Erratum: Topological field theory of time-reversal invariant insulators [Phys. Rev. B 78, 195424 (2008)]

Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang
(Received 21 March 2010; published 6 April 2010)
DOI: 10.1103/PhysRevB.81.159901 PACS number(s): 73.43.-f, 78.20.-e, 78.20.Ls, 03.65.Vf, 99.10.Cd
There are several misprinted formulae in the paper, as listed in the following. None of the corrections change any conclusions of the article.

There is a misprint in Eq. (20) which should read

$$
\begin{gather*}
J_{x}(\theta)=G(\theta) \frac{d \theta}{d t} \\
G(\theta)=\lim _{\omega \rightarrow 0} \frac{i}{\omega} Q(\omega+i \delta ; \theta) \\
Q\left(i \omega_{n} ; \theta\right)=-\sum_{k_{x} i \nu_{m}} \operatorname{tr}\left(J_{x}\left(k_{x} ; \theta\right) G_{1 \mathrm{D}}\left(k_{x}, i\left(\nu_{m}+\omega_{n}\right) ; \theta\right) \cdot \frac{\partial h\left(k_{x} ; \theta\right)}{\partial \theta} G_{1 \mathrm{D}}\left(k_{x}, i \nu_{m} ; \theta\right)\right) \frac{1}{L_{x} \beta} . \tag{20}
\end{gather*}
$$

There is a misprint in the paragraph immediately following Eq. (20). It should read: "Similar to Eq. (4) of the 2D case, the response coefficient $G(\theta)$ can be expressed...."

There is a misprint in Eq. (31) in the manuscript which should read

$$
\begin{equation*}
j_{\mu}=-\frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\nu} \theta \tag{31}
\end{equation*}
$$

There is a misprint in Eq. (67) which should read

$$
C_{2}(m)=\left\{\begin{array}{cc}
0, & m<-4 c \text { or } m>4 c \tag{67}\\
1, & -4 c<m<-2 c \\
-3, & -2 c<m<0 \\
3, & 0<m<2 c \\
-1, & 2 c<m<4 c
\end{array} .\right.
$$

There are misprints in Eqs. (78) and (79), and the equation after Eq. (79) (10 lines below) which should read

$$
\begin{gather*}
\mathcal{K}^{A}=\frac{1}{16 \pi^{2}} \epsilon^{A B C D} \operatorname{Tr}\left[\left(f_{B C}-\frac{i}{3}\left[a_{B}, a_{C}\right]\right) \cdot a_{D}\right], \tag{78}\\
P_{3}\left(\theta_{0}\right)=\int d^{3} k \mathcal{K}^{\theta}=\frac{1}{16 \pi^{2}} \int d^{3} k \epsilon^{\theta i j k} \operatorname{Tr}\left[\left(f_{i j}-\frac{i}{3}\left[a_{i}, a_{j}\right]\right) \cdot a_{k}\right] . \\
\Delta P_{3}=\frac{1}{24 \pi^{2}} \int d^{3} k \epsilon^{\theta i j k} \operatorname{Tr}\left[\left(u^{-1} \partial_{i} u\right)\left(u^{-1} \partial_{j} u\right)\left(u^{-1} \partial_{k} u\right)\right], \tag{79}
\end{gather*}
$$

respectively.
There is a misprint in the equation after Eq. (81) (8 lines below) which should read

$$
j^{\mu}=\frac{\partial_{z} P_{3}}{2 \pi} \epsilon^{\mu \nu \rho} \partial_{\nu} A_{\rho}, \quad \mu, \nu, \rho=t, x, y
$$

There is a misprint and the second equation after Eq. (91) (21 lines below) which should read

$$
2 P_{3}=\frac{1}{24 \pi^{2}} \int d^{3} k \epsilon^{i j k} \operatorname{Tr}\left[\left(U \partial_{i} U^{\dagger}\right)\left(U \partial_{j} U^{\dagger}\right)\left(U \partial_{k} U^{\dagger}\right)\right] \in \mathbb{Z}
$$

There is a misprint in the equation after Eq. (112) (2 lines below) which should read

$$
-\mathcal{K}^{\theta}=-\frac{1}{16 \pi^{2}} \epsilon^{i j} \operatorname{Tr}\left[\left(f_{i j}-\frac{i}{3}\left[a_{i}, a_{j}\right]\right) \cdot a_{\varphi}-2\left(f_{i \varphi}-\frac{i}{3}\left[a_{i}, a_{\varphi}\right]\right) \cdot a_{j}\right],
$$

There is a misprint in Eq. (118) which should read

$$
\begin{equation*}
j^{\mu}=\frac{1}{8 \pi} \epsilon^{\mu \nu \tau} \hat{\mathbf{n}} \cdot \partial_{\nu} \hat{\mathbf{n}} \times \partial_{\tau} \hat{\mathbf{n}} \tag{118}
\end{equation*}
$$

There is a misprint in the second equation after Eq. (134) (25 lines below) which should read

$$
\mathrm{CS}_{5}^{0}=\frac{1}{3!(2 \pi)^{2}} \int d^{5} q \epsilon^{A B C D E} \operatorname{Tr}\left[a_{A} \partial_{B} a_{C} \partial_{D} a_{E}+i \frac{3}{2} a_{A} a_{B} a_{C} \partial_{D} a_{E}-\frac{3}{5} a_{A} a_{B} a_{C} a_{D} a_{E}\right]
$$

There is a misprint in line 9 of Table II: α_{i} should be replaced by a_{i}.

