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An Exactly Soluble Model of a Many-Fermion System * 
J. M. LUTTINGER 

Department of Physics, Columbia University, New York, New York 
(Received 2 April 1963) 

An exactly soluble model of a one-dimensional many-fermion system is discussed. The model has 
a fairly realistic interaction between pairs of fermions. An exact calculation of the momentum dis­
tribution in the ground state is given. It is shown that there is no discontinuity in the momentum 
distribution in this model at the Fermi surface, but that the momentum distribution has infinite 
slope there. Comparison with the results of perturbation theory for the same model is also presented, 
and it is shown that, for this case at least, the perturbation and exact answers behave qualitatively 
alike. Finally, the response of the system to external fields is also discussed. 

I. INTRODUCTION 

WE shall be concerned in this paper with a 
model of a many-fermion system which is 

exactly soluble. The model is quite unrealistic for 
two reasons: it is one-dimensional and the fermions 
are massless. On the other hand, it has the realistic 
feature that there is a true pair interaction between 
the particles. It is very closely related to the well­
known Thirring Modell in field theory, though 
slightly more general. Our main interest in the 
model is in connection with the question of whether 
or not a sharp Fermi Surface (F.S.) exists in the 
exact ground state. 

This question has only been investigated pre­
viously2 by a special sort of many-body perturbation 
theory, when it has been shown for the usual 
realistic three-dimensional many-fermion system 
that each term of the series does give rise to a sharp 
F.S. This, of course, proves nothing about the entire 
series unless one can also prove something about its 
convergence, which has not been possible so far. 
The main point of this investigation therefore is 
to see if in this soluble model the exact solution 
and the perturbation solution (via propagators) 
behave in an essentially different fashion. 

We now consider the exact formulation of the 
model. Consider first the case of no interaction 
between the particles. These are taken to be spinless, 
massless, fermions moving in a one-dimensional 
space. The analogue of the relativistic Dirac Hamil­
tonian is VOU'3P (U'3 is the usual Pauli spin matrix; 
units such that h = 1 are chosen). Vo is the velocity 

* Work supported in part by the Office of Naval Research. 
1 W. T.hirring, Ann. Phys. 3, 91 (1958). See also V. Glaser, 

Nuovo Clmento 9, 990 (1958); T. Pradhan, Nucl. Phys. 9, 
124 (1961); K. Johnson, Nuovo Cimento 21,773 (1961). 

2 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960); J. M. Luttinger, ibid. 119, 1153 (1960); 121, 942 
(1961 ). 

of the particles, which would be c in the relativistic 
case. Then the Hamiltonian is 

Ho = Vo i L 

V/(x)U'3Pif;(x) dx. (1) 

Here if; is the two component spinor 

(2) 

and we are assuming that the particles are confined 
to a length L along the x axis. The quantity P is 
of course the ordinary momentum operator Iji ajax. 

Written out, (1) becomes 
L 

Ho = Vo i [if;~pif;l - if;~pif;21 dx. (3) 

If we go into momentum space via 

if;i(X) = L: aikcikzjLi 
k 

(where the allowed values of k are 

k = (2n/L)n, n = 0, ± 1, ±2, ... , ± co 

(4) 

(5) 

since we shall impose periodic boundary conditions 
on our sample), we obtain 

Ho = Vo L: (atkalk - a;ka2k)k. (6) 
k 

The creation and destruction operators a, a+ satisfy 
the commutation relationship 

(7) 

Since the allowed values of ai~ajk are zero and 
unity, the lowest state of H 0 is - co since we can 
choose all the j = 1, k < 0 and the j = 2, k> 0 
states occupied. This is the usual problem occurring 
in Dirac theory and requires a redefinition of the 
creation and destruction operators so that we deal 
only with "particles" and "holes". Define 
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= c; k < 0, 
(8) 

= c; k > o. 

where 

Vex) = i ~ v(k)e- ikx
, 

v(k) = 1L dxe ikx V(x). 

(17) 

We may also write this as The term in (16) corresponding to k3 
(9) H", is given by 

where 

0; = 
1 k>O 

0 k < 0, (10) 

Ok = 
1 k<O 

0 k> O. 

From (9) we see at once that bk, Ck also have 
the commutation rules of fermions, i.e., 

(11) 

and all the rest anticommute. 
Inserting (8) in (6) we obtain 

Ho = Vo L: (b:bk + C:Ck) [k[ 
k 

(12) 

The last term is infinite, but a constant, and as 
usual we simply redefine Ho without it, i.e., we take 

Ho = Vo L: (b:bk + C:Ck) [k[. (13) 
k 

We shall call the operators bk and Ck the destruction 
operators for particles and holes respectively. The 
vacuum state ¢o is clearly defined by 

(14) 

The interaction Hamiltonian H' is taken to be 
(this special choice is what makes the model soluble) 

L 

H' = 2Xvo Jf ~~(X)~l(X) Vex - y) 

(18) 

This term clearly gives rise to divergent effects, 
since for the unperturbed vacuum the number of 
"I" and "2" particles are infinite. To avoid this 
difficulty, we shoose v(O) to be zero, which is the 
same as taking the average value of the potential 
(11) equal to zero. We also express this by saying 
that in (15) we replace Vex - y) by vex - y) - V. 

The total Hamiltonian of the problem is now 
given by 

H = Ho + H'. (19) 

II. EXACT SOLUTION OF THE MODEL 

We shall show that (19) can be diagonalized by 
a very simple canonical transformation. Consider 

(20) 

where 
L 

S == ff dx dY~~(X)1/;l(X)E(x - y)1/;~(Y)~2(Y)· (21) 

Here E(x) is defined by 

dE(x)/dx = Vex) - v. (22) 

Writing 

Vex) - if = L ~' v(k)e- ikx
, (23) 

we obtain 

E(x) = ± ~' v~~ e- ikx
• (24) 

(15) Let us define 

Vex - y) is an arbitrary two-body potential at 
this point. If we write this in momentum space 
[assuming also that vex - y) satisfies periodic 
boundary conditions], we obtain 

Then from 
once that 

so that 

the commutation rules 

(Ni(x) , Ni,(x'» = 0, 

ei~S H'e- iXs = H'. 

(25) 

it follows at 

(26) 

(27) 
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(In the non-second quantized version of the theory 
H' and S are just functions of position.) 

Therefore 

i1 = H + iX(S, Ho) 

+ [(iA)2/2'J(S, (S, Ho» + (28) 

Using the commutation rules for the Vti' we obtain 
at once 

L 

(S, Ho) = VO II dx d~a~;x) E(x - y)N2(y) 

8N2(Y)} - Nl (x)E(x - y) ---a:y- . (29) 

Integrating by parts and using the periodic 
boundary conditions to drop the surface terms, we 
obtain 

L 

(S, Ho) = - 2~o II dx dyNj(x)E'(x - y)N2(y) 

L 

- 2~o II dx dyN1(x)(V(x - y) - V)N2(y) 
o 

(30) 

Since this commutes with S, there are no higher 
terms in the series (28), and we obtain 

i1 = i1 - H' = Ho. (31) 

(Again these results are seen very easily by going 
over to the non-second quantized representation.) 

Now i1 is trivial to diagonalize, just being the 
noninteracting Hamiltonian. Therefore, all the 
energy levels of H are the same as those of H Q. 

(This is very unrealistic indeed.) On the other hand, 
the wavefunctions of H are very different from the 
free-particle ones. If Vt~ is a wavefunction of Ho 
corresponding to energy E~, then the corresponding 
wavefunction for H (say, Vtn) is 

(32) 

Therefore, although the energy levels do not 
change as a result of the interaction, other properties 
depending on more details of the wavefunctjon may 
be profoundly altered. 

We next want to formulate the many-body 
problem for our system. We at once have the follow­
ing problem: since particle-hole pairs can be pro­
duced by the interaction, the number of particles 
in an eigenstate of H is not fixed. However, we 

clearly must have that the number of particles 
minus the number of holes (call this n) is fixed in 
an eigenstate. Writing 

(33) 

we can easily verify by direct calculation that n is 
a constant of the motion. 

The noninteracting case for the N-particle problem 
is clearly the case of n having the eigenvalue N. 
Similarly, we define the N-particIe problem for the 
interacting case as the system for which n has the 
value N. There will always be a certain number 
of holse present, but the smaller the interaction, 
the smaller this number will be. 

The exact ground state of the N-particle system 
may be obtained as follows. Certainly the lowest 
state (Vt~) of i1 for which n = N is obtained by 
having no holes present. Then the first N particle 
states will be occupied. That is 

b~Vt~ 0, 

bkVt~ = 0, 

CkVt~ = 0, 

(34) 

where the Fermi momentum kF is determined by 

L fk F 
N= L: 1=- dk 

Ik I <kF 211'" -kF 
(35) 

We may also write 

(36) 

where 1/>0 is the unperturbed vacuum and kl .. , kN 
are the N allowed momenta between - kF and kF • 

Therefore the exact ground-state wavefunction 
(VtN) is given by 

(37) 

In order to study the sharpness of the F.S., we 
must investigate2 the mean number of particles 
with momentum k, say rh. We have, of course, 

so 

ih = (VtN, b ~bklh) = (Vt~, eo,sb ~bke-iAS Vt'1). (38) 

If we wanted to know the average number of holes 
N h present we may use 

(39) 

Clearly iik is an even function of k, so we shall 
restrict ourselves to k > 0. Then, by (9), 



AN EXACTLY SOLUBLE MODEL OF A MANY -FERM ION SYSTEM 1157 

L 

b~bk = atkalk = t II d~ d7]eikC~-~'if;~W1/;I(7]), (40) 

as one sees, by direct integration, 
L 

iik = t II d~ dT}e
ikCh

' 

x (1/;~ lei~S1/;~W1/;I(T})e-MI1/;~). (41) 

Now we have the following operator identity 

exp [iA iL 

g(x)N1(x) dXJ1/;I(T}) 

X exp [ -iA iL 

g(x)N1(x) dxJ = e-i~gC~'1/;I(T}), (42) 

if g(x) commutes with 1/;1(T}). This is most easily 
proved by differentiating with respect to A and 
making use of the fact that 

(1/;I(T}) , N 1(x» = o(x - T})1/;I(T}). (43) 

Using (42), (41) becomes 

L 

iik = t If d~ dT}eikCt-~' 

X (1/;~ J1/;~(~)1/;I(T}) exp{iA iL 

dyN2(y) 

X [E(~ - y) - E(T} - Y)l}J1/;~). (44) 

Expressed in terms of a;k, (34) becomes 

atd/~ = 0, k < kF' (45) 
alk1/;~ = 0, k > kF' 

From (45) we have at once 

(0/1 11/;~(~)1/;I(T})1 0/1) = -L
1 L e-ik'a-.,. 

k'<kF 
(48) 

The second factor in (47) is also not difficult to 
reduce to simpler form. We have, in fact, 

(0/2 JexP{iA i L 

dyN2(y) 

X [E(~ - y) - E(T} - Y)l}1 0/2) = Det(g). (49) 

Det (g) is the determinant of the matrix gaa', where 

gaa' = tiL dye-iCka-k.',y 

X exp {iA[E(~ - y) - E(T} - y)]}, (50) 

the ka being the occupied states of the "2" particles 
in (46), i.e., the ka are the set of discrete allowed 
k values greater than -kF' The proof of (50) is 
given in the Appendix. The remarkable thing is 
that this (infinite) determinant can in fact be 
evaluated and the answer reduced to quadratures. 

Writing Det (g) = G(~, T}), (47) becomes 

L 

iik = -L\ f'r d~ dT} L e+iCk-k',a-"G(~, T}) 
J k'<kF 
o (51) 

== 211' L F(k - k'), 
L k'<kF 

where 
L 

F( ) - _1_ If d d iKCt-"G( ) 
K - 211'L ~ T}e ~, T} . (52) 

and III. EXPLICIT EVALUATION OF MOMENTUM 
DlSTRmUTION 

atd~ = 0, k > -k F , 
(46) We now must consider the determinant G(~, 7]) in 

a2k1/;~ = 0, k < -kF' more detail. Since ka = (211'/L)n, 

Writing 1/;~ = 0/10/2 where 0/1, depends on the ka - lea' = (211'/L)(n - n'); 
variables of the field "I" and is given by (45), 
and 0/2 depends on the variables of the field "2" 
and is given by (46), we have 

L 

X (o/2Iexp {iA lL dyN2(y) 

X [E(~ - y) - E(TJ - Y)J}/ 0/2)' (47) 

n,n' = 

we may write 

G= 

where 

-nF, -nF + 1, 

go g-1 g-2 

gl go g-1 

g2 gl go 

g3 g2 gl 

... , co, (53) 

(54) 
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X exp {tA[E(~ - y) - E(7J - y)Jl. (55) 

[(54) incidently, is independent of kF .] 

This type of determinant has been studied 
extensively, and is known as a Toeplitz determinant.3 

For very large order, an asymptotic formula can 
be given for them, which in our case (infinite­
determinant) becomes exact. The result is the 
following: for a finite Toeplitz determinant 

go g-l 

g-M+l 

we have4 

Therefore from (59) we see at once that 

(62) 

Thus for sufficiently small X, (60) is clearly 
satisfied since as one easily sees from (23) or (24), 
E(x) is a bounded function of x. We shall for 
simplicity assume that X is sufficiently small, and 
therefore we may write 

log fee) = iX[ E(~ - ~!) - E( 71 - ~!) J. (63) 

Now 

1 (2" 
27r J

o 
de log fee) 

'X (L 
= ~ Jo dy[E(~ - y) - E(7J - y)] = 0, (64) 

(56) since, by (24), the average of E(x) is zero. Therefore 

where 

D = exp L~ {" de log f(e)] , 

Kl = 2~ {" dee- ilO log fee), 

"" 
fee) = L: gmeim9 . 

In the proof, log fee) is defined by 

log fee) == log {I - [1 - fee)]} 

(57) 

(58) 

(59) 

00 [1 - f(e)r 
= - L: ,(60) 

n-l n 

and it is assumed that this series converges. 
In our case, this leads to particularly simple 

results. Changing variables in (55) from y to 8 where 

8 = 27ry/L, 

we obtain 

1 12
,. de -im9 gm = - e 

27r 0 

8 See, for example, V. Grenander and G. Szego, Toeplitz 
Forms and their Applications, (University of California Press, 
Berkeley and Los Angeles, 1958), especially P. 176 II. See 
also M. Rae, Probability and Related Topics in Physical 
Sciences, (Interscience Publishers, London and New York, 
1959), p. 60 II. 

• The formula given in Grenander and Szego, (reference 3) 
contains KL * instead of K-L as given in (56). I am indebted 
to Professor M. Rae for pointing out to me that if f( 8) is 
complex, rather than real as Grenander and Szego assume, 
this simple change is all that is necessary. 

D=l. 
Further, 

Kz = 2~ {r dee- il9 log f(8) 

= iA (L dy[E(~ _ y) _ E(7J _ y)]e-2"il.IL 
L Jo 

(65) 

= ~ [(e-ik~ _ e-ike) V(k)]. (66) 
L k k-2rI/L 

Then 

_ A 2 1 t IV(k) 12 le-i~k - e-i~k 12 
27r L k>O k 

_ A 
2 1.. t Iv(k) 12 1 - cos k(~ - 71) 

7r L k>O k 

- -Q(~ - 71). (67) 

So finally we have 

G(~, 71) = e-Q(~-~). (68) 

Using the periodicity of Q in ~ and 71, we see that 
(52) may be written 

1 !L 
= -1 d~e+LKee-QW 

27r -!L 

= ..1 f"" d~eiKee-Qm. 
27r -00 

(69) 

Finally, replacing the sum by an integral in (67) 
we obtain 

Q(~) = 2~2 fa"" dk 1 - ~os k~ Iv(k) 12. (70) 
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We cannot go further in the evaluation of Q(O 
without some further information on the potential. 
However, the nature of the discontinuity at the 
F.S. can be investigated. 

We may write 

(71) 

The first term of (71) is a constant. To study the 
behavior of ih near the F.S. (k '" k F ) we therefore 
need F(K) only for very small K. This in turn, from 
(69), requires the behavior of Q(~) for large ~. 

Since Q(O is an even function of ~, we consider 
it for large positive ~. We have 

aQ(~) = ;\221'" dk sin k~ IV(k) 12 
a~ 271" 0 

;\2 [ 2 1 (I)J 
= 271"2 Iv(O) 1 ~ + 0 r ' (72) 

by successive integrations by parts. Integrating, 
we get 

where C is a constant which is in principle calculable 
from the potential. This may be written in the 
following way: 

(74) 

where 

Therefore we see that there is, for a ~ 0, no 
discontinuity at the F.S. (because the factor 
I(k - kF)al2a vanishes there) though the slope is 
infinite at this point. On the other hand, if a = 0, 
(77) behaves like -tu(k - kF ), which just gives 
the usual discontinuity at the F.S. Thus, in this 
model, the smallest amount of interaction always 
destroys the discontinuity of nk at the F.S. 

The behavior of nk for large k[i.e., (k - kF)a» 1] 
is also not difficult to obtain. From (71) we need 
F(K) for large K, which is the same as knowing 
Q(O for small ~. From (70) this may be obtained 
by expanding 

(78) 

as long as the integral converges, which we shall 
assume. Writing this as 

Q(~) '" te /b2 
, (79) 

b
2 == ;;21'" dk·k·/v(kW, 

we obtain 

F(K) = b/(271")ie- b'<'/2. (80) 

Therefore, for large k, we have 

- '" b 1'" d -<'b'/2 '" 1 ~ -k'b'/2 
nk = (271")1 k Ke = (271")1 kb e • (81) 

Therefore the momementum distribution decreases 
exponentially for large k. 

For k close to the origin we may write 
a == (;\2/471"2) /v(O)I\ (75) 

and a is a constant with the dimensions of a length, nk = 1'" F(K) dK 
k-kF 

which depends only on the shape of the potential 
(it is a measure of its range). Inserting (74) into 
(69) we obtain, for IKa/ « 1, 

F(K) = .! 1'" d~ cos K~ 
71" 0 (~/a?a 

= r(1 - 2a) sin 7I"a ~ . 
71" 1 K/

I
-

2a 

Thus we obtain, for Ik - kFI a « 1" 

r(I - 2a) sin 7I"a 
271"a 

(76) 

From (69), 

Further, F(K) is an even function of K. Thus 

nk = 1 -1'" F(K) dK = 1 - n2kF-k, 
kF-k 

(82) 

(83) 

(84) 

(85) 

(77) Therefore no < 1. If the interaction is such 

where 
o{x) = 1, x > 0 

= -1, x < O. 

that k = 2kF is already in the asymptotic region 
for large k, then n2kF is exponentially small, and 
no is very close to unity. 

Finally, we should like to conclude this section 
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with a remark about the case where VeX) = ~(x), 
the Dirac ~ function. In this case v(k) is a constant, 
so that (70) diverges logarithmically. 

If one regards the a function as the limit of a 
smooth function [a very convenient choice, with 
which one can calculate explicitly, is v(k) = e- lkl ./2, 
letting a approach zero in the final answer], it is 
easy to see that the result is simply ih = !. The 
anomalous behavior of the a-function case is not 
surprising as it looks at first. Since the particle 
mass is zero and A (as may easily be verified) is 
dimensionless, the only length which can come 
into the problem is the mean distance between 
particles or, equivalently k"FI, However, from (54), 
kF does not enter into F(K), so that ih is a function 
of k - kF alone, which must be dimensionless. 
One such example is the unperturbed distribution, 
which depends only on whether Ikl > kF or not. 
Another is a constant, which is what we actually 
obtain for the a-function potential. The physical 
origin of this distribution which extends to infinite k, 
is that the high fourier components of the 0 function 
produce infinitely many pairs, so that infinitely 
many particles are present. 

IV. COMPARISON WITH PERTURBATION THEORY 

According to the general formulas2 the momentum 
distribution in the ground state is given by 

(86) 

where G.(r) is the proper self-energy part of the 
particle propagator. In this formalism one should 
calculate the correct propagator at finite temper­
ature (including "anomalous" diagrams) and also 
use the correct chemical potential p. It was found 
there that if the F.S. does not distort (spherical case) 
this is the same as using ordinary Goldstone per­
turbation theory (no anamolous diagrams) and the 
the unperturbed chemical potentia1. We shall assume 
that this is also the case here, there being nothing 
comparable to F.S. distortion in one dimension. 
Then we replace J.I. by VOkF and take for Gk(r) the 
lowest nonvanishing contribution. This is second 
order. A straightforward calculation yields, for k > 0, 

(A)2 (rOO 1- lk'l) 
Gm = 2 ; Vo J Ik' I + _'" dK 

x' IV[~(K + !k'\)W aCK + Ik'DI (87) 
~ Z + K ' 

where 

This function is analytic in the cut z plane, the 
cuts extending from - 0:> to -Ik'i and from WI 
to 0:>. 

If this is inserted in (86) (with J.I. replaced by 
vOkF ), the resulting integral is quite complicated 
to discuss, even in the neighborhood of k = kF' 
for an arbitrary potential, and we shall limit our­
selves to a special case. 

Writing z = x - iO+, we have 

Gkm = vo[Kk,(x) + iJk,(x)]. (88) 

It is easy to see that by suitably deforming the 
contour in (86) we may write 

1 fO 
iik = -2' dx 

1l'~ _IX! 

x [ _ k' K \ ) 'J ( ) - c.c.] k' > 0 (89) x - k' X - ~ k' X 

=1--. dx I 1'" 
21l'~ 0 

X { k' K \ ) oJ C ) - c.c.} k' < O. (90) x - - k' X - 'l k' X 

Now choosing 

one easily sees 

IV(K)1 2 = 1 IKI < !q 

= 0 IKI > !q, 

Kk,(x) = a Ik'i [ -2 + (1 - I:") 
X log Il -)X_ ~,lk'j)21] , 

Jk,(x) = 0 unless -q + WI < x < -!k'i. 
or Ik'i < x < q + WI 

= ll'a Ix - Ik'I! otherwise. 

(91) 

(92) 

We want to investigate iik for small k'. It is not 
difficult, using (92), to show that, for small a 
and Ik'l, iik takes the form 

iik = HI - u(k')/(l - 2a log Ik'aDL (93) 

where a = l/q. 
This expression is, just as the exact expression, 

continuous at k = k , and has infinite slope there. 
In fact if we write 

= (1 - 2a log !k'a! + ... )-t, 
forcing an expansion of the exact result (77) for 
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small a, we see that in this sense (93) agrees exactly 
with the exact answer to the order involved. 

Thus, unlike the realistic three-dimensional case, 
perturbation theory predicts no discontinuity at the 
F.S. Since the exact answer behaves in the same way, 
perturbation theory (for the proper self-energy part) 
in this problem at least is a reliable guide to the 
behavior of fi k • 

v. RESPONSE TO EXTERNAL FffiLDS 

If one considers particles to have a charge e, 
we can induce currents to flow by applying an 
external field. It follows at once from the commuta­
tion relationships that 

p + aj/ax = 0, (94) 

where 

p(x) = ey/(x)ifi(x) = e[N1(x) + N 2(x)], (95) 

j(x) = eVoifi+(X)fT3 ifi(x) = evo[Nl(x) - N 2(x)], (96) 

p == i[H, pl. (97) 

This is clearly the equation of continuity of charge, 
and we can identify p and j with the charge and 
current densities, respectively. 5 

Suppose we couple to our system an external 
electric field described by a potential q;(x, t). The 
interaction is described by a Hamiltonian H ext 

given by 

H ext = 1L p(x)q;(x, t) dx, (98) 

HT = H + H ext • (99) 

If we again make the canonical transformation (20), 

we find, since S commutes with H.xt, 

fiT = Ho + H ext • 

(100) 

(101) 

Therefore, for a static field, all the energy levels are 
identical with the noninteracting case. In particular, 
this means that the Kohn effect6 (which predicts 
a logarithmic singularity in Iq - 2kFI for the change 
in energy of the system in the presence of an external 
field of wavenumber q) is completely unaltered 
by the interaction, this, in spite of the fact that 
the behavior of fi k in the neighborhood of k = kF 
is profoundly altered. 

If we calculate the linear response, (i.e., the current 

6 In reality these definitions should be modified by the 
subtraction of infinite constants corresponding to the redefi­
nition of the vacuum state as that with no holes and no 
elections. We imagine this done in what follows. 

6 W. Kohn, Phys. Rev. Letters, 2, 393 (1959). 

that flows to terms linear in the external field) 
by means of (say) the Kubo formula,7 then one 
sees immediately that the result is the same as 
in the unperturbed case. Again this result is due 
to the fact that both the charge and current densi­
ties depend only on Nl and N 2 , which commute 
with S. This is also true if the external field couples 
to the current or when there are impurities present 
which act on the individual particles. 

Finally, we may consider "positron annihilation" 
in this model. s Usually this is thought of as an 
effect which gives a direct experimental measure­
ment of fi k • In the one-dimensional case one cannot 
measure an angular correlation between the photons 
which come out. However, one can ask questions 
about the probability of one of them having a 
momentum between q and q + dq. We do not want 
to enter into a long discussion of the various pos­
sibilities here. We mention, however, that if one 
couples massless "photons" described by a scalar 
field cf> having velocities uo( < vo), via an effective 
interaction for pair annihilation, 

H'li = g i L 

dXp(X)cf>2(X); (102) 

then again only the unperturbed momentum dis­
tribution plays a role. However, if one takes more 
complicated couplings (depending for example on 
other bilinear expressions than p or j) one can get 
a large effect from the interaction. 

Thus we see that although the momentum 
distribution is very much altered by the interaction 
in this model, it is by no means true that effects 
due to "particles at the Fermi Surface" are cor­
respondingly altered. In other words, the naive 
association of the existence of a discontinuity in 
the momentum distribution, and the quasiparticle­
like behavior of a weakly excited system of inter­
acting fermions is shown to be unjustified for this 
model. 

APPENDIX 

We want to evaluate expressions of the following 
type: 

I = ('It, A'lt), 

A == exp [i i L 

Q(y)ifi+(y)ifi(y) dyJ ' 
(AI} 

where Q(y) is an ordinary function, and where 'It 

7 R. Kubo, Can. J. Phys. 34, 1274 (1956). 
8 See, for example, R. Ferrell, Rev. Mod. Phys. 28 308 

(1956). ' 
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represents a wavefunction in which the single­
particle states n = 1,2, ... , M are occupied. If we 
write 

(A2) 

where the CPn(Y) are a complete orthonormal set 
of single-particle states, then clearly 

'lIo is the unperturbed vacuum. 
We may write (AI) as 

I = ('lIo, aM ... alAat '" a:::r'llo). 

Writing 

al = 10 co dZl cP~ (Zl) if;(Zl) , 

we get, making use of (42), 

alA = f dZlCP~(Zl)if;(zl)A 
= A f dZlcp~(ZI)eiQ(z,)if;(zl)' 

Therefore, (A4) becomes 

I = ('lIa, A f dMz(g CP~(Zn)eiQ(Z'») 

X if;(ZM) ... if;(zl)a7 ... a:::r I 'lIo). 
Since 'lIo is the unperturbed vacuum, 

so that (A7) becomes 

1= f dMz(gCP~(Zn)eiQ(,"») 
X ('lIa, if;(ZM) .. ' if;(zl)at •.. a:::r'llo) 

= f dMz dMZ/(fl CP~(Zn)CPn(Z~)eiQ(Zn'») 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

X ('lIa 1if;(ZM)'" if;(Zl)if;+(zi)· .. if;+(z~)I'lIa). (AlO) 

The expectation value in (AIO) is a familiar one 
in the many-body problem. It can be obtained by 
taking the sum of the products of the corresponding 
expectation value for all possible if;, if; + pairs. The 
sign of each term is given by a plus if the permutation 

necessary to bring them to the required position 
is even, a minus if it is odd. Clearly then 

I = f dMz dMz1 ~ (- )Pp( fJ. CP~(Zn)CPn(Z~)eiQ("») 
X ('lIo 1if;(zl)if;+(zDI 'lIo) ... ('lIo 1if;(ZM)if;+(z~)1 'l'o). 

(All) 

The sum on P is over all possible permutations of 
the variables. Now 

('lI 0 I if;(Zl) if; + (zD I 'l' 0) 

where 

or 

('l' 0 I if;(ZI) if; + (zD + if; + (zD if;(Zl) I 'l' a) 

5(zl - zD('lIo, 'lIo) = 5(Zl - zD, 

P(1,2, ... ,M) = (ii, i 2 , ••• ,iM ), 

(A12) 

(A13) 

This, however, is just the definition of the determi­
nant of the matrix gnn, where 

(A15) 

Therefore, 

I = Det (g). 

If we take for the CPn plane wave states, we get 
just the result used in the text. 

Incidently, if one does this in configuration space 
and uses determinental wavefunctions, this becomes 
a well-known theorem about the integral over 
products of determinants. 
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