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Noe-Άbeliaii Boscmizatioii in Two Dimensions

Edward Witten*
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Abstract, A non-abelian generalization of the usual formulas for bosonization
of fermions in 1 + 1 dimensions is presented. Any fermi theory in 1 + 1
dimensions is equivalent to a local bose theory which manifestly possesses all
the symmetries of the fermi theory.

One of the most startling aspects of mathematical physics in 1 +1 dimensions is
the existence of a (non-local) transformation from local fermi fields to local bose
fields. Thus, consider the theory of a massless Dirac fermion:

&D = Ψ$Ψ (1)

This theory is equivalent [1] to the theory of a free massless scalar field:

<?s = $dμφd»φ. (2)

The fermi field ψ has a relatively complicated and non-local expression [2] in
terms of φ. However, fermion bilinears such as ψyμψ or ψψ take a simple form in
the bose language. For example, the current Jμ = ψyμψ becomes in terms of φ

Jμ=-^=eμvd*φ. (3)

Similarly the chίral densities Θ± = ψ(l±y5)ψ become

Θ±=Mexp±i]/4πφ, (4)

where the value of the mass M depends on the precise normal ordering
prescription that is used to define the exponential in (4).

By means of formulas like (3) and (4), the equivalence between the free Dirac
theory and the free scalar theory can be extended to interacting theories. A
perturbation of the free Dirac Lagrangian can be translated, via (3) and (4), into an
equivalent perturbation of the free scalar theory. This procedure is remarkably
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useful for elucidating the properties of 1 + 1 dimensional theories. Many pheno-
mena that are difficult to understand in the fermi language have simple,
semiclassical explanations in the bose language. A major limitation of the usual
bosonization procedure, however, is that in the case of fermi theories with non-
abelian symmetries, these symmetries are not preserved by the bosonization. For
instance, a theory with N free Dirac fields has a U(JV) x U(7V) chiral symmetry
[actually O(2iV) x O(2N), as we will see later]. Upon bosonization, this becomes a
theory with N free scalar fields. The diagonal fermi currents can be bosonized
conveniently, as in Eq. (3), but the off-diagonal currents are complicated and non-
local in the bose theory. [Although the free scalar theory with N fields has an O(iV)
symmetry, this O(JV) does not correspond to any subgroup of the fermion
symmetry group.] For this reason, it is rather difficult [3] to bosonize non-abelian
theories by the usual procedure. It is also sometimes difficult to understand via
bosonization the realization of non-abelian global symmetries.

In this paper, an alternative bosonization procedure will be described which
generalizes the usual one and can be used to bosonize any theory in a local way,
while manifestly preserving all of the original symmetries. Unfortunately, the
resulting bose theories are somewhat complicated.

First, we rewrite Eq. (3) for the currents in a way susceptible of generalization.
We define an element U of the U(l) or O(2) group by U = exp ϊj/ϊπφ. Then

(3) can be written

We have emphasized in (5) that the ordering of factors does not matter, because
the group U(l) is abelian. In generalizing (5) we will have to be careful about factor
ordering.

It is convenient to rewrite (5) in light cone coordinates. Let x± = ( x o ± x 1 ) / | / 2 .
In these coordinates the Lorentz invariant inner product is AμB

μ = A + B~ +A~B +

= A + B_ + A_B+ the components of a vector obey A+ =A~, A__ =A + . If we
normalize the Levi-Civita symbol so that ε o l = + l = —ε+_, then (3) and (5)
become γ ,

j + = --7=d+Φ = — u-1d+u9

]/π 2π

l ( 6 )

J_ - + —r=d_φ = - -?-(3_ U)U'x.
]/π 2π

Of course, the ordering of factors in (6) is still arbitrary.
For the massless Dirac particle, the vector and axial vector currents ψyμψ and

ψγμγ5ψ are both conserved.1 But in 1 + 1 dimensions ψyμγ5ψ = εμvψyvψ. So the
current conservation equations are 0 = dμJ

μ = εμvdμJv. In light cone coordinates
this means 0 = d_J+=d+J_. The bosonization formula (6) is compatible with that
strong condition because the free massless φ field obeys 0=V2φ = 2d + d_φ.

1 As usual, we define {yβ,γv} =2ηβV, y5=y°yί (so y\ = +1), and \p = ψ*y°. A convenient basis is γ°

I, γ1 = ί I, 75 = I I. We define light cone components ψ± of ψ by requiring y5φ_

( \
= ψ-t y5ψ+ = —ψ + . (The sign convention may seem odd but is useful.) Thus ψ=\ + . ψ+ and ψ_ are

\ψ-J
left movers and right movers, respectively, as one may see from Eq. (8) later
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We wish to generalize this to fermion theories with non-abelian symmetries. As
we wish to be general, we will consider a theory with N Majorana fermions ψ\
ί=l...N. [If one prefers, one can choose N even and consider this to be a theory of
JV/2 Dirac fields. If so, in much of the subsequent discussion one can consider the
chiral group U(N/2)xU(N/2) instead of O(N) x O(ΛΓ).] The conventional
Lagrangian for free Majorana fields is

^ = \d2x\ψki$ψk. (7)

The conserved vector currents are Vμ=ψyμT
aψ, Ta being any generator of O(N).

The axial currents are Aa

μ = εμvV
va = ψyμy5T

aψ. These currents generate chiral
O(JV) x O(JV).

Since ψyμδμιp = ψτ(δ0 + y°y1δ1)ψ, the free Lagrangian, in terms of the light cone
components of ψ, is

Γ /Pi P) \ I r\ rl\

(8)

Instead of vector and axial vector currents, it is more useful to work with chiral
components. We define J^(x, t)= — iψι

+ψj

+(x, t) and JlL(x, t) = — iψι_ψL(x, t). Note
that Jίj

± are hermitίan and that by fermi statistics they obey J% = —JJl, JlJ__ = — J^.
J% and Jll generate chiral O(N)R and O(iV)L, respectively. [By O(N)R and O(N)L

we mean O(N) transformations for right-moving and left-moving fermions.] The
conservation laws for J + are very simple

Thus, J + is a function only of x + , and J_ is a function only of x~.
We wish to find an ansatz writing J + and J _ in terms of suitable bose fields. In

the usual bosonization procedure, one considers a current ψyμψ that generates an
abelian or U(l) symmetry it is written [Eq. (5)] in terms of a field that takes values
in the U(l) group. Now we are dealing with currents JijL and J% that generate
O(JV)L x O(N)R, and it is natural to try to express these currents in terms of a
suitable field g that takes values in the O(N) group. O(N)L x O(N)R will act on g by

What is a suitable expression for the currents in terms of gΊ One is tempted to
try J +~g~1δ + g, J _~g~xd_g. However, this is incompatible with (9) because in a
non-abelian group the equations 0 = δ_(g~1δ + g) and 0 = δ + (g~1δ_g) are incon-
sistent. Instead, we generalize the factor ordering of Eq. (6) and write

J+ = ^-g~ld + g, J_ = - ^(δ_g)g-1. (10)
In In

[The ij indices are suppressed, it being understood that J + and J_ are elements of
the O(JV) Lie algebra.] Notice that the equations 0 = δ_(g~1δ + g) and
0 = δ + ((δ_g)g~1) are compatible and in fact equivalent.

What Lagrangian will govern gΊ The obvious guess is

^ ^ - 1 . (11)

This is the unique renormalizable and manifestly chirally invariant Lagrangian
for g. However, for many reasons, (11) is wrong.
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Fig. 1. A mapping g from a two sphere S (representing space-time) into a group manifold G. Since
π2(G) = 0, any mapping of the surface S into G can be extended to a mapping into G of the solid sphere
B (S and its interior)

First of all, (11) describes an asymptotically free theory with interactions that
become strong in the infrared. It is certainly not equivalent to the conformally
invariant free massless fermi field theory. Second, (11) leads to the equation of
motion O = dμ(g~1dμg) rather than the desired O = d_{g~1d+g) = δ + ((δ_g)g~1).
Third, by analogy with similar considerations in QCD current algebra, [8] it may
be shown that (11) has more discrete symmetries than the free, massless fermi
theory.

Although (11) is the only renormalizable interaction for the non-linear sigma
model that is manifestly chirally invariant, there is another one that is chirally
invariant but not manifestly so. This is the two-dimensional analogue of the Wess-
Zumino term [4], which has figured in various recent discussions of two dimen-
sional models [5-7].

The two dimensional Wess-Zumino term can be constructed by analogy [8]
with a similar treatment in four dimensions. Working in Euclidean space, we
imagine space time to be a large two sphere S2. Since π 2 (O(iV)) = 0, a mapping g
from S into the O(N) manifold can be extended to a mapping g of a solid ball B
whose boundary is S into O(iV) (Fig. 1). lfyv y2, and y3 are coordinates for B, the
Wess-Zumino functional is

As in four dimensions, the Wess-Zumino functional has a very essential property
[8,9]: it is well-defined only modulo a constant. Equation (12) has been
normalized so that if g is a matrix in the fundamental representation of O(iV), (12)
is well-defined modulo Γ->Γ + 2π. The ambiguity in Γ arises because of the
existence of topologically inequivalent ways to extend g into a mapping from B
into O(JV); the topologically distinct possibilities are classified by π 3 (O(iV)) —Z.

In what sense is Γ an ordinary Lagrangian - an integral over space-time? This
question is answered in the appendix, where it is shown that (locally in field space)
Γ can be written as the integral over space-time of an ordinary but not manifestly
chirally invariant Lagrangian which under a chiral transformation changes by a
total divergence.

2 In Minkowski space, we instead consider space to be compact. We then consider finite time
transition amplitudes between specified initial and final states of the g field. This "ties down" the fields
at the boundary of space-time and leads to a similar quantization argument for Γ
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Making use of Γ, we can consider a more general action for the field g:

/ = ^ I ί d 2 x T r 3 μ f l f 3 ^ - 1 + n Γ . (13)

Here n must be an integer [19], since Γ is well-defined only modulo 2π. The theory
(13) is renormalizable, since the new coupling constant is a dimensionless integer.
Perhaps it should be stressed that (13) is not invariant under naive parity χ-> — x,
but is invariant under x—• — x, g-^g'1.

We wish to ask whether for some values of λ and n this theory might be
equivalent to the free massless fermi theory.

The first step is to calculate the equations of motion from (13). As has been
discussed previously [6, 8], the variation of Γ is a simple, local functional. We find
from (13) that the change of / under g-*g + δg is

The variational equations are therefore

4π
We see therefore that if λ2 — — the equation is as desired, 0 = d_(g 1d + g). Of

course, λ2 must be positive for stability, so this is only possible for n>0. For n<0
4π

the parity conjugate equation 0 = d + (g~1d_g) arises at λ2 = .

4π
At λ2 = — the equations of motion of the theory can easily be solved in closed

n
form. The general solution of 0 = d_(g~1d + g) is

g(x\χ-) = A(χ-)B(x + ) , (16)

where A(x~) and B(x+) are arbitrary O(N) valued functions of one coordinate. [At
λ2 = — 4π/n the factorization is instead g(x + ,x~) = B(x + )A(x~).^ Equation (16)
means that left-moving and right-moving waves pass through each other without
any interference. This property is strongly reminiscent of the fermion free field
theory, in which the left- and right-moving waves are the y5 eigenstates.
Combining this analogy with the fact that at λ2 = 4π/n the equation of motion for g
reproduces the behavior of the fermion currents, we are led to conjecture that at
λ2=4π/n and some value of n the non-linear sigma model is equivalent to the
fermion free field theory.

What are the renormahzation group properties of the theory with action (13)?
Being an integer, n must not be subject to renormahzation. This can be established
in the background field method in that method the counter-terms are local and
manifestly chinally invariant functionals of the background field, so there is no
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Fig. 2. Renormalization group flows. Plotted is the behavior of l/λ2 in coming from high-energy to low-
energy. Weak coupling is at the right, strong coupling is at the left. Assuming there are no non-trivial
fixed points apart from the one found in the text, the n = 0 theory flows to strong coupling at long
distances, while for rcφO the theory flows to λ2 = \4π/n\. The behaviour of the non-asymptotically free
theory with bare coupling bigger than \4π/n\ is not considered

counter term proportional to Γ 3 . We will illustrate this shortly at the one loop
level.

The theory therefore requires only renormalization of λ. However, the re-

normalization of λ depends on both λ and n. For any n, the theory is asymptoti-

cally free, just as at n = 0. This is so because for λ so small that -j >n, (13) is

dominated by the first term, and the renormalization group calculation coincides
with the standard calculation at n = 0. However, as λ becomes large, the effects of
the Wess-Zumino term can become important. We will argue that the beta

4π
function always has a zero at λ2 = ± — . We will first illustrate this point with a

n
one loop calculation then we will establish the point by showing that the theory
at λ2=±4π/n is equivalent to a known exactly soluble, conformally invariant
theory. The existence of a non-trivial zero of the beta function at

4π
λ2= — means that the physical content of the weakly coupled theory with nφO

is dramatically different from what it is for n = 0. Instead of flowing in the infrared

to strong coupling, the coupling constant flows (Fig. 2) to ]/4π/n (or perhaps to

another zero of the beta function closer to the origin).
Let us now calculate the one loop beta function of the theory. We will use the

background field and expand around an arbitrary solution g0 of the classical field
equations. We write g = g0 expUTV, where the Ta (normalized so Tr TaTb = 2δab)
are the generators of O(N) and πa are the small fluctuation fields. The action
becomes

1 = \d x

1 λ2^

4 4π
(17)

3 Similar reasoning has been given in discussion of the 0 angle in four dimensions by Novikov,
Shifman, Vainshtain, and Zakharov (private communication)
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Fig. 3. The one loop renormalization calculation in the nonlinear sigma model. The dotted line is the
background field the solid line represents quantum fluctuations. The divergence arises only if the two
vertices contain both ημv or both εμv

up to terms cubic or higher order in π. By power counting, a one loop divergence
will be quadratic in gQXdμgQ. The only possible quadratic term is Tr(^ 0 " 1 ^ μ ^ 0 ) 2

- -TrdμgQdμg~\ since sμvΎΐ{g~ίdμgo){g~1dvgo) = 0. This shows at the one loop
level that only renormalization of λ is necessary - as was asserted earlier.

Since the sought for counterterm ΎrdμgodμgQ x is even under naive parity
x-+—x, g-^g, the divergent one loop diagrams (Fig. 3) have two vertices both
proportional to ημv or both proportional to εμv. The ημv vertex is the usual one that
give asymptotic freedom [10]. The εμv vertex is known from an old calculation in a
different model [11] to give a positive contribution to the beta function. Actually

4π
even without evaluating the diagrams it is easy to see that they cancel if λ2 = ± —-.

( T 2 \ 2

, they differ in that one diagram has a factor of
An)

ηa

μηav = η v while the other has εa

μεva = — ημv. Actual evaluation of the diagrams of
Fig. 3 is not difficult. The divergent term in the effective action is

ΛN-2) (Λ2\(Λ\

ΐ&Γ μθo μQo \jJ) ' ( }

where A is a momentum space cut-off and μ is a renormalization mass. From this
we read off the one loop beta function

4π
which, as claimed, vanishes for λ2 = —

n
If n is very large, say n = 1010, this perturbative calculation reliably shows the

existence of a zero of the beta function, since the computed zero is at a very small
coupling for which higher order terms are negligible. Of course, this reasoning
does not show that the zero of the beta function is precisely at \4π/n\ and for n of
order one the lowest order calculation does not reliably show even the existence of
a zero. To show that the beta function vanishes for λ2 = |4π/n| and that the theory
at the zero is exactly soluble requires more information.

Let us return to the fermion currents, Jι{ = — π//+φJ

+, JijL = —ίψLψL, and to
our hypothesis that these currents can be equated with suitable expressions
constructed from g. What commutation relations do the fermion currents obey?
The canonical anticommutation relations for the fermi fields are {ψί

+(x),ψj

+(y)}
= {ψι_(x\ψL(y)} =διjδ(x — y\ {ψι_(x),ψL(y)} =0. Using these equations one can
readily work out the canonical commutation rules for J±. These canonical
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O
Fig. 4. The one loop diagram that yields the Schwinger anomaly in 1 + 1 dimensions

relations, however, are not valid quantum mechanically. The proper quantum
mechanical formulas contain a c-number anomaly term, the Schwinger term. It
arises [12] from diagram (4)4. The quantum mechanical commutation relations
can be compactly written

[ΎrAJ _(x\ΎrBJ _(y)~] = 2iδ(x- y)TrlA, B~]J _(x)+ -δf(x- y)TrAB,
n

[ττAJ+(x\ΎτBJ + (y)-]=2iδ(x-y)ΎτlA,Bp+(x)- l-δ\x-y)ΊrAB, (20)

I W + ] = O,

where A and B are arbitrary antisymmetric matrices [generators of O(iV)]. The
terms proportional to δ'(x — y) originate from the anomaly.

Consider the following generalization of the first line of Eq. (20):

[ΎrAJ Jx),TrBJ _{yft=2iδ(x- y)Ύr[A,B]J _{x) + k-δ'{x- y)ΎrAB. (21)
π

Here we allow the coefficient of the anomaly to be rescaled by an arbitrary
constant k. This algebra is known in the mathematical literature as the Kac-
Moody algebra with a central extension, the central extension being fc + O [13]. In
the mathematical literature it is shown that this algebra has well-behaved unitary
representations if and only if k is an integer. Actually, in quantum field theory one
can easily find a system in which the anomaly has an arbitrary integer strength k.
Consider a theory with k "flavors" and N "colors" of fermions ψia, a = l...k,

k

i=l...N, and define Jιί = —i Σ ψ™ψjL The anomaly is then k times as large,
a— 1

coming from a sum over the flavor index in Fig. 4. [This gives an arbitrary positive
integer k in (21) if a negative integer is desired, one may consider J + instead.] The
fact that the Kac-Moody representation theory is well behaved only for integral k
is another aspect of the a priori quantization of anomalies, a phenomenon that can
also be seen from instant on physics [14] or from the multivaluedness of the Wess-
Zumino term [8].

Our one flavor theory obeys (20) with k= ±1. The following very important
facts are known about the Kac-Moody algebra. The unitary irreducible repre-
sentation for k= ± 1 is essentially unique. For k> 1, there are a finite number of
irreducible representations, obtained by taking tensor products of the fc = l
representation with different symmetry or antisymmetry conditions. To prove the
equivalence of a boson theory to the one flavor fermion theory it is sufficient to
show that the boson theory gives currents that obey a Kac-Moody algebra with

4 The evaluation of the anomaly is standard. One derivation of this formula is described in detail by
Coleman et al. [12, Eqs. (3.4), (4.19), and (4.28)]. They use, however, a notation based on Dirac fermions
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Fig. 5. This diagram is meant to illustrate the limitations of a canonical formalism based on light cone

coordinates in 1 + 1 dimensions. The dotted line is an "initial value surface", τ = 0 (τ = (x° +x1)/y2).

The wave line is a massless particle traveling to the left at the speed of light. Its world path never meets

τ = 0, so its existence cannot be predicted from initial data at τ = 0

We are thus led to try to calculate the canonical commutation relations of the
currents g~xd+g and (d_g)g~1. Actually, we will calculate the purely classical
Poisson bracket (PB). This calculation may appear formidable because of the

4π
complexity of the Wess-Zumino term but in fact at the critical coupling λ2 =

can be carried out more or less simply.
First of all, since g~xd+g is only a function of x+ and {d_g)g~1 is only a

function of x~, their Poisson bracket [_{g~ιd + g)ip {{^_g)g~ι)kl\Έ vanishes. It is
enough to calculate the Poisson bracket of (d_g)g~1 with itself; the Poisson
bracket oϊ g~1d + g can be deduced from the symmetry under x <-• — x,g<r^g~1.

We will carry out the canonical analysis in a "light-cone frame." This means
x°-x1 x° + x1

that we will regard σ = x" = -=- as "space" while regarding τ = x+ = =— as
1/2 1/2

"time." Actually, in 1 + 1 dimensions the light cone framework has a drawback. A
left-moving massless degree of freedom may be unpredictable on the basis of initial
data at τ = 0 (Fig. 5). For this reason, the light cone treatment fails to give the
Poisson bracket of operators like g~1d + g that contain τ derivatives. (Their
Poisson brackets can be obtained from an opposite light cone treatment in which τ
is regarded as space and σ as time.) But the light cone framework yields
straightforwardly the Poisson brackets of operators like (d_g)-g~1 that do not
contain τ derivatives.

With λ2 = 4π/n, the action, in light cone coordinates, is

Γ is rather complicated but it has one simple property: it is first order in time
derivatives. Therefore, the whole action (22) has this property.

To introduce a canonical formalism it is necessary to formulate a theory with
an action that is first order in time derivatives. Usually this requires introducing
momenta that are independent of the coordinates, passing for instance from
^q2 — V to pq — \p2 — V. The case at hand is an exception. Equation (22) is already
in Hamiltonian form that is, it is already of first order in time derivatives.
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In one other way, (22) differs from usual experience. In the light cone non-
linear sigma model it is not convenient to split the dynamical variables into
coordinates and momenta. Let us discuss, therefore, how Poisson brackets may in
general be computed without making an explicit choice of p's and q's.

Consider a theory with dynamical variables φι and an arbitrary action that is
first order in time derivatives:

I=SdtAt{φ)^. (23)

(The action may also contain terms independent of time derivatives such terms
are ignored in computing Poisson brackets.) We calculate the change in / under an
arbitrary infinitessimal variation φι-^φι + δφι:

J \dφJ at at

Define a matrix Fίj = diAj — djAi as the coefficient of δφ1——. Notice that Ftj is

always antisymmetric. Let Fjk be the universe matrix of Ftj (so FjkFki = δj).5 Then
the Poisson bracket of any two functions on phase space X and Y is defined by

ff. (25)
In the simple case in which the φι are decomposed into coordinates and momenta
qι and p\ and in which the part of the action containing time derivatives is

.άd
^dt^p1——, (25) agrees with the usual definition of Poisson brackets.

In this calculation it is unnecessary to choose an explicit set of coordinates φι

for the classical phase space. (Such a choice would be very awkward in the non-
linear sigma model becuase of the nonlinearity of the phase space.) It is enough
to have a basis of tangent vectors to the phase space (analogous to the tetrad in
general relativity). The matrices Ftj and Fjk may be constructed relative to any
such basis. In the non-linear sigma model a very convenient basis of tangents to
the phase space are the matrices g~ 1δg(σ). The matrix F must act both on the Lie
algebra index of g~1δg(σ) and on σ.

In this basis, it is very easy to calculate the matrix F in the non-linear sigma
model. From (14), with λ2 = 4π/n, the variation of the action is

lδvΛ- (26)

5 If this inverse does not exist, one must introduce "constraints.") This does not occur in the case at

hand
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From (26) we see that F is 1® , where " 1 " acts on the Lie algebra index and
n d 4π dσ

- — acts on the spatial coordinate. The inverse matrix is, of course
4π dσ

n \
We now wish to apply definition (25) of the Poisson bracket with

X = ΊτA — g~\σ\ Y = ΊΐB~^g~1(σ'). Note that (25) can be understood as
dσ dσ

follows. First calculate δXδY= —r ——. δφίδφj then replace δφιδφj by Fij. So we
cφ dφJ

calculate δX:

)^(gδg(σ)). (27)
dσ

δY is evaluated similarly, so

^ ι ^ 1 δ g ( σ f ) ) . (28)^(gδg(σ))Ίτg(σ)Bg(σ)^7(gδg(σ
dσ dσ

After evaluating δXδY= —Γ -—Γδφiδφ\ the next step is to replace δφιδφj

oφι oφJ

with Fιj. In our problem the role of δφι and δφj is played by (g~1δg(σ))a and
(g~ίδg(σ'))b (here we explicitly exhibit - temporarily - the Lie algebra indices a
and b carried by these matrices). In view of our previous determination of Ftj

4π
and Fι\ we are to replace (g~1δg(σ))a(g~ίδg(σ))b by δab — θ(σ,σ') where 0(σ,σ') is

an inverse of -—. Hence —{g~ιδg(σ))a'—-(g~1δg(σ'))b is replaced by δab

dσ dσ dσ n dσ

•-—θ{σ-σ')=-δab — δ\σ-σ'\ For the Poisson bracket of X and Y we get
dσ n

therefore

4π
[X, Y]PB= - —δ\σ-σ')Ύvg-\σ)Ag{σ)g-\σ>)Bg(σ')

= -—δ(σ-σ/)Ύr[A,B~] — g-1-—δ'(σ-σ')TrAB. (29)
n dσ n

Bearing in mind the definition of X and Y and the relation between Poisson
brackets and quantum mechanical commutation relations, this corresponds to the
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commutation relations

dσJ y " d σ ° v

4π da _ λ 4π
= — i δ ( σ — σ)Tr\_A,n] — g Λ id (σ — σ)ΎrAB. (30)

n dσ n

Now, let us compare this to the Kac-Moody algebra (21). We see that they

coincide if k = n and if J_ is identified with r-g"1-
2π dσ

Now, that conclusions can we draw? In the nonlinear sigma model and in
Eq. (30), n is an integer because of the multivaluedness of the Wess-Zumino
coupling. In (21) k is an integer because only then does the Kac-Moody algebra
have well-behaved unitary representations. We see that single valuedness of eι\
required in quantum mechanics for mathematical consistency, leads to a Kac-
Moody algebra with properly normalized central charge.

Second, the theory at λ2 = 4π/n really does have a vanishing β function, because
it is known [15] that the irreducible representation of the Kac-Moody algebra is
conformally invariant (can be extended to the semi-direct product of the Kac-
Moody algebra with the conformal algebra).

Third, and most important, it follows from Eq. (30) that the non-linear sigma
model with n=l and λ2 = 4π is equivalent to the free field theory of N massless
Majorana fermions. For, with the identifications

(31)

dτj '

the currents of these theories obey the same algebra [Eqs. (20) and (30)], and, as
has been mentioned, this algebra has an essentially unique irreducible representa-
tion. (The Hubert spaces of the quantum theories in question furnish irreducible
representations of the current algebras because no operators commute with all
the currents. This has been proved [13] in the fermi case and also [16] in the
bose case.6) The Kac-Moody representation is not quite unique, but the non-
uniqueness just refers to superselection rules and boundary conditions in the
quantum field theory.

Moreover, the Hamiltonian H and the momentum operator P of the free fermi
theory coincide with those of the non-linear sigma model at the special values of

6 Our discussion of the non-linear sigma model is closely related to the discussion of the Kac-Moody
representations in [16]. The phase space of our theory in the light cone frame is a complex manifold,
the loop space Z of O(N). (Actually, this is only half the phase space of the theory, since it omits left-
moving waves. The full phase space is Z x Z.) The operator Ftj that we have constructed represents the
first Chern class of a holomorphic line bundle E over Z. The Hubert space of the theory is the space of
holomorphic sections of E. This construction generalizes some classical theorems about repre-
sentations of finite dimensional Lie groups to the Kac-Moody system. The novelty of our discussion of
the non-linear sigma model is to show that the construction of Kac-Moody representations just
mentioned can be realized by canonical quantization of a quantum field theory
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the couplings under discussion. This can be seen in various ways. Because the
Hubert spaces form irreducible representations of the current algebras, H and P
are uniquely determined in each case by their commutation relations with the
currents. These commutation relations are suitable H and P generate translations
in both the bose and fermi theories. A more explicit argument is the following. In
the fermi theory one can show H +P = constlim jdxJιl(x + ε)Jil(x), and a similar

formula for H — P in terms of J_. (This is not a canonical equation. One must
study the short distance behavior of the product of currents, and subtract an
infinite c-number.) On the other hand, in the bose theory one can calculate
canonically an equivalent formula

r ( -Λ dg

= const \dxTv\g -—
\ dτ

(and similarly for H — P). In view of (31) these relations show that H and P of the
bose theory equal those of the fermi theory.

By introducing several fermion flavors, it is possible to make a bose-fermi
translation also for w+1. Consider a theory with N "colors" and n "flavors" of
Majorana fermions ψia, j=l...JV and a=l...n. We can define currents

These currents generate O(N)L

x O(N)R x O(n)L x O(n)R. The O(N)L x O{N)R current commutators have anom-
alies of strength n. The O(n)L x O(ή)R current commutators have anomalies of
strength N. The free field theory Hubert space is an irreducible representation
[17] of the combined current algebra.

An equivalent bose theory is a theory with two fields g and h g takes values in
O(N) and h in O(ή). For g we take a Wess-Zumino coupling n and λ2 = 4π/n for h
we take a Wess-Zumino coupling N and λ2 = 4π/N. g and h are decoupled,
corresponding to the fact that at the fermion level amplitudes with a product of
O(N)LxO(N)RxO(n)LxO(n)R currents factorize [18] as a product of
O(N)L x O(N)R amplitudes and O(ή)L x O(ή)R amplitudes. The Hamiltonian and
momentum operators of xpίa can be identified with the sum of those constructed
from g and h.

As we have discussed, Eq. (31) generalizes to the non-abelian case the equation

ψyμψ= ——zβ dvφ of conventional bosonization. In conventional bosonization,

1/π
there also are formulas ψxp = Mcos j/4πφ, ψiγ5ψ = M sin ]/4πφ (Mis a re-
normalization mass). What are the analogues of those formulas here?

Let Q^= — iψί_ψ + k. We would like to translate Q[ into the bose language. The
commutators of Qlk with the fermion currents are as follows:

Uΰ M> efGO] = - iδ(x - y)(δJkQί(y) - <5ifcβ/(j,)],

Uΐj (x), βfϋO] = - iδ{χ - yWjjQmy) - δiXφ)).

We must therefore find in the bose theory operators obeying the algebra (32). One
need not look far. The matrix elements gι.(x) of the matrix g are the required
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operators. Canonically,

1 ίdg _ \ij ]
7Γ~\~r- Q 1(x)\ ><fi(y)\ — — iδ(x — y)(δjkqli(v) — διkqJ,(y)),
2π\dσy y ') ί ! w ; | v y n UιKyj w "

(33)

= -iδ(x-y)(&ιgk

i{y)-δilφ)).

I The evaluation of (33) is simple for the following reason. From (30) we know that

ίdx—-g~~ι and \dxg~x -— generate chiral O(JV) x O(N). Therefore, (33) holds up to
dσ dτ

total derivatives that vanish after integrating over x. By virtue of locality and
dimensional analysis - g is dimensionless - there are no such possible terms. For

the same reason, there can be no anomaly in (33) quantum mechanically.

At least heuristically, it appears that Qk(x) and gk(x) are uniquely characterized
(up to normalization) by the relations (32) and (33). For instance, in the free fermi
theory one cannot find another operator that transforms like Qk{x\ so we are led
to conclude

c), (34)

where (as in the conventional bosonization) M is a mass that depends on the
renormalization procedure for the bosonic operator. It should be noted that -
while — zτ/;i_φJ

+ has canonical dimension one - gι. is dimensionless classically. So
Eq. (34) is possible only if gι has anomalous dimension one in the fixed point
theory with n = 1.

Equation (34) is a generalization of the conventional bosonization formulas, in
which ψψ and ψίy5ψ are identified with matrix elements of the O(2) matrix

/ cos |/4πφ sin]/4πφ\ . ΛΛ
v v . Of course, in the free bose field theory, it is easy to see

\ — sin ]/4πφ cos ]/4π φ/
that cos ]/ΐπφ and sin ]/4πφ do have anomalous dimension one.

Equation (34) can be tested in the following way. We have identified iψ[ψj

with ±-(^g-Al =±-Σ^Γgi(g-if Since g is orthogonal, {g-'f^gl So
2π \dx J 2π k dx J J

j k

j = ^-Σ~j-^gi If we identify gι

} with —~-xpι_ψj+, we are led to require
£JL fa CLJv -1V.L

) (35)

At first sight Eq. (35) looks preposterous. It relates an operator quadratic in
spinors to one quartic in spinors. However, to understand the right-hand side of
(35), we must study the small A behavior of

1 r\

Ύ2 ί d2yj^T(ΨrΨk

+(y)ψ7Ψk

+(x)). (36)
Δ iyo-xo <A/2 oy

\y1-χί <A/2
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N d N
Since £ -—^T{ψ£(y)ψ£{x)) = Nδ2(x-yl (36) has a piece - ~jψ. ψ. (x). This is

k=i oy Δ

the most singular part of (36), as A ->0. Equation (35) must be understood to mean
that the operator on the left-hand side equals the most singular part of the
operator on the right-hand side. Note that while A is cut-off dependent, the mass
M appearing in — iψ^ψΐ(x) = Mgi

j(x) is also cutoff dependent [since — iψ^ψ~l has
no anomalous dimension, but as already noted gι must have anomalous dimension
one in the equivalent bose theory, if the relation — iψ^ψJ~(x) = Mglj(x) holds].
Evidently, in view of (35) and (36), the product MA is cut-off independent.
Equation (35) holds in the limit as M->oo and Δ-+Q with MA fixed. While these
manipulations are somewhat bizarre, the same bizarre manipulations are needed
in conventional bosonization to show the consistency of the relations

μ μvdφ, ψψ = M cos ]/4πφ, ψίγ5ψ = Msm ]/4πφ.ψyψ= εdvφ,

1/π
This completes the dictionary of bosonization of fermi bilinears. Given the

dictionary, it should be clear that the bosonization can be carried out also for
arbitrary massive or interacting fermi theories. For instance, a fermion bare mass

N

mψψ = mi ]Γ ψk_ψ\ can be included by adding to the Lagrangian a term
k= 1

N

proportional to Σ g\ = Trg. A {xpxp)2 coupling becomes (Tr#)2. One can likewise
i = 1

study gauge theories in this way. For instance, in the fermion language one may
choose to gauge an arbitrary anomaly free subgroup H of chiral O(Λ0 x O(N). The
corresponding theory can be studied in the bose language by gauging the same
subgroup H of the symmetry group of the nonlinear sigma model. One will be
limited to anomaly free groups H - as one should be - because only for anomaly
free groups does the Wess-Zumino term have a gauge invariant generalization [8].

Various applications of the present work can be imagined, but will not be
explored here. The non-abelian bosonization may help in understanding 1 + 1
dimensional field theories. It may be helpful in understanding the Callan-Rubakov
effect, which is described by an effective 1 + 1 dimensional s-wave field theory. And
the conformally invariant theory with λ2 = 4π/n may provide a starting point for
constructing generalizations of the usual string theories.

Appendix: Explicit Form of the Wess-Zumino Functional

In this appendix we will work out an explicit formula for the Wess-Zumino
functional in the simplest case of an SU(2) non-linear sigma model in two space-
time dimensions. We will use an index free notation, so antisymmetric tensors ωijk

are denoted simply as ω, and the curl of ω, (d^jkl ± cyclic permutations) is denoted
dω. Differentials are considered to anticommute, so dxdy = — dydx and (dx)2 = 0, if
x and y are functions.

First let us write the Wess-Zumino functional in an abstract form. On the
group manifold of any simple, non-abelian group G, there is a G x G invariant third
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rank tensor field ω. ω obeys dω = 0, and locally but not globally ω = dλ for some
second rank tensor field λ. ω may be normalized so that its integral over any three
sphere in G is an integral multiple of 2π.

Let B be a three-dimensional ball whose boundary, the two sphere S, is
identified with space time. Given a mapping g from S into G, which has been
extended to a mapping (also denoted g) from B into G, the Wess-Zumino
functional is defined as

Γ=$g*-ω=$g*-dλ = \g*-λ=\g*-λ. (37)
B B δB S

Here g* is the "pull-back" of differential forms. In the third step of (37) dB = S is
the boundary of B; Stokes' theorem has been used. The last formula in (37)
exhibits Γ as the integral of an ordinary two-dimensional Lagrangian. In concrete
terms, the meaning of this formula as follows. Let φι be a set of coordinates for the
group manifold G. Let λtj be the components of the anti-symmetric tensor λ. Then
the mapping g :S-^G can be described by means of functions φ\ and

Γ = J d'xε^λ^φ^d^d^'. (38)

Equation (38) has "Dirac string" type singularities, because the defining equation
of λ, ω = dλ, can be solved only locally on the group manifold.

Equation (38) is G x G invariant, although not manifestly so. Under a G x G
dβ. δβ. .

transformation λ transforms as λij-+λiJ+ ^~r — —± for some β:{φ). So
dφ oφJ

δΓ = J d2xε^{diβj - djβ^φ'd^ = 2$d2x~ (s»vβjdvφj), (39)

and Γ changes by a total divergence whose integral vanishes.
Now let us construct explicit formulas for the simplest non-abelian group

SU(2). The SU(2) manifold is a three sphere it can be described by polar angles ψ,
0, φ with line element ds2 = dψ2 + sin2ψ(dθ2 + sin2 θdφ2). The only SU(2)x SU(2)
invariant third rank antisymmetric tensor is the Levi-Civita tensor or volume
form, so

ω = — sin2 ψ sin θ dψdθdφ. (40)
π

Note the normalization of (40). Since the volume of the SU(2) manifold is 2π2, (40)
is chosen so that the integral of ω over the whole manifold is 2π.

The equation ω = dλ can be solved in many ways, for instance

X= —φsin2xpsinθdψdθ. (41)
π

[Recall (dψ)2 = (dθ)2 = 0.] So given a mapping of space-time into SU(2), the
properly normalized Wess-Zumino interaction is

Γ = -\d2xφ{x) ύn2xp{x) sinθ(x)εμvdμψ(x)dvθ(x). (42)
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[In this parametrization, the Dirac-string type singularities occur at θ(x) = 0 or π.
For at θ = 0 or π, everything should be independent of φ. This is not true in Eq.
(42). In the case of the group SU(2), it is possible to choose another para-
metrization that is singular only at a single point on the group manifold.]

Formulas similar to (42) can be constructed for other groups and also for the
Wess-Zumino interaction in four dimensions. These formulas are not very
enlightening, however.
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