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majority of the spin sites. The expression for 2/* can be shortened. The quantity in brackets is
(where K = BJ):

cosh(B* + K) cosh(B* — K) = cosh?(B*) cosh?(K) — sinh®(B*) sinh*(K)
= cosh?(B*) cosh*(K)[1 — tanh?(B*) tanhz(K)]
= cosh®(B*) cosh?(K)[1 — tanh?*((B* — Bh)/r)]

_ cosh?(B*) cosh?(K)
B cosh?[(B* — Bh)/r]
_s cosh(B*) cosh(K)
~ " cosh[(B* — Bh)/r]

(4.462)

*

(4.463)

where Eq. (4.444) is used to simplify the expression.

The ferromagnetic system has a sharp phase transition only at zero magnetic field
(h = 0). In this case B* = 0 above the transition temperature, and then .o/* = 2 cosh(K). The
expression (4.463) gives the formula in the ordered state by setting 2 = 0. In the case of
nonzero magnetic field (4 # 0), the ordering of the spins is gradual as the temperature is
lowered. Even at high temperatures, the parameter B* does not vanish but approaches
B* —> Bh. In this case one should use (4.463) with all of its various factors.

4.5. TOMONAGA MODEL

The Tomonaga model (Tomonaga, 1950) describes a one-dimensional electron gas. The
procedure is to examine the Hamiltonian of the one-dimensional electron gas and make some
approximations on it. As a consequence of these approximations, the Hamiltonian becomes
exactly solvable. The one-dimensional electron gas is not exactly solvable but only an
approximate version of it.

The important physics is the recognition that the excitations of the electron gas are
approximate bosons, although the elementary particles, electrons, are fermions. The excita-
tions involve two-particle states, for example, moving an electron from one state to another.
The wave function of the two fermion states has boson propetties. The Tomonaga model
assumes that the excitations are exactly bosons, which is the important approximation.

The model has been useful in several kinds of problems. First, there are organic solids
such as TTF-TCNQ whose conductivity is thought to be largely one dimensional (see
Heeger, 1977). The Tomonaga model has played a role in the interpretation of electrical
conductivity in these materials (see Luther and Emery, 1974). Second, in impurity problems,
or X-ray absorption problems, the response of the electron gas to the central impulse can be
factored into spherical harmonics associated with different angular momentum states /. Each
angular momentum channel / then becomes a one-dimensional electron gas to which one may
apply the Tomonaga model. Recently, semiconductor nanotechnology permits the construc-
tion of semiconductor channels which act as one-dimensional conductors. The Tomonaga

model is used in the theory of these systems. Single wall carbon nanotubes are another one-
dimensional conductor.
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4.5.1. Tomonaga Model

The 01iigina1 model of Tomonaga (1950) discusses the following Hamiltonian for the
one-dimensional interacting electron gas:

1
H = vp ) |klafa,, + 57 2 Viep()p(—h) (4.464)
ks k
pk) = ; @Y k2t (4.465)

The system has length L, and vy is the Fermi velocity of the particles, which are assumed to
have a linear dispersion relation. The label s = +1 denotes spin, and p(k) is the electron
density operator. The electron—electron interaction term ¥, will be specified below. It is not
Ame? /k?, which is dimensionally incorrect in one dimension, since V, has units of Joule-
meter. Dimensional analysis suggests the form 7} o €?(ky/k)", where n is any exponent. The
summation over k states may be turned into integrals by the usual transformation as L — oo:

L
2f) =2 J dkf (k) (4.466)
k T
The basic step in the Tomonaga model is to divide the density operator into two terms:
pl(k) = Z a;—k/z,sap-{—k/Z,s (4.467)
p>0,s
po(k) = zg a;——k/z,sap-{—k/z,s (4.468)
p<0,s
p(k) = py (k) + pa(k) (4.469)

The density operator p(k) commutes with any other density operator p(k’). However, the two
parts p; and p, do not commute with the same parts for other wave vectors. Examine the
commutation relations:

[pi(k), py (KN =3 3. O[a;-—k/Z,saP"rk/Z,S’ &y 129k

5,8 p.p'>

= ZO[a;_k/z,sap+k,+k,z,s®(p +k/24+K/2)

$,p>
=8} Biy2,O( — /2 = I /2)] (4.470)
An important special case is k' = —k
[py(k), Py (=) = X [Mykps = Mpippsl =22 2 M (4.471)
s,p>0 s —k/2<p<k/2

The right-hand side shows that the commutation relations depend on the operator n,; over a
range of p values. The operator n, is replaced by its average in the ground state of the free-
particle system.

AKL/27), K < 2kg

Mo =2 3 ®(kF“"p')=[2kFL/n, k > 2kp

P
s —k/2<p<k/2 —k/2<p<k/2
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and the commutation relations (4.471) can be written for £ < 2k as

(o1 (8, py(—B)) =( ) (44m)
[0a(R), pa(—h)] = —(—"EL—) (4473
(oK), pa(—k)] = 0 (4.474)

The analogous results are included for the other commutators, which can be derived in the
same fashion. The Tomonaga mode! assumes that these density operators obey the exact
commutation relations of

kL
[p1(k), p1(—F) = 80 (?)

kL 4.475
0200 92 —k)] = 015 (47
[p1(K), pa(—K)] =0
These relations are the central approximation of the Tomonaga model. The commutation
relations are not exact, since the commutators give operators, as in (4.470). However, these

results are obtained when taking the expectation value of the exact commutation relations. For
example, in (4.470)

(o1 (®), pi () = X (] By 2, sBptbok)2.)O@ + k/2 + K /2)

s.p>0
— (@] k2,5 Opit25)O@ — /2 — K /2)] (4.476)
In the right-hand side, the averages are zero unless k' = —k, so that

{[py(K), pr(=K)]) = & Z[ Mpka) — Mppd] =28, 30 {ny) (4.477)
5,p>0 —k/2<p<k/2

Although the commutation relations (4.475) are not exact, the expectation values of these
commutators are given exactly. The approximation is not a very bad one.

It is convenient to express the density operators p;(£k) in terms of creation and
destruction operators. This step is done so that the creation operators are dimensionless and
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the commutation relations (4.475) are obeyed. The creation and destruction operators are for
bosons. These definitions are given below, where the symbol k is always positive:

pi(k) = bk\/%
pi(—h) = bl\/jkf

7 (4.478)
pa(k) = bik\/%
kL
pa(—k) = b-—k\/;
[be, L] = 8t i (4.479)

When £ 1s positive p, (k) o by, and when k is negative p, (k) bT_k. The operators p; always
commute with p,. The choice (4.478) does satisfy the approximate commutation relations
(4.475).

The second term in the Hamiltonian (4.465) may be written in terms of these boson
operators:

37 5 Vip(0p(—k) = by + b6 +5_9 (4.430)
V= ll;':" (4.481)

The electron—electron interaction term has been recast into an interaction between the boson
excitations of the electron gas.

The first term 1n (4.465) is the particle kinetic energy. It requires some additional work in
order to express it in terms of boson coordinates. It 1s not immediately obvious how to express
a,tak in terms of the new boson operators. When faced with this predicament, it is useful to
examine the commutation relations of this operator. The objective is to find a boson repre-
sentation of the kinetic energy operator which reproduces the commutation relations. If this
cannot be done exactly, at least try to find a good approximation. The commutator algebra
completely specifies the excitation spectrum of the system, so that the excitations are
adequately described by operators with accurate commutation relations.

Call the kinetic energy term H,,. Its commutator with p,(k) 1s

[p1(k), Hol=vr 3. 3 |k/|[aT_k/2,sap+k/2,s’ a}:,s,ak:s/]
5,p>0 'k’

=5 T )i peiiaap /2 = |p = k/2) (4.482)
$,p>

koifp>k/2

lp+k/2| — p — k/2| = lzp if p <2 (4.483)
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For small values of k, then p > k/2 over most of the p summation. In this case the above
commutator is approximately given by

[01(8), Hol = vk 5 @l 4o Byt = vrkos (8 (4.484)

$,p>

The above is a desirable form for the commutator, since the right-hand side is also propor-

tional to p,(k). With the boson representations (4.475) and (4.478) for p,(k), the approximate
commutation relation (4.484) is

[bk’ Ho] = kUFbk = Okak (4485)

Of course, the same result would be given by the choice of Hy = ), cokb,tbk. Next consider
the commutator of H,, with p,. The same approximation in this case leads to

[p2(k), Hol = —0op,(k) (4.486)

Both of these approximate commutators are satisfied with the following choice for Hy:

HO = ;mkbltbk (4487)

H= Z{(’)kbltbk + V(b + bik)(b/]; + b_)} (4.488)
%

The one-dimensional electron gas (4.465) has been recast into the boson Hamiltonian (4.488).
The latter is exactly solvable, as will soon be shown. The Tomonaga model (4.488) has been
derived from (4.465) with several key approximations on commutation relations. The form
(4.488) is a description of the boson excitations of the electron gas.

Equation (4.488) may be solved exactly by a variety of techniques. Probably the easiest
method is to change to a coordinate representation for the boson operators:

0; = ﬁ%(bk Loty (4.489)
k
Po=i 5°2ﬁ(b,’§ —b_,) (4.490)
Ok, Prr] = i 4 (4.491)

In this representation the Hamiltonian is written as

Hy = %;(P——kPk + ;0 0_y) (4.492)
H = %;(P—kPk +E QO y) (4.493)

E; = of + 40, 7, (4.494)
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The new eigenfrequencies are £,. Now change back to a new set of boson normal mode
operators, which are normalized to the new eigenfrequencies.

1
O = \/ﬁ(ak +al ) (4.495)
k
E
P, =i Elf(oc,t — o) (4.496)
[, 0] = 18, (4.497)
H= ;Ek(oc,tock +1) (4.498)

These series of steps may be summarized by the observation that the boson operators are
changed in the following way:

E
bl —b_, = \/%(a,t —a_) (4.500)

These transformations are useful for other problems.

The Hamiltonian of the one-dimensional electron gas (4.465) has been solved
approximately. Only the excitation spectrum has been obtained. Some of these excitations are
fluctuations in the density operator p(k). Very similar results to the Tomonaga model are
obtained by writing an equation of motion for the density operator and solving it approxi-
mately. This approach is used in Chapter 5.

So far the form of the interaction potential ¥} has not been specified. In fact, physicists
choose a variety of forms for this interaction to suit their problem. The units of ¥} are the
same as vp: Joule-meter (%vg is J-m). One possible choice is to take ¥, o €® = constant = V.
The energy spectrum is just altered by having the Fermi velocity increased:

E, = gk (4.501)

2
\—)F = \/;F (UF -+ '7; V0> (4502)

The constant ¥}, is assumed to be positive, since it describes interactions between electrons.
The interactions increase the velocity of the acoustic plasmon.

Another possible choice is to take ¥, = 2/3(e’k%/k*). This choice leads to long-
wavelength modes with a constant frequency, which is the plasma frequency:

Ey = /0% 4 o2 (4.503)

- 4me*n
2 0
W, = 4o, V, =

®
by +b', = Ei(ak +al) (4.499)
k

(4.504)

where ny, = k}/3n? is not the electron density in one dimension, but is a collection of
constants. In the electron gas, there are two different types of excitations. One is the plasma
modes at long wavelength, and the other is the electron-hole excitations at shorter wave-
length. The latter are probably best described by the choice V = ¥,
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4.5.2. Spin Waves

The Hamiltonian (4.464) of the one-dimensional electron gas has other collective
excitations besides the density oscillations which were discussed above. These other exci-
tations have the character of spin waves, or magnons. Overhauser (1965) has shown that the
excitation spectrum is completely described by the sum of these two types of excitations:
density oscillations and spin waves. This feature of one dimension does not apply to three
dimensions. The density oscillations are the excitations which occur when there are external
perturbations such as electric fields. The spin waves respond to magnetic perturbations and
contribute to the spin susceptibility.

The spin waves are described by the operators

o(k) = o,(k) + (k) (4.505)

o, (k) = zo S _y 1y Apik/s (4.506)
p>0,s

o) = ¥ S&)_y 12 sk /r.s (4.507)
p<0,s

where the spin index is s = %1 for 4, |. The nature of the spin wave excitations is shown in
Fig. 4.14. The spin-up and spin-down densities have opposite variations, so there is no net
change in the particle density. There is a variation in p, — p,

(k) =3 a1 @y (4.508)
p

p=py+p (4.509)

o =p;—p, (4.510)

The spin operators are examined in the same fashion used for the density operators. The
commutation relations are found among these operators and between them and the density
operators. Some typical results are

, kL
1), 0141 = 8y () @511)
, kL
[03(8), Ga(—k)] = 5. (‘,{) (4512)
[61(k), o,(K)] =0 (4.513)
[0,(k), py(—=k)] =0 (i,j=1,2) (4.514)
The commutator [o,(k), p;(k)] contains one factor of s, and the term s = 1 cancels s = —1.

This cancellation occurs when the two spin states are occupied with equal probability and the
system 1s not magnetic. The spin operators commute with the density operators and so

pt LN\ N\
~ Ptepy =0

A \//\\/' P 7o

FIGURE 4.14 Spin-up and spin-down charge densities.
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describe' an independent set of excitations. These excitations can be represented by a new set
of creation and destruction operators, which for k > 0 are

oy(k) = Ck\/%
oy (~k) = C,I\/—%

(4.515)
GZ(k) = Ctk\/%
ay(~k) = C_k\/%‘
(e cb] = 8 (4.516)
e BL1=0 4.517)

The next step is to examine the commutation relation of (k) with the Hamiltonian (4.465),
which will establish the energy spectrum of these spin wave operators. They commute with
the second term in (4.465), from electron-electron interactions, since they commute with the
density operators. The commutator with the kinetic energy term H, is:

(010, Hol = vp 22 5, 4 priga, llp + /2]~ p — k/21] (4.518)
S,p>
~ vpko, (k) (4.519)

The commutator is evaluated using the same approximation to get (4.484). Exactly the same
result is obtained by representing the spin wave part of Hy by Y, cnkc,tck, The spin wave part
of the Hamiltonian is

H,, =Y ol (4.520)
k

H = Y {0;blby + oycle, + Vilby + b )L + b_y)) (4.521)
k

H = Y (E,alo, + ogcley) (4.522)
k

The density operator parts in (4.488), (4.522), and (4.498) are combined with the spin wave
parts to give the total Hamiltonian H for the excitation spectra of the one-dimensional
electron gas. The original model of Tomonaga actually described a spinless electron gas. For
spin one-half systems, the two possible spin orientations lead to another type of independent
excitation which are called spin waves. The total Hamiltonian (4.522) has the density and spin
wave excitations decoupled.

The original Hamiltonian (4.465) did not contain any terms which would cause inter-
actions between spin waves; there were no terms of the type o(k)o(~k). The spin wave
excitation spectrum is unchanged by electron-electron interactions, at least in the Tomonaga
model.
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The spin wave part of the excitation spectrum can be used to derive the Pauli spin
susceptibility. The starting point for this calculation is (3.458):

B
vk, i0) = — L dve™ (T, o(k, ©)o(—k, 0)) (4.523)

In the Tomonaga model, the correlation function may be evaluated exactly by using the
operator representation (4.515):

c@km=c&wnwmem=(%yd+aa (4.524)

kL
ok, ) = (—n-> (cl e™ 4 ce™™) (4.525)

The t dependence is determined by H,,. The further steps in the evaluation of the correlation
function are identical to the derivation of the unperturbed phonon Green’s function in (3.76):

‘ |k|L) 20,
k,iw) = 4.526
(k. i) (n o o (4.526)
|k|L 20,
= 4.
Xret(k’ (D) ( T ) 0)2 _ (012‘ + 120)5 ( 527)

The retarded correlation function is found from the analytical continuation i — © + id.
The susceptibility is found to be proportional to the length L of the electron gas. This
dependence on L is correct, since the susceptibility is the total magnetization M divided by
the magnetic field, and the total magnetization is indeed proportional to the size of the system.
A more meaningful quantity would be the magnetization per unit volume, which is the above
result divided by L. The susceptibility demonstrates a resonance phenomenon, so that it is

singular whenever the external perturbations (k, @) exactly match those of the excitation
spectrum ® = ©;, = kvy.

4.5.3. Luttinger Model

A model proposed by Luttinger (1963) is a slight variation on the Tomonaga model. It
has the advantage of being exactly solvable, with fewer approximations, yet is identical to the
Tomonaga model in some of its essential properties. The basic feature of the Luttinger model
is that the system has two types of fermions. One has an energy spectrum given by g, = kv,
while the other has an energy spectrum given by €, = —kvy. They are shown by the solid and
dashed lines in Fig. 4.15(a). There is an infinite number of each kind of particle, since the
occupied energy states stretch to negative infinity.

In the Tomonaga model (4.465) it is assumed the energy spectrum is as shown in Fig,.
4.15(b). The particles have a linear dispersion relation, but the same kind of particle is
represented throughout the band of states.

The two kinds of fermions in the Luttinger model are denoted by the operators a, ; ; and

a, 1 s » where the subscript 1 or 2 designates the particle. The two bands are quite independent,
so the two fermion operators anticommute:

{ai,k.s,a}r,k',s’} = 8t'j5k,k’ 8ss’ (4528)
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——

(a) {b)

FIGURE 4.15 (a) The Luttinger model has two distinct particles, with separate energy bands. (b) The Tomonaga
model has one particle, whose energy band is vp|k|.

The operators p;(k) and o,(k) are defined as in the Tomonaga model (p > 0):

Plp) =2 &} i sTiks (4.529)
PP =% &} i pips = PiD)' (4.530)
oip) = % AP (4.531)
o(—p) =1 &g iy = 04D (4.532)

The advantage of the Luttinger model is that it has the same kind of commutation relations as
found for the Tomonaga model. However, they are valid for all p, whereas they were valid
only for p < 2k in the Tomonaga model:

[1(=p), 1] =, (%—) 4.533)
[p2(@)s Po(=P)1 =8, ‘%—) (4.534)
[p1(®), P2 (@) = (4.535)
[01(=p). ;)] = 8, Pn—L—) (4536)
[o2(=p), 2] = 5,, 39) (4.537)
[o1(p), 52(p))] = (4.538)
[0,(®), p;(@)] = (4.539)

These commutation relations depend, in an important way, on the assumption that there is an
infinite number of negative-energy particles. For example, the first commutator is

[p1(=p), p1 ()] = 28, Z(nZk M1 ktp) (4.540)
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The factor of 2 comes from the summation over the two spin configurations s = 1. Fora
finite number of particles, each summation over particle number would just give the number
of 1-particles Ny,

Nl = 2;”111c = 2§n1,k+p (4.541)

and the commutator would be zero. However, when there is an infinite number of particles in
negative-energy states, a nonzero result is obtained. For a finite band, the difference

;(m,k — 7 fip) (4.542)

equals pL/2m at the top end of the band, but it equals the negative of this at the bottom end of
the band, so that there is no net difference. For a semi-infinite band, there is no bottom
contribution, so only the top difference is counted.

The kinetic energy term in the Luttinger model is

Hy =vp Z k(al k52 a;r_ ks%2,ks) (4.543)

H, has the exact commutation relations with the operators (p > 0)

[Hy, p1(P)] = vepp:(p) [Hy, p2(p)] = —vrppa(p) (4.544)
[Hy, ©1(p)] = vppoi(p) [Hy, o2(p)] = —vppo,(p) (4.545)

The kinetic energy term is exactly represented by the operator

= D S 01 @pi(=p) + po—P)pa(p) + 51()51(=p) + Ca(—p)oa(P)]  (4.546)

0___
L p>0

In the Tomonaga model, the boson approximation applies only for excitation with small .
This restriction is removed in the Luttinger model. The transformation to boson operators is

_ pL + [pL
pi(—p) = bl,,\/—n—, p1(p) = bl /= -
IpL IpL
pZ(—p) = b;—p %a pz(P) = b2,__p p‘?

(4.547)
/pL L
Gl(_p) = C]p —7'_[:.5 G](p) = CL) p—TE—
pL L
S-P) =6} [~ P =o, /f”TE
The Hamiltonian is now
Ho = ZOPUF[bL’bIP + b;-—pbz.—'[) + C.{pclp + C;,—pCZ,—p] (4548)
p>

The operator p,(p) for p > 0 takes a particle from state k and puts it into p + k. This
operation will make an electron-hole pair when k < k and p + k > k. The summation over
all such electron-hole pairs is represented by the boson creation operator brp For particle 2,
the Fermi “surface” is at the negative wave vector —kj. Electron—hole pairs are made mostly
at negative wave vectors. The operator p,(—p) =3, aZka2 k+p Tor p > 0 creates these
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bosons, since it takes an electron from the occupied state kr < k + p to the unoccupied state
k < —kr, where k is negative.

Various kinds of interaction terms may be added to the Luttinger model. Those which
arise from electron—electron interactions are expressed as the product of four fermion
operators, or two density operators. These Hamiltonians are exactly solvable, since they
describes linear coupling between two harmonic oscillator systems.

The Luttinger model has the advantage of being exactly solvable. Of course, one could
add other terms which might render it no longer exactly solvable. The disadvantage of the
model is that it is unphysical, since it contains the infinite reservoir of negative-energy
particles.

4.5.4. Single-Particle Properties

Some of the most interesting applications of the Tomonaga—Luttinger models are
concerned with single-particle properties of the electron gas. An important quantity is the
occupation number »; ;, . = (a;r, k.s% ks)» I the interacting system. A more ambitious calcu-
lation would be the one-particle Green’s function

G, sk, 1) = —i(Ta;; (Hal, (0)) (4.549)

To obtain these quantities requires a representation of the single fermion operator a; ; in
terms of boson operators. The discussion follows Mattis and Lieb (1965) and Luther and
Peschel (1974).

The representation of the single-fermion operator in terms of bosons is found, as always,
by examining the commutation relations. A representation of a;, , is satisfactory if it obeys
all the proper commutation relations with the other operators. The first step is to Fourier-
transform into a real-space representation:

1 ,
Wi(x) = T—Z e’kxai,k's (4.550)

W = [Ze”"“ & s (4.551)

The advantage of this representation becomes clear when considering the commutator of
W, (x) with the density operators. This discussion uses the Luttinger form of the Tomonaga
model. Typical commutators are

[¥ (), ()] = 8P ¥s(x) (4.552)
[lPis(x)v 6(]))] - 6 Se’pxq-jxs(x) (4553)

which is derived in the following way:
[\Ijrs(x) pj(p) \/_kk’s’ 1k.s’ a},k’q—p,s' j,k’,s’]

6 1 Os O
@ ks Oss Ok=k'+p
\[— L i

Bi i e it ;
= -ﬁew }k; e g p s =8 ;€Y (%) (4.554)
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The commutator [V (x), p;(p)] has a simple form, since it is just proportional to Wi(x). The
solution would be simpler if the commutator were a constant or even proportional to a density

operator. It is not, so the solution of (4.552) is more complicated. One possible solution has
the form

W i5(x) = Fi(x) explJy(x)] (4.555)

5) = =3 TP lpyp) 030 = P lpy(p) +so(p]) (4:556)

p>0

The prefactor F;(x) can be a function of x but 1s a ¢ number in the sense that it must commute
with both p,(p) and o,(p). Next show that this choice does satisfy Eq. (4.552)

[P, p1l = Fi(€py — pre") = Fi(¢/1pre™ — 1)
= Fy[Jy, piJe’t = 177, p1]¥; (4.557)

The last line is valid only when the commutator [J;, p;] is a ¢ number which commutes with
the operator J;. It does for the J;(x) in (4.556):

n 1. .
[J1, p1(P)] =z;%e"“[91(—k), p1(p)] = e (4.558)
The next observation is that the factor

pl(p) +S0‘1(p) = Z(l -+ SS’)al‘,k-’rp,s'al,k,s’ =2 z}\: a;k_l_p’sal‘k (4.559)

k,s’'

since the factor (1 + ss') = 0 unless s = &', and then it is 2. The equations can be condensed
by introducing the notation of a spin-dependent density operator (p > 0):

Pilp) = > a,ff,kﬂ,,sa,‘,k,s (4.560)
pis(—=p) = gj a4 (@ pips (4.561)
Pip) = X pil@) (4.562)
oi(p) = L 5pu(p) (4.563)
) = =2 Egjp e ) (4.564)
¥ (x) = Fi(x) exp[J(x)] (4.565)

The spin-dependent density operators can be represented by boson operators similar to
(4.547) with an additional spin subscript.

The form of Wi (x) in (4.556) is a solution to the commutator equation (4.552).
Unfortunately this solution has some undesirable properties which will force a modification.
The need for changes in ¥;(x) may be understood by examining the form of the operator

‘I’ls(x)‘Pls(x’ )) for the noninteracting electron system, which is the Luttinger model with just
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the Hamiltonian Hj, in (4.543). At zero temperature, the noninteracting system has the feature
that the momentum distributions for particles 1 and 2 have the form

Nk, = 0(kp — k) (4.566)
n2,k,s = B(kF + k) (4567)

This fact can be used to evaluate the correlation function (‘I’Is(x)‘l’l <(X)) by using the inverse
of the transformation (4.550):

(F,00%150)) = zze—’(h_k’xq(a){m‘zlk' ) (4.568)
1 il
Zkz (o kxl)skk:nl‘kis (4.569)
* dk _;
= J 3¢ 00k — ) (4.570)
—o0
I 0)¥,()) = — e b (4.571)
y : 2mi(x — x' +in)
¥ eikF(x——x’) )
(P00 F5(x)) = T E—— (4.572)

where the factors of +in are added to aid convergence at infinity.

The objective in choosing the representation (4.565) is to make the result for
(‘I‘L(x)‘Pls(x’ )) be like (4.571) for the noninteracting Luttinger model. A method of doing
this was suggested by Luther and Peschel (1974). It uses a limiting process, where the wave
function W¥,(x) contains a parameter «, and the limit o — 0 is taken at the end of the
calculation. Including the parameter ¢, the position space operators are represented as

¥, (x) = \/%& explikpx 4 Jy (e, X)] (4.573)
¥, (x) = \/51;& exp[—ikpx — Jo,(ct, X)] (4.574)
(0, %) = _TM A [e7 pyy(k) — € py(—K))] (4.575)

= —J(a, ) (4.576)

This new form for J,(a, x) may be expressed in terms of the boson operators:

2
Jis(a, x) = Ze"“m\/:c(blsp — bl e ") (4.577)

p>0

JZS(O" x) = Z e.-ap/z\/;’t(bzs -p i - b2s’_pe~ipx) (4578)

p>0
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The exponential factor Ji,(«, x) has the same form as (4.556) in the limit where a — 0, so the

commutator (4.552) is obeyed in this limit. The prefactor 1/4/2ma is explained below. Now
consider the evaluation of the quantity

1 /
(P10 15()) = e e ) (4.579)

1 . 2t . .
= ‘z“n&e—'kp (x—x,)Hk>o<eXP {e—ak/ 2 E(e—'hbl{s,k - eﬂabls,k)jl

2T -
X exp I:e"“k/z —k%(e"“ bir—e e bl{s,k)i|> (4.580)

The right-hand side of this expression is an average of exponential functions of boson
operators. These expressions are evaluated in Sec. 4.3.2. Each exponent is separated by using

the Feynman theorem exp(4 + B) = exp(4) exp(B) exp(—[4, B]/2). Then the factors are
commuted until all the destruction operators are on the right:

/ 1 —ikp (x—x")— o (x—x’ — 27 — _
(FLOE 00 = et )Hk>0<eXp[e I pblesle™ — e /Od)]

X eXp I:e—ak/z\/_z—k-%bls,k(eilo‘/ _ eikx)i|>

2n . e

do(x) = ’z‘k>0 T

(1-ée*) = J:o ”;c—ke-“’fu — ) (4.582)

At zero temperature, the quantity in the final brackets gives unity, which gives the following
prediction for the noninteracting electron gas:

1 . ’ !
(lPL(x)\Ijls(xl)) — _2_1_1:_0( e—lkp(x__x )—bp(x—x") (45 83)

The expression for ¢,(x) has the form of an infrared divergence as discussed in Sec. 9.3,
Expand the exponential exp(ikx) and integrate term by term. The factor exp(—ak) ensures the
convergence of these integrals, which is the primary role played by «:

o (ix) [® i . o (ix)’
d)o(x):—Z‘T')‘J dkkl le k:——z%—?—-
=0 ¢ Jo =0 &
= ln(l _ %) (4.584)
oo | (4.585)
1 —ix/a
The series for ¢,(x) is recognized as a logarithm, which gives the final result
1 _ , 1
\I;T V. ()} = —— o~ tkrlx—) .
(PLOP0) = e ™0 (4.586)
1 —ikp(x—x") 1
—_— F -
m’ o — i(x — x') (4.587)
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The limit &« — 0 does indeed recover the noninteracting value (4.571). The parameter o
becomes the convergence factor n.

It is easy to check that the factor (‘I’;S(x)‘I’ZS(x’)) is also given correctly. The repre-
sentation (4.575) for W¥,(x) reproduces the commutation relation with the density operators
and also gives the correct ground state momentum distribution for the noninteracting system.
All these results, of course, apply in the limit where @ — 0. The commutator of ¥,,(x) with
H, is also given correctly, since the latter is expressed in terms of the density operators, which
have the correct commutators. The representation (4.575) is suitable for the single-fermion
operators.

This representation can be used to calculate many interesting properties of the Luttinger
model. For example, the electron Green’s function is

Giy(x =X, 1) = —i{T¥,,(x, OP](¢, 0))

= —iB(t) (™" (x)e W] (')
+ 0P () (x)e (4.588)

The correlation functions can be evaluated at zero temperature, using the same steps which
led to (4.581). The time dependence of ¥ (x, f) for the noninteracting Hamiltonian is

1
¥, (x, 1) = explikpx + Jy (o, x, ¢ 4.589
1%, 7) T plikp 15(0t, X, 7)] ( )
2r, . .
Jis(@x, f) = 3 &7 o (@O0, — D] )
k>0 (4.590)

Ji(o, x, t) = Ji (o, x — vpt)

The time dependence of W, (x, ) = ¥ ,,(x — vyf) merely changes the factor x in J;(«, x) to
x — vgt, This rather trivial change makes it possible to use the previous result for
(PT ()W 1,(¥)) to evaluate (P1 (¢)¥ ,(x, 1)):

1
(P10 ¥ 1) = 5— explike(x = x) — G’ —x + 1)

eihr(x—x)
= - , (4.591)
2mi(x — X' — vt — iot)
1 *
(1,06, ) ¥],)) = 5— explike(x = X) = $50 —x + 071
el'kp(x—.xJ)
_ (4.592)

T 2mi(x — X — vt + ia)

The factor (W,(x, t)‘I’J]rs(x’ )} has just the Hermitian conjugate of ¢,. The Green'’s function for
the noninteracting system is easily obtained (¢ — 0):

eikFx G(t) 6(—0
_ 4.593
Gis(x, 1) o [x — vpt + i + X — vpt — ioc] ( )
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This equation can be Fourier-transformed to obtain the Green’s function in the wave vector
representation:

Gtk = | " e Gy, ) 4.594)
= —ie" PP EE[@(N Bk — k) — O(~1)O(ky — k) (4.595)

This result is the same G(k, £) which is obtain in the fermion representation:
Gk, 8) = —i(Tay (B)a] 1 ,0)) (4.596)

where the energy has been normalized to the Fermi energy: €, = vp(k — kr). The correct
result for Gy, (k, £) again illustrates that the boson representation (4.575) for the single-particle
operators will faithfully reproduce the results obtained directly from the fermion repre-
sentation. The virtue of the Boson representation is that more difficult problems can be
solved. In particular, interaction terms can be added to the Hamiltonian. Exact expressions
can be found for Greens functions, or other correlation functions, although they are usually
difficult to evaluate analytically.

4.5.5. Interacting System of Spinless Fermions

An exact solution can be obtained for various correlation functions, even for the
interacting electron gas in one dimension. First solve for the occupation number. This solution
relies upon the representation of the single-particle operators which was developed in the
prior subsection. The Hamiltonian in this part is taken to be the Luttinger model for spinless
fermions (Mattis and Lieb, 1965):

H = T 10,61 b1, + b0 p) + V(b 05, + ba b )] (4.597)
p>

The interaction term comes from particle—particle interactions between the two types of
fermions. Other interaction terms could be considered.

The first step in the solution is to learn the method of diagonalizing this Hamiltonian.
There are several ways to do this, and all give the same result. A canonical transformation is
used to obtain a new set of boson operators oy, B, which are defined as

by p =B, cosh(h,) —af sinh(},) (4.598)

b, =B} cosh(A,) — &, sinh(},) (4.599)

by, _p = &, cosh(h,) — B} sinh(A,) (4.600)
b}, =of cosh(h,) — B, sinh(h,) (4.601)
(61,5, B )] =B, B cosh® () + [of, ] sinh?(h,) (4.602)
= cosh’(A,) — smhz(x ) =1 (4.603)

[OCP’ B;] =0, [ap’ OC;] (4.604)
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The various commutation relations are still obeyed in this new representation. The parameter

A, 1s chosen so that the Hamiltonian (4.597) is diagonalized. It is first written out in terms of
the transformed operators:

H= EO [(BSB, -+ afar,){lcosh®(n,) + sinh®(4,)]o, — 27, sinh(h,) cosh(r,)}
+ (Bled +a, B,)[cosh®(A,) + sinh®(A,)], — 20, sinh(},) cosh(h,)}]

Since these are boson operators, the ordering of terms such as «f = Pa does not matter. The

zero-point motion terms are ignored. Two combinations of hyperbolic functions seem to
occur:

cosh’(h,) + sinh®(A,) = cosh(21,,) (4.605)
2sinh(},) cosh(h,) = sinh(24,,) (4.606)

The Hamiltonian is diagonalized by setting to zero the coefficient of the term (B;a}: + o, B,.)-
This step gives tanh(2A,) = ¥,/®,, so that the diagonalized Hamiltonian is

H= I;OEP(B;BP + atfor,) (4.607)

E,= Ja2-72 (4.608)
Q)

cosh(24,) =% (4.609)
Ep

The transformation to the new operators is used to evaluate the properties of the interacting
system. The a, and [, operators refer to the actual boson normal modes in the interacting
system. The ground state of the system is the vacuum of a, and B, particles; ie.,

P
a,|0) =0, B,10) = 0. These are the same set of normal modes in the Tomonaga model

(4.498).
Consider the evaluation of the fermion occupation number, which is given in (4.581) as
the ground state expectation value of the operator combination:

1
(P11 () = 5— expl—ikp(x — %) — ol = ¥)] (4.610)
e~ = (g1 (E0) (4.611)

where J(«, x) is given in (4.577). The ground state of the system must be the particle vacuum
of the bosons with excitation energy £, in (4.608), since these are the normal modes. The
Jy (o, x) operator must be expressed in the «, and B, representation. The transformation
(4.600) produces a redefined operator form

Ji(a,x) =Y e %/ \/}%{efm[ﬁp cosh(h,) — af sinh(,)]

p>0
— e P[B! cosh(h,) —a, sinh(h,)]} (4.612)
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It contains operators of both types «, and B,. These operators are independent, since they
each describe an independent Boson system. Each of these boson systems are averaged
independently. The ground state average gives

Do(x) = P, (x) + by (x) (4.613)
e~ %) — (e—Ju(X)e/,.(X)) (4.614)
g~ ) (e_Jb(x)er(x)) (4.615)

L) =Y e \/g‘E sinh(,,)(e~ "o, — eP*arf) (4.616)

p>0 pL

Jy(x) = Y e \/Zc cosh(h,)(eP*B, — e P*p) (4.617)

p>0 pL

The separate averages for ¢,(x) and ¢,(x) are similar to those found earlier in (4.582). The
average for ¢,(x) is identical to the earlier average for ¢,(x), except for the extra kernel
cosh(A,). The average for ¢,(x) also contains a unique kernel sinh(},) and has x — —x. By
analogy with (4.582), at zero temperature

bp(x

(A)(1 =€) (4.618)

p>0

(A,)(A —eP) (4.619)

p>0

The result for ¢, (x) is manipulated by replacing coshz(Kp) by its equivalent 1 4 sinllz(Kp).
The term with “1” is identical to d)o(x)

dp(x) = . (A)(1 — %) (4.620)
p>
so that
¢a+¢b=¢0+¢s (4621)
2 . .
&) == ()1 = &™)+ (1 = &)
—ikp(x—x'
(FIE ) =~ ptees) (4.622)

2mi(x — x' + ior)

The effect of the interactions on the electron gas is contained in the exponential factor
exp(—¢,). The other terms in (4.622) are the same as for the noninteracting electron gas.
By using the relation

g = L _polifes_
sinh“(A,) = 2[cosh(27»p) 1] = 7 [E: il (4.623)
p -
¢, (x) —J P p(Ep )[1 — cos(px)] (4.624)

which uses the prior result (4.609).
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Any evaluation of the factor ¢ (x) must assume some specific form of the potential 7,
between electrons. One possible model is to take V), = pV, ¥ = constant. This form of the
potential is obtained from a delta function interaction in real space. This model assumes that
the particles interact only when they directly collide. In this case (w, = pvF)

E, = p\Jvk =V} (4.625)

w2y L 2
g = sinh’(h,) = > [ Noar 1] (4.626)
d,(x) = 2g Jm Ei—lzze“"“’[l — cos(px)] (4.627)
0o P

The factor sinhZ(Kp) is a constant, which is called g. The integral for the exponential factor
$,(x) is now simple to evaluate, since it has the same form as earlier for ¢y(x) in (4.582):

x2
6,09 = glbo) + 950 = g1n 1 +3) @628)

The delta function model makes the following prediction for the momentum distribution of
the 1-particles:

IO = o : (4629)
! 2mi(x — x' + i) [1 + (x — x')* /a2
o0
= [ eey
—C0
o dx e""(k"‘F) O(Zg
- 4.63
J—oo 2mi x + io (x% + a?)® (4.630)

Setting g = 0 recovers the noninteracting case ny; = @(kr — k), which is obtained by
closing the contour of integration in the UHP (upper half-plane) when &z < & and in the LHP
(lower half-plane) when kz > k. The pole at x = —ia is circled only in the latter case.
Mattis and Lieb (1965) showed that a more interesting result is found for the case where
the coupling constant g is nonzero. Then n; ;, = constant, independent of k, so the Fermi
distribution is totally destroyed. This happens even in the limit where g is infinitesimally
small. As g — 0, then n; ; = -;—
This result is obtained by changing the integration variable to y = x/a:

— — 4.631
2w y+i (BF+1)¥ ( )

00 dy eiyoc(k—kp) 1
Pk = J

The only o dependence is in the exponential factor. This exponential factor is needed for
g = 0, since it tells us whether to close the integration contour in the upper or lower half-
plane. However, for a nonzero value of g the integral converges even without the exponential
factor. Therefore set o = 0 before doing the integral and consider

® dy 1 1
= — — 4.632
"Lk L,o 2niy +i(y* + 1)% ( )
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The right-hand side is no longer a function of k£ — &, and is a constant. The integral for y > 0
is added to that for y < 0 by changing the variable y — —y in the latter to give the real
integral:

®dy 1 (yl 1 )
__| @ 4.633
"k L MR i St (4.633)
_Jwg’z 1 1 I'G+g)
o m4)tE 2/mT(1+g)

(4.634)

The integral is in a standard form, which is given in tables [G&R, 3.194(3) after changing
)? = x] in terms of gamma functions. In the limit where g — 0 then I'(}) = /%, T'(1) = 10
that

i =1 4.63
;1_1)1%) ik =3 (4.635)

The distribution function is a nonanalytic function of the coupling constant g. The usual
noninteracting distribution function is found in the case of g = 0. The introduction of an
arbitrarily weak delta function potential destroys the Fermi distribution, and each wave vector
state is occupied with an equal probability. For the case where g — 0, this probability
approaches % The g = 0 result is not obtained in the g — 0 limit.

This result would be difficult to prove by perturbation theory and shows the value of an
exact solution. These results pertain only to the one-dimensional electron gas. Behavior of
this type is called non-Fermi liquid behavior. Fermi liquid theory is discussed in Chapter 11.
Another name to describe such systems is Luttinger liquids.

4.6. POLARITONS

4.6.1. Semiclassical Discussion

The word polariton was coined by Hopfield (1958) to describe the normal modes in
solids which propagate as electromagnetic waves. The word is a combination of polarization
and photon, because these modes are combinations of free photons and the polarization
modes of the solid. A new word was needed, because a new view was then emerging about
the optical properties of solids. Hopfield popularized this new physics, although similar ideas
had been discussed earlier by Fano (1956, 1960) and by Born and Huang (1954).

In the old view of electromagnetic wave propagation in solids, the light shone upon the
surface of a sample and went into it. The polarization modes of the solid, e.g., TO phonons,
could absorb some of this light.

The new view is that the light and the polarization modes in the solid are coupled into a
new set of normal modes. These new modes are called polaritons. When light is shone upon
the surface, polaritons are created which propagate inward. The mathematics is trivial; since
both the photons and the polarization modes are usually described by harmonic oscillator
equations, the new modes are obtained by solving coupled harmonic oscillator equations. The
physical effect is semiclassical and need not involve quantum mechanics. The photon Green’s
function 2,,,(q, ®) in a system with dielectric function ¢,,(q, ®) was derived in (2.185). A



