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One-dimensional quantum fluids are conventionally described by using an effective hydrodynamic
approach known as Luttinger liquid theory. As the principal simplification, a generic spectrum of
the constituent particles is replaced by a linear one, which leads to a linear hydrodynamic theory.
We show that to describe the measurable dynamic response functions one needs to take into
account the nonlinearity of the generic spectrum and thus of the resulting quantum hydrodynamic
theory. This nonlinearity leads, for example, to a qualitative change in the behavior of the spectral
function. The universal theory developed in this article is applicable to a wide class of one-
dimensional fermionic, bosonic, and spin systems.

The development of the universal effective
description of many-body phenomena is
a central problem of the condensed mat-

ter theory. The hydrodynamic approach known
as Luttinger liquid (LL) theory (1–3) is routinely
applied to one-dimensional (1D) interacting sys-
tems. As a crucial simplification, a generic spec-
trum of the constituent particles is replaced by
a linear one, leading to a linear hydrodynamic
theory, which is nothing but a collection of non-
interacting oscillators. However, to understand a
variety of phenomena, such as Coulomb drag
between quantumwires (4), momentum-resolved
tunneling of electrons in nanowires (5), and neu-
tron scattering off spin chains (3), one needs to
take into account the nonlinearity of the spec-
trum. From classical physics, it is known that the
existence of nonlinearities may result in qualita-
tively new phenomena, such as propagation of
solitons and appearance of shock waves. These
phenomena take place in a variety of experimen-
tal situations because classical nonlinear hydro-
dynamics is universal: It is phenomenologically
derived from simple assumptions, which do not
rely on microscopic details. Although description
of linear quantum hydrodynamic theory requires
only quantum mechanical treatment of non-
interacting oscillators, formulation of nonlinear
quantum hydrodynamics remains a challenging
task because of divergences typical of nonlinear
quantum field theories. In this article, we develop
a universal theory of 1D quantum liquids that
includes nonlinear hydrodynamic effects, leading
to qualitative changes in predictions for dynamic
response functions (e.g., spectral function).

If the 1D quantum many-body problem for
fermions is simplified by replacing a generic spec-
trum of particles by a linear one [the Tomonaga-
Luttinger (TL) model (6–8)], it becomes solvable
at any interaction strength. The Lorentz invariance

introduced by this simplification protects the
existence of well-defined elementary excitations
with linear dispersion relation. These excitations
are quantized waves of density propagating with a
velocity v. Adding a fermion to a 1D system
described by the TL model requires creation of
multiple elementary excitations (9, 10). This can
be seen from the form of the fermionic single-
particle spectral function A(p,w), which describes
the probability of tunneling a fermion with given
momentum p and energy w into the system [see
Supporting Online Material (SOM) for the precise
definition (11)]. The spectral function has a power-

law singularity at the energy of collective
excitation w = vp (see eq. S4). The corresponding
exponent is determined only by the universal LL
parameter K [the latter is expressed in terms of the
density, compressibility, and sound velocity v, the
three low-energy properties of 1D liquid (3)].

In the phenomenological LL approach,
energy scale p2/(2m*) is fully dispensed with
(the effective mass m* characterizes spectrum
nonlinearity at p = 0 and is defined below). The
conventional justification for such simplification
is irrelevance, in the renormalization group sense,
of the nonlinearity (2). Indeed, the irrelevant
terms hardly affect the fermion propagator away
from the singular lines in space-time, x T vt ≫ffiffiffiffiffiffiffiffiffi
t=m*

p
. However, it is the vicinity of these lines

that defines the nature of singular behavior of the
spectral function. We show here that for all
spinless 1D fermionic models with short range
interactions the single-particle spectral function
at p << kf is universal. In the vicinity of Fermi
wave vector +kf and p,w > 0, for example, A(p,w)
is a universal function of a single argument

Aðp,wÞºAðeÞ, e ¼ w − vp

p2=2m∗
ð1Þ

(hereinafter p is measured from the closest Fermi
point, and we use units with ℏ ¼ 1). The new
nontrivial function A(e) is very different from the
LL theory predictions, yet it depends only on the
LL parameter K. The asymptote of A(e) at e >>
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Fig. 1. Spectral func-
tion. (A) Spectral function
A(k, w) in momentum-
energy plane. Shaded
areas indicate the regions
where A(k, w) ≠ 0. The
region with w > 0 corre-
sponds to the particle part
of the spectrum, and the
region with w < 0 cor-
responds to the hole part
of the spectrum. (B)
Close-up view of the vi-
cinity of k ≈ +kf, where
p = k − kf. Notations of m
indicate which exponents
presented inTable1should
be used in Eq. 6. Nota-
tions for exponents near
k ≈ (2n + 1)kf are ob-
tained by substituting cor-
responding n instead of
n = 0.
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1 does reproduce the LL theory predictions, eq.
S4, but at |e T 1| << 1 the spectral function is
described by power-law asymptotes with new
exponents. The exponents are different from the
predictions of the LL theory but can still be
analytically expressed in terms of K. We find
numerically the universal single-variable cross-
over function A(e), by relating it to the nonlinear
dynamics in nonequilibrium Fermi gases (12–15).
We also briefly discuss applications of our results
for bosonic and spin systems.

The spectral function could be measured in
tunneling experiments with electrons in nano-
wires (5) and cold atoms in elongated traps
(16, 17). A closely related object, transverse
dynamic spin structure factor, is measurable by
neutron scattering off 1D spin liquids placed in
a magnetic field (3). The universal crossover
function and its analytically obtained asymptotes
also provide one with a test for numerical meth-
ods to evaluate many-body dynamics of 1D
models, for example, using density-matrix renor-
malization group algorithms (18, 19).

Within a LL approach, fermionic field Y is
expanded by using its components near Fermi
points asYðx,tÞ ≈ YRðx,tÞeikf x þ YLðx,tÞe−ikf x,
and the kinetic energy term in the Hamiltonian is
linearized. Solution of the linearized model can
be described by using free bosonic fields with
linear dispersion. Fermionic operators are ex-
pressed as exponentials of free bosonic fields,
and their correlations are easily evaluated.
Including the nonlinearity of the spectrum of
constituent fermions leads to interactions be-
tween bosonic fields (2, 20). One cannot treat
such interactions perturbatively in bosonic
language in the vicinity of the line w = v p
because even in the second order of perturbation
theory corrections diverge there (21). Physically
this happens because conservation laws of energy
and momentum are satisfied simultaneously for
waves with linear dispersion. Thus, two wave
packets spend an infinite amount of time near
each other, leading to an ill-defined perturbation
theory. To understand the effects of nonlinear

spectrum, it is more convenient to work in the
fermionic representation. Recently a connection
between dynamic response functions of 1D
quantum liquids and well-known Fermi edge
singularity was elucidated (22, 23). It allowed
one to evaluate dynamic structure factor S(p,w)
and spectral function perturbatively in the
interaction between fermions. Moreover, it
established the form of the effective Hamiltonian
defining the true low-energy behavior of a liquid
composed of generic particles with nonlinear
dispersion relation. For some integrable 1D
models, it is possible to determine the parameters
of the effective Hamiltonian nonperturbatively
by means of Bethe ansatz (24–26).

The Hamiltonian of the TL model may be
recast into the Hamiltonian of free fermionic
quasiparticles (27–29) having a linear spectrum:

H̃1¼ iv ∫dx½:Ỹ†

LðxÞ∇ỸLðxÞ : − :Ỹ
†

RðxÞ∇ỸRðxÞ :�

ð2Þ

Here Ỹ
†

RðLÞðxÞ and ỸRðLÞðxÞ are creation and
annihilation operators for quasiparticles on the
right (left) branch, satisfying usual fermionic
commutation relations. Colons indicate the normal
ordering with respect to filled Fermi seas: for right
(left) branch all states with negative (positive)
momenta are occupied. The density of quasipar-
ticles r̃RðLÞðxÞ ¼:Ỹ†

RðLÞðxÞỸRðLÞðxÞ : is simply
related to the density of fermions in the TL model
rRðLÞðxÞ ¼: Y†

RðLÞðxÞYRðLÞðxÞ :. Because the ca-
nonical transformation that diagonalizes the TL
Hamiltonian is a Bogoliubov rotation in the space
of particle-hole excitations, such a relation is
linear, rRðxÞ þ rLðxÞ ¼ K½r̃RðxÞ þ r̃LðxÞ�. Fer-
mionic operators are related to fermionic quasi-
particles using “string” operators F̃

†
RðLÞðxÞ as (e.g.,

for right-movers)

Y†
RðxÞ ¼ F̃

†
RðxÞỸ

†
RðxÞ, F̃

†
RðxÞ

¼ exp i ∫xdy½dþr̃RðyÞ þ d−r̃LðyÞ�
n o

ð3Þ

Here we have introduced parameters

dþ
2p

¼ 1−
1

2
ffiffiffiffi
K

p −
ffiffiffiffi
K

p

2
< 0,

d−
2p

¼ 1

2
ffiffiffiffi
K

p −
ffiffiffiffi
K

p

2
ð4Þ

Using Eqs. 3 and 4 together with Eq. 2, one can
obtain the usual results for Green's function of the
TL model (27).

If one wants to consider effects of non-
linearity, one has to include terms that are less
relevant in the renormalization group sense
into quasiparticle Hamiltonian. One such term
is the nonlinearity of the spectrum of quasi-
particles:

H̃2 ¼ 1

2m∗
∫dx½ : ð∇Ỹ†

LÞð∇ỸLÞ:þ
:ð∇Ỹ†

RÞð∇ỸRÞ:�
ð5Þ

Here m* is the effective mass, which can be
related (20) to low-energy properties as 1/m* =
v/K1/2∂v/∂h + v2/(2K3/2)∂K/∂h, where h is the
chemical potential.

In principle, there is another term that needs
to be included together with Eq. 5: It amounts to
interaction between quasiparticles created by
operators Ỹ

†
L;R. It can be shown (28), however,

that in the limit of small p interactions between
quasiparticles are weak and can be treated
perturbatively, along the lines of (22, 23). Per-
turbation theory is valid as long as the interaction
between the original fermions (created by Y†) is
short-ranged. Interactions between quasiparticles
are responsible for weak singularities in S(p,w)
near w = v p T p2/(2m*), large-w tails of S(p,w)
(22), and for possible finite º p8 smearing (23)
of some of the singularities of A(p,w). All these
effects vanish as long as one is interested in the
scaling limit p→ 0,e→ const; see SOM (11) for
more detailed discussion. For models with inter-
actions decaying asº 1/x2 or slower, nonanalytic
dependence of interactions on momentum be-

Table 1. Universal exponents for spectral
function. Notations are indicated in Fig. 1,
and parameters dT defined by Eq. 4 are
functions of K only. Note that mn,+ = m−n−1,−,
which follows from the k→−k symmetry.

mn,þ 1−
1
2

2n−(2nþ 1)
dþ þ d−

2p

� �2
−
1
2

dþ−d−
2p

� �2

mn,þ 1−
1
2

2nþ 2−ð2nþ 1Þdþ þ d−
2p

� �2
−
1
2

2−
dþ−d−
2p

� �2

mn,− 1−
1
2

2nþ 2−ð2nþ 1Þ dþ þ d−
2p

� �2
−
1
2

dþ−d−
2p

� �2

mn,− 1−
1
2

2n−ð2nþ 1Þdþ þ d−
2p

� �2
−
1
2

2−
dþ−d−
2p

� �2 Fig. 2. Reduction to the effective Hamiltonian. We show excitations contributing to the singularity
at jw − ðvpþ p2

2m�Þj ≪ p2

2m�. The Hamiltonian given by Eqs. 2 and 5 is reduced to the three-subband
model in Eqs. 7 and 8.
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comes possible, and one cannot neglect inter-
actions between quasiparticles. This can be
already seen from perturbative calculations (23).

The spectral function A(p,w) gets modified
by the spectrum nonlinearity in a profound way
because the dynamics of the string operators
F̃
†
RðLÞðx,tÞ in Eq. 3 becomes nonlinear. Effective

mass m* defines the energy scale ~ p2/(2m*)
near w = v p where modifications from the TL
model take place. Because parameters dT
defining F̃

†
RðLÞðx,tÞ are universally related to K,

full form of the crossover written in terms of a
variable e is a universal function of K. Inves-
tigation of the properties of crossover function
A(e) is the main subject of the present article.

Before proceeding to discuss the form of the
universal crossover, let us consider the main new
features of A(p,w) that arise because of non-
linear spectrum. We find that in the vicinity of
each low-energy region k ≈ (2n + 1)kf spectral
function A(p,w) has a power-law behavior near
frequencies T[vp T p2/(2m*)], which is related to
orthogonality catastrophe phenomenon (22, 23):

Að p,wÞº const þ 1

w T vp T
p2

2m∗

	 

�������

�������

m

ð6Þ

and notations for m are shown in Fig. 1. Such
power-law behavior results from multiple low-
energy particle-hole excitations near left and
right Fermi points, which are created when
“high energy” fermion tunnels into the system.

To be specific, let us focus on the vicinity of
+kf for p > 0 and w > 0. Because the fermion
that tunnels into the system has a momentum
near +kf and energy of the system increases for
w > 0, we need to consider only the correlator
〈YRðx,tÞY†

Rð0,0Þ〉.
Let us first discuss the exponent m0;þ at the

edge w − vpþ p2

2m*

� �����
���� ≪ p2

2m*
. To understand

its origin, one has to understand the states that
can be created by Y†

R, when the energy of the
tunneling fermion is in the vicinity of the edge.
From energy and momentum conservation, such
state is given by a single fermionic quasiparticle
with “large” momentum ≈ p and multiple low-
energy particle-hole excitations with momenta
much smaller then p, as indicated in Fig. 2.
Then one can neglect all other states (22, 23)
and project quasiparticle operators ỸRðxÞ and
ỸLðxÞ onto narrow (of the width much smaller
than p) subbands r, d, and l as ỸRðxÞ ≈ ỹrðxÞ þ
eipx d̃ðxÞ,ỸLðxÞ ≈ ỹ lðxÞ.

The effective Hamiltonian determining the
evolution of these states is obtained by project-
ing H̃1 þ H̃2 onto subbands r, l, and d and
linearizing the corresponding spectra:

H̃r,l ¼ iv∫dx½: ỹ†
l ðxÞ∇ỹ lðxÞ : − :ỹ†

r ðxÞ∇ỹrðxÞ: �

ð7Þ

H̃d ¼ ∫dx d̃†ðxÞ vpþ p2

2m∗
−i vþ p

m∗

� �
∇

� �
d̃ðxÞ

ð8Þ

The Green's function factorizes asºeipx〈 d̃ðx,tÞ
d̃
†ð0,0Þ〉H̃d

〈F̃rðx,tÞF̃†
r ð0,0Þ〉H̃r, l

. To obtain string

operators F̃r, F̃
†
r from Eq. 3, one should keep

only r and l components of the density there. The
free-particle correlator 〈d̃ðx,tÞd̃†ð0,0Þ〉H̃d

equals

ºe
−i
	
vpþ p2

2m�



t
d x − vþ p

m�

	 

t

h i
, and string cor-

relator can be bosonized and evaluated (3) in

a usual way as 〈F̃rðx,tÞF̃†
r ð0,0Þ〉H̃r, t

jx¼ðvþ p
m�Þtº

t−½d−=ð2pÞ�
2−½dþ=ð2pÞ�2 . Taking Fourier transform

of 〈YRðx,tÞY†
Rð0,0Þ〉, we obtain the universal

exponent

m0,þ ¼ 1−
d−
2p

� �2

−
dþ
2p

� �2

ð9Þ

Analogously, exponent m0,þ for w −
	
vp − p2

2m�



≪

p2

2m� is determined by configurations with one
quasihole with the momentum ≈ −p, two quasi-
particles near right Fermi point, and low-energy
particle-hole excitations. One can again reduce
the problem to three-subband model and boson-
ize states near right and left Fermi points. This
way, one obtains the exponent

m0,þ ¼ 1−
d−
2p

� �2

− 2−
dþ
2p

� �2

< −3 ð10Þ

New exponents given by Eqs. 9 and 10 are
clearly different from the result for the TL model
in eq. S4, which corresponds to the exponent
1−[d−/(2p)]2.

Configurations responsible for the remain-
ing exponents m0,− , m0,− consist of “high energy”

particle-hole excitation on the left branch, particle
at the right Fermi point, and low-energy excitations
on left and right branches. Singularities near k ≈
(2n + 1)kf also include n low-energy particle-hole
pairs with momentum ≈2nkf. All exponents can
be obtained by using projections onto three-
subband models, and the results are summarized
in Table 1.

We now discuss the results for the universal
crossover function A(e) in the vicinity of +kf for
p, w > 0 [details of the derivations are available
in SOM (11)]. The answer is defined by a uni-
versal function D(y), determined only by d+ and

normalized as ∫1−1DðyÞdy ¼ 1. By using D(y),

Fig. 3. Universal crossover. (A) Universal crossover function D(y) for K = 4.54 and the corresponding
values d+/(2p) = −0.3 and d−/(2p) = −0.83; see Eq. 4. Exponents dT defining the asymptotic behavior at
y→ T1 are given by Eq. 12. (B) Universal function A(e) for K = 4.54. Exponents m0,þ and m0,þ defining the

asymptotic behavior at e → T1 are given by Eqs. 9 and 10. The ratio of prefactors determining the
asymmetry of the singularity at e = 1, see Eq. 13, equals 2.96 for K = 4.54.

9 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org230

REPORTS
on January 18, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


spectral function can be written as a convolu-
tion of contributions from the left and right
branches. Universal function A(e) in Eq. 1 is
related to D(y) as

AðeÞ ¼ ∫
1

−1dyDðyÞqðe − yÞðe − yÞðd−2pÞ2−1 ð11Þ

One can analytically obtain limiting behavior
of D(y) for y→T1 from Eqs. 9 to 11 asDðyÞº
ð1∓yÞdT for y → T1, where

dþ ¼ dþ
2p

� �2

−1, d− ¼ 2 −
dþ
2p

� �2

−1 > 3

ð12Þ
At moderate interaction strength, m0,þ > 0,
function A(e) diverges at e = 1. Then the ratio
of the prefactors above and below the singular
line is universal,

lim
jdej→0

Að1þ jdejÞ
Að1−jdejÞ ¼

G ðdþ
2p
Þ2

h i

G ðd−
2p
Þ2

h i G 1−ðdþ
2p
Þ2

h i

G 1−ðd−
2p
Þ2

h i

ð13Þ

To evaluate D(y) away from the edges, one
should be able to calculate the dynamics of chiral
vertex operators (11). For a nonlinear spectrum,
this is a very nontrivial problem, the analytic
solution of which is not known. Similar cor-
relators have attracted attention recently (12, 13),
and their connection to the nonlinear quantum
shock wave dynamics and nonlinear differential
equations has been discussed. Although it might
be possible to proceed similarly for the evalua-
tion of D(y), it is not clear whether nonlinear
differential equations obtained this way will have
an analytic solution. We use an alternative ap-
proach of (14, 15), which allows us to develop a
representation of D(y) in terms of certain
determinants built of single-particle (rather than
many-body) states. These determinants can be
evaluated numerically, which practically solves
the problem of finding D( y). Representative
results for D( y) and A(e) for K = 4.54 are shown
in Fig. 3.

The universal Hamiltonian given by Eqs. 2
and 5 can be also used to describe gapless
bosonic and spin − 1

2 systems away from particle
hole symmetric ground states. We present main
results on singularities of their dynamic re-
sponse functions in SOM (11).

We have constructed universal low-energy
theory of a wide class of interacting 1D quantum
liquids without resorting to the simplifications of
the Tomonaga-Luttinger model accepted in the
phenomenological LL description. Unlike the
latter, we keep the nonlinear dispersion relation
of the fermions intact. The replacement of the
dispersion relation by a linear one, w = vp, results
in an artificial introduction of Lorentz invariance
into the system. Although not affecting the low-
energy behavior of local properties (such as the
local tunneling density of states), the introduced

symmetry alters qualitatively the predictions for
the momentum-resolved quantities, such as the
spectral function. Keeping the nonlinearity
allows us to find the generic low-energy behavior
of the dynamic response functions of a system of
interacting fermions, bosons, and spins. Possible
extensions of our theory should be able to
describe the effects of finite temperature, spin
systems at particle-hole symmetric points, sys-
tems with long-range interactions, and fermions
with spin.
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Direct Measurement of Molecular
Mobility in Actively Deformed
Polymer Glasses
Hau-Nan Lee, Keewook Paeng, Stephen F. Swallen, M. D. Ediger

When sufficient force is applied to a glassy polymer, it begins to deform through movement of the
polymer chains. We used an optical photobleaching technique to quantitatively measure changes
in molecular mobility during the active deformation of a polymer glass [poly(methyl
methacrylate)]. Segmental mobility increases by up to a factor of 1000 during uniaxial tensile
creep. Although the Eyring model can describe the increase in mobility at low stress, it fails to
describe mobility after flow onset. In this regime, mobility is strongly accelerated and the
distribution of relaxation times narrows substantially, indicating a more homogeneous ensemble of
local environments. At even larger stresses, in the strain-hardening regime, mobility decreases with
increasing stress. Consistent with the view that stress-induced mobility allows plastic flow in
polymer glasses, we observed a strong correlation between strain rate and segmental mobility
during creep.

Glasses form when molecular motion be-
comes slow, and thus liquidlike flow in
a glass would seem impossible by defi-

nition. Nevertheless, polymer glasses under stress
can yield and undergo plastic flow (1). In this
process, the glass dissipates enormous amounts
of energy without breaking. This toughness is

the critical design requirement in many applica-
tions, and efforts to understand it go back more
than 70 years. In 1936, Eyring (2) proposed a
model in which external loading lowers the
energy barriers for molecular motion and thus
effectively transforms a glass into a viscous
liquid. Other workers (1, 3–7) have modified
Eyring’s approach in important ways while main-
taining the central idea that stress can induce
molecular mobility.

Department of Chemistry, University of Wisconsin–Madison,
Madison, WI 53706, USA.
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Materials and Methods 1: Definitions of the dynamic correlation functions
We are interested mostly in the zero-temperature spectral function

A(k, ω) = − 1

π
ImGret(k, ω), (S1)

where retarded Green’s function Gret(k, ω) is defined by (S1)

Gret(k, ω) = −i

∫ ∫
dxdtei(ωt−kx) × 〈

Ψ(x, t)Ψ†(0, 0) + Ψ†(0, 0)Ψ(x, t)
〉
θ(t), (S2)

and dynamic structure factor (DSF)

S(p, ω) =

∫
dx dt ei(ωt−px)

〈
ρ(x, t)ρ(0, 0)

〉
. (S3)

Here Ψ†(x, t), Ψ(x, t) and ρ(x, t) are fermionic or bosonic creation, annihilation and density
operators, respectively. Energy ω is measured respective to the chemical potential, so A(k, ω)
for ω > 0 (ω < 0) describes the response of the system to an addition of an extra particle (hole).

Materials and Methods 2: Universal crossover
In this section we present the details of the derivations the universal crossover function A(ε) in
the vicinity of +kf for p, ω > 0. Before proceeding to the case of the nonlinear spectrum, let us
present the derivation of a conventional result for the Tomonaga-Luttinger model,

A(p, ω) ∝ (ω − vp)
1
4(K+ 1

K
−2)−1θ(ω − vp), (S4)
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which allows for an easy generalization to the nonlinear case.
Retarded Green’s function for fermions near +kf can be written (S2) as a product of two

terms, determined by left and right Fermi points. Due to linear spectrum, they depend on
combinations vt + x and vt− x, respectively:

Gret
R (x, t) ∝ −i

θ(vt + x)

(i(vt + x) + 0)(
δ−
2π

)2

θ(vt− x)

(i(vt− x) + 0)(
δ−
2π

)2+1
. (S5)

If one defines L(x, t) and R(x, t) as

L(x, t) ∝ 1

(i(vt + x) + 0)(
δ−
2π

)2
, R(x, t) ∝ 1

(i(vt− x) + 0)(
δ−
2π

)2+1
, (S6)

then imaginary part of Fourier transform of Gret
R (x, t) can be represented as a convolution of

two Fourier transforms of L(x, t) and R(x, t) :

ImGret
R (p, ω) = −i

∫
dp̃

2π

dω̃

2π
L(p− p̃, ω − ω̃)R(p̃, ω̃), (S7)

where real positive functions R(p, ω) and L(p, ω) are equal to (up to a positive cut-off dependent
prefactor)

L(p, ω) ∝ δ(ω + vp)θ(ω − vp)(ω − vp)(
δ−
2π

)2−1, (S8)

R(p, ω) ∝ δ(ω − vp)θ(ω + vp)(ω + vp)(
δ−
2π

)2 . (S9)

Using Eq. S1 spectral function A(p, ω) can be written as

A(p, ω) =
1

π

∫
dp̃

2π

dω̃

2π
L(p− p̃, ω − ω̃)R(p̃, ω̃). (S10)

Physically, A(p, ω) describes the probability of tunneling of a fermion with total energy ω and
momentum p. Eqs. S8-S9 then mean that excitations which are created on the right (left) branch
should lie on the respective mass shell and have positive (negative) momenta. From energy and
momentum conservation laws, nonzero contribution to A(p, ω) for ω > vp comes only from a
single point in the integral in Eq. S10, which correspond to the following arguments of functions
R(pR, ωR) and L(pL, ωL) in the integrand:

ωR = vpR =
(ω + vp)

2
, (S11)

ωL = −vpL =
(ω − vp)

2
. (S12)

Since only L(pL, ωL) is singular for ω → vp, for the Tomonaga-Luttinger model only the
contribution due to the shake-up of low-energy excitations near the left Fermi point controls the

2



exponents at ω ≈ vp. For nonlinear spectrum, shake-up contributions from both left and right
Fermi points determine the exponents, see e.g. Eq. 9.

For nonlinear spectrum, Gret
R (x, t) can still be represented as a product of two terms de-

termined by left and right Fermi points. The primary modification which takes place is that
delta-functions in Eqs. S8-S9 get broadened. Indeed, for nonlinear spectrum the total momen-
tum of several left (right)-moving quasiparticles doesn’t completely define their total energy,
and the latter is allowed to vary up to ±p2

L(R)/2m∗. However, if one is interested in the scaling
behavior of A(p, ω) for

ω − vp = ε
p2

2m∗
, (S13)

one can neglect the finite width of function L, since according to Eqs. S12 and S13 it is of
the order p2

L ∝ p4, which vanishes in the scaling limit p → 0, ε → const. Broadening of
function R, on the other hand, is important. As a result of it the momentum and energy on each
branch can vary on the order ∼ p2/(2m∗v) and ∼ p2/(2m∗), respectively, around the values of
Eqs. S11,S12.

To characterize the broadening of delta-function in Eq. S9, let us introduce a dimensionless
positive function D(y) defined by

R(p, vp + y
p2

2m∗
) ∝ D(y). (S14)

Since for total momentum p on the right branch vp± p2/(2m∗) is the highest (lowest) possible
energy of a set of quasiparticles, D(y) 6= 0 only if y ∈ (−1, 1). Universal function D(y) is
determined only by δ+, and we choose it to be normalized as

∫ 1

−1

D (y) dy = 1. (S15)

We now discuss how to reduce the evaluation of D(y) to a single-particle problem and solve
it numerically. We use periodic boundary conditions on a circle of length L. Since from now
on we will be dealing only with fermions at the right branch, we drop index R for clarity of
notations, and set m∗ = 1/2.

The chiral vertex correlation function which determines D(y) can be written as

R′(x′, t) = 〈eiH̃2tΨ̃(x′) exp

[
−i

∫ x′

dy
δ+

2π
ρ̃(y)

]
e−iH̃2t exp

[
i

∫ 0

dy
δ+

2π
ρ̃(y)

]
Ψ̃†(0)〉, (S16)

where one has to average over filled Fermi sea on the right branch. In Eq. S16 we took into
account the effect of the linear-spectrum Hamiltonian H̃1, Eq. 2, by shifting x′ = x − vt.
Universal function D(y) is determined by the Fourier transform of R′(x′, t) as

R′(p, t) =

∫
dx′e−ipx′R′(x′, t) ∝

∫ 1

−1

eip2ytD(y)dy. (S17)
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In momentum space, R′(x′, t) can be written as

R′(x′, t) =
∏

k<0

eik2t
∑

p,p′
eip′x′〈Ψ̃p′e

Be−iHteAΨ̃†
p〉, (S18)

where operators A,B and H act in a many-body Hilbert space as

A = −δ+

2π

∑

p6=p′

2π

L(p− p′)
Ψ̃†

pΨ̃p′ =
∑

p,p′
âp,p′Ψ̃

†
pΨ̃p′ , (S19)

B =
δ+

2π

∑

p6=p′

2πe−i(p−p′)x

L(p− p′)
Ψ̃†

pΨ̃p′ =
∑

p,p′
b̂p,p′Ψ̃

†
pΨ̃p′ , (S20)

H =
∑

p

p2Ψ̃†
pΨ̃p =

∑

p,p′
ĥp,p′Ψ̃

†
pΨ̃p′ , (S21)

while â, b̂ and ĥ are matrices acting in a single-particle Hilbert space. We introduce the density
matrix

ρ̂ =
1

Z
e−

∑
p λpΨ̃†pΨ̃p , e−λp =

np

1− np

, (S22)

where np is the occupation number of mode p, which we will be set to θ(−p) at the end of the
calculation. Then Eq. S18 can be written as a trace over full many-body Hilbert space as

R′(x′, t) =
∏

k<0

eik2t
∑

p,p′
eip′x′Tr

(
Ψ̃p′e

Be−iHteAΨ̃†
pρ̂

)
.

We use the relation

Ψ̃†
pρ̂ = ρ̂eλpΨ̃†

p, (S23)

which effectively restricts summation to p > 0, and the cyclic property of a trace to get

R′(x′, t) =
∏

k<0

eik2t
∑

p>0,p′
eip′x′Tr

(
eBe−iHteAρ̂Ψ̃†

pΨ̃p′

)
.

This trace over many-body Hilbert space can be written via determinants of matrices acting in
a single-particle Hilbert space as (S3-S7)

R′(x′, t) =
∏

k<0

eik2t
∑

p,p′
eip′x′(1− np)×

Det(Î − n̂ + eb̂e−iĥteân̂)
(
n̂ + e−âeiĥte−b̂(1− n̂)

)−1

p′,p
, (S24)

where n̂ is a diagonal matrix with np on the diagonal.
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To extract D(y), one needs to evaluate R′(p, t) defined by Eq. S17 at times

tα =
πα

p2
(S25)

for integer α. According to Eq. S17, it corresponds to Fourier series coefficient of D(y) :

R′(p, tα) ∝ Dα =

∫ 1

−1

eiπαyD(y)dy. (S26)

Function D(y) can be written in terms of Dα as

D(y) =
D0

2
+

∞∑
α=1

Re
[
Dαe−iπαy

]
(S27)

Since for small enough δ+ function D(y) has a singularity given by Eq. 12 for y → 1, one
expects

Dα ∝ (−1)αα−(
δ+
2π

)2 , for α →∞. (S28)

We evaluate R′(x′, tα) for various x′ using finite-dimensional Hilbert space of the size up
to ∼ 300, and obtain its Fourier transform R′(p, tα). Due to periodic boundary conditions and
finite size effects, asymptote given by Eq. S28 doesn’t hold for largest α obtained numerically.
However, we find an excellent fit for sufficiently large α as

Dα ∝ eicα(−1)α
(
sin

α

α̃

)−γ

. (S29)

Exponent γ obtained using such fitting procedure equals ( δ+
2π

)2 with a very high accuracy. In
Eq. S29, c ¿ 1 accounts for a possible shift of the frequency, while finite α̃ accounts for
finite size effects due to finite kL/(2π) considered. We remove the latter effects by smoothly
substituting Dα in Eq. S27 by

Dα ∝ eiaα(−1)α
(α

α̃

)−γ

, (S30)

for α larger then some intermediate α∗ ¿ α̃, and keeping numerical results for smaller α. The
sum in Eq. S27 with Dα given by Eq. S30 can be written in terms of polylogarithmic functions.
We sum the contributions to Eq. S27 coming from large α using polylogarthmic functions, while
for smaller α we use numerical results.

The procedure to extract D(y) described above is very robust, and is not sensitive to partic-
ular choice of parameters at the accuracy of about ∼ 2% or 0.02, whichever is larger, for data
presented in Fig. 3. As an independent check, it reproduces the result D(−1) ≈ 0 very well.
The correct value of the exponent d− > 3 characterizing the asymptote D(y → −1) is harder
to reproduce.
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Materials and Methods 3: Bosonic and spin systems
The universal Hamiltonian given by Eqs. 2,5 can be also used to describe gapless bosonic and
spin−1

2
systems away from particle-hole symmetric ground states. The only modification is

the existence of an additional Jordan-Wigner ”string” operator in the expression, in terms of
fermions, for creation operator of bosons Ψ†

B and for spin raising operator S+, respectively.
Here we will only discuss the singularities.

For bosons, existence of new singularities in response functions of an integrable Lieb-
Liniger (S8) model has been pointed out recently (S9) and in low-energy regime expressions
for the exponents in terms of the Luttinger parameter K have been obtained. Same exponents
can be obtained using the methods of the current article, which demonstrates their universality.
Exponents in the vicinity of the low energy region k ≈ 2πnkf are summarized in Table S1, and
notations of bosonic exponents µb are indicated in Fig. S1.

For spin−1
2

systems, our results apply generally for the following antiferromagnetic (J > 0)
Hamiltonian in a finite magnetic field h:

H = J
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 +
∑
i>j

Vi−jS
z
i S

z
j − h

∑
i

Sz
i .

Here Sx,y,z
i are spin−1

2
operators, and Vi are assumed to decay faster than 1/i2, and to be small

enough so that the system is gapless. We require finite magnetic field, since otherwise due to
particle-hole symmetry one quite generally has m∗ = ∞. In this case the regime discussed in
present article disappears, as has been pointed out recently (S10) for an integrable XXZ model.
While for fermionic systems without a lattice one expects m∗ > 0, it is not necessarily the
case for spins on a lattice. This can change the relative position of the singularities compared
to Fig. 1. For small enough interactions one expects m∗ > 0(m∗ < 0) for negative (positive)
magnetic field h, although for small enough magnetic fields interactions can reverse the sign of
m∗, see e.g. (S11).

We will be interested in transverse dynamic spin structure factor, defined by

S−+(k, ω) =
∑

j

e−ikj

∫
dt eiωt

〈
S−j (t)S+

0 (0)
〉
. (S31)

It is nonvanishing at low energies in the vicinity of k = π, as long as the spin chain remains
gapless (S2,S12). Generalization of the approach described earlier leads to

S−+(k, ω) ∝ const +

∣∣∣∣∣∣
1

ω −
(
v|k − π| ± (k−π)2

2m∗

)
∣∣∣∣∣∣

± 1√
K
− 1

2K

,

for |k − π| ¿ 1. Here we have already expressed parameters δ± as functions of K using Eq. 4.
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Materials and Methods 4: Limits of applicability
In this section we discuss the limitations of and leading corrections to the universal results.
One regime, when universal results are not applicable has been already pointed out above, and
corresponds to m∗ = ∞. Such situation generically arises for spin-1

2
system at half-filling, when

leading correction to spectrum nonlinearity starts from terms ∝ p3. If leading ∝ p2 curvature of
the spectrum is non-vanishing, then our results quite generically apply for

p

kf

¿ 1. (S32)

We show below that leading corrections to universal results are suppressed in powers of this
small parameter. To be specific, we consider the modifications of singularities of fermionic
A(p, ω) for p > 0, ω > 0 in the vicinity of +kf .

There are two types of terms which modify the universal Hamiltonian. One type of terms
corresponds to higher order corrections to single-particle spectrum. Such terms merely shift
the positions of the singularities, but do not change the exponents. Indeed, reduction to three-
subband model only requires velocity of d−particle to be different from v. Since this happens
already for leading spectrum nonlinearity ∝ p2, higher order curvature of the spectrum doesn’t
directly affect µ0,+ and µ0,+.

Second type of terms corresponds to irrelevant interactions between fermionic quasiparti-
cles. One such term, which has the same scaling dimension as spectrum nonlinearity, is given
by (S11,S13,S14)

H̃ ′
int = −ig̃′

∫
dx

(
ρ̃R

[
: Ψ̃†

L∇Ψ̃L : − : ∇Ψ̃†
LΨ̃L :

]
− ρ̃L

[
: Ψ̃†

R∇Ψ̃R : − : ∇Ψ̃†
RΨ̃R :

])
,(S33)

where g′ can be related (S11,S14) to low energy properties similar to 1/m∗, and generally these
quantities are of the same order of magnitude. Effect of such interactions on e.g. µ0,+ can
be understood using the methods of Refs. (S15,S16). Indeed, after projection to three-subband
model interactions lead to modification of phase shift δ− of the order

∆δ− ∼ g′p
vd − (−v)

∼ p

kf

¿ 1, (S34)

and thus lead to small corrections to µ0,+, µ0,+. Here vd is the velocity of particle d, which
equals

vd = v +
p

m∗ . (S35)

Less relevant interactions between left and right branches lead to even stronger suppressed
corrections to the exponents. One should note, that presence of finite g′ also leads to ∝ p8

smearing of the singularity µ0,+ for ω > 0, while singularity µ0,+, being a singularity at a true
kinematic border, remains intact (S16).
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Another irrelevant interaction term which modifies the exponents in linear order over p/kf

arises due to momentum dependence of interactions on the same branch,

H̃ ′′
int =

∫
dpV (p) (ρ̃L(p)ρ̃L(−p) + ρ̃R(p)ρ̃R(−p)) . (S36)

Interaction V (p) should vanish for p → 0, and have the symmetry property V (p) = V (−p). If
one assumes that V (p) is regular, then its expansion starts from the term ∝ p2, and correction
to the phase shift δ+ is of the order

∆δ+ ∼ V (p)

vd − v
∼ p

kf

¿ 1. (S37)

However, for interactions that decay as or slower than ∝ 1/x2, momentum dependent part of
V (p) doesn’t have to be regular. Indeed, for models with interactions decaying as ∝ 1/x2, one
has V (p) ∼ |p|, which leads to finite ∆δ+ in the limit p → 0, and a finite modification of
the universal exponents. Thus our universal results do not apply to Haldane-Shastry (S17,S18)
or Calogero-Sutherland (S19) models. In the case of the latter, this can be seen from explicit
calculations (S16,S20).

Finally, we note that predictions of universal Hamiltonian for S(p, ω) for small p can be
checked using sum rules. Universal Hamiltonian given by Eqs. 2,5 predicts (S21) that S(p, ω)
at any interaction strength approaches the form characteristic for free fermions

S(p, ω) =
m∗K

p
θ(

p2

2m∗
− |ω − v|p||), (S38)

once p becomes small enough. One can check, that for Galilean-invariant systems this result
explicitly satisfies f-sum rule (S22)

∫
ωS(p, ω)

dω

2π
=

1

2π
vKp2 =

np2

2m
. (S39)

In addition, for all systems compressibility sum rule (see e.g. Eq. 7.52 of Ref. (S22)) is also
satisfied:

lim
p→0

∫
1

ω
S(p, ω)

dω

2π
=

K

2πv
=

1

2

∂n

∂µ
, (S40)

where in last equation we have used relation of K to compressibility, see e.g. Eq. 2.59 of
Ref. (S2).
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+2kf-2kf

p

A

B

k

b

b

b

b

Figure S1: Bosonic spectral function. (A) Spectral function A(k, ω) in momentum-energy
plane. Shaded areas indicate the regions where A(k, ω) 6= 0. The region with ω > 0 (ω < 0)
corresponds to the particle (hole) part of the spectrum. (B) Close-up view of the vicinity of k ≈
0, where p = k. Notations of µ indicate which exponents presented in Table S1 should be used
in Eq. 6. Notations for exponents near k ≈ 2nkf are obtained by substituting corresponding n
instead of n = 0.
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µb
n,+ 1− 1

2

(
2n− 1− 2n δ++δ−

2π

)2

− 1
2

(
δ+−δ−

2π

)2

µb
n,+ 1− 1

2

(
2n + 1− 2n δ++δ−

2π

)2

− 1
2

(
2− δ+−δ−

2π

)2

µb
n,− 1− 1

2

(
2n + 1− 2n δ++δ−

2π

)2

− 1
2

(
δ+−δ−

2π

)2

µb
n,− 1− 1

2

(
2n− 1− 2n δ++δ−

2π

)2

− 1
2

(
2− δ+−δ−

2π

)2

Table S1: Universal exponents for bosonic spectral function. Notations are indicated in Fig. S1,
and parameters δ± defined by Eq. 4 are functions of K only. Note that µb

n,+ = µb
−n,− which

follows from the k → −k symmetry.
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