2qD
52pS (

I
uII (

q.0
r̃I ,qr̃I ,2q1(

IÞJ
vIJ (

q.0
r̃I ,qr̃J ,2qD ,

(105)

where the matrix elements uII5UIIunIu and vIJ

5VIJAunInJu have the units of velocity. The commuta-
tion relation becomes

@ r̃I ,q , r̃J ,q8#5
sgn~nI!

2p
qdI ,Jdq ,2q8 . (106)

H can be rediagonalized with the following transforma-
tion of the r̃’s while preserving the above form of the
commutation relation:

R̃1,q5cos~Ahu!r̃1,q1
1

Ah
sin~Ahu!r̃2,q , (107)

R̃2,q52Ah sin~Ahu!r̃1,q1cos~Ahu!r̃2,q , (108)

where

tan~2Ahu!52
Auhuv12

u112hu22
, (109)

with h5sgn(n1n2) and the convention that A215i . The
resulting Hamiltonian and commutation relations are
given by

H52p(
I

sgn~nI!VI (
q.0

R̃I ,qR̃I ,2q , (110)

@R̃I ,q ,R̃J ,q8#5
sgn~nI!

2p
qdI ,Jdq ,2q8 , (111)

where the velocities of the two modes of the rediagonal-
ized edge excitations are

sgn~nI!VI5
1

cos~2Ahu!
@cos2~Ahu!uII

2h sin2~Ahu!uJJ# (112)

for JÞI . These new velocities preserve the direction of
propagation for the corresponding modes before redi-
agonalization. The electron propagator for the Ith mode
takes the form
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^0uT$CI~x ,t !CI
†~0,0!%u0&5eikIx

1

~x2VIt !
~1/unIu!cos2(Ahu)

3
1

~x2VJt !~1/unIu! h sin2(Ahu)
,

(113)

for JÞI . The most general electron propagation process
may be accompanied by a transfer of any integer num-
ber n of quasiparticles between the inner and outer
edges across the outer fractional fluid. In the 2/5 case,
the outer fluid is a n151/3 condensate and the quasipar-
ticles have charge e/3, while for the 2/3 case, the outer
fluid is a n151 condensate with e-charged quasiparti-
cles. The quasiparticle transfer operator Tn1

may be
written as

Tn1
5@C1C2

†#n1. (114)

The most general electron field operator C then can be
formed as a linear combination of terms containing a
product of the CI’s and Tn1

n :

C5C1(
n

cnTn1

n . (115)

From Eq. (101), and noting that n may take on negative
values, we have CI

†5@CI#
21. Therefore C25C1Tn1

21/n1.

The propagator ^T@C(x ,t)C(0,0)#& contains the terms

^T@~C1Tn1

n !~C1Tn1

m !†#&

}dn ,mei[k11nn1(k22k1)]x~x2V1t !2g1n~x2V2t !2g2n.

(116)

The exponents gIn are given by

g1n5F S n1
1

un1u DAun1u cos~Ahu!

2
nn1

n2
Aun2uAh sin~Ahu!G2

, (117)

g2n5F S n1
1

un1u DAun1uAh sin~Ahu!

1
nn1

n2
Aun2u cos~Ahu!G2

, (118)

satisfying the sum rule

(
I

sgn~nI!gIn[ln5S n1
1

un1u D
2

n11
n2n1

2

n2
. (119)

The exponent for an electron-tunneling measurement is
given by the process with the minimum exponent. For
2/5, the tunneling density of states behaves as D(v)
}va21 where a53. In other words, the edge of the 2/5
fluid, a daughter condensate from the 1/3 fluid, should
exhibit a universal value of tunneling exponent I}V3.
This results from the fact that although there are now
two edge modes, they co-propagate. Consequently the
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exponent suffers no renormalization. On the other hand,
for the 2/3 fluid which supports counterpropagating edge
modes, the sum rule alone does not supply sufficient
constraint to guarantee a unique, universal value of the
exponent. However, strong Coulomb interactions (Wen,
1992) or residual disorder (Kane et al., 1994; Kane and
Fisher, 1995), which mix the counterpropagating modes,
drive the exponent to a universal value of a52 as dis-
cussed in the next section. One final remark is in order:
for c̃(x) to satisfy the anticommutation relation,

$c̃(x),c̃(x8)%50, the topological quantum numbers ln
must be odd integers, yielding

c̃~x !c̃~x8!5~21 !1/lnc̃~x8!c̃~x !52c̃~x8!c̃~x !.
(120)

2. 1D effective-field theory of the chiral Luttinger liquid

For other fillings corresponding to incompressible flu-
ids, in particular, the Jain series, one can generalize the
previous type of discussion. To proceed in the most ex-
pedient and rigorous way, it is necessary to introduce a
generalized chiral boson description in terms of the bo-
son fields f i’s arising as a natural extension of the f
fields above. The chiral boson action is given by (Wen,
1992, 1995)

Sedge5
1

4p E dtdx@KIJ] tfI]xfJ2UII]xfI]xfI

2VIJ]xfI]xfJ# , (121)

with the Hamiltonian

H5
1

4p E dx@UII]xfI]xfI1VIJ]xfI]xfJ#

5
1

4p E dxWIJ]xfI]xfJ , (122)

where the matrix WIJ , given by

WIJ[UIIdIJ1VIJ , (123)

is a positive-definite symmetric matrix with positive-
definite eigenvalues to ensure that H is bounded from
below. This edge action is derived from the the K-matrix
formulation of the bulk 2D effective action of fractional
Hall fluids (Blok and Wen, 1990a, 1990b; Frohlich and
Zee, 1991; Wen and Zee, 1992; Wen, 1995) in terms of
the gauge fields aIm , after inputting the information
about the boundary potential via the UII , VIJ terms,

Sbulk52
1

2p E dtdxdy

3F1
2

KIJaIm]naJlennl1etIAm]naIlemnlG .

(124)

By identifying the edge densities rI’s with the derivative
of the boson fields, rI5(1/2p) ]xfI , one recovers the
Hamiltonian form of Eq. (122) above. Here K is an
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n3n matrix with integer elements containing informa-
tion about the topological properties of the n conden-
sates and n different varieties of quasiparticle contained
in the fractional Hall fluid. t is an n-component charge
vector from which the fluid filling factor n can be com-
puted:

n5tI
T@K21#IJtJ . (125)

An is an external potential coupled to the electron 3-
current:

jm5
1

2p
tI]naIlemnl. (126)

In the ‘‘symmetric’’ basis for Abelian fractional Hall
fluids, i.e., fluids with quasiparticle excitations obeying
Abelian statistics, K is a symmetric matrix with odd-
integer diagonal elements, while tI51, i.e., tT

5(1,1, . . . ,1), yielding

n5(
IJ

@K21#IJ . (127)

For the n5n/(np11) Jain series, where n is a posi-
tive integer and p an even integer, K is of dimension n
with KIJ5dIJ1p . For instance, the 2/5 fluid is repre-
sented by n52, p52 with K given by

~K11 ,K12 ;K21 ,K22!5~3,2;2,3!, (128)

while the 2/3 ‘‘hole fluid’’ with n522/3 is represented by
n52, p522 with

~K11 ,K12 ;K21 ,K22!5~21,22;22,21 !. (129)

(Note that the 232 matrix of the n5121/m fractional
Hall electron fluid can also be represented with K11
51, K2252m and zero off-diagonal elements.) In the
edge dynamics, n also gives the number of edge modes
while the signs of the eigenvalues of the K matrix give
the relative direction of propagation for the modes. In
the 2/5 case, the eigenvalues l151, l255 are both posi-
tive, and the two edge modes co-propagating, while in
the 2/3 fluid the eigenvalues of l151, l2523 indicate
that the modes counterpropagate.

The edge action, Eq. (121), together with the Hamil-
tonian (122), describes the low-energy dynamics of the n
edge modes associated with the n condensates, where
the edge density of the Ith condensate is given by

rI5
1

2p
]xfI . (130)

The r’s satisfy the Kac-Moody commutation relation,

@rIk ,rJ2k8#5@K21#IJ

k

2p
dk ,k8 . (131)

The electron charge density is

re5e(
I

rI . (132)

The quasiparticle operator CI(x) associated with the
Ith condensate satisfies the relation
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@rI~x !,CI~x8!#5lJ@K21#JId~x2x8!CI~x !, (133)

where the elements of the n-component l vector lJ are
integers, and the quasiparticle carries a charge

QI5e(
IJ

lJ@K21#JItI . (134)

In terms of the chiral boson fields fI8s, CI has the rep-
resentation

CI}exp~ ifIlI!. (135)

In particular the electron operator is given by

CeL}expS i(
I

fIlID , (136)

with the requirement

lI5(
J

KIJLJ , (
I

LI51 (137)

to yield a unit charge. There are many possible choices
for the n-component vector L with integer-valued ele-
ments. The true electron operator Ce can be written as a
linear combination of such operators, CeL . The require-
ment of anticommutation for the electron operator
yields l5(IJLIKIJLJ5odd integer.

Because both the K matrix and the W matrix (WIJ
5UIIdIJ1VIJ) are symmetric in the symmetric basis
while W is positive definite, it is possible to simulta-
neously diagonalize them using transforms:

W→SWST, K→SKST. (138)

The S transformation is a product of orthogonal trans-
forms and diagonal transforms containing positive-
valued diagonal elements that rescale the r fields. The
resultant Ith eigenvalue of the transformed K matrix
carries a sign, sI , which indicates the direction of propa-
gation of the Ith mode, while the corresponding eigen-
value of the transformed W matrix yields the corre-
sponding velocity (speed of sound), s1Ṽ15uṼIu. In
terms of the transformed R̃I’s,

R̃I5(
IJ

SIJrI , (139)

the Hamiltonian and R̃I commutation are given by

H52p(
I ,k

uṼuR̃I ,kR̃I ,2k (140)

and

@R̃I ,k ,R̃J ,2k8#5sI

k

2p
dI ,Jdk ,k8 . (141)

The propagator for the Ith quasiparticle takes the form

^0uT$CI~x ,t !CI
†~0,0!%u0&}eilIkIx)

I
~x2VIt1isId!2gI,

(142)

where
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AgI5(
J

lJ@S21#IJ , (143)

and gI satisfies the sum rule

(
I

sIgI[lI5(
IJ

lI@K21#IJlJ . (144)

For electron tunneling in the Jain sequence, for which
the n3n K matrix takes the form KIJ5dIJ1p , with
@K21#IJ5dIJ2p/(np11), the tunneling process is
dominated by the smallest exponent. When p.0, e.g.,
the 1/3, 2/5, 3/7, 4/9, . . . series, all modes co-propagate,
i.e., move in the same direction. The minimum exponent
constrained by the sum rule corresponds to lI5p , I
Þn , ln5p11, with the exponent value a5p11. For the
above Jain series, p52, and all fluids within this series
are predicted to exhibit the identical, universal exponent
value of a53. On the other hand, for the electron-hole
symmetric, p522 series, 2/3, 3/5, 4/7, . . . , the presence
of counterpropagating modes means that the sum rule
no longer constrains the exponent to a universal value,
even for a given fluid, e.g., 2/3. In fact, it is necessary to
include the effect of residual disorder to drive the expo-
nents to universal values, as discussed by Kane, Fisher,
and Polchinski (Kane et al., 1994; Kane and Fisher,
1995). Long-range Coulomb interaction may also have a
similar effect (Wen, 1992). What is required is a mecha-
nism to equilibrate the edge modes, in particular, those
that propagate in opposite directions, leading to a uni-
versal exponent value for each fluid in the p,0 Jain
sequence given by (Kane and Fisher, 1995)

a511upu2
2
n

. (145)

Note that for the above series, a approaches the value 3
as n→1/2 (n→`).

3. Role of disorder

Here we summarize only the basic ideas about the
role of disorder in the edge modes. A detailed math-
ematical analysis which demonstrates that residual dis-
order drives the exponent to the universal values given
by Eq. (145) for the p,0 Jain series, as a consequence
of the equilibration of the edge modes, is beyond the
scope of this article.

First, we note the existence of an SU(N) symmetry
among the neutral modes, which are decoupled from the
single charged mode. Starting from the action for the
edge dynamics, Eq. (121), Kane and Fisher showed that
if the interaction term characterized by the W matrix is
separated into a diagonal contribution D , DIJ5vdIJ ,
and a traceless contribution W̃ , W̃IJ5WIJ2vdIJ , the ac-
tion containing the K matrix and D matrix,

So5
1

4p E dtdx(
IJ

@KIJ] tfI]xfJ1vdIJ]xfI]xfJ# ,

(146)

describes edge modes that can be transformed via an
orthogonal transformation O into a single charged
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mode, fr5AnFn5(IfI and the n21 neutral modes.
This mode is decoupled from the neutral modes with
boson fields, FI , I51, . . . ,n21, where FI5OIJfJ . The
resultant action is

So5Scharge1Sneu , (147)

Scharge5
1

4p E dtdxS 1
n

] tfr]xfr1v]xfr]xfrD ,

(148)

and

Sneu5
1

4p E dtdx (
i51

n21

@] tFI]xFI1v]xFI]xFI# .

(149)

Note that since p,0 therefore n,0, and the charge and
neutral modes propagate in opposite directions, while all
neutral modes propagate at the same velocity v . Intro-
duction of an auxiliary field completes the SU(N) sym-
metry of the neutral sector.

In a remarkable result, it can be shown that adding
randomness to the action So does not destroy the
SU(N) symmetry (Kane and Fisher, 1995). Further-
more, the remaining mode-mode coupling through the
traceless W̃5W2vI matrix is either absorbed into a ve-
locity renormalization of the charged mode, or is an ir-
relevant perturbation. In the absence of disorder, how-
ever, these terms are relevant and change the exponent
of the propagators. Therefore disorder has the effect of
restoring the SU(N) symmetry of the neutral modes and
maintaining the decoupling between the charged and
neutral sectors. This disorder-driven approach to univer-
sality occurs as a Kosterlitz-Thouless phase transition in
the disorder parameter, as is shown in Fig. 6 for the edge
of the 2/3 fluid.

4. Compressible fluid edges

Thus far, we have focused exclusively on edge tunnel-
ing into the edge of incompressible fractional quantum
Hall fluids, specifically into the Laughlin (1983) and Jain
series (Jain, 1989a, 1989b, 1990; see also the Haldane/
Halperin series, Haldane, 1983; Halperin, 1984). One of
the early experimental surprises was the observation of

FIG. 6. Kosterlitz-Thouless-type phase transition for the n
52/3 composite edge. When the disorder W is weak (AW
small), the scaling trajectories flow to nonuniversal values of
the interaction parameter D. On the other hand, when AW is
sufficiently large, the system scales to the universal value of
D51. Here D is related to the tunneling exponent. From Kane,
Fisher, and Polchinski, 1994.
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power-law tunneling characteristics for electron tunnel-
ing into the compressible, n51/2 composite-fermion
fluid edge (Chang, 1998). At first sight it was not entirely
clear that electron tunneling into the composite-fermion
edge would necessarily entail an orthogonality catastro-
phe. To account for the experimental findings and to
investigate the tunneling behavior for general fillings,
compressible or incompressible, Shytov, Levitov, and
Halperin (Shytov et al., 1998; Levitov et al., 2001) pro-
posed a theory based on an effective edge action derived
from the bulk 2D composite-fermion effective action
and computed the equal-space single-particle Green’s
function relevant for electron tunneling. They found an
approximate power-law behavior for all fillings. The be-
havior of the exponent exhibits plateaus (steps) when
plotted against the dimensionless Hall resistance
rxy /(h/e2), as shown in Fig. 7, and is driven close to
universal values by residual disorder in between steps,
varying in an approximately linear manner. Small devia-
tions from the universal values arise from interaction
and a nonzero longitudinal resistivity, rxx>0. Note that
for compressible fluids rxy /(h/e2)'1/n , where n is the
Landau-level filling. The result of Shytov, Levitov, and
Halperin thus basically fills in the continuous sections
between the discrete points of incompressible fluids pre-
viously investigated by Wen (1992) and Kane and Fisher
(1995). This somewhat surprising result of a power-law
behavior at all fillings n has its origin in the fact that, for
high-quality samples such as those used in experiment,
the longitudinal resistance is invariably small, rxx
<0.1rxy , in the fractional quantum Hall regime. There-
fore a charge introduced into the edge necessarily

FIG. 7. The electron-tunneling exponent a, as a function of
the dimensionless Hall resistance rxy . A constant Hall angle,
tan21@rxy /rxx#, is assumed. For rxx50.05rxy , a is plotted for
three values of the short-range interaction U51/k21/ko .
Note that at rxx50 the exponent is universal (no U depen-
dence), but at finite rxx it can be either larger or smaller than
the universal result. From Shytov, Levitov, and Halperin, 1998.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
propagates a large distance along the boundary before it
is able to penetrate into the 2D bulk.

The actual computation is extremely technical (Shy-
tov et al., 1998; Levitov et al., 2001). We shall merely
sketch the ideas. For a model of short-ranged electron-
electron interaction,

U~r!5Ud~r!, (150)

with an effective composite-fermion interaction

UCF~r!5S U1
1
ko

d~r! D , (151)

where ko52pm* /\2 is the free composite-fermion com-
pressibility. Integrating out the degree of freedom per-
pendicular to the edge yields an action for the edge

Sedge5(
v ,k

1
2 F sxxuvuS k21

uvu

U1
1
ko

D 1isxyvkG
3f2v ,2kfv ,k1J~2v ,2k !fv ,k , (152)

where fv ,k is the (v ,k) Fourier transform of the bound-
ary boson field, f(x ,t), and J is the Fourier transform of
the source term J(x ,t)5ed(x2xo)@d(t2t1)2d(t2t2)#
at the boundary. This action reduces to the standard ex-
pression, Eq. (121), in the limit of incompressibility
where sxx50.

The equal-space electron single-particle Green’s func-
tion relevant for electron-tunneling processes is com-
puted using the composite-fermion Green’s function
coupled to the gauge field am:

G~ t1 ,t2 ,am!5GCF~ t22t1!

3expS iE
2`

`

d2rdtam~r,t !jm
free~r,t ! D ,

(153)

where GCF(t)'1/t is the composite-fermion Green’s
function in the absence of slow gauge-field fluctuations,
and jm

free(r,t) is a current describing the spreading of free
composite-fermion density. The electron single-particle
Green’s function is approximated by

G~ t !5GCF~ t !exp$i@Sedge~ t !2Sfree~ t !#%, (154)

where the subscript ‘‘free’’ refers to the action of nonin-
teracting composite fermions. The end result yields an
expression for the electron-tunneling exponent:

a511
2
p F tan21S rxy

rxx
D r̃xy2tan21S rxy

o

rxx
o D r̃xy

o G
1

r̃xx

p
ln@~11koU !#

sxx

sxx
o , (155)

with

rxy5rxy
o 1ph/e25h/ne2, rxx5rxx

o , (156)

p being the number of flux quanta attached to the com-
posite fermions, and
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r̃xx5
rxx

e2/h
, (157)

r̃xy5
rxy

e2/h
(158)

being the dimensionless diagonal and Hall resistivities
(see Fig. 7). Accounting for the long-range Coulomb in-
teraction only slightly modifies the exponent a . In par-
ticular, a logarithmic correction is found and the effec-
tive exponent increases as the energy associated with the
tunneling decreases. For edge tunneling from a normal
metal into a n51/3 fractional fluid edge, this predicts
that the exponent will exceed 3 as the energy decreases
towards 0.

5. Scaling functions for electron tunneling

To probe the chiral Luttinger liquid, transport mea-
surements of electron tunneling into the edge of a frac-
tional quantum Hall fluid can be made by placing con-
tacts on opposite sides of the tunnel barrier as shown in
Fig. 16 below in the experimental section (Sec. III.D).
Several measurement schemes are possible: (i) a direct
measurement of the tunneling current through the bar-
rier Itun for a voltage bias V applied between the two
sides to deduce the current-voltage (I-V) characteris-
tics. This should yield a power-law dependence Itun
}Va reflecting the power-law tunneling density of states,
D(v)}va21; (ii) a differential conductance measure-
ment, dI/dV}Va21; and (iii) a zero-bias measurement
of the linear tunneling conductance G(T), which should
exhibit a nonlinear, G}Ta21, dependence on the tem-
perature T , again reflecting the power-law tunneling
density of states. The value a extracted from all these
measurements must be consistent.

The experimental finding that the tunneling behavior
as a function of V and temperature T does indeed obey
a universal scaling form predicted by theory represents
an extremely significant result. Therefore, to make con-
tact with experiments, it is necessary to compute the
tunneling current under conditions in which the energy
scale is set either by V (E5eV), or by T (E5kT). The
tunnel current response is usually computed in perturba-
tion theory by considering an operator that annihilates
an electron on one side of the tunnel barrier at an initial
time t , and creates it on the opposite side at a different
time t8, c1(x ,y ,t)c2

†(x8,y8,t8). To be specific and make
contact with the experimental results presented in the
experimental section (on electron tunneling from a
heavily doped, 3D n1GaAs metal into the edge of a
fractional quantum Hall fluid), we shall use the conven-
tion that the subscript 1 refers to the normal metal and
subscript 2 to the edge of the fractional Hall fluid. The
direction x (x8) parametrizes the direction along the
boundary, while y (y8) is the direction perpendicular to
the boundary. A tunneling event must conserve momen-
tum parallel to the interface (boundary). For instance in
the Landau gauge, “"A50, the wave function f(x ,y)
takes the form of a running wave in the x direction, eikx,
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where the wave vector k is proportional to the y posi-
tion of the guidance center, yo , k5yo /lo

2 , where lo

5A\c/eB is the magnetic length with a value of 8.1 nm
at B510 T. Tunneling across the barrier involves a
change in the position of y , and therefore a change in
the momentum of x . If the system is completely clean
and without defects or impurities, translational invari-
ance in this parallel direction alone would suppress tun-
neling. Therefore it is essential to mediate tunneling via
processes that do not conserve momentum. The pres-
ence of impurities and point defects can mediate tunnel-
ing at pointlike (size <lo) positions. Point tunneling ef-
ficiently mediates tunneling, since it necessarily involves
a broad range of momenta as dictated by the uncertainty
principle. Therefore the tunneling probability, which in
the general case can be k dependent, must be averaged
over k . In other words, the spectral density function
A6(v ,k) will be averaged, yielding the tunneling den-
sity of states

D6~v!5E A6dk , (159)

where 6 denote the tunneling of electrons and holes,
respectively. Note that the power-law dependence is ex-
pected to be the same for the tunneling of electrons and
holes [Eqs. (97) and (98)]. The task at hand is therefore
to compute the tunneling current for point tunneling.

The simplest approximation to point tunneling is
made by setting the coordinates equal to the respective
values at the tunneling point, (x ,y)5(0,y1),(x8,y8)
5(0,y2), where for convenience we have chosen x5x8
50, and uy22y1u5b , the barrier width. As a further ap-
proximation, the effect of the final barrier width b is
incorporated in the ‘‘bare’’ tunneling amplitude G only.
Suppressing the y coordinates and choosing the initial
time, t50, we obtain the tunnel coupling

Htun5Gc2
†~0 !c1~0 !1H.c. (160)

The current response to an applied bias V at zero tem-
perature is given in the weak-coupling (weak-tunneling)
limit by first-order perturbation theory (Schrieffer et al.,
1963; Wen, 1991b):

Itun~ t !5eG2E
2`

`

dt8u~ t !

3$ei* t
t8eV(t9)dt9^@A~ t !,A†~0 !#&

2e2i* t
t8eV(t9)dt9^@A†~ t !,A~0 !#&%, (161)

where A(t)5c2(0,t)c1
†(0,t), and c1 ,c2 are the electron

operators on the edges 1 and 2. In general, the electron
propagator for the ith edge can be written as

Gi~x50,t !5ai
21v i

2a it2a i, (162)

where ai is a cutoff length and v i a cutoff frequency.
Note that this is an equal-space propagator. For the
Laughlin series with filling factor n51/m , where m is an
odd integer, and a51/n ,
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^c1,2
† ~x ,t !c1,2~0 !& }~x6v1,2t !2a1,2e7~ i/n1,2! kF1,2

x.
(163)

This form leads to

^A~ t !A†~0 !& 5
1

a1a2

1

@2v1~ t2id!#a1

1

@v2~ t2id!#a2
,

(164)

^A†~0 !A~ t !& 5
1

a1a2

1

@2v1~ t1id!#a1

1

@v2~ t1id!#a2
,

(165)

^A~x ,t !A†~0,0!&5a1
a121a2

a221

3
1

@x2v1~ t2id!#a1

1

@x1v2~ t2id!#a2

3e ~ i/n1! kF1
xe ~ i/n2! kF2

x, (166)

^A†~0,0!A~x ,t !&5a1
a121a2

a221

3
1

@x2v1~ t1id!#a1

1

@x1v2~ t1id!#a2

3e2 ~ i/n1! kF1
xe2 ~ i/n2! kF2

x. (167)

The zero-temperature tunneling current is then given by

Itun~V !522eG2 ImF2i
p

~a11a221 !!

3E dv3f~v ,t !
a1

a121a2
a221

v1
a1v2

a2
va11a221G ,

(168)

where f(v ,t) is defined by

ei* t
t8eV(t9)dt95E dvf~v ,t !eiv(t2t8). (169)

For a dc bias this expression simplifies to

Itun~V !522eG2 Im

3F2i
p

~a11a221 !! S a1
a121a2

a221

v1
a1v2

a2
Va11a221D G .

(170)

At finite temperature, the expressions become

^A~0,t !A†~0,0!& 5
a1

a121a2
a221

v1
a1v2

a2
~pT !a11a2

3
1

@2sinh~pTt !#a1

1
sinh@pTt#a2

3eip @~a11a2!/2# sgn(t), (171)
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
^A†~0,0!A~0,t !& 5
a1

a121a2
a221

v1
a1v2

a2
~pT !a11a2

3
1

@2sinh~pTt !#a1

1
sinh@pTt#a2

3e2ip @~a11a2!/2# sgn(t), (172)

yielding a tunnel current

Itun52eG2
a1

a121a2
a221

v1
a1v2

a2
~2pT !a11a221

3BS a122i
v

2pT
,a122i

v

2pT D sin pS a121i
v

2pT D
cos pa12

,

(173)

where a125(a11a2)/2, and B is the beta function.
Explicit expressions for a dc current can be obtained,

first, in the limit of eV!2pT , where the current is linear
in V and obeys a power law in T :

Itun}
a1

a121a2
a221

v1
a1v2

a2

p

G~2a12!
Ta@G~a12!#

2
eV

2pT

}Ta21eV , (174)

and second, for eV@2pT , where the current exhibits a
power law in V ,

Itun}
a1

a121a2
a221

v1
a1v2

a2

p

G~2a12!
TaS eV

2pT D a

}~eV !a. (175)

Here a52a12215a11a221; G(s) denotes the gamma
function with argument s , and note that we have set the
Boltzmann constant kB to 1 for convenience. Corre-
spondingly, the differential conductance Gtun in the two
limits is given by

Gtun[
dItun

dV

}
a1

a121a2
a221

v1
a1v2

a2

p

G~2a12!
Ta@G~a12!#

2
e

2pT
}Ta21

(176)

and

a1
a121a2

a221

v1
a1v2

a2

p

G~2a12!
Ta

ae

2pT S eV

2pT D a21

}~eV !a21.

(177)

The dimensionless variable, x5eV/2pT , appears as a
natural variable for which the condition x51 denotes an
approximate crossover condition. In one direction, the
energy scale for tunneling is determined by the thermal
energy (x,1) and the tunneling current approaches lin-
earity in the bias voltage V , while obeying a power law
in temperature, I}Ta21. In the opposite situation, the
energy scale is set by eV (x.1) and I is nonlinear in V ,
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approaching the power-law I}Va functional form. For
the differential conductance, G approaches a
V-independent form while proportional to Ta21 for x
,1, and a power-law bias voltage form, G}Va21, for
x.1. By measuring the voltage-bias power law for x
@1 and the temperature power law for x!1 in two in-
dependent measurements, one can check the consistency
of the values deduced for the exponent a.

Besides dc characteristics, based on Eq. (168), under
an additional ac excitation at frequencies akin to the
Josephson frequency, v5e* V/\ , interesting resonance
structures in the tunneling current and in the tunneling-
current quantum shot noise are predicted to be observ-
able. At typical accessible base temperatures of a few
tens of milli-Kelvin, excitation voltages in the mV range
corresponding to Josephson frequencies in the GHz re-
gime are needed to exceed the thermal-energy scale.

A similar but alternative formulation of the scaling
expressions due to Wen has been put forth by Kane and
Fisher based on a renormalization-group analysis of the
backscattering between left- and right-moving Luttinger-
liquid channels for a single impurity. They uncovered a
duality relation between the strong- and weak-tunneling
limits. In the weak-tunneling limit relevant to the experi-
mental conditions discussed in this review, Kane and
Fisher (1992b, 1992c) give an alternative expression of

I}@G~a12!#
2x1xa. (178)

This expression exhibits the same limiting behaviors
for x!1 and x@1 as Eqs. (174) and (175). The cross-
over voltage where the linear and power-law contribu-
tions are equal to each other is given by eV
5@G(a12)#2/(a21)(2pT). For tunneling between n151
and n251/3, a1252, implying G(a12)51!51, and the
crossover occurs at eV52pT .

It turns out that for tunneling through a single impu-
rity or contact point within this effective-field theory, a
complete solution with a full universal curve spanning
the entire range of weak and strong coupling (tunneling)
can also be obtained based on the Bethe ansatz. Fendley,
Ludwig, and Saleur (1995a, 1995b) were able to demon-
strate the integrability of the problem for tunneling be-
tween chiral Luttinger edges at filling fractions between
1/4 and 1, assuming a single edge mode for each edge,
while at the same time proving the exact duality relation
between weak and strong tunneling. Note for n,1/4, the
model needs fine-tuning to achieve integrability. In the
context of the fractional Hall edge, the duality corre-
sponds to the physical situation of electron tunneling in
the weak limit and quasiparticle tunneling in the strong
limit. It turns out that even in the presence of back-
scattering between the left- and right-moving n channels,
with coupling occurring at a point via an impurity or
point contact, the problem is integrable and can be
mapped onto known field-theory models of the bound-
ary sine-Gordon type (Ghoshal and Zamolodchikov,
1994), which in turn is directly related to the Kondo
problem. This entire class of problems is soluble via the
Bethe ansatz. As a consequence of this integrability and
the associated presence of an underlying quantum criti-
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cal point, the differential conductance can be expressed
in terms of two dimensionless variables, eV/T and
TK /T , formed out of the three energy scales, the bias
voltage V , the temperature T , and the Kondo energy
scale TK which characterizes the strength of the point-
contact coupling:

G5
dI

dV
5GS eV

T
,
TK

T D . (179)

In the limit for weak coupling for which eV ,T!TK , the
expression for the current has the functional form of Eq.
(178) with the scale of the current set by TK :

Itun5n
e2

h

TK

2$G@~a11 !/2#%2 S 2pT

TK
D a

3„$G@~a11 !/2#%2x1xa
…. (180)

In the special case of tunneling between two n51/2
edges, the entire scaling curve can be expressed in
closed form (Kane and Fisher, 1992c; Fendley et al.,
1995b):

Itun5E
2`

` dv

2p

v2

v21S TK

2 D 2 @f~v2vo!2f~v!# (181)

and

Gtun5
1
2

e2

h E
2`

`

dv
v2

v21S TK

2 D 2 @2f8~v2vo!# ,

(182)

where vo5eV/2 and f is the Fermi-Dirac distribution.
These expressions can be recast in terms of the digamma
function c and its derivative (Fendley et al., 1995b). For
general values of n, in the T50 limit these solutions
yield (Chamon and Fradkin, 1997):

G5n
e2

h 5 (
1

`

cn~1/n!S V

2TK
D 2n[~1/n! 21]

, S V

2TK
D,ed

12(
1

`

cn~n!S V

2TK
D 2n(n21)

, S V

2TK
D.ed,

(183)

where

cn~n!5~21 !n21
G~nn11 !

G~n11 !

G~1/2!

G@n~n21 !11/2#
, (184)

and d5@n ln n1(12n)ln(12n)#/2(n21).
To further tie in with experiments in which tunneling

takes place between a 3D n1GaAs normal metal and a
chiral Luttinger edge, Chamon and Fradkin (1997; Frad-
kin, 2000) made extensive use of the exact solutions pro-
vided by Fendley, Ludwig, and Saleur, applied to a case
of multiple, weak-coupling point contacts that were in-
coherent with each other. They first mapped the 3D
metal to a n151 chiral fermion mode, resulting in an
action for tunneling at a point contact into a n251/m
chiral Luttinger mode [see Chklovskii and Halperin
(1998) for a somewhat different view of such a map-
ping]:
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S5
1

4p E dtdxS 1
n1

~] tf12v1]xf1!]xf1

1
1
n2

~] tf22v2]xf2!]xf2

1Gd~x !eivte2i$~1/n1! f1~0,t)2 ~1/n2! f2(0,t)%1H.c.D ,

(185)

where the two Luttinger edge modes interact at the
point x50 and live in different spaces of x>0 and x
<0, respectively. As a result the x coordinate for each
field can be rescaled to yield the same velocity for the
two modes, v5v15v2 . The electron operator for each
mode is given by cI(x ,t)5ei(1/nI) fI. An orthogonal
transformation,

f̃15cos uf11sin uf2 , (186)

f̃252sin uf11cos uf2 , (187)

where

cos u5
1

&

A1/n11A1/n2

A1/n111/n2

, (188)

sin u5
1

&

A1/n12A1/n2

A1/n111/n2

, (189)

yields a tunneling action between identical transformed
fillings ñ :

ñ5
1

@~n2
2111 !/2#

(190)

of

S5
1

4p E dtdx
1
ñ

@~] tf̃12v]xf̃1!]xf̃1

1~] tf̃22v]xf̃2!]xf̃2

1Gd~x !eivte2i~1/ñ ![f̃1(0,t)2f̃2(0,t)]1H.c.# . (191)

For n151 to n251/3 tunneling, this results in tunneling
between two ñ51/2 edges! This case therefore corre-
sponds to the exactly soluble case discussed by Fendley,
Ludwig, and Saleur, for which the entire scaling function
is known.

The final step is to assume that in the cleaved-edge
tunneling experiment, electron tunneling takes place un-
der the condition of weak tunneling at multiple contact
points, where the tunneling at successive points is inco-
herent in nature, as depicted in Fig. 8. At each point, the
receiving chiral Luttinger edge mode is characterized by
a voltage Vi , while the injecting n51 chiral fermion
edge mode always resides at the voltage of the 3D,
normal-metal reservoir. In other words, energy relax-
ation is fast within the 3D, n1GaAs normal metal com-
pared to the time between successive tunneling events at
the incoherent tunneling points. Whatever voltage the
effective chiral fermion channel ends up with after pass-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
ing a given point-contact tunneling point is replenished
by rapid energy exchange with the rest of the bulk 3D
metal. A full scaling curve extending from the weak- to
strong-tunneling regime relevant to the experimental
situation can now be obtained from two relationships:
(1) with the chiral Luttinger edge between two succes-
sive tunneling points, we have

Vi2Vi215
Ii

ne2/h
, (192)

where Ii is the tunneling current at the ith point. The
total tunneling current is then the sum of the currents,
Ii ,Itun5( iI i ; (2) at each tunneling point, the tunneling
is weak and we have, from Eq. (180),

Ii5n
e2

h

TKi

2$G@~a11 !/2#%2 S 2pT

TKi
D a

3„$G@~a11 !/2#%2x1xa
…, (193)

where (a11)/25a12 . The first equation, Eq. (192), is
strictly correct only when the dissipative conductance
Gxx is zero, as in the case of a well-developed quantized
Hall state. It is still a good approximation as long as
Gxx!GHall , as is the case for the high-quality samples
used in the experiments at general fillings. Combining
these two equations yields

22pTDxi5
1
2

TKiS 2pT

TKi
D aF xi211

1

FGS a11
2 D G2 xi21

a G .

(194)

FIG. 8. Multi (N) -impurity scattering, assembled from the
one-impurity building block. It is crucial that the voltages on
the fractional quantum Hall fluid side be maintained in be-
tween scattering events, whereas the electrons from the reser-
voir side should always come into the scattering process at VR .
From Chamon and Fradkin, 1997.
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By fine-graining the successive tunneling points, Cha-
mon and Fradkin obtained a differential equation:

2
dx

di
5

1

2 S 2pT

TKi

D a21F xi211
1

FGS a11

2
D G 2 xi21

a G .

(195)

Imposing the boundary conditions valid for 1 to n tun-
neling,
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xo5
e~VR2Vo!

2pT
5

eV

2pT
(196)

and
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where N indexes the last tunneling point, one obtains
with b5a21
Itun5n
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h
V5 12
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yielding
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Here, Ts denotes a crossover temperature to the strong-
tunneling regime, where

S 1
Ts

D b

5(
i51

N S 1
TKi

D b

. (200)

Strictly speaking this expression is valid only for n1
51/m1 , n251/m2 , and mi is an odd integer, so that tun-
neling occurs between a single edge mode for each fluid.
In practice, however, one is able to interpolate to
continuous values of n i . This is the expression used
extensively in data analysis to extract the tunneling
exponent a.

6. Resonant tunneling

In the discussion above, we focused on tunneling
events in which the individual event is in the weak-
tunneling regime, and the total tunneling current is the
incoherent sum of weakly tunneling events. In fact, it is
often possible to observe tunneling resonances as the
magnetic field is swept (Milliken et al., 1996; Maasilta
and Goldman, 1997; Grayson et al., 2001). In resonant
tunneling, the process is presumably mediated by a reso-
nant bound-level or impurity state situated spatially
close to the two chiral edges. In fact the tunneling cur-
rent in resonant tunneling can be computed in a manner
similar to that discussed above for both the incoherent,
sequential resonant-tunneling case, for which Itun
!n(e2/h)V (Chamon and Wen, 1993; Furusaki et al.,
1993), and the fully coherent case for which Itun ap-
proaches n(e2/h)V (Kane and Fisher, 1992c; Moon
et al., 1993; Fendley et al., 1995b). To gain physical in-
sight and to make contact with the experimental results
presented below, we address the key features of sequen-
tial tunneling treated in first-order perturbation theory.

The coupling between a given edge i5R ,L , and the
impurity I can be written as (Chamon and Wen, 1993;
Furusaki et al., 1993)

HI ,i5G iCI
†C iux501H.c., (201)

where the first term contributes to filling the impurity
level while the second (H.c.) contributes to the emptying
of the level. The field operators can be both electrons
and quasiparticles of e* . In this sequential tunneling
limit and neglecting higher-order virtual processes, the
tunneling current will contain contributions from both
the filling of the impurity level when empty (off) and
emptying when occupied (on). In analogy to the off-
resonance case between two chiral edges [Eq. (161)],
using standard first-order perturbation theory the cur-
rent from the ith chiral edge onto the impurity is given
by (Chamon and Wen, 1993)

Ii5e*
uG iu2

aI
E

2`

`

dt8Q~ t2t8!exp@2i~e* Vi2EI!~ t2t8!#

3^@CI
†~x50,t !C i~x50,t !,C i

†~x50,t8!CI~x50,t8!#& ,

(202)

where the energy of the impurity level is denoted by EI ,
and aI is a characteristic length. As before, the expecta-
tion of the chiral edge operator is given by Eqs. (171)
and (172),
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and

^CI
†~ t !CI~ t8!&5nI , (204)

^CI~ t !CI
†~ t8!&512nI , (205)

where nI is the average occupation of the impurity level.
In terms of the fill current when the impurity level is

entirely empty, Ii ,fill , and the removal current when the
level is fully occupied, Ii ,rem , the ith current can be writ-
ten as (see inset to Fig. 9)

Ii5@Ii ,fill~12nI!1Ii ,remnI# , (206)

where
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and
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Here ri ,fill and ri ,rem denote the rate of filling and re-
moval, respectively. The total combined currents of fill-
ing, Ifill , and removal, Irem , from both the R and L
channels are

Ifill5@IR ,fill1IL ,fill#52e* @rR ,fill1rL ,fill# (209)

and

Irem5@IR ,rem1IL ,rem#5e* @rR ,rem1rL ,rem# . (210)

The times to fill when empty, toff , and to empty when
filled, ton , are

toff5
1

rR ,fill1rL ,fill
5

2e*

Ifill
(211)

and

ton5
1

rR ,rem1rL ,rem
5

e*

Irem
. (212)
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The average occupancy nI of the impurity level is

nI5
ton

ton1toff
5

2Ifill

Irem2Ifill
(213)

and

12nI5
toff

ton1toff
5

Irem

Irem2Ifill
. (214)

The final form of the tunnel current is given by

Itun5^IR&5
1

Irem2Ifill
@IR ,fillIL ,rem2IR ,remIL ,fill# .

(215)

Specializing to the nR51 to nL51/m resonant
electron-tunneling case for which aR51 and aL53, we
have
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and
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This expression gives rise to an asymmetry as one
sweeps through the resonance, and a power-law inte-
grated area versus T in the differential conductance
dI/dV , as well as nonpreservation of the integrated
area, as shown in Fig. 9. As a result of this first-order
perturbation treatment based on sequential tunneling,
Eqs. (215)–(219) are valid when the on and off times in
the impurity level, ton and toff , satisfy their respec-
tive conditions, ton@min(ue*VR2EIu21,T21) and toff
@min(ue*VL2EIu21,T21), in the case where e* VR
.e* VL . Beyond the sequential regime the resonant-
tunneling current, including in the case of perfect reso-
nant transmission, can be calculated by renormalization-
group and quantum Monte Carlo methods (Moon et al.,
1993) and exact Bethe-ansatz calculations (Fendley,
Ludwig, and Saleur, 1995b). In the opposite limits of
off-resonance tunneling occurring in the tail region of
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the tunneling resonance, second-order virtual processes
contribute. This leads to off-resonance tunneling with an
effective coupling between the R and L chiral Luttinger
modes of

HR ,R8 5G8CR
† CL1H.c., (220)

where the coupling, G5GLGR
† /DE , and DE5ue* (VR

1VL)/22EIu when far off resonance and is essentially
independent of the bias voltage VR2VL for small volt-
ages uVR2VLu!max(uDE/e* u,T). This corresponds to
the case treated previously in Sec. II.B.5 on scaling
functions.

7. Shot noise and fractional charge: quasiparticle tunneling

In addition to the hallmark signatures of the CLL in
the tunneling current, remarkable indicators are present
in the current and voltage fluctuations, resulting in quan-
tum current shot noise and voltage noise. These noise
fluctuations can be measured or computed under equi-
librium as well as in nonequilibrium conditions. In fact,
generalization of the fluctuation-dissipation theorem to
its nonequilibrium analog within the chiral Luttinger liq-
uid model implies that, in the case of weak backscatter-
ing and strong coupling for which quasiparticle tunnel-
ing dominates, the low-frequency current shot noise

FIG. 9. The differential conductance, dI/dV , under bias, for
the resonant tunneling of electrons (holes): Left panels, tun-
neling into a Fermi-liquid (FL) edge; right panels, tunneling
into a n51/3 chiral Luttinger liquid edge, plotted as a function
of the impurity level position referenced to the thermal energy,
EI /kT . Dashed curves in the upper right panel show the sepa-
rate contributions for the right and left leads. Here the con-
vention is that the right lead refers to the n1GaAs metallic
lead, while the left lead refers to either the Fermi-liquid or
Luttinger-liquid edge lead. The linear portions of the left
dashed peak reflects the energy derivative of the chiral
Luttinger-liquid tunneling density of states, Dtun(v);v2. In-
set shows the energy positions of the n1GaAs normal metal,
eVR , Fermi liquid or CLL edge, eVL , and the impurity level
position EI .
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provides a measure of the fractional charge e* of the
tunneling quasiparticle. Shot-noise fluctuations then re-
flect the graininess of the charge carriers in units of e*
(Kane and Fisher, 1994; Chamon et al., 1995; Fendley
et al., 1995c). Furthermore, high-frequency noise is pre-
dicted to exhibit singularities in its power spectrum at
frequencies related to the Josephson frequencies of the
quasiparticles (Chamon et al., 1995). Such noise repre-
sents fluctuations in the ac current.

In mesoscopic conductors, recent theoretical (Leso-
vik, 1989; Buttiker, 1990) and experimental work (Li
et al., 1990; Dekker et al., 1991; Liefrink et al., 1994) has
shown that the zero-frequency quantum shot noise in a
one-dimensional conductor scales as

S~v→0 !5
e2

h
t~12t !~eV !, (221)

where t is the transmission probability of the electron. In
the limit t!1, the classical, uncorrelated shot-noise re-
sult is recovered with I'(e/h)t(eV). In the opposite
limit of (12t)!1, one obtains the shot noise associated
with ‘‘holes.’’ Similar results can be deduced for the tun-
neling of electrons and quasiparticles between identical
fractional Hall edges. In particular, Kane and Fisher
(1994) showed that for tunneling between two Laughlin,
n51/m edges under nonequilibrium conditions, with
current flow and voltage bias across the tunnel junction,
an analog of the fluctuation-dissipation theorem takes
the form

cI~v!2cothS v

2T DRI~v!

5S ne2

h D 2FcV~v!2cothS v

2T DRV~v!G , (222)

where cI (cV) and RI (RV) are the respective correla-
tion and response functions for I and V . Both sides of
this expression become identical to 0 only under equilib-
rium, yielding the fluctuation-dissipation theorem. Re-
markably as v→0 this expression implies

cI~v→0 !5S ne2

h D 2

cV~v!, (223)

relating the power of the current and voltage shot noises
with the extra factor n2.

From such expressions one obtains the quantum shot
noise for quasiparticle tunneling under weak back-
scattering:

cI~v→0 !'
~ne !2

h
eV . (224)

The above results were obtained using the lowest-order
terms. Inclusion of higher-order terms leads to ‘‘interac-
tion effects’’ and singularities in the noise power spec-
trum at Josephson frequencies, v5e* V (Chamon et al.,
1995). Due to the integrability of the single-point-
contact backscattering model within the effective-field
theory, it is possible to derive the exact expression for
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any amount of backscattering at T50 using the Bethe
ansatz (Fendley et al., 1995c).

8. Finite-size numerical investigations

The basic prediction of power-law tunneling charac-
teristics has now been unequivocally substantiated in ex-
periment. To gain insight into possible causes for differ-
ences between other key predictions of the effective-
field theories and experiment (see detailed discussion in
Sec. III.D), several groups have recently performed
finite-size numerical studies. Encouragingly, the results
are in considerably better agreement with experiment
than with effective theories. However, as is the usual
case, caution must be exercised when extrapolating from
finite, N510–60 systems to the thermodynamic limit of
N→` . With this in mind we briefly summarize the ap-
proaches and main findings in these computations.

Goldman and Tsiper (2001) performed exact diago-
nalization studies for systems of N53 to N512 elec-
trons on a disk, at Landau filling n51/3. Both short-
range interaction favoring the Laughlin wave function
from the bulk all the way to the edge, and long-range
Coulomb interaction were investigated. Wan, Yang, and
Rezayi (2002) investigated the effect of the spacer dis-
tance d between the positively charged dopant layer and
the two-dimensional electron gas (2DEG), in a model
with Coulomb interaction for six or seven electrons.
Mandal and Jain (2001, 2002) considered corrections to
the Laughlin-series and Jain-series wave functions by in-
cluding the lowest-order composite-fermion Landau-
level mixing due to long-range Coulomb interaction. Us-
ing composite-fermion wave functions as a starting
point, they were able to study systems with N up to
40–60 for n51/3, 2/5, and 3/7. In all cases a common
feature emerged. When Coulomb interaction was in-
cluded, excess edge density oscillations, which are ab-
sent in a Laughlin-type wave function, become apparent,
as shown in Fig. 10. Goldman and Tsiper interpreted

FIG. 10. Density profiles for the n51/3 Laughlin-type wave
function (dashed line), and the modified wave function (filled
circles) due to intercomposite Landau-level mixing for N
530. The solid line is a fit according to r(r)51/310.113/
(120.415x10.086x2) cos@2px/(4.0220.029x)# with x5r/lo

211.407, while lo is the magnetic length. From Mandal and
Jain, 2001.
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such oscillations as evidence for edge density wave for-
mation. In the work of Wan, Yang, and Rezayi, the os-
cillations arise as a result of edge reconstruction when d ,
the spacer distance, exceeds a critical value, dC'1.6lo ,
where lo5A\c/eB . (Note that in experiment, d>7lo
.dc .) The results found by Mandal and Jain, which for
n51/3 are similar to those of Goldman and Tsiper, are a
consequence of residual composite-fermion interaction
and Landau-level mixing. Such density oscillation can in
principle lead to additional edge channels, some of
which are counterpropagating, and therefore will renor-
malize the tunneling exponent a.

Mandal and Jain and Goldman and Tsiper went on to
compute the equal-time correlation function Gedge , us-
ing the ground-state wave function c. At large distances
Gedge is believed to decay with the same exponent as the
tunneling exponent a. Even though strictly speaking the
equal-space correlation must be computed, the equal-
time correlation is believed to yield an identical expo-
nent value (Lee and Wen, 1991). In other words,

Gedge~ ur2r8u!5
^cuCe

†~r!Ce~r8!uc&

^cuc&

5N

E )
j51

N21

d2rjc* ~r,$rj%!c~r8,$rj%!

E )
k51

N

d2rkc* ~$rk%!c~$rk%!

→ur2r8u2a, (225)

where Ce is the electron creation field operator, r and r8
are two points along the edge, and Ce(r)uc&}c(r,$rj%).
As a result of the modification of the wave function
from the Laughlin-type wave function, as exemplified by
the extra density oscillations near the boundary, the ex-
ponent a is renormalized in a direction consistent with
experiment, as will be shown in Sec. III.D following the
presentation of data. From Mandal and Jain’s calcula-
tion, a remarkable result emerges. Without residual
composite-fermion interaction and mixing, the exponent
for n51/3, 2/5, and 3/7 is universal and equal to 3, in
complete agreement with the predictions of the
effective-field theories. The renormalization of the expo-
nent occurs only as a consequence of long-range inter-
action and the residual composite-fermion mixing it en-
tails. Thus numerical computations support the basic
picture put forth by Wen of chiral Luttinger liquid dy-
namics at the edge of the incompressible fractional
quantum Hall fluids. On the other hand, the prediction
of universality of the exponents based on the topological
characterization of the bulk 2D fluid appears not to be
robust against the introduction of long-range interac-
tions.

III. EXPERIMENTS ON CHIRAL LUTTINGER LIQUIDS—
TUNNELING INTO THE FRACTIONAL QUANTUM
HALL EDGE

The most outstanding physical characteristic that dis-
tinguishes a Luttinger liquid, chiral or nonchiral, from a
conventional Fermi liquid metal is its low-energy behav-
ior when an external ‘‘bare’’ electron is added or re-
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moved at energies near the ‘‘Fermi’’ energy. The associ-
ated orthogonality catastrophe, which occurs between
the state consisting of a bare particle added to (or re-
moved from) a highly correlated N-electron ground
state and the ground state of the N11 (N21) electron
system, gives rise to a power-law suppression of the tun-
neling current as the energy from the Fermi surface, E
2EF , approaches zero. A tunneling transport experi-
ment is a natural way to study this unique low-energy
property. Although lacking the ability to resolve mo-
mentum due to the fact that in reality most tunneling
takes place at pointlike contacts, the distinct advantage
of a transport experiment is the precise control of the
low-energy scale, set either by an external voltage bias
across the tunnel junction down to the 1-meV level, or
by temperature down to 25 mK, for which kT
'2.15 meV. This enables truly low-energy behavior to
be studied in detail. These energies are a factor of
102 –103 smaller than the relevant characteristic energies
of either the Fermi energy, EF;4 meV, or the quasipar-
ticle gap, D, of ;0.1–1 meV in the most robust incom-
pressible fractional Hall fluids such as n51/3. In con-
trast, a powerful and complementary technique such as
angle-resolved photoemission spectroscopy (ARPES),
while offering the ability to resolve k dependences, nev-
ertheless requires the use of energetic photons of energy
;20 eV to eject surface electrons in an attempt to de-
termine low-energy properties down to the meV level.
For example, it is often technically challenging to locate
the Fermi level precisely to meV accuracy, as well as to
find the position and width of the quasiparticle peak (or
the absence of such a peak) in the spectral function.
Damage to the specimen can also result from the radia-
tion of energetic photons.

In electron-tunneling transport measurements several
key conditions must be met to achieve a successful dem-
onstration of chiral Luttinger liquid behavior. These in-
clude:

(i) the requirement that the observed nonlinearity in
the current-voltage (I-V) characteristics arise
from the tunneling density of states, and not from
residual energy dependences in the tunneling ma-
trix element across the tunnel barrier;

(ii) the existence of a power-law regime in the I-V
relationship with a substantial dynamic range in
both the current and the excitation bias voltage to
enable a reliable differentiation between a power-
law functional form and other competing forms
such as exponential, Arrhenius, or variable-range
hopping;

(iii) consistency in the power-law tunneling density of
states rTDOS , deduced independently from mea-
surements of the I-V relation, temperature de-
pendence of the low-bias linear conductance
G(T), and the differential conductance under
bias dI/dV ;

(iv) an exponent a with I}Va, in the range ;1.5–4.
This is desirable to ensure good dynamic range in
both the current and the excitation energy scale
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(either bias voltage or temperature). Below 1.5, a
is readily distorted by other residual nonlineari-
ties, while for a.4, the noise floor for the current
is reached over a reduced dynamic range in the
bias voltage or temperature.

Our approach is to first convincingly establish the
presence of a power-law functional dependence in the
I-V characteristics. The clear-cut observation of power-
law behavior with unsurpassed quality—the hallmark
signature of Luttinger-liquid behavior—unequivocally
establishes the fractional quantum Hall edge as a chiral
Luttinger liquid system. Subsequently, we provide de-
tailed investigations of the nature of the chiral Luttinger
liquid, in particular, its dependence on magnetic field for
samples with fixed electron densities. This amounts to a
study of the different chiral Luttinger liquids at the edge
of fractional Hall fluids at different filling factors.

The first attempts to investigate Luttinger-liquid be-
havior in semiconductor-based systems were undertaken
in one-dimensional quantum-wire systems at zero mag-
netic field. Two approaches were attempted, lateral
(side) gating to form relatively long channel quantum
point contacts (Tarucha et al., 1995), and the formation
of a cleaved-edge overgrown quantum wire (Yacoby
et al., 1996). The results were inconclusive. Although an
intriguing suppression of the conductance below the
quantized value of e2/h was observed, clear signatures
of power-law dependences in the deviation were not ob-
servable. In the case of a 1D conductor at B50, the
power-law exponent is determined by the reduced con-
ductance g[G/(e2/h), where g,1 for repulsive inter-
action potentials. Since g is dependent on the exact na-
ture of the interaction, it is not universal. Experiments
to observe Luttinger-liquid behavior must deal with the
complications of localization effects, which tend to ob-
scure the power-law characteristics and which result
from the back-scattering of electrons by residual disor-
der or nonideality in the one-dimensionality. Conse-
quently only indirect hints were initially observed
(Tarucha et al., 1995; Yacoby et al., 1996). (Recent no-
table advances will be described in Sec. IV.) In contrast,
as discussed in detail in the theory section, in the frac-
tional quantum Hall effect the edge is expected to be-
have as a chiral Luttinger liquid, where the chirality
arises from the presence of the magnetic field and the
formation of skipping orbit states along the two-
dimensional electron gas (2DEG) boundary. In this sys-
tem, the forward- and backward-propagating edge
modes are spatially separated, minimizing backscatter-
ing and localization effects. Impurities and imperfections
only cause the one-dimensional boundary to meander
and have negligible effect on the nature of the chiral
Luttinger liquid. Furthermore, here g is well defined and
is expected to be simply related to the reduced quan-
tized Hall conductance, at least within the context of the
effective theories.

Two distinct geometries have been employed to study
chiral Luttinger liquid behavior via tunneling at the frac-
tional quantum Hall edge: the point-contact geometry
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and the cleaved-edge overgrowth geometry. The point-
contact method employs electrostatic gating using
‘‘pincher’’ metallic electrode pairs spaced ;100
nm apart on the surface of a conventional
GaAs/AlxGa12xAs heterostructure and the application
of a negative voltage to these gates relative to the 2D
electron sheet below the surface, to bring the edge states
propagating on opposite edges of the device into close
proximity as shown in Fig. 11. In the cleaved-edge ge-
ometry discussed in greater detail below (Sec. III.C.1), a
thin AlxGa12xAs tunnel barrier of thickness b;lo is
grown in the (011) crystallographic direction perpen-
dicular to the initial conventional growth of a quantum
well in the (100) direction, as depicted in Fig. 12. The
presence of this tunnel barrier terminates the 2D elec-
tron sheet contained within the quantum well, creating
an atomically sharp edge. Subsequent growth of a bulk-
doped n1GaAs normal metal on the other side of the
tunnel barrier enables the tunneling of electrons to take
place.

Each method has advantages and disadvantages. In
the point-contact geometry, due to the large, vertical
spatial separation (.100 nm) between the metal gate
(situated on the sample top surface) and the electron

FIG. 11. (Color in online edition) Point-contact geometry: (a)
electron tunneling, (b) quasiparticle tunneling.

FIG. 12. (Color in online edition) Cleaved-edge-overgrowth
device and tunneling current measurement geometries: (a) De-
vice geometry showing the cleaved-edge Al0.1Ga0.9As tunnel
barrier and the heavily doped 3D n1GaAs metal; (b) geom-
etry for the tunneling current measurements. (Device is ro-
tated by 90°.)
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gas, the boundary of the 2DEG is necessarily smooth.
Consequently the point contact is characterized by a
shallow and broad tunnel barrier, shown in Fig. 13(a),
leading to a narrow window for investigating the energy
dependence in the tunneling density of states, as dis-
cussed in detail below. On the other hand, this geometry
offers the advantage of tunability and versatility. The
barrier shape can readily be modified by the adjustment
of the gate voltages, enabling both electron and quasi-
particle (hole) tunneling to take place (Fig. 11). The
cleaved-edge overgrowth (CEO) geometry is character-
ized by a tall and thin tunnel barrier, depicted in Fig.
13(b). This barrier yields the most notable advantage as
it leads to a tunneling matrix that is essentially energy
independent in the relevant energy range. This property
enables a clean and direct study of the energy depen-
dence in the tunneling density of states. On the other
hand, a clear disadvantage is the fixed barrier in a given
sample. This means a limited magnetic-field range is ac-
cessible, resulting from the sensitivity of the tunneling
matrix to B . Consequently a series of samples with vary-
ing barrier thickness must be grown. Moreover, thus far
tunneling has been limited to electrons.

To better understand the results to be presented be-
low it is necessary to examine in detail the consequences
of the different geometries. In the weak-tunneling limit
the tunnel current for an individual process arises as a
product of two contributions: the probability for tunnel-
ing through the barrier, given by the square modulus of
the tunneling matrix element, and the tunneling density
of states. The latter is central to establishing a power-
law, chiral Luttinger liquid behavior in the tunnel-
current dependence on energy, set in experiment by
temperature (kT) or bias voltage (eV). Ideally, the non-
linearity arises solely from the density of states, with
minimal effect from the matrix element. In this respect,
the cleaved-edge geometry offers a real advantage. In
the relevant energy regime beween 2.5 meV and 3 meV
probed in experiment, the tall and thin barrier, typically
of height >100 meV and width 5–20 nm, will be mini-
mally distorted, leading to an essentially ideal, energy-
independent tunneling matrix. The observed nonlinear-
ity thus directly reflects the tunneling density of states.
(For reference the incompressible fractional Hall excita-
tion gap D is ;100 meV, and the Fermi energy EF is

FIG. 13. Tunnel barriers for (a) the point-contact geometry,
and (b) the cleaved-edge overgrowth geometry with barrier
thickness b;lo . Here lo denotes the magnetic length (lo

5A\c/eB58.1 nm at B510 T). The gray regions represent
thermal smearing.
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;2 –6 meV.) This contrasts with the point-contact ge-
ometry in which the broad and shallow barrier (of height
<10 meV and width >100 nm) can readily be distorted
by a voltage bias, causing appreciable change in the tun-
neling matrix, or else when thermal smearing takes place
at moderately elevated temperatures (.250 mK),
higher-energy excited edge states can be accessed which
have significantly larger tunneling matrix and probabil-
ity. Moreover, the inherent gradualness of the edge
carrier-density profile in the electrostatic gating method
accentuates complications from a phase separation of
the edge into alternating strips of compressible and in-
compressible quantum Hall fluids, each of an appre-
ciable spatial extent (Beenakker, 1990; Chang, 1990;
Chklovskii et al., 1992). For instance, a 2D electron gas
exhibiting a n51/3 effect in the bulk may be bordered
by n51/4 and 1/5 fluids, etc. (Ando et al., 1998). Elec-
trons tunneling into the 1/3 edge must cross the other
phases, giving rise to complex tunneling characteristics.
The combination of these two effects has yielded a lim-
ited energy window accessible to experiment, in the
range of ;2.5–25 meV (T;25–250 mK).

A. Measurement techniques

The tunneling experiment requires the measurement
of ultralow currents down to the level of a few femto-
amperes (10215 A), at voltage bias excitations as low as
1 mV. To achieve the conditions to enable such measure-
ments, several key features and safeguards must be in-
corporated into the measurement circuitry and low-
temperature dilution refrigerator cryostat. Several
similar but complementary ways to perform a high-
sensitivity I-V tunneling measurement are utilized. The
most straightforward is a dc measurement. A floating
voltage source is used for supplying the dc-bias excita-
tion voltage across the tunnel junction, while a dc cur-
rent meter with a high-gain preamplifier is used to mea-
sure the tunnel current. The entire circuitry is grounded
at a single point, typically at the input low of the current
amplifier. This arrangement avoids ground loops and the
associated noise currents, as well as undesirable shunt-
ing of currents through unwanted paths. A typical noise
floor of the order of 30–50 fA is achievable with an
integration time constant of 10–30 sec/point. To improve
beyond the dc noise floor and achieve a few-fA sensitiv-
ity, it is necessary to utilize an ac lock-in technique.
There are two basic methods: (i) a small ac sinusoidal
excitation is superimposed on top of a dc bias to yield a
measure of the differential conductance dI/dV , and (ii)
a symmetric, square-wave excitation about zero bias
voltage is applied to generate a square-wave output cur-
rent. This is a viable method when the I-V relationship
is odd-symmetrical (antisymmetrical) under reversal of
the bias voltage (V→2V). For our experiments on tun-
neling into the fractional quantum Hall edge, this anti-
symmetry requirement turns out to be satisfied at low
excitations, typically for uVbiasu<5 meV.

Our ac lock-in measurements are performed at 2.3 Hz
frequency. A typical circuitry excitation is shown in Fig.
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14. As in the dc case, it is desirable to float the voltage
source and ground at a single point. The floating is
achieved with an isolation transformer. The current is
fed into the negative input of the operational amplifier,
which performs the current-to-voltage conversion (in-
verting amplifier). Typical feedback resistances are in
the megaohm to gigaohm range for current values in the
mA–fA (10215 A) range. This type of circuitry is rela-
tively insensitive to parasitic capacitance to ground,
since one end of the tunnel junction is driven by the
source, which ideally would have low source impedance,
and the other end is at the negative input of the op-amp
and is therefore at virtual ground, being driven by the
feedback loop. On the other hand, parasitic capacitance
between the leads connected to these two sides of the
tunneling junction will end up shunting the current, by-
passing the tunnel junction. These leads are brought out
of the cryogenic system to room temperature and are
therefore ;1 –2 m in length and will have capacitances
in the 100-pF range. As a result, at 2.3 Hz, the in-phase
and out-of-phase components of the current response
typically become equal around a tunnel resistance of 0.3
GV. By properly setting the phase of the lock-in it is
possible to extend the range and measure up to 1 GV of
tunnel resistance with reliability. A more complete solu-
tion would be to use coaxial cables for each lead and to
twist the coaxes together. The outer ground shield of the
coax will provide shielding to eliminate the mutual ca-
pacitance between leads, while by twisting the coaxes,
inductive pickup will be minimized. The inner and outer
conductors must be separately thermally anchored at
some low-temperature point, at which the shielding will
be broken. A further consideration is mechanical vibra-
tions. Microphonics must be reduced by proper vibra-
tional isolation. One final and important feature is line
filtering. This is absolutely necessary in order both to
achieve the lowest electron temperature and to prevent
extraneous noise voltages from reaching the device,
thereby overwhelming the low voltage bias down at the
mV level. Such noise can either arise from pickup or

FIG. 14. (Color) ac measurement circuit for both square-wave
excitation at zero dc bias and dI/dV measurements with a
finite dc bias plus a small ac sinusoidal excitation superim-
posed on top. The isolation of this measurement circuit from
external electrical circuitry is achieved by the use of an isola-
tion transformer, battery dc supply, and single ground point
applied at the input to the lock-in amplifier in order to avoid
any ground-loop problem.
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from room-temperature Johnson noise radiated down
the lines.

Aside from the basic low-current, low-excitation tech-
niques described above, one additional feature of the
measurement warrants discussion. The range of voltage
bias typically spans up to five orders of magnitude, from
1 to 100 mV. The first measurements carried out by
Chang et al. (1996, 1998) were performed using a set of
discrete points. This turned out to be inconvenient. Sub-
sequently, a continuous sweep was employed (Grayson
et al., 1998; Chang et al., 2001). To span five orders of
magnitude, an exponential ramp is necessary. Further-
more a square wave at 2.3 Hz must pass through the
isolation transformer without distortion. A nonideal
transformer, coupled with a wave-form generator with a
finite (nonzero) source impedance, typically has reduced
response at low frequencies. To compensate for the 30%
dropoff in voltage at the tail end of each square-wave
step contained within a half cycle, it was necessary to
add a linear ramp of the exponentiated output. Such a
circuit is depicted in Fig. 15. Very recently, a new gen-
eration of commercial ultralow-noise current preampli-
fiers with noise figures of 30 aA/A(Hz) at 0.1 Hz have
become available. With such advanced instrumentation,
measurements with sub-fA resolution will likely be
achievable, further expanding the dynamic range of the
tunneling current-voltage measurements.

B. Point-contact experiments

Milliken et al. (1996) pioneered the investigation of
tunneling between two n51/3 edges in the conventional,
point-contact geometry. They reported several indica-
tions of non-Fermi-liquid behavior. In particular, they
observed a marked difference in the low-temperature
behavior of tunneling resonances for tunneling between
two n51/3 edges versus two n51 edges, as shown in Fig.
16. In the two cases, the resonances were observed as
the point contact was gradually closed by the application
of increasing negative gate voltages, under the condition
the filling factor in the quantum Hall fluid was tuned via

FIG. 15. A continuous-sweep, exponential-amplifier ramp via
a linear Vramp input. The exponential output is used to bias the
tunnel junction in a sample. The output spans several decades.
To compensate for the poor frequency response of the isola-
tion transformer circuitry (Fig. 14) at the 2.3-Hz lock-in fre-
quency, an integrated signal of the exponentiated output is
added on to achieve flatness during each 1/2 cycle of the
square wave to better than 5%.
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the magnetic field to 1/3 or 1, respectively. Whereas in
the n51 case, the resonances became virtually tempera-
ture independent below 101 mK, in the n51/3 case the
resonances exhibited substantial sensitivity to a decrease
in temperature from 172 to 41 mK. Notably, the width of
the resonances narrowed appreciably, exhibiting a varia-
tion consistent with the functional form of T2/3 predicted
by the effective chiral Luttinger liquid theory. Further-
more, clear nonlinear behavior in the off-resonance tun-
neling characteristics measurable in the tail of resonance
peaks was observed. These observations are qualita-
tively consistent with theoretical predictions. Subse-
quent work by Turley et al. (1998) provided confirma-
tion of several qualitative features, although resonances
in the n51/3 region were not investigated, while Ando
et al. (1998) presented evidence for resonant tunneling
between multiple-edge channels, which may be inter-
preted as supportive of either Luttinger-liquid or Fermi-
liquid behavior.

Beyond the qualitative aspects, it is less straightfor-
ward to extract quantitative information from this type
of experiment. Because of the low and broad tunnel bar-
rier achievable in this point-contact geometry, a limited
energy range is accessible before significant distortion of
the barrier tunneling characteristics complicates the ex-
traction of the tunneling density of states. Consequently,
within the limited temperature range of a factor of 2–3,
in the case of off-resonance tunneling, the differentia-
tion of a power-law temperature dependence (T4) from
conventional variable-range hopping forms (e2(To /T)1/2

or e2(To8 /T)1/3
), based on least-squares analysis, for ex-

ample, is not clear cut. Similarly, the establishment of
the precise functional dependence of the linewidth in
the tunneling resonances poses a challenge (Maasilta
and Goldman, 1998). Furthermore, some aspects of
these results have also proven difficult to reproduce to
date (Alphenaar et al., 1995; Kouwenhoven and
McEuen, 1995). Nevertheless, these experiments pro-
vided a glimpse of the novel non-Fermi-liquid character
of the n51/3 fractional Hall edges.

FIG. 16. Conductance vs point-contact voltage: (a) at the n
51/3 plateau for T541 mK (solid line) and 172 mK (dashed
line); (b) at the n51 plateau for T542 mK (solid line) and 101
mK (dashed line). From Milliken et al., 1996.
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C. Cleaved-edge experiments

The author and co-workers achieved a breakthrough
in observing clear power-law characteristics in both the
I-V relation and the temperature dependence of the
tunneling conductance (Chang et al., 1996; Levi, 1996),
by use of the novel CEO geometry (Pfeiffer et al., 1990;
Grayson et al., 1996). In this geometry tunneling takes
place from a 3D, bulk n1 doped GaAs metal over-
grown on the (011) plane into the edge of a fractional
quantum Hall fluid within a quantum well in the (100)
plane. Devices of this geometry are fabricated via a two-
step growth process discussed below. (See Figs. 12, 17,
and 18.) Here the ability to create well controlled, sharp
boundaries, and a tall and thin barrier has opened up
new possibilities for studying the chiral Luttinger liquid.

1. Crystal and sample preparation

Pfeiffer et al. (1990) pioneered the cleaved-edge over-
growth (CEO) technique for the molecular-beam epi-
taxy (MBE) growth of GaAs/AlxGa12xAs on the uncon-
ventional (011) cleavage plane. The overgrowth takes
place after an initial growth in the conventional (100)
direction and subsequent in situ cleaving along the (011)
direction. Since the (100) and (011) planes are perpen-
dicular to each other, the overgrowth achieves structures
that contain an element of three dimensionality, going
beyond the two-dimensional layered growth in the (100)
direction alone. In Fig. 17 we show some of the unusual
structures that can be obtained using this CEO tech-
nique. By the combination of growths in the two direc-
tions and suitable modulation doping, it has been pos-
sible to fabricate 1D wires in which the walls of

FIG. 17. Several unusual electron-gas geometries made avail-
able by the cleaved-edge overgrowth (CEO) technique. Clock-
wise from upper left: two-dimensional electron gas (2DEG) on
the (011) plane, 1D quantum wire, T wire, and L-shaped elec-
tron gas.
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confinement are nominally uniform to one monolayer of
atoms (Zaslavsky et al., 1991; Kurdak et al., 1994; Weg-
scheider, Kang, et al., 1994; Wegscheider, Pfeiffer, et al.,
1994; Someya et al., 1995; Yacoby et al., 1996; De-
Picciotto et al., 2001). Such uniformity is nearly impos-
sible by any state-of-the-art lithographic techniques. To
date the most successful application of CEO to technol-
ogy is the invention of the T-wire laser based on elec-
tronic transitions between 1D subbands in the 1D quan-
tum wires (Wegscheider, Kang, et al., 1994; Wegscheider,
Pfeiffer, et al., 1994; Someya et al., 1995). Here, the 1D
quantum wire is formed at the T junction of quantum
wells grown separately in the (100) and (011) directions.
Going one step further by successive cleaved-edge over-
growth in two orthogonal directions, a cleaved-edge
quantum dot has now been invented as well (Weg-
scheider et al., 1997). In addition, a novel surface
resonant-tunneling diode structure has been demon-
strated on the (011) direction, where tunneling occurs
through a 1D quantum wire (Zaslavsky et al., 1991; Kur-
dak et al., 1994).

By virtue of the same process which makes it possible
to grow quantum wires with minimal width fluctuations,
one can interchange the GaAs and AlxGa12xAs to form
energy barriers of unparalleled uniformity, as shown in
Fig. 18 left. Not only can one design structures in which
tunneling takes place between different electron gases
within the (011) plane, it is also possible to achieve tun-
neling between electron gases residing separately in the
(100) and (011) planes, through a barrier grown in the
(011) plane (Fig. 18 right). A variation of these types of
structures has proven to be extremely useful for edge
tunneling in the fractional quantum Hall regime.

In the devices used in the edge-tunneling experiments,
the aluminum content in the thin AlxGa12xAs barrier,
x , is varied between 0.1 and 0.3 (Chang et al., 1996, 1998,
2001; Grayson et al., 1996, 1998, 2001, 2002; Hilke et al.,
2001). The sharp edge is formed by in situ cleaving along
the (011) direction, overgrowth of the thin barrier, fol-
lowed by a 15-nm region of undoped GaAs and the
heavily doped n1GaAs metal. The barrier potential,
which results from a band-gap discontinuity between the
AlxGa12xAs and GaAs, imposes a nearly atomically
sharp potential of 100 meV in height on the electrons
relative to the band bottom at x50.1, while an even
higher barrier occurs when x.0.1. The high-mobility
2DEG in the (100) plane is terminated in the (011) di-
rection by this abrupt barrier, giving rise to a structurally

FIG. 18. Cleaved-edge overgrowth structure for 2D-to-2D tun-
neling: left, in the (011) plane; right, from the (011) plane to
the (100) plane.
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TABLE I. Sample parameters.

Sample
n

(1011 cm22)
m

(cm2/V s)
EF

(meV)
Eo

a

(meV)
QW
(nm)

Barrier
(nm)

n1 Doping
(1018 cm23)

mn1

(meV)
n:D

(meV) Figures

1.1 1.08 2.93106 3.9 23 25 9.0 2.131018 90 1/3: 450 1, 20–24, 30
31, 32, 34, 35

1.2 1.16 3.33106 4.1 23 25 22.5 2.131018 90 1: 1450 25, 30
1.3 1.13 3.23106 4.0 23 25 12.5 2.131018 90 26–28, 30

31, 32
1.4 1.27 2.93106 4.5 24 25 24.5 2.131018 90 30
2 0.87 1.43106 3.2 23 25 9.0 2.131018 90 1/3: 320 1, 23, 29

30, 34
3.1 2.06 1.63106 7.3 31 25 12.5 2.131018 90 1: 2600 25, 30
3.2 1.94 1.53106 6.9 31 25 9.0 2.131018 90 2/3: 220 25, 30
4 1.80 2.03106 6.4 30 25 9.0 2.131018 90 2/3: 140 25, 30

5.1 1.24 0.53106 4.4 24 25 16.0 2.131018 90 30
5.2 1.09 0.53106 3.9 24 25 9.0 2.131018 90 1/3: 380 30
6 0.61 1.03106 2.2 8 25 5.0 2.131018 90 32

aEstimates based on Stern and Das Sarma (1994).
sharp 2DEG edge structure, in direct contrast to the
situation in a gated, smooth boundary. The barrier thick-
ness is of order 5–25 nm, while its height rises ;75 meV
above the 2DEG chemical potential, far exceeding the
2DEG Fermi energy of ;4 meV. Note that in a quan-
tum well the lowest subband energy is ;10–25 meV
above band bottom.

A typical, complete structure consists of a delta-doped
quantum well on a GaAs (100) substrate situated 600
nm below the surface, followed by the cleaved-edge
overgrowth of the barrier on the (011) plane, the 15 nm
of undoped GaAs, and a 485-nm layer of highly doped
n1GaAs (see Fig. 12). The n1 doping density is in the
0.5–2.231018-cm23 range. It is essential to use a quan-
tum well to confine the 2DEG rather than a single het-
erojunction, to prevent leakage through a second chan-
nel. In the undesirable case when a single heterojunction
is used in place of the quantum well in the initial (100)
growth, this second channel will form at a second
heterojunction on the (011) plane between the GaAs
of the first growth and the cleaved-edge overgrowth
Al0.1Ga0.9As barrier. Although in principle this second
heterojunction is undoped and devoid of carriers, under
even a small voltage bias carriers can readily tunnel
across the Al0.1Ga0.9As barrier from the 3D n1GaAs
layer into the (011) 2D layer and subsequently trickle
down into the 2DEG in the (100) heterojunction,
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thereby shorting out the highly suppressed tunneling
path into the chiral Luttinger liquid at the 2DEG edge.

Because the bare tunneling matrix element across the
barrier is strongly dependent on magnetic field (Sec.
III.C.2), to obtain data spanning a sizable range of
Landau-level filling factor n, corresponding to different
fractional quantum Hall fluids, it is necessary to perform
measurements on a set of samples with varying 2DEG
densities and barrier thicknesses. In Table I we summa-
rize the device characteristics, while the substrate
growth parameters are summarized in Table II. For ex-
ample the set of samples 1.1, 1.2, 1.3, and 1.4 were all
grown from the same high-quality quantum-well sub-
strate, but with different tunnel barrier thicknesses. For
these samples, the 2DEG is of density ;1.08
31011 cm22 and mobility ;33106 cm2/V s. Sample 2
has a 2DEG density of 0.8731011 cm22 and a mobility
of 1.83106 cm2/V s, etc. The Al0.1Ga0.9As barrier thick-
nesses for samples 1.1, 1.2, 1.3, and 1.4, are 9, 22.5, 12.5,
and 24.5 nm, respectively. The n1GaAs is doped to
0.5–231018 cm23 carrier density, yielding a chemical
potential of 29–85 meV from the GaAs band bottom
(34–90 meV from the impurity band bottom), while the
chemical potential of the 2DEG is approximately 27
meV (Eo1EF) above band bottom for samples 1.1, etc.
Charge redistribution can take place across the barrier
due to the difference chemical potential. The actual den-
TABLE II. Substrates.

Sample n (1011 cm22) d , spacer distance (nm) s , surface distance (nm)

1 1.08–1.27 60 600
2 0.87 39 600
3 1.94–2.06 40 450
4 1.80 40 580
5 1.09–1.24 40 590
6a 0.61

aSymmetrically doped on both sides of the quantum well.
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sity profile will also depend on whether residual silicon
dopants penetrate into the 15-nm undoped GaAs buffer
layer during the regrowth process (see Levitov et al.,
2001 and Chang, 2002 for a full discussion). Most of the
available data were taken in devices grown with alumi-
num content x50.1, with the exception of the work of
Hilke et al. (2001), for which x50.2.

A typical device used in measurement is of physical
dimensions 13330.15 mm3 (width3length3thickness)
where the length of the Al0.1Ga0.9As tunnel barrier
spans the sample width of 1 mm. Because of this long
barrier, in off-resonance tunneling processes electrons
are most likely injected and removed at many pointlike
contacts along the 1 mm length. Moreover, the tunneling
events at different points are believed to be largely in-
coherent. This is to be contrasted to the case of resonant
tunneling discussed in Secs. II.B.6 and III.C.5. To make
ohmic contact to the 2DEG in the (100) quantum well
and to the 3D bulk n1GaAs on the cleaved (011) edge,
indium metal is used in two separate steps. These two
steps are necessary to avoid unwanted shorting of the
tunnel barrier due to uncontrolled indium diffusion. The
contact arrangements are shown in Fig. 19. In the first
step, indium is diffused into the quantum well at various
contact positions located away (.0.5 mm) from the tun-
nel junction. This enables ohmic contacts to be made to
the 2DEG while avoiding degradation of the tunnel bar-
rier due to the penetration of residual amounts of in-
dium. These 2DEG contacts are utilized for in situ mea-
surements of the transport coefficients, the longitudinal
(Rxx) and Hall resistances (Rxy), enabling the charac-
terization of the electron density and mobility. The sec-
ond step involves contacting the 3D n1GaAs layer on
the cleaved edge. To accomplish this, indium is applied
to the n1GaAs using a soldering iron at ;200 °C. Note
that the melting point of indium is 156 °C. Typically, the
n1GaAs is sufficiently highly doped (0.5–2.2
31018 cm23) that an ohmic contact is routinely made.
This ohmic behavior of the n1GaAs contact persists
down to mK temperatures. It has turned out to be abso-
lutely necessary that the indium on the n1GaAs not be

FIG. 19. (Color) Sample with indium contacts. The dark con-
tacts are first annealed to enable diffusion into the GaAs quan-
tum well, where the 2DEG resides. Subsequently the light-
colored contacts were cold-soldered onto the n1GaAs metal
at 200 °C to prevent any diffusion or shorting of the tunnel
barrier.
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annealed at temperatures exceeding ;350 °C to avoid
accidental diffusion into the tunnel barrier. Even trace
amounts of indium will short out the power-law tunnel-
ing behavior! With careful, consistent preparation, high-
quality electron-tunneling data are readily obtainable.

2. Tunneling conductances at n51/3

We begin the data presentation with the first clear evi-
dence of power-law characteristics for electron tunneling
into a fractional quantum Hall edge. Making use of the
cleaved-edge overgrowth devices, we studied the tunnel-
ing conductance @G(T)# , current-voltage (I-V) rela-
tionship, and differential conductance (dI/dV), for
electron tunneling between the bulk-doped n1GaAs
metal and the edge of various incompressible fractional
quantum Hall fluids. For tunneling into the n51/3 edge
we found that I}V2.76 .06 and G}T1.756 .08, where the
two dependences yielded nearly identical values for the
exponent a of '2.7. In contrast, tunneling into a n51
edge was essentially linear in the I-V , while G was tem-
perature independent. These results strongly indicated
that the 1/3 fractional edge behaves like a chiral Lut-
tinger liquid, while the n51 edge behaves as a one-
dimensional Fermi liquid.

In Fig. 20(a), we show the longitudinal resistance
(Rxx) and Hall resistance (Rxy), and in (b) the tunnel-
ing conductance (Gtun), for sample 1.1 versus magnetic
field at a temperature of 50 mK. The n51/3 fractional
quantum Hall effect occurred at 13.4 T. The conduc-
tance Gtun exhibited an abrupt drop above a magnetic
field of 9.5 T. This reduction arises from two contribu-
tions. The first is the chiral Luttinger liquid nature of the
edge states, as will be shown in subsequent figures. The

FIG. 20. Magnetic-field traces of (a) longitudinal resistance
(Rxx) and Hall resistance (Rxy); (b) tunneling conductance
(Gtun), at low bias for sample 1.1. The temperature is 50 mK.
From Chang et al., 1996.
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second is the tunneling matrix element across the
Al0.1Ga0.9As barrier. In the Landau gauge where the
vector potential A52Byx̂ , for a perfect, infinitely long
barrier, the matrix element is separable into a product of
three components associated with the vertical (B) direc-
tion z and the directions along the barrier x and normal
to the barrier y . The z matrix element couples the 3D
n1GaAs electrons into the 2D quantum-well (x-y)
plane and is insensitive to B . At low and intermediate
B , the y matrix element is dominated by the 9-nm-thick
barrier and is also insensitive. The x component, how-
ever, can exhibit substantial B dependence. The x eigen-
function eikx is indexed by the momentum k , which is
proportional to the y center of coordinate yo ; i.e., k
;yolo

2 . Tunneling through the barrier involves a dis-
placement in y of Dyo;9 nm, accompanied by a change
in k of Dk;Dyolo

2}B . Since the barrier potential is
translationally invariant in x , it cannot couple states of
different k ; the x matrix vanishes and tunneling is for-
bidden. However, the presence of imperfections and dis-
order in a real sample, as well as its finite extent, breaks
the x translational invariance and tunneling becomes
possible. Nevertheless, Dk is proportional to B . At
higher magnetic fields, a larger momentum change is re-
quired. The x matrix element which measures the x Fou-
rier transform of the total potential, V(Dk ,y ,z), is ex-
pected to fall off with B}Dk . Clearly, for the case of
ionized impurities or interface roughness mediating the
tunneling process, this falloff does occur. Moreover, at
high B the tunneling matrix may become limited by the
tunneling barrier. The tunneling probability Ptunn drops
exponentially with B due to its dependence on the mag-
netic length, lB5(\/eB)1/2: Ptunn;e2(xo /lB)2

;e2B/Bo.
To demonstrate the tunneling density-of-states contri-

bution to the reduction of the tunnel current, in Fig. 1
we show the I-V characteristics in a log-log plot for
samples 1.1 and 2 at the filling factor n51/3. The respec-
tive magnetic fields were 13.4 T and 10.8 T, and the tem-
perature was 25 mK. At voltages below ;12 mV, the
tunneling was thermally dominated (kT/e52.15 mV)
and I-V exhibited a linear relationship. The respective
tunneling resistances were 100 and 300 MV. Above a
crossover voltage of ;6 kT/e;12 mV, the I-V followed
a nonlinear power law given by I}Va where a52.7
60.06 and 2.6560.06, respectively. The power law per-
sisted over 1 decade in V and 2.7 decades in I , beyond
which I was observed to fall below the power law. This
power-law behavior was a main prediction of the chiral
Luttinger effective-field theory due to Wen (1992, 1995),
Kane and Fisher (1992b, 1995), Moon et al. (1993), and
Fendley et al. (1995a, 1995b) and arises from the power-
law tunneling density of states. However, the observed
exponent was smaller than the prediction of exactly 3
from effective theories. This discrepancy will be ad-
dressed in detail in the ensuing sections. Beyond the
prediction of a simple power law, the data could be fitted
to the Kane and Fisher universal scaling form, which
holds in the limit Gtun!GHall5e2/3h . For tunneling
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
into the 1/3 edge from a normal metal, it is approxi-
mately given by (Kane and Fisher, 1992b, 1992c)

I}Ta@x1xa# , (226)

where

x[
eV

2pkT
;a53. (227)

Note that this expression is an approximation to Eq.
(178), since for a between 2 and 3, the extra factor
G@(a11/2)#2'1 and actually falls between the values
0.78 and 1. Because our exponent was different from 3,
we replaced a by 2.7 and 2.65, respectively, and plotted
the results as the solid curves. The two fitting param-
eters were the exponent a and the proportionality con-
stant between the I and V . The fits appear to be excel-
lent. In other words, the predicted 1/2p scaling factor
between the bias voltage and the temperature was borne
out by experiment. The power-law region exceeded

FIG. 21. The data in Fig. 1 for sample 1.1 plotted in different
functional forms: (a) log10 I vs V ; (b) log10 I vs 1/V . In (b), the
solid dots represent the same data plotted with the x axis ex-
panded by a factor of 4. The lack of any straight portion dem-
onstrates the poorness of these functional forms as fits to the
data. The corresponding functional forms are I}e2V/Vo and I

}e2Vo8 /V.

FIG. 22. Temperature evolution of the current-voltage (I-V)
characteristics at n51/3: (a) log-log plot of I-V characteristics
for sample 1.1 at n51/3 at six different temperatures; (b) col-
lapsed curves for the data in (a) where Icoll(V8)
5I(V)@G(To)/G(T)#V→0 , To526 mK and V85VT/To .
From Chang et al., 1996.
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three decades in current and 1.4 decades in bias. The
large dynamic range enabled us to rule out other com-
peting functional forms, such as exp@2V/Vo#, or
exp@2Vo8/V#, which gave substantially poorer fits, as
shown in Fig. 21. Next we demonstrate that the cross-
over voltage from linear to power-law behavior scales
with temperature by plotting the I-V characteristics be-
tween 26 and 840 mK in Fig. 22(a) and the collapsed

FIG. 23. Bias-voltage dependence of the differential tunneling
conductance, dI/dV , and its temperature evolution at low
bias: (a) Log-log plot of dI/dV for samples 1.1 (crosses) and 2
(solid circles) at n51/3, at a temperature of 25 mK. The solid
curves represent the theoretical dI/dV obtained from Fig. 1.
(b) Log-log plot of the temperature dependence at low voltage
bias for samples 1.1 (upper curve) and 2 (lower curve) at n
51/3. The respective voltage biases are 4.97 and 2.64 mV. The
solid straight lines represent power laws with the respective
exponents, a21, of 1.75 and 1.5. From Chang et al., 1996.

FIG. 24. The data in Fig. 23(b) replotted (a) in an
Arrhenius plot, and (b) in variable hopping forms of

G}e2(To /T)1/2
@ log10 G/Go}2(To /T)1/2# and G}e2(To8 /T)1/3

@ log10 G/Go8}2(To8/T)1/3# . The clear absence of a straight por-
tion in any of the three plots demonstrates that these func-
tional forms do not adequately describe the data. The dashed
line in (b) is included for the purpose of comparison. As the
variable-range hopping exponent becomes smaller, from 1 to
1/2 and 1/3, the fit improves. This is to be expected since a
power law that corresponds to the functional dependence
log10 G/Go}log10 T/To is obtained in the limit where this expo-
nent approaches zero.
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curves normalized to the 26-mK curve in Fig. 22(b). In
Fig. 22(b), data points beyond the breakoff voltage of
;1 mV were removed for clarity; all other data points
fell on a universal curve as required.

In Fig. 23(a) we plotted the differential conductance
dI/dV , measured independently. The agreement with
theory is also quite good. Here, the solid curves repre-
sent the dI/dV of the corresponding theoretical curves
in Fig. 1. In Fig. 23(b), we plot Gtun for samples 1.1 and
2 at low voltage bias versus temperature in a log-log
plot. Power-law behavior was again observed with an
exponent of 1.7560.08 and 1.560.08, respectively, al-
though the data exhibited a slight meander about ideal
behavior. The dynamic range was roughly 1 decade in
temperature and 1.7 (1.5) in Gtun . These exponents
yielded values for a close to those obtained from I-V
and dI/dV , as required by theory. As a check, we at-
tempted an Arrhenius plot of log10 Gtun versus 1/T as
well as various variable-range-hopping functional forms
for sample 1.1, which yielded a large curvature (Fig. 24),
clearly indicating that neither a simple activated process
over an energy barrier nor standard variable-range hop-
ping is appropriate.

In Fig. 25, we plotted the I-V characteristics for the
n51 edge for samples 1.2 and 3.1, and for the n52/3
edge for samples 3.2 and 4. In direct contrast to tunnel-
ing into the n51/3 edge, the I-V characteristics were
nearly linear for the n51 case, and were slightly nonlin-
ear for n52/3, for voltage bias beyond the temperature-
dominated regime. The corresponding values of a were
1.2 and 1.14 for n51, and 1.2 and 1.42 for n52/3. Note
that for tunneling into the n51 edge, the experiment
indicated that the edge behaves as a chiral Fermi liquid.
This is a rare example of a strongly interacting 1D sys-
tem with Fermi-liquid rather than Luttinger-liquid be-
havior. In the case of tunneling into the 2/3 edge, the
power-law exponent a is nonuniversal, ranging from 1.2
to 1.42 where I}Va. The n52/3 result will be discussed
in the context of edge tunneling at general filling factors.

FIG. 25. I-V tunneling charactistics for n51 and n52/3: (a)
Log-log plot of the I-V characteristics for tunneling into the
n51 quantum Hall edge for samples 1.2 at B54.8 T (crosses)
and 3.1 at B58.5 T (solid circles). The temperature is 24 mK.
(b) Log-log plot of I-V for tunneling into the n52/3 edge for
sample 3.2 at 12.0 T (crosses) and sample 4 at 11.1 T (solid
circles) at a temperature of 25 mK. A slightly nonlinear behav-
ior is observed above ;12 mV of voltage bias. The respective
exponents a are 1.2 and 1.42. From Chang et al., 1996.
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3. Tunneling conductances at n51/2

The evidence in the previous section and its overall,
reasonably good agreement with theory shed consider-
able light on the physics of the edge of incompressible
fractional quantum Hall fluids. On the other hand, the
physical properties at the edge of a compressible fluid
were yet to be explored, for instance, the edge of the n
51/2 composite-fermion quantum Hall liquid and its
tunneling properties. A composite fermion, initially pro-
posed by Jain, is composed of a real electron (fermion)
and an integral number of flux tubes (Jain, 1989a; Willett
et al., 1990, 1993; Du et al., 1993, 1994; Halperin et al.,
1993; Kang et al., 1993). Due to these attached fluxes,
the tunneling of electrons into the bulk can be substan-
tially different from that into the edge. For bulk tunnel-
ing, the difficulty in bringing in extra fluxes to attach to
the added electrons gives rise to a pseudogap in the tun-
neling density of states and an exponential suppression
of tunneling current with bias (Eisenstein et al., 1992; He
et al., 1993). Tunneling into the edge, however, was often
surmised to be linear in its I-V characteristics, since ex-
tra flux lines can readily enter from the boundary. In the
2D bulk region of the incompressible n51/3 fractional
Hall fluid, the excitation spectrum contains a gap above
the ground state and there are no zero-energy excita-
tions. In the n51/2 fluid, no gap exists in the bulk.

Here we show that for electron tunneling into the
edge of a n51/2 fractional quantum Hall fluid, nonlinear
I-V characteristics as well as a temperature-dependent
low bias tunneling conductance G can be obtained. In
three different samples, 1.3, 1.4, and 5.1, the I-V exhib-
ited a power-law behavior reminiscent of a chiral Lut-
tinger liquid, with an exponent a of 1.8060.05, 2.10
60.10, and 1.8360.05, respectively. The exponent de-

FIG. 26. Current-voltage (I-V) characteristics for tunneling
from the bulk-doped n1GaAs into the edge of a n51/2 com-
posite fermion liquid for sample 1.3 at B59.28 T in a log-log
plot. The solid curve represent a fit to Eq. (178) for a51.80.
From Chang et al., 1998.
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duced from G(T) for the first sample yielded a51.77
60.07, which is consistent with the value of 1.80 de-
duced from the I-V curve. In essence, a was roughly
given by a51/g51/n52. These results indicated that the
edge of the compressible n51/2 fluid behaves almost
like a one-dimensional chiral Luttinger liquid and pro-
vided the first compelling evidence that Luttinger-liquid
behavior can exist at the edge of a compressible frac-
tional Hall fluid.

Figure 26 shows our main result of a nonlinear tunnel-
ing characteristic for sample 1.3 at 26 mK of 0.023 mS
corresponding to a tunneling resistance of 43 MV.
Above ;15 mV, power-law behavior with an exponent
;1.80 was observed up to an excitation of 5.6 mV. This
large excitation exceeded the voltage scale of 3.9 mV set
by the Fermi energy. We again fitted the data to the

FIG. 27. Temperature evolution of the current-voltage (I-V)
characteristics at n51/2: (a) log-log plot of I-V charac-
teristics for sample 1.3 at at six different temperatures; (b)
collapsed curves for the data in (a) where Icoll(V8)
5I(V)@G(To)/G(T)#V→0 , To526 mK and V85VT/To .
From Chang et al., 1998.

FIG. 28. Log-log plot of the temperature dependence at low
voltage bias for sample 1.3 at n51/2. The dash-dotted straight
line represents a power law with an exponent, a21, of 0.77.
From Chang et al., 1998.
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Kane/Fisher functional form appropriate for a chiral
Luttinger liquid with a dimensionless conductance g of
1/a(e2/h) [Eq. (178)] (Kane and Fisher, 1992c; Chamon
and Fradkin, 1997):

I5gTaH FGS a11
2 D G2

x1xaJ , (228)

where x5eV/2pkT , G is the gamma function, and g is a
proportionality constant. A best fit was achieved with
a51.80 and is shown as the solid curve in Fig. 26. In Fig.
27(a) we show the temperature evolution of the I-V
curve. Rescaling the voltage by V(To /T) and the cur-
rent by I(V)@G(To)/G(T)#V→0 , data at all tempera-
tures can be collapsed onto a universal curve, as de-
picted in Fig. 27(b).

In Fig. 28 we plotted the temperature dependence of
the small-bias linear conductance G in a log-log plot. A
power law with G}T0.7760.07 was observable between 26
and 900 mK. The exponent of a2150.77 is consistent
with the value of a51.8060.05 deduced from the I-V
curve in Fig. 26 and satisfies the requirement of Eq.
(228), provided Eq. (228) is relevant and appropriate to
tunneling into the n51/2 edge.

4. Power-law exponents and universality

The observation of power-law electron tunneling char-
acteristics at n51/2 led us naturally to inquire about the
behavior at general filling factors. For the best traces,
power-law behavior with a dynamic range exceeding
4 1/2 decades in current and 1 1/2 decades in voltage was
observed. Two major results emerged: (1) there is a con-
tinuum of power-law I-V behavior, and (2) the I-V ex-
ponent is approximately given by 1/n, with the edge ap-
pearing to behave as a single-mode Luttinger liquid with
reduced conductance parameter g;n . Our results came
as a major surprise, first because the observation of
Luttinger-liquid behavior at all fillings was not fully an-
ticipated (Chang et al., 1998), as incompressibility of the
bulk fluid (gapped behavior) was considered crucial to
the existence of a Luttinger liquid; and second because
the power-law exponent lacked clear-cut plateau fea-
tures, in direct contrast to theoretical analyses within the
effective-field theories based on the intermixing of co-
propagating versus counterpropagating edge modes
(Wen, 1992; Kane and Fisher, 1995; Shytov et al., 1998).

The tunneling exponent a was extracted from the I-V
data utilizing the theory of Chamon and Fradkin (1993)
for a single-mode CLL with g5n , which models the
wide tunnel junction as a sequence of incoherent, point-
like tunnel junctions, while treating the 3D metal as a
chiral Fermi liquid. Although the justification for a
single-mode CLL at arbitrary n is still lacking, this
model was successful in fitting our data. Ideally, an I-V
curve consists of three regimes:

(a) a low voltage bias regime with a linear I-V rela-
tionship in which the thermal energy kT dominates
over the voltage-bias energy eV (eV<2pkT),
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(b) an intermediate voltage-bias regime (2pkT<eV
<TS) exhibiting the important power-law I-V be-
havior, and

(c) a high-bias saturation regime (eV.kTS) in which
I-V approaches linearity again and where the tun-
neling conductance saturates to the two-terminal
conductance of the 2DEG as the tunnel barrier be-
comes transparent.

Here TS represents a crossover temperature with kTS
the crossover energy above which saturation takes place.
Since T is determined by experimental conditions and n
from the Hall measurement, the only adjustable param-
eters are a and TS (b5a21, r5 2pT/TS):

I5E n
e2

h

3S 12
e2 ~1/2! rb

F S V

rTS
D b

G2S a11

2
D ~12e2 ~b/2! rb

!11
G a/b D dV .

(229)

Equation (229) [Eq. (198)] is expected to be appropriate
for a single-mode Luttinger liquid with reduced conduc-
tance g51/a . At B511.0 T (n51/3), it fit the data with
remarkable precision (Fig. 29 top, dotted line). For com-
parison we also plotted the series resistance model used
to guide our intuition (Fig. 29 top, dashed line) and
noted that the knee of the crossover region at high bias
was too soft.

Next we examined the series of log-log I-V curves
over the whole range of the B field for sample 2 (see
bottom of Fig. 29). At the higher B fields (13.0 T) we
observed power-law behavior up to 6 decades in current,
whereas at the lowest field (7.0 T) the curve was ap-
proximately linear over the entire range. At lower B
,10.0 T (corresponding to high n.2/5), the fit of the
Chamon-Fradkin theory to each trace was still good, and
we were able to extract a and TS . Nonetheless the fit
was not as exact in this range, as indicated by the larger
error bars in Fig. 30.

Similar I-V measurements were performed on the
three samples 1.1, 5.2, and 1.2 (Table I); we summarize
the full result of the exponent a versus 1/n in Fig. 30.
Samples 1.1 and 5.2 yielded sufficient decades of power-
law behavior to fit to the Chamon-Fradkin theory,
whereas sample 1.2 exhibited a strong power law only at
the highest magnetic fields, settling to a weak power law
with a;1.1 over the 1/n range of 1–1.4. Error bars for
representative data points are provided at various fill-
ings. For samples 2 and 1.1 above 1/n.2.8, and sample
5.2 above 1/n.2.4, the error is negligible.

Based on our results we make the following observa-
tions. First, the plot shows a remarkable continuum of
power-law exponent values spanning the entire range 1
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,a,4. This was the first experimental evidence that the
characteristic CLL coupling constant g might in fact as-
sume a whole continuum of values. Second, the trend in
a versus 1/n is linear for 1/n.1.4 with a.1.16/n20.58.
This linear behavior appeared to roughly characterize all
four samples studied, regardless of electron mobility,
carrier density, or tunneling barrier thickness. It is in
striking contrast to theoretical expectations that a would
reflect the bulk transport and therefore exhibit plateaus
whenever the Hall conductance is quantized. Finally, for
1/n,1.4, the exponent saturated at a lower limit, a
51.1, indicating an approach to Fermi-liquid behavior.
For certain samples, e.g., 1.1 and 5.2, hints of a possible
plateau feature in the exponent near 1/n51/3 do appear.
However, the limited range in 1/n (or B) for the feature
precludes a definitive conclusion. This important issue is
addressed in a subsequent experiment.

The observation that power-law behavior is not re-
stricted to incompressible quantum Hall fluid edges and
is in fact present for general filling factors, with the ex-
ponent a varying in a continuous manner roughly as 1/n
for 1/n.1.4 (Chang et al., 1996; Grayson et al., 1998)
presented a puzzle. On the one hand, the effective

FIG. 29. (Color in online edition) I-V tunneling characteristics
at different magnetic fields: Upper curve, log-log I-V for
sample 2 at 11.0 T, n51/3. Theory of Chamon and Fradkin
(1997), Eq. (229), (dotted line) and simple series resistance
model (dashed line) are overlaid for comparison. Lower
curves, log-log I-V for sample 2 at different values of B from
7.0 to 15.0 T in 0.5-T steps. Solid lines correspond to the la-
beled magnetic fields. Dotted lines correspond to magnetic
fields between those of the solid lines in 0.5-T increments.
From Grayson et al., 1998.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
theory is able to produce power-law behavior at rational
filling fractions for the Jain series of incompressible flu-
ids (Kane and Fisher, 1995), and the theory of Shytov,
Levitov, and Halperin (1998) based on the composite-
fermion effective-field theory predicts power laws at
continuous values of inverse filling, 1/n (more precisely,
Hall resistivity, rxy). On the other hand, the predicted
steplike plateau features in a (contained in the dashed
line in Fig. 30) stand in contrast to the featureless linear
behavior of the experiment. These predictions rely di-
rectly on our understanding of the relation between the
edge-mode structure and the topological characteriza-
tion of fractional Hall states, as well as the intermixing
of co-propagating and counterpropagating edge modes
into charged and neutral varieties. The disagreement be-
tween theory and experiment involved two important
issues. First, the absence of plateaus for 1/n.1.4 was
difficult to reconcile with the theoretical expectation
even without accounting for the finite widths of quan-
tized Hall plateaus. Second, the lack of a plateau near
bulk filling, n51/3 (1/n53) despite the appearance of a
Hall plateau in rxy , indicated that edge tunneling char-
acteristics must not be solely dictated by the bulk Hall
resistivity, again in contradiction to expectation. This ab-
sence of structure was even invoked by some workers as
evidence that Luttinger-liquid behavior had not been
conclusively demonstrated (Altland et al., 1999;
Bockrath et al., 1999; Egger, 1999). Because the n51/3
fractional quantum Hall fluid possesses the largest gap
and is robust, evidence for plateauing in the exponent
was of critical importance. Here we demonstrate a clear
observation of a plateau feature for the a versus 1/n
dependence, with an a value close to 3. The conclusion
of the existence of a plateau feature (Chang et al., 2001)
was obtained from careful analysis of I-V tunneling data

FIG. 30. Power-law exponent a vs 1/n, the reciprocal of the
filling factor, for four samples. The data from Chang et al.
(1996, 1998), plotted as open circles, are included for
reference—samples 1.1 and 2 at n51/3, samples 1.3, 1.4, and
5.1 at n51/2; samples 3.2 and 4 at n52/3; samples 1.2 and 3.1
at n51. Inset, TS vs 1/n for three samples whose traces
spanned high excitations. From Grayson et al., 1998.
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with precise fitting to the Chamon and Fradkin (1997)
expression, followed by a statistical F test for the x2 of
the a vs 1/n fits. However, the 1/n position where this
plateau occurs was observed to be sample dependent.

In Fig. 31 we present log-log plots of the tunneling
I-V characteristics (solid curves) for samples 1.1, and
1.3, over a wide range of magnetic fields/filling factors in
order to deduce the behavior of the power-law exponent
a as a function of 1/n. Successive curves are shifted in
the positive direction on the horizontal axis by 0.3 units
(a factor of 2) for clarity. The dashed curves represent
best fits to the data. Essentially all traces for sample 1.1
exhibited the expected behavior with a low-bias linear
region, an intermediate power-law region, and a large-
bias saturation region. Sample 1.3 exhibited a nonideal
saturation regime, which may result from the opaque-
ness of the thicker tunnel barrier of 12.5 nm.

a was again extracted in a systematic way by fitting
the entire I-V range containing the three bias regimes to
the Chamon-Fradkin expression for the tunnel current,
with the added constraint that Va5V1IRs where Va is
the voltage applied on the device across contacts and Rs
a 2DEG series resistance. Since the temperature was

FIG. 31. Log-log plot of the I-V characteristics (solid lines) for
electron tunneling from the bulk doped n1GaAs into the frac-
tional quantum Hall edge: (a) sample 1.1 at various magnetic
fields from 12 T to 19 T in steps of 0.5 T; 18 and 18.5 T are
excluded. Corresponding filling factors vary from 2.69 to 4.26.
Dashed lines represent best fits to the Chamon-Fradkin ex-
pression, Eq. (229). (b) Sample 1.3 at B57.24, 7.5, 7.76, 8.02,
8.28, 8.53, 8.79, 9.31, 9.83, 10.34, 10.86, 11.38, 11.9, 12.4, and
12.9 T, with 1.611,1/n,3. Dashed lines represent best fits.
Successive curves are displaced by 0.3 units (ln 2) in the hori-
zontal direction for clarity. From Chang et al., 2001.
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known, three parameters were needed: a, TS , and the
2DEG series resistance Rs . Inclusion of the parameter
Rs was necessary to properly fit the saturation regime,
since at small filling factors (large 1/n) the background
from the longitudinal resistance of the 2DEG (rxx)
could be substantial (of order 100 kV), and since the
edge and bulk densities can differ (Levitov et al., 2001;
Chang, 2002).

Figure 32 summarizes the fitting parameters a, TS ,
and Rs deduced for two sets of samples versus 1/n. Re-
sults for samples 1.1 and 1.3 are presented together,
since they contain an identical 2DEG. Focusing our at-
tention on a in panels (c) and (d). The presence of a
plateau was established by fitting our a vs 1/n data to
curves containing (i) three line segments, where the
middle exhibited a reduced slope, (ii) two line segments,
and (iii) a single straight line, indexed by 3, 2, and 1,
respectively. Application of the statistical F test (Chang
et al., 2001), conclusively demonstrated that the fits con-
taining a plateau feature were superior. In both data sets
the plateau region was found to occur at a;2.7 with
corresponding reduced slopes of 0.1560.15 and 20.14
60.18. In terms of 1/n the plateau region occurred at
2.76,1/n,3.33 and 4.12,1/n,4.76, respectively. These
positions were shifted to higher values compared to the
theoretical prediction of 2,1/n,3.3 (Kane and Fisher,
1995; Shytov et al., 1998) with the finite Hall plateau
width taken into account. In the first sample set, the
position corresponded well with the bulk n51/3 quan-
tum Hall plateau. In the second set it was shifted sub-
stantially beyond the position of the n51/3 Hall plateau.
At present it is not fully understood how this shift oc-
curs, although one possibility might be edge reconstruc-
tion due to density gradients (Lee and Wen, 1998).

More recently, Hilke et al. studied edge tunneling in a
cleaved-edge device with a relatively high 2D electron
density, but very low n1 doping (331017 cm23) and
found a transition between Fermi-liquid and Luttinger-

FIG. 32. The chiral Luttinger-liquid exponent a vs 1/n: (c) for
samples 1.1 and 1.3; (d) for sample 6. Representative error
bars are as shown and solid curves are as labeled. The param-
eters TS and Rs vs 1/n: (a) for sample 1.1; (b) for sample 6.
From Chang et al., 2001.
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liquid behavior, qualitatively confirming the above re-
sults. The extracted exponents are shown in Fig. 33.

They estimated an the edge density that is reduced by
24% from the bulk value and pointed out that with this
reduction their data are consistent with an a reaching
;3 at 1/nedge'2.25, close to the value of 2 predicted by
the effective-field theories. However, it appears that
their estimate, deduced from identifying the position
where a began increasing beyond the Fermi-liquid value
of ;1 as the nedge51 position, did not include the con-
tribution of the finite n51 Hall plateau width. Inclusion
of this width yields a result consistent with Figs. 30 and
32 above.

5. Resonant tunneling into a biased fractional quantum
Hall edge

Aside from excellent power-law behavior in the off-
resonance tunneling characteristics detailed above, it
was mentioned in Sec. II.B.6 that manifestations of CLL
behavior should be observable in resonance tunneling as
well. Here we briefly discuss resonant tunneling into a
voltage-biased fractional quantum Hall edge, made pos-
sible only by the atomically sharp tunneling barriers
unique to cleaved-edge overgrown devices. In the reso-
nances observed on the n51/3 Hall plateau region, we
were able to identify different tunnel coupling strengths
to the metallic lead and to the fractional quantum Hall
edge. The discovery and characterization of the reso-
nances described in this section represents a new direc-
tion for studies of the physics of the fractional quantum
Hall edge.

Samples 1.1 and 2 were studied (see Table I for
sample parameters). In particular, sample 1.1 was stud-
ied in two cooldowns labeled, respectively, as 1.1A and
1.1B, and different resonances were identified by ap-
pending an additional suffix (1.1Ba, 1.1Bb, etc.). In our
presentation, all filling factors refer to the bulk values.

FIG. 33. The chiral Luttinger liquid exponent a vs the bulk
inverse filling, 1/nbulk (top axis), and vs the magnetic field, B
(bottom axis): circular data points, a 12-nm-wide barrier;
square data points, a 6-nm-wide barrier. From Hilke et al.,
2001.
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Figure 34 shows that in sample 2 the zero-bias differ-
ential conductance dI/dV at V50, exhibited a reso-
nance at nbulk50.294 (B512.6 T); sample 1.1A showed
the strongest resonance at nbulk50.338;1/3 (B
513.2 T). For the second cooldown 1.1B, four reso-
nances, 1.1Ba, 1.1Bb, 1.1Bc, and 1.1Bd, were obtained,
with the first two, 1.1Ba and 1.1Bb, located at nbulk
50.346 and 0.333 (B512.9 and 13.4 T), respectively,
within the 1/3 Hall plateau region. We focus on reso-
nances 1.1A and 1.1Ba, labeled S1.1A and S1.1Ba.

To compare S1.1A and S1.1Ba, we measured the bias
dependence of the differential conductance as a function
of B , by adding a fixed dc bias to the ac square wave
(Fig. 35), with a convention that applied the signed volt-
age to the n1 electrode while the 2DEG was held at
ground. Under bias the background conductance in-
creased due to the power-law density of states. For
S1.1A (Fig. 35 right), the peak split into two peaks of
different height, with a separation in B proportional to
the applied voltage. The excess area subtended by the

FIG. 34. Conductance resonance for samples 2, 1.1A, and 1.1B
(S2, S1.1A, and S1.1B, respectively). Inset, right: 1.1A plotted
with expanded scale against a derivative Fermi function. Inset,
left: device. From Grayson et al., 2001.

FIG. 35. dI/dV vs B at fixed dc bias for resonances 1.1Ba and
1.1A: fine lines, data; heavy lines, fit. From Grayson et al.,
2001.
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TABLE III. Parameters for lever-arm model.

1.1A
(Fermi liquid)

1.1Ba
(CLL)

1.1Bb
(Fermi liquid)

l8 0.20 0.30 0.20 Lever arm
b 10.43 meV/T 20.26 meV/T 10.59 meV/T dEr /dB

GFL 1.3 1.0 1.0 Coupling to n1

GCLL 19.7 3.5 14.0 Coupling to quantum Hall edge
31.56 .1 3661 31.76 .1 Area increase—data
(31.54) (35.9) (31.58) (Area increase—fit)
39 meV 30 meV 30 meV at bias voltage
two peaks above the background increased slightly. In
contrast, resonance S1.1Ba (Fig. 35, left), instead of
splitting, broadened into an asymmetric single peak that
leaned to the right (left) for positive (negative) bias. No-
tably, at a dc bias of 30 mV the area subtended by the
resonance above background increased dramatically, by
a factor of ;6, an altogether different qualitative behav-
ior from that of S1.1A.

The differing Fermi-liquid-like and chiral Luttinger-
liquid (CLL) -like behaviors for resonances S1.1A and
S1.1Ba, respectively, arose from the different relative
coupling strengths of the resonance to the two leads,
where we employ the notation GFL for the tunnel cou-
pling from the resonant state to the n1 lead, and GCLL to
the quantum Hall edge. The strongest peak is a factor of
100 smaller than the perfect resonant conductance,
e2/3h , indicating that overall the resonance is in the
weakly coupled limit. We utilize a simple model in which
the real-space position of the resonance in the tunnel
junction causes the resonance energy Er to depend on
bias. Assuming the resonance is bound to the local band
structure inside the barrier with energy E0 , and defining
the lever-arm parameter l as the fraction of the applied
bias that falls to the weakly coupled side of the reso-
nance yields (Grayson et al., 2001)

Er~V ,B !5leV1bB1E0 . (230)

In addition, the magnetic field can be related to an
energy scale:

ubTu5UdE

dBU5 DE

DB
50.42 meV/T. (231)

A reasonable quantitative fit of the data was achieved
by adopting the resonance formalism of Chamon and
Wen (1993) for sequential tunneling between biased chi-
ral Luttinger liquids to the present situation where tun-
neling takes place from ann1GaAs metal into the n
51/3 edge (Sec. II.B.6). The simulated resonance curves
are plotted with heavy lines against the data in Fig. 35.
The resulting fitting parameters are shown in Table III.
Here, the fit was not sufficiently precise to distinguish
between an exponent of a53 or 2.7, however. The
device-specific lever-arm parameter l8 denotes the frac-
tion of voltage bias on the n1 side of the resonant state.
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D. Discussion: Is the chiral Luttinger liquid exponent
universal?

The cumulative evidence from electron-tunneling
measurements presented in the previous sections indi-
cates that the chiral Luttinger liquid power-law expo-
nent a, for tunneling into the fractional quantum Hall
edge, deviates substantially from the universal behavior
predicted by the effective field theories. Let us summa-
rize, again, the experimental findings to date. The results
which we have established are

(1) a power-law behavior for electron tunneling into the
fractional quantum Hall edge observed in the I-V
characteristics at all filling factors from n51 to n
5;5, indicative of chiral Luttinger behavior for the
fractional Hall edge;

(2) the power-law exponent a defined by I}Va, when
plotted versus 1/n, exhibits a plateau for exponent
values near a'2.7 for the highest-quality samples,
and otherwise behaves roughly as 1/n; and

(3) in some samples the 1/n position where the plateau-
ing in a occurs can be shifted to higher 1/n, where n
refers the filling deduced from the bulk 2DEG car-
rier density, when compared to the expected posi-
tion center about 1/n53 corresponding to the n
51/3 fractional quantum Hall effect.

For comparison, we summarize the predictions of the
1D, edge effective-field theories, which strictly speaking
are appropriate for the short-ranged, d9(r) type of inter-
action (Sec. II.B). Findings from numerical studies will
be discussed below.

(1) Power-law tunneling characteristics. This is the most
fundamental chiral Luttinger liquid behavior for in-
compressible fluids.

(2) Universality in the tunneling exponent. This is di-
rectly tied to the topological characterization of the
incompressible fluids. In particular, for the 1/m
Laughlin fluids a5m exactly, while for all Jain-
sequence incompressible fluids related to the 1/m
fluid containing co-propagating edge modes only
(i.e., the n5unu/upnu11 series with p even), the ex-
ponent takes the identical value of a5upu115m .
This universality holds regardless of disorder or
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edge imperfections, as long as the Hall conductance
is quantized. For the Jain series containing counter-
propagating modes where n52unu/upnu21, the ex-
ponents will differ. However, residual disorder
drives these to universal values given by a511upu
22/unu.

(3) Luttinger-liquid-like edge dynamics for compress-
ible fluids under the condition of small longitudinal
resistivity (rxx!rxy). Here the exponent is driven
by disorder to nearly universal values approximated
by an interpolation between the Jain series values.

Aside from the basic power-law dependence, the ex-
perimental results stand in stark contrast to the predic-
tions of the effective-field theories. The key differences
are as follows:

(1) The exponent for tunneling into the n51/3 edge is
always observed to be less than 3. This is a first in-
dication of nonuniversal behavior. The systematic
error for the quoted plateau value in a of '2.7 is
unlikely to exceed 0.15, while the uncertainty based
on random noise is smaller, of order 0.05. The mea-
sured exponent therefore falls below the value of
exactly 3 as required by the topological nature of the
exponent. Note that the long-range Coulomb inter-
action can lead to a logarithmic correction to the
power-law dependence, yielding an effective,
energy-dependent exponent that exceeds 3 (Imura
and Nagaosa, 1997; Zheng and Yu, 1997; Zülicke
and MacDonald, 1997; Levitov et al., 2001).

(2) The occurrence of the plateau feature in a is sample
dependent and very sensitive to the sample quality.

(3) Accounting for the quantized Hall plateau width at
rxy /(h/e2)53, and the difference between edge and
bulk densities (and hence filling factors), the a ver-
sus rxy /(h/e2) plot (as opposed to versus 1/n) be-
haves roughly as 1/@rxy /(h/e2)# , or as 1/n in the ab-
sence of a plateau feature in a, in contrast to the
steplike dependence shown in Fig. 7. In any event,
even generously allowing for experimental error in
the determination of the edge filling factor nedge and
of a, a shows no evidence of reaching the predicted
value of 3 (Shytov et al., 1998; Levitov et al., 2001) at
1/n52(n51/2).

(4) The edge-tunneling exponent a is not directly tied to
the bulk filling factor, as evidenced by the large
shifts in 1/n position in some samples (Chang et al.,
2001; Hilke et al., 2001). Such indications of nonuni-
versality are found in all existing work in the
cleaved-edge geometry (Chang et al., 1996, 1998,
2001; Grayson et al., 1998; Hilke et al., 2001).

First we need to address the issue of the difference in
the edge versus bulk 2DEG density (Levitov et al., 2001;
Chang, 2002). Due to the chemical potential imbalance
between the 2DEG and the 3D n1 doped GaAs, charge
transfer can occur across the tunnel barrier, leading to
an inhomogeneous density profile near the tunneling
edge. It is therefore not surprising to have an edge den-
sity different from the bulk. The tunneling experiment
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
probes a spatial region within a few magnetic lengths lo
of the boundary and is therefore sensitive to the edge
density, which may differ from the bulk 2DEG density.
The Hall resistance (conductance), on the other hand,
directly reflects the bulk density and should be insensi-
tive to the edge density so long as the sample boundary
is sufficiently long to allow for a full equilibrium of the
edge modes. These edge modes may include, in addition
to the boundary modes at the outermost edge of the
sample, those which exist in the transition region be-
tween the edge and bulk density regions.

In the absence of a direct method for independently
determining the edge density, we propose the following
method to produce an estimate which we argue should
be accurate to 5–10 %. We would reasonably expect the
tunneling exponent to remain nearly constant when the
Hall resistance rxy is quantized at 3(h/e2) (note rxx
!rxy always), and, at the same time, we would expect a
to be able to exceed 3 only when rxy /(h/e2) exceeds 3.
We can therefore determine the 1/nedge53 (nedge51/3)
position by the 1/nbulk value where a first exceeds 3, or
more accurately, where it exceeds the experimental pla-
teau value of 2.7. This position value must be reduced by
roughly 5%, equaling one-half of a typical 1/3 Hall pla-
teau width. In samples that do not exhibit a plateau in a,
the corresponding 1/nedge53 position is simply given by
the 1/nbulk value where a52.7. For example, in samples
1.1 and 2, this yields an edge density roughly equal to
1.05 of the bulk density. Based on this type of estimate,
it would appear that the plateau feature in a is more
likely ascribable to the finite width of the Hall plateau
than to a step of the type predicted by the effective-field
theories. In any event, the exponent at nedge51/2 is
highly unlikely to reach the value 3, as noted above.
While there might be legitimate concern that the edge
density profile could be highly inhomogeneous, i.e., not
constant on the scale of a few magnetic lengths, the pre-
diction that the exponent must remain unchanged within
a rather large range from 1/nedge52 to 3 [more precisely
2<rxy /(h/e2)<3] means that even if some type of
weighted averaging over density is necessary, the expo-
nent will most likely still take on the topological value of
3, albeit over a reduced range. nedge may be estimated
from other a plateau positions as well. Estimates from
a;1 (Hilke et al., 2001) tend to be less accurate, how-
ever. Near 1, a can readily be distorted by other residual
nonlinearities such as those arising from slight changes
in barrier shape with bias, and there is greater difficulty
in estimating the edge n51 Hall plateau width.

At this point it is imperative to examine all the non-
idealities that could lead to the discrepancy between ex-
periment and theory. Two major issues come to mind: (i)
the long-range nature of the Coulomb interaction, and
(ii) a nonconstant density profile near the tunneling
edge, leading to edge reconstruction. Based on the
effective-field theories, long-range Coulomb interactions
will lead to a log10(V) correction in the power-law rela-
tion, with an increase in the effective exponent at low
energies (Wen, 1992; Zülicke and MacDonald, 1996,
1997; Shytov et al., 1998; Levitov et al., 2001). However,
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interestingly enough, no evidence of this type is observ-
able in the tunneling data despite the large dynamic
range in the I-V , as evidenced by a nearly perfect
straight line in the power-law region of the data. Fur-
thermore, the observation of a;1/n , in one interpreta-
tion, is an indication that only the charged mode is ob-
servable in tunneling, while the neutral modes (see Sec.
II.B.3) become effectively decoupled from the tunneling
process. On the other hand, based on the large dynamic
range spanned by the data, a log10(V) increase in the
propagation velocity of the charged mode relative to the
neutral modes appears insufficient to separate out the
respective energy scales and lead to the apparent ab-
sence of a contribution from the neutral modes (Lee and
Wen, 1998). Edge reconstruction, however, can lead to
the formation of extra edge modes, which can renormal-
ize the exponent when counterpropagating varieties are
present.

A number of works have attempted to explain the
discrepancy between experiment and the effective-field
theories. The following approaches have been explored:

(i) finding sensible mechanisms to ensure that only
the charged mode (see Sec. II.B.3) contributes to
the tunneling exponent, yielding a'1/n , while the
neutral modes are undetectable. These mecha-
nisms include a separation of energy scales for the
different types of modes (Zülicke and Mac-
Donald, 1996, 1997, 1999; Lee and Wen, 1998; Zü-
licke et al., 1998), and topological constructions
(Lopez and Fradkin, 1999);

(ii) the introduction of extra edge modes, which result
from edge reconstruction (Chamon and Wen,
1994; Lee and Wen, 1998) or smooth disorder,
which can produce local pockets of differing fill-
ing values (Pruisken et al., 1999; Skoric and
Pruisken, 1999);

(iii) coupling to additional impurity levels located near
the chiral edge (Alekseev et al., 2000);

(iv) continuum elasticity theory (Conti and Vignale,
1996, 1997, 1998; Han, 1997; Han and Thouless,
1997a, 1997b),

(v) various other scenarios and possibilities (Yu et al.,
1997; Imura, 1999; Khveshchenko, 1999, 2000;
Yang et al., 2000; Yu, 2000).

Thus far, no clear consensus has emerged as to what
the correct picture should be. In view of the lack of a
coherent picture it is necessary to consider scenarios
that go beyond mere extensions of the existing effective-
field-theory analyses. The key pieces of physics which
may be missing from the idealized model of the frac-
tional quantum Hall fluid edge include extra edge modes
from edge reconstruction, and the renormalization of
the exponent due to the long-range potential V(r), or
due even to any type of interaction potential that differs
from the idealized d9(r) potential.

Several recent and independent numerical, finite-
systems studies are beginning to yield evidence indicat-
ing that, indeed, a renormalization of the edge tunneling
exponent is possible. These include exact numerical di-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
agonalization in a disk geometry (Goldman and Tsiper,
2001) as well as calculations based on the mixing of
composite-fermion Landau-level wave functions at the
sample edge (Mandal and Jain, 2001). It was found that
for a 3D Coulomb interaction the exponent n51/3 is no
longer universal and instead takes on a value in the 2.5–
2.75 range. In the exact diagonalization calculation by
Goldman and Tsiper (2001), the exponent value for up
to 12 particles is shown in Fig. 36. Extrapolating to an
infinite system yields a value of a which falls between
2.58 and 2.75. In a separate and related work, Mandal
and Jain (2001) studied a system of up to 40 particles
using composite-fermion wave functions and found a
similar renormalization of the exponent at n51/3. An-
other study investigating the effect of the edge confine-
ment potential (Wan et al., 2000) has found evidence for
reconstruction of the edge leading to extra counter-
propagating modes and a possible renormalization of
the exponent. In all such numerical calculations, it was
found that extra oscillations in the density which are
absent in a Laughlin-type edge wave function occur near
the edge. Although the largest system studied was on
the order of a few tens of electrons and cannot be taken
as rigorous proof for the thermodynamic limit, it is nev-
ertheless clear that in all situations where the interacting
potential or edge confinement favors the Laughlin-type
edge function, the ‘‘universal’’ exponent value of 3 is
recovered for the n51/3 fractional Hall edge. Deviation
from this universal value arises only when the Laughlin-
type edge wave function is no longer exact and is modi-
fied. These new developments suggest that the edge dy-
namics in the fractional quantum Hall regime may be
more complex than previously thought and could well
lead to further discoveries of novel and interesting phys-
ics.

Taken as a whole, our experimental results in conjunc-
tion with the recent numerical work suggest that the ex-
isting analyses based on effective 2D Chern-Simon field

FIG. 36. The ratio of the angular momentum occupation num-
ber r(m), for N interacting electrons on the disk. This ratio
measures the power-law decay exponent of the equal-time cor-
relation function, which is believed to be identical to the equal-
space exponent measured in experiment. Shown are the
Laughlin state rL for a short-range interaction and the exact
ground state for the Coulomb interaction rC . Solid lines indi-
cate the bounds for r(m). From Goldman and Tsiper, 2001.
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theories (Girvin and MacDonald, 1987; Read, 1989;
Zhang et al., 1989; Wen and Niu, 1990; Frohlich and Zee,
1991; Wen, 1995) deserve careful reexamination when
applied to the dynamics at the Hall fluid edge. These
results raise questions regarding our fundamental under-
standing of the connection between edge dynamics and
the topological characterization of bulk fluids, even
though the hallmark feature of the Luttinger liquid, i.e.,
power-law tunneling, is unequivocally established. De-
spite the fact that finite-size calculations cannot be taken
as definitive proofs, the combined experimental and
computational evidence should stimulate a reexamina-
tion of the detailed properties of the rich and novel
physics at the edge of the fractional quantum Hall fluids.
Very recently, Mandal and Jain (2002) have extended
their work on the mixing of composite-fermion Landau
levels to the n52/5 and 3/7 fractional Hall fluid edge.
They found that in the absence of composite-fermion
Landau-level interaction, the exponent is quantized at
exactly 3, in agreement with existing effective-field theo-
ries (Sec. II.B). However, as soon as interaction is intro-
duced, the exponent is renormalized downward from 3.
In Fig. 37 we show their results plotted alongside experi-
mental data taken from Sec. III.C.4. The good quantita-
tive agreement is striking. Mandal and Jain went on to
point out that the appearance of nonuniversality may be
a sign that in an effective 1D theory of the edge, the
electron operator (see Sec. II.B.1) has become nonlocal
in character. If proven correct, this is a major and signifi-
cant new development in our understanding of the chiral
Luttinger liquid and of 1D Tomonaga-Luttinger liquids
in general.

E. Shot-noise characteristics and fractional charges

Aside from a determination of the power-law tunnel-
ing density of states discussed in detail in the above sec-

FIG. 37. Tomonaga-Luttinger exponent a, for the fractional
quantum Hall edge fluid as a function of the inverse filling
factor 1/n: d, theoretical values for interacting composite fer-
mions (CF) at n51/3, 2/5, and 3/7; m, theoretical values for
noninteracting composite fermions at the same n. The experi-
mental results (open symbols) are taken from the following
sources: h, Chang et al. (1996; sample 2); s, n, from Grayson
et al. (1998; samples 1.1 and 2 in this review); ,, Chang et al.
(2001; samples 1.1 and 1.3 in this review). From Mandal and
Jain, 2002.
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tions, there are other consequences of a chiral Luttinger
liquid description of edge dynamics. Particularly intrigu-
ing is the possibility of a direct measurement of the qua-
siparticle fractional charge predicted for the Laughlin
incompressible states (Laughlin, 1983). There have been
two approaches to the detection of fractional charge, (i)
transport through antidots in which the edge states en-
circling an antidot can mediate backscattering between
counterpropagating edge modes on opposing bound-
aries, at opposite sides of a device, and (ii) a direct mea-
surement of the quantum shot noise in the regime of
quasiparticle tunneling between counterpropagating
edge modes at opposing boundaries when the bound-
aries are brought into close contact.

Simmons et al. (1989) first attempted to determine the
fractional charge of the Laughlin quasiparticles in the
n51/3 fractional quantum Hall fluid by studying the
Aharonov-Bohm quantum interference effect in narrow
wires. They observed a suggestive tripling of the
magnetic-field period in the Aharonov-Bohm oscilla-
tions when going from the n51 integer Hall effect to the
n51/3 fractional Hall effect. Such oscillations were a re-
sult of the presence of edge states encircling an acciden-
tal impurity site mediating the tunneling between edges.
Although suggestive, it was argued that the period tri-
pling was more likely associated with a difference in en-
ergy scales, rather than a direct manifestation of the
quasiparticle charge (Lee, 1990; Thouless and Gefen,
1991). Subsequently, Goldman and Su (1995) reported
an extremely interesting result from introducing a
submicron-size antidot (potential hill) between counter-
propagating fractional Hall edges to mediate tunneling,
implemented in a conventional planar geometry. By
combining the Aharonov-Bohm period in the tunneling
conductance and the backgate voltage period, which

FIG. 38. (Color in online edition) The total current noise in-
ferred to the input of the preamplifier as a function of the
input conductance at equilibrium (circles). The measured noise
is a sum of thermal noise and the (conductance-independent)
noise of the amplifier (intercept of the vertical axis at zero
conductance). Inset, the quantum point contact (QPC) embed-
ded in the 2D electron gas is shown to be connected to an
LCR tank circuit at the input of a cryogenic preamplifier.
From De-Picciotto et al., 1997.
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modulates the carrier density, and relating the area of
the antidot determined in the two measurements, they
were able to determine the quasiparticle charge for the
n51/3,2/5, and higher-order states. An alternative inter-
pretation of this type of experiment, however, has been
advanced by Franklin et al. (1996).

Two groups have independently accomplished the
technically impressive feat of measuring tunneling-

FIG. 39. Tunneling noise at n51/3 as a function of the back-
scattering current, IB5(e2/3h)Vds2I (filled circles), and as a
function of IB(12IB3h/e2Vds): dashed line, slope for e/3 qua-
siparticles; dotted line, slope for electrons. The temperature is
25 mK. Inset, data showing electron tunneling but in the inte-
ger quantum Hall regime at n54. The data follow the ex-
pected slope for charge e . Adapted from Saminadayar et al.,
1997.

FIG. 40. Crossover from Johnson-Nyquist to shot noise. The
arrow indicates the data for which e* Vds52kBT . Solid curve,
comparison with Eq. (232); dotted curve, comparison with a
similar expression for electrons. Adapted from Saminadayar
et al., 1997.
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current shot noise in the fractional Hall regime dis-
cussed in Sec. II.B.7 of the theory section. These experi-
ments probed quasiparticle tunneling and were
performed in the versatile, point-contact geometry. By
alternatively using a tank circuitry at 4 MHz coupled to
a low-noise GaAs preamp operated at low temperatures
(Fig. 38) or using noise-correlation techniques, De-
Picciotto et al. (1997) and Saminadayar et al. (1997) in-
dependently measured the ‘‘low’’ frequency noise down
to the 10214 A/AHz level and below. The resultant noise
curves for tunneling between two counterpropagating n
51/3 edges are shown in Figs. 39–41. In the fractional
Hall regime where e/3 charged quasiparticles are ex-
pected to dominate the tunneling between counter-
propagating n51/3 edge modes, the noise characteristics
as a function of backscattered current could no longer
be accounted for by the conventional shot-noise expres-
sion involving e charge carriers. Instead, the data were
successfully fitted by extending the conventional expres-
sion via a replacement of the electron charge e by the
fractional charge e* (Fendley et al., 1995c; De-Picciotto
et al., 1997; Saminadayar et al., 1997; see also Reznikov
et al., 1999):

SI52got~12t !Fe* VcothS e* V

2kT D22kTG14kTgot ,

(232)

where got(12t)V5IBt'IB at low temperatures. Note
that, to be more precise, the second and third terms in
the above formula are sometimes expressed in terms of
dIB /dV , which accounts for the nonlinearity of the tun-
neling characteristics of chiral Luttinger liquids (Sami-

FIG. 41. (Color in online edition) Quantum shot noise as a
function of the backscatter current IB in the fractional quan-
tum Hall regime at n51/3 for two different transmission coef-
ficients through the quantum point contact (circles and
squares): solid lines, Eq. (232) with a charge Q5e/3 and the
appropriate transmission probability, t ; dotted line, the ex-
pected behavior of the noise for Q5e . From De-Picciotto
et al., 1997.
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nadayar et al., 1997). This expression closely approxi-
mates the exact solution computed numerically from the
Bethe ansatz solution (Fendley et al., 1995c). The data
shown in Figs. 39–41 indicate that, remarkably, the
quantum shot noise follows the expressions with e*
5e/3 rather than e . This is a striking and significant re-
sult. More recently, additional measurements on other
fractional fluids yielding the e/5 fractional charge have
also been reported (Reznikov et al., 1999; Comforti
et al., 2002).

Associated with these experiments (Saminardayar
et al., 1997; De-Picciotto et al., 1998; Glattli et al., 2000;
Griffiths et al., 2000; Comforti et al., 2002; Chung et al.,
2003a, 2003b; Roddaro et al., 2003), the smooth edge is-
sue within the point-contact must be carefully accounted
for. Fortunately in these noise measurements the voltage
excitations were often low, ,30 mV. As a result the dis-
tortion of the broad and smooth edge potential defined
by electrostatic top gating is likely small. Nevertheless,
several complications can arise. For instance, the tunnel-
ing I-V characteristics often do not fully display the ex-
pected power-law exponent (Glattli et al., 2000; Glattli,
2002). There is also an often observed and rather sub-
stantial shift in the filling factor at which e charge shot-
noise signatures can be recovered, often taking place not
at n51 but rather at significantly higher filling factors n.
Anomalous charge values (nonstandard fractions) can
also be observed in various regimes.

More recent experiments have focused on detailed in-
vestigations of the behavior of e* as a function of back-
scattering in the point contact, characterized by t , the
transmission probability through the point contact, from
transparency to opaqueness. Remarkably, when t is very
nearly 1, no excess noise was found on the Hall plateaus.
This is a nontrivial indication of a strong-interaction ef-
fect. In the absence of interaction, at these fractional
Landau fillings measurable shot noise should be present,
reflecting the graininess of the electron charge e . Other
results qualitatively supportive of the CLL picture have
also emerged, as well as surprising and as yet unex-
plained behaviors. It has been found that a point contact
tuned to relative transparency at high temperatures or
when probed at high source-drain bias voltages will be-
come opaque at low temperatures or source-drain bias.
This remarkable feature is in agreement with the
effective-field theories. On the other hand, the shot-
noise characteristics have exhibited surprising tenden-
cies to agree better with theory at intermediate and
higher temperatures (50–150 mK), than at the lowest
temperatures (,50 mK), where the quasiparticles ap-
pear to bunch together, leading to larger values of e* .
This unusual behavior was uncovered both for opaque
(Glattli et al., 2000) and transparent (Chung et al.,
2003a) settings. Specifically, at n51/3 Glattli et al. ob-
served that e/3 quasiparticles could not penetrate
opaque point contacts, and above 48 mK the shot noise
became Poissonian, with an effective charge of e* 5e , in
good agreement with theory. At lower temperatures,
e.g., T520 mK, however, the shot noise exceeded that
expected for carriers of charge e . Similarly, in a recent
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
study Chung et al. (2003b) found that at very low tem-
peratures (;9 mK) and for a very transparent setting,
the shot noise yielded charges of e* 5e/3, 2e/5, and
,3e/7 for n51/3, 2/5, and 3/7. At slightly higher tem-
peratures, charges e* 5e/3, e/5, and e/7 were recovered.
Although this type of crossover behavior is anticipated
by theory (Kane and Fisher, 1995), the observed tem-
perature dependence of the backscattered current is
completely at variance with expectations. Other sur-
prises include reports by Griffths et al. (2000) and Com-
forti et al. that e/5 and e/3 quasiparticles can traverse
opaque barriers. At this point the cause of these intrigu-
ing observations (Chung et al., 2003a; Kane and Fisher,
2003) is not clear. One possibility is complications from
the influence of additional low-energy modes, e.g.,
phonons, as discussed by Rosenow and Halperin (2002),
who made a first attempt at explaining why it has been
possible to observe novel shot-noise behavior in the
point contacts but not yet possible to find the predicted
power-law I-V characteristics.

IV. OTHER LUTTINGER LIQUID SYSTEMS

Evidence for one-dimensional physics has been ob-
served not only at the edge of the fractional quantum
Hall fluid, but also in several other interesting systems.
These systems are emerging as fertile grounds for the
investigation of the unique properties associated with an
interacting 1D electron system. In this final section we
present a brief summary of the most promising ex-
amples. These include ballistic 1D wires, carbon nano-
tubes, 1D atom chains, and the venerable quasi-1D sys-
tem of Bechgaard and Fabre organic salts and blue-
bronze conductors.

We have seen that, for the fractional quantum Hall
edge, the chiral Luttinger liquid tunneling exponent in
an idealized model is given by universal values deter-
mined by the topological characterization of the bulk 2D
fluid, as discussed in Sec. II.B. Moreover in the case of a
single edge branch, e.g., the n51/3 or 1/5 edges, the
electron-tunneling exponent is related to the Hall con-
ductance: a51/g , where g is the dimensionless Hall con-
ductance, g5n . In the case of the Luttinger liquid in
quantum wires, the exponent is again related to the con-
ductance g . However, in general the exponent is not uni-
versal, since g is interaction dependent [Eq. (5), Sec.
II.A]. Moreover, depending on the tunneling geometry,
the exponent value takes different forms whether tun-
neling into the end of a Luttinger liquid or into the side
from a normal-metal electrode (Kane and Fisher, 1992a;
Egger and Gogolin, 1997; Kane et al., 1997):

a511@g2121#/nch , a215@g2121#/nch , (233)

a511@g1g2122#/2nch , a215@g1g2122#/2nch ,

(234)

where nch is the number of conducting channels
(modes), including spin. As will be seen below in the
case of carbon nanotubes, both types of tunneling are
realizable.
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A. Ballistic single-channel wires

Tarucha et al. (1995) pioneered the study of single-
channel ballistic nanowires in top-gated devices imple-
mented in the planar geometry. By using very-high-
quality GaAs/AlxGa12xAs crystals, they were able to
observe a suppression in the quantized conductance be-
low e2/h for a single-channel ballistic point contact with
a channel length as long as 10 mm. To date the best
evidence for Luttinger-liquid behavior in semiconductor
ballistic nanowires is provided by cleaved-edge over-
growth nanowires (Yacoby et al., 1996; Auslaender et al.,
2000). When the carrier density of the single-channel
cleaved-edge wire is reduced, accidental imperfections
along the wire lead to the formation of double tunnel
barriers. Yacoby and colleagues were able to study the
resultant resonances in the tunnel conductance. Al-
though a non-Fermi-liquid line shape was not observ-
able, the resonance linewidth G i exhibited the nonlinear
dependence on temperature expected for a Luttinger
liquid, as shown in Fig. 42 (Furusaki, 1998; Auslaender
et al., 2000). This is an interesting and promising result.
We need to improve dynamic range and consistency be-
tween independently measured power-law exponent val-
ues from the resonance linewidth, aLW5@g2121# , and
from 1D-wire tunneling conductance, where a21
52@g2121# for end-to-end tunneling between two
Luttinger-liquid segments, as well as the dimensionless
conductance g . If these improvements can be met, then
this system has the potential for fruitful investigations of
momentum-resolved Luttinger-liquid properties (Alt-
land et al., 1999; Auslaender et al., 2002).

B. Carbon nanotubes

An extremely promising system for the investigation
of conventional, nonchiral Luttinger liquids in a differ-
ent realization of ballistic nanowires is the single-walled
carbon nanotube/multiwalled carbon nanotube system.
In the single-walled nanotube, due to the fact that the
electronic wave function is spread over several atoms,
the characteristic energy scale for Peierls distortion and
the associated formation of an energy gap is exponen-
tially suppressed and below accessible temperatures.
Therefore the system is a nearly ideal 1D conductor al-
beit with a fourfold degeneracy due to the presence of
two metallic bands and the spin degree of freedom (Eg-
ger and Gogolin, 1997; Kane et al., 1997). Since typical
nanotubes are a few microns in length, this finite length
sets a lower cutoff energy, given by the Coulomb charg-
ing energy, Ec5e2/2C;2 meV, below which the zero-
dimensional Coulomb-blockade phenomenon dominates
the transport. Note that here C is the nanotube capaci-
tance to the environment. There are two relevant tun-
neling geometries readily achievable by clever fabrica-
tion methods and manipulation of the nanotubes on the
surface of a substrate: (i) tunneling into the side wall,
and (ii) tunneling into the end of a nanotube. In Figs. 43
and 44 we show the data obtained for single-walled
nanotube bundles by Bockrath et al. (1999) for tunneling
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
from a metallic, gold contact. Above the Coulomb
charging energy scale, behavior suggestive of power-law
I-V , and power-law tunneling conductance was ob-
served (see Fig. 43). In a log-log plot, after accounting
for contact resistance, power-law behavior was observed
in the two contact geometries of side wall and end tun-
neling. In addition, Yao et al. (1999) have demonstrated
that it is possible to achieve nanotube-to-nanotube tun-
neling in these geometries of side-wall-to-side-wall and
end-to-end tunneling. The tunneling data exhibiting
power-law signatures are shown in Figs. 45 and 46. In
either case of metal-to-nanotube or nanotube-to-
nanotube tunneling it is possible to deduce a consistent

FIG. 42. The intrinsic linewidth of the resonance G i vs tem-
perature (in units of gate voltage). A power-law behavior is
observed, indicating Luttinger-liquid behavior. Open and filled
circles correspond to resonance peaks 1 and 2, respectively.
Dashed lines are fits to the data. From Auslaender et al., 2000.

FIG. 43. The two-terminal linear-response conductance G vs
gate voltage Vg for a sidewall-contacted metallic nanotube
rope at different temperatures. The data show significant tem-
perature dependence for energy scales above the Coulomb
charging energy EC . Inset, average conductance as a function
of temperature. From Bockrath et al., 1999.
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value of the conductance, based on the expressions
given above for the tunneling exponent, Eqs. (233) and
(234). The deduced value of g;0.22 is also consistent
with theoretical estimates (Egger and Gogolin, 1997;
Kane et al., 1997). These initial findings bode well for
future studies. Particularly noteworthy is the current
trend towards the growth of extremely long single-

FIG. 44. Log-log plots of the conductance G vs temperature T
for individual nanotube ropes: (a) data for ropes that are de-
posited over predefined leads (sidewall-contacted); (b) data for
ropes that are contacted by evaporating the leads on top of the
ropes (end-contacted). Insets show the respective geometries;
solid lines, the raw data; dashed lines, the data corrected for
the temperature dependence of the Coulomb-blockade contri-
bution. After correction, the dependences follow a power-law
form with a different exponent for the two geometries. The
upper inset to (a) shows the power-law exponent b inferred for
a variety of samples. Open circles denote end-contacted
samples, and crosses denote bulk-contacted ones. Adapted
from Bockrath et al., 1999.

FIG. 45. Linear-response two-probe conductances G for tun-
neling into an individual single-walled carbon nanotube plot-
ted against temperature T , on a log-log scale. The data are
fitted (solid lines) by the power law G(T)}Tb. The exponent
b for the two straight segments (I and II) is roughly 0.34, cor-
responding to sidewall tunneling. Across the kink where tun-
neling occurs between the ends of two single-walled nanotube
segments an exponent b of 2.2 is obtained. From Yao et al.,
1999.
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walled nanotubes—up to mm in length. These long
tubes, once proven to be ballistic, should greatly expand
the available low-energy range for Luttinger-liquid be-
havior by reducing the limitation set by the lower energy
cutoff resulting from finite size.

C. One-dimensional gold atom chains

Another unique and promising 1D system has re-
cently been created, that of single-atom-wide, 1D Au
chains on the vicinal silicon [111] surface (9.45° mis-cut
in the @ 1̄ 1̄2# direction) (Bertel and Lehmann, 1988; Se-
govia et al., 1999; see also Hill and McLean, 1997 for
indium atoms). In an intriguing experiment, Segovia
et al. (1999) reported angle-resolved photoemission
measurements at low temperatures (;10 K) which
probed the spectral density of the 1D chains as a func-
tion of momentum. They observed the absence of a qua-

FIG. 46. Large-voltage-bias transport characteristics: (a) non-
linear I-V characteristics; the inset shows I-V curves at tem-
peratures of 298, 200, 150, 100, and 50 K; (b) scaled differential
conductance plotted against the dimensionless voltage bias,
eV/kBT , for tunneling across the kink (end-to-end tunneling).
The data for different temperatures collapse onto a single uni-
versal curve. The dashed line represents the theoretical expec-
tation corresponding to the exponent b52.2. Adapted from
Yao et al., 1999.
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siparticle peak as shown in Fig. 47, where in all traces,
no sharp peak is apparent in the spectral density. They
attempted to probe further the spin-charge separation of
spinon and holon excitations. Although two distinct,
separately dispersing peaks were observed, the interpre-
tation that these represent evidence for spin-charge
separation into spinon and holon modes needs further
substantiation since band hybridization effects with the
underlying silicon substrate may well account for the
two distinct peaks. Nevertheless, this work points to a
new avenue for research. Future work on suitable sub-
strates inert to band hybridization may well lead to new
and significant advances.

D. Quasi-one-dimensional conductors

The final system or set of systems we shall mention
arguably represents the first experimental system for
which 1D interaction physics was evident. This includes
the organic salts of the TTF-TCNQ, (TMTSF)2X (tetra-
thiafulvalene-tetracyanoquinodimethane; tetramethyl-
tetraselenafulvalene) series, where X5PF6 , AsF6 , etc.
(Bechgaard Salts), as well as the (TMTTF)2X salts
(Emery, 1979; Solyom, 1979; Basista et al., 1990; Jerome
and Schulz, 1990; Voit, 1995), the blue-bronze metals
K0.3MoO3 and (TaSe4)2I, NbSe3 (Dardel et al., 1991;
Sing et al., 1999), and the non-charge-density-wave 1D
metal Li0.9Mo6O17 (Denlinger et al., 1999). The organic
salts have chain structures that naturally lead to large
anisotropy in transport and other properties (Emery,
1979; Jerome and Schulz, 1990; Voit, 1995). The bulk of
these highly anisotropic, quasi-1D conductors, both the
organic salt and blue-bronze variety, by and large un-

FIG. 47. Angle-resolved photoemission spectra with varying
surface wave vector k i perpendicular to the chains. The polar
angle ue in the emission plane was fixed at 212°, and the angle
fe in the perpendicular plane was varied. The lack of disper-
sion in this direction appears to confirm the one-dimensional
nature of the system. From Segovia et al., 1999.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
FIG. 48. Real part of the optical conductivity of TTF-TCNF at
a temperature of 85 K contrasted with the expected conven-
tional Drude curve (dashed line). These data represent one of
the first indications that 1D interaction physics may be rel-
evant in this type of system. Trials 1 and 2 correspond to
samples from different sources. From Basista et al., 1990.

FIG. 49. Angle-integrated photoemission spectra of the
K0.3MoO3 and (TaSe4)I2 quasi-1D conductors measured just
above the Peierls charge-density-wave transition temperature.
The absence of a sharp Fermi edge is apparent. For compari-
son, the spectra of 2D (TaSe2) and 3D (Rh) metals are also
shown. From Dardel et al., 1991.
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dergo charge-density-wave or spin-density-wave transi-
tions at sufficiently low temperatures. Some salts also
undergo a superconducting transition, e.g.,
(TMTSF)2ClO4 . An exception is the non-charge-
density-wave blue-bronze metal Li0.9Mo6O17 . Evidence
that 1D interaction physics is relevant comes from a va-
riety of sources, including transport measurements,
frequency-dependent conductivity measurements from
the microwave to optical and uv range, NMR, and pho-
toemission. Evidence from all of these measurements
points to strong deviations from conventional 3D behav-
ior. See Voit (1995) for a recent comprehensive review
of this exciting field. Particularly noteworthy is evidence
for optical absorption where substantial deviation from
simple Drude behavior is observable (Basista et al.,
1990; Dardel et al., 1991; Schwartz et al., 1998), anoma-
lous NMR relaxation (Behnia, 1995; Bourbonnais and
Jerome, 1998), and photoemission data in which the
quasiparticle peak is absent (Dardel et al., 1993; Zwick
et al., 1997; Denlinger et al., 1999) in a manner reminis-
cent of the normal state in high-Tc superconductor ma-
terials (Ding et al., 1997; Shen and Schrieffer, 1997).
Some of these examples are presented below.

This field has a long and venerable history. Perhaps
the very first system in which 1D physics was thought to
be relevant is the TTF-TCNQ system. Figure 48, repro-
duced from a seminal work by Basista et al. (1990),
shows the optical conductivity (solid curves), which is
suppressed below the Drude conductivity (dashed line).
This suppression likely arises from the formation of a
pseudogap due to umklapp processes in a 1D electron
gas (Lee et al., 1973).

This important finding was followed closely by the dis-
covery of unusual photoemission spectra at tempera-
tures just above the Peierls charge-density-wave transi-
tion in the inorganic quasi-1D conductors K0.3MoO3 and
(TaSe4)2I, where the absence of a Fermi-liquid quasi-
particle peak was observed (Dardel et al., 1991), as

FIG. 50. The normalized frequency-dependent conductivities
for 1D organic conductors (TMTSF)2X , where X5PF6 ,
AsF6 , and ClO4 , in a log-log plot to demonstrate the power-
law frequency dependence. The solid line shows a fit of the
form s(v);vd. From Schwartz et al., 1998.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
shown in Fig. 49. More recently, in a non-charge-density-
wave organic conductor, (TMTSF)2ClO4 , which under-
goes a spin-density-wave transition at 12 K, a nondisper-
sive feature was found along the 1D direction at 150 K
(Zwick et al., 1997). In addition electrodynamic re-
sponse measurements from microwave to uv frequencies
in the (TMTSF)2X Bechgaard salts were found to be
consistent with Luttinger-liquid behavior, with a power-
law conductivity as a function of photon energy v, as
shown in Fig. 50 (Schwartz et al., 1998). The discovery of
a strongly temperature-dependent Hall coefficient down
to 12 K in (TMTSF)2PF6 , again with power-law behav-

FIG. 51. Hall constant of (TMTSF)2PF6 samples vs tempera-
ture: d, UCLA-Gruner group; s, Riso-Bechgaard group; dot-
ted line, the Hall constant derived in a band model; dashed
line, a Tb power-law fit with b50.73. Inset, magnetic-field data
for the UCLA sample. Adapted from Moser et al., 2000.

FIG. 52. High-resolution angle-resolved photoemission spec-
troscopy (ARPES) data for the Li purple bronze taken at T
5250 K, with photon energy 30 eV, energy resolution 49 meV,
and angle resolution 0.36°. (a) Points along the G-Y line
within the Brillouin zone; (b) Tomonaga-Luttinger model
simulation. Adapted from Gweon et al., 2002.
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ior (Fig. 51), lent further support to the relevance of 1D
physics (Moser et al., 2000).

The last example is the non-charge-density-wave inor-
ganic, quasi-1D blue-bronze conductor (Sing et al.,
1999). In this system, extensive ARPES studies clearly
demonstrated the absence of a quasiparticle pole in the
spectral function, consistent with Luttinger-liquid behav-
ior, as shown in Fig. 52 (Denlinger et al., 1999; Gweon
et al., 2001, 2002).

Although many of these systems are complex, exhib-
iting a variety of phases as the temperature or pressure
is varied, as well as different signatures arising from
Coulomb interaction, it is undoubtedly the case that
conventional 3D scenarios are not adequate to describe
the essential features of the diverse observations,
whereas 1D physics, and particularly Tomonaga-
Luttinger-liquid physics, is relevant in the appropriate
regime. All these examples show that the unique physics
associated with interaction in the 1D world is not limited
to the realm of purely theoretical and mathematical dis-
course, but is relevant in a diverse variety of physically
realized systems.
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