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Interacting fermions in one dimension

Within the context of many-body physics, a theory is termed free if the Hamiltonian is

bilinear in creation and annihilation operators, i.e. Ĥ ∼
∑

μν a
†
μHμνaν , where H may be

a finite- or infinite-dimensional matrix.16 Such models are “solvable” in the sense that the

solution of the problem simply amounts to a diagonalization of the matrix Hμν (subject to

the preservation of the commutation relations of the operators a and a†). However, only a

few models of interest belong to this category. In general, interaction contributions typically

quartic in the field operators are present and complete analytical solutions are out of reach.

Yet there are a few precious examples of genuinely interacting systems that are amenable

to (nearly) exact solution. In this section we will address an important representative of

this class, namely the one-dimensional interacting electron gas. Not only is the analysis of

this system physically interesting but, in addition, it provides an opportunity to practice

working with the second quantized operator formalism on a deeper level.

Qualitative discussion

Consider the nearly free electron Hamiltonian (2.18) and (2.19) reduced to a one-dimensional

environment. Absorbing the chemical potential EF into the definition of the Hamiltonian,

and neglecting spin degrees of freedom (e.g. one might consider a fully spin polarized band),

Ĥ =
∑
k

a†k

(
k2

2m
− EF

)
ak +

1

2L

∑
kk′,q �=0

V (q)a†k−qa
†
k′+qak′ak. (2.33)

INFO At first sight, the treatment of a one-dimensional electron system may seem an aca-

demic exercise. However, effective one-dimensional interacting fermion systems are realized in

a surprisingly rich spectrum of materials. We have already met with carbon nanotubes

above. A nanotube is surrounded by clouds of mobile electrons (see earlier discussion in sec-

tion 2.2). With the latter, confinement of the circumferential direction divides the system into

a series of one-dimensional bands, each classified by a sub-band index and a wavenumber k.

At low temperatures, the Fermi surface typically intersects a single sub-band, allowing atten-

tion to be drawn to a strictly one-dimensional system. A similar mechanism renders certain

organic molecules (such as the Bechgaard salt (TMTSF)2PF6, where TMTSF stands for the

tetramethyl-tetraselenafulvalene) one-dimensional conductors.

A third, solid state, realization is presented by artificial low-dimensional structures fab-

ricated from semiconducting devices. Redistribution of electron charge at the interface of a

GaAs/AlGaAs heterostructure results in the formation of a two-dimensional electron gas.

By applying external gates, it is possible to fabricate quasi-one-dimensional semiconductor

quantum wires in which electron motion in the transverse direction is impeded by a large

potential gradient (Fig. 2.8 (a)). At sufficiently low Fermi energies, only the lowest eigenstate

of the transverse Schrödinger equation (the lowest “quantum mode”) is populated and one is

left with a strictly one-dimensional electron system. There are other realizations, such as edge

modes in quantum Hall systems, “stripe phases” in high-tempterature superconductors, or

certain inorganic crystals, but we shall not discuss these here explicitly.

16 More generally, a free Hamiltonian may also contain contributions ∼ aμaν and a†
μa

†
ν .



68 Second quantization

(a) (b)

Figure 2.8 Different realizations of one-dimensional electron systems. (a) Steep potential well (real-
izable in, e.g., gated two-dimensional electron systems). (b) (Approximately) cylindrical quantum
system (carbon nanotubes, quasi-one-dimensional molecules, etc.). In both cases, the single-particle
spectrum is subject to mechanisms of size quantization. This leads to the formation of “minibands”
(indicated by shaded areas in the figure), structureless in the transverse direction and extended in
the longitudinal direction.

The one-dimensional fermion system exhibits a number of features not shared by higher-

dimensional systems. The origin of these peculiarities can be easily understood from a simple

qualitative picture. Consider an array of interacting fermions confined to a line. To optimize

their energy the electrons can merely “push” each other around, thereby creating density

fluctuations. By contrast, in higher-dimensional systems, electrons are free to avoid contact

by moving around each other. A slightly different formulation of the same picture can be

given in momentum space. The Fermi “sphere” of the one-dimensional system is defined

through the interval [−kF, kF] of filled momentum states. The Fermi “surface” consists

of two isolated points, {kF,−kF} (see the figure below). By contrast, higher-dimensional

systems typically exhibit continuous and simply connected Fermi surfaces. It takes little

imagination to anticipate that an extended Fermi sphere provides more phase space to

two-particle interaction processes than the two isolated Fermi energy sectors of the one-

dimensional system. The one-dimensional electron system represents a rare exception of an

interacting system that can be solved under no more than a few, physically weak, simplifying

assumptions. This makes it a precious test system on which non-perturbative quantum

manifestations of many-body interactions can be explored.

Quantitative analysis

We now proceed to develop a quantitative picture of the charge density excitations of

the one-dimensional electron system. Anticipating that, at low temperatures, the relevant

dynamics will take place in the vicinity of the two Fermi points {kF,−kF}, the Hamiltonian

(2.33) can be reduced further to an effective model describing the propagation of left and

right moving excitations. To this end, we first introduce the notation that the subscripts

R/L indicate that an operator a†(+/−)kF+q creates an electron that moves to the right/left

with velocity � vF ≡ kF/m.

We next observe (see the figure below) that, in the immediate vicinity of the Fermi points,

the dispersion relation is approximately linear, implying that the non-interacting part of
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the Hamiltonian can be represented as (exercise)

Ĥ0 �
∑

s=R,L

∑
q

a†sqσsvFq asq, (2.34)

where σs = (+/−) for s = R/L and the summation over q is restricted by some momentum

E

k–kF kF

EF qυ
F

q

cut–off |q| < Γ beyond which the linearization of

the dispersion is invalid. (Throughout this section,

all momentum summations will be subject to this

constraint.) Turning to the interacting part of the

Hamiltonian, let us first define the operator

ρ̂sq =
∑
k

a†sk+qask. (2.35)

Crucially, the definition of these operators is not

just motivated by notational convenience. It is

straightforward to verify (exercise) that ρ̂s(q) is obtained from the Fourier transform of the

local density operator ρ̂(x). In other words, ρ̂sq measures density fluctuations of character-

istic wavelength q−1 supported by electron excitations with characteristic momentum ±kF
(see Fig. 2.9 (a)). From our heuristic argument above, suggesting charge density modula-

tions to be the basic excitations of the system, we expect the operators ρ̂sq to represent the

central degrees of freedom of the theory.

Represented in terms of the density operators, the interaction contribution to the Hamil-

tonian may be recast as

V̂ee =
1

2L

∑
kk′q

Vee(q) a
†
k−qa

†
k′+qak′ak ≡ 1

2L

∑
qs

[g4ρ̂sqρ̂s−q + g2ρ̂sqρ̂s̄−q] , (2.36)

where s̄ = L/R denotes the complement of s = R/L, and the constants g2 and g4 measure

the strength of the interaction in the vicinity of the Fermi points, i.e. where q � 0 and

q � 2kF. (With the notation g2,4 we follow a common convention in the literature.)

EXERCISE Explore the relation between the coupling constants g2, g4 and the Fourier transform

of Vee. Show that to the summation
∑

kk′q, not only terms with (k, k′, q) � (±kF,±kF, 0), but

also terms with (k, k′, q) � (±kF,∓kF, 2kF) contribute. When adequately ordered (do it!), these

contributions can be arranged into the form of the right-hand side of Eq. (2.36). (For a detailed

discussion see, e.g., T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press,

2004) or G. Mahan, Many Particle Physics (Plenum Press, 1981)). At any rate, the only point

that matters for our present discussion is that the interaction can be represented through density

operators with positive constants g2,4 determined by the interaction strength.

INFO Working with second quantized theories, one frequently needs to compute commutators of

operators Â(a, a†) polynomial in the elementary boson/fermion operators of the theory (e.g. Â =

aa†, Â = aaa†a†, etc. where we have omitted the quantum number subscripts generally carried

by a and a†). Such types of operation are made easier by a number of operations of elementary
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Figure 2.9 Two different interpretations of the excitations created by the density operators ρ̂sq.
(a) Real space; ρ̂sq creates density modulations of characteristic wavelength q−1 and characteristic
velocity vF. (b) Momentum space; application of ρ̂sq to the ground state excites electrons from
states k to k + q. This creates particle–hole excitations of energy εk+q − εk = vFq independent
of the particle/hole momentum k. Both particles and holes forming the excitation travel with the
same velocity vF, implying that the excitation does not disperse (i.e. decay).

commutator algebra. The most basic identity, from which all sorts of other formulae can be

generated recursively, is the following:

[Â, B̂Ĉ]± = [Â, B̂]±Ĉ ∓ B̂[Â, Ĉ]−. (2.37)

Iteration of this equation for boson operators a, a† shows that

[a†, an] = −nan−1. (2.38)

(Due to the fact that a2 = 0 in the fermionic case, there is no fermion analog of this equation.)

Taylor expansion then shows that, for any analytic function F (a), [a†, F (a)] = −F ′(a). Similarly,

another useful formula which follows from the above is the relation a†F (aa†) = F (a†a)a†, which
is also verified by series expansion.

So far, we have merely rewritten parts of the Hamiltonian in terms of density operators.

Ultimately, however, we wish to arrive at a representation whereby these operators, instead

of the original electron operators, represent the fundamental degrees of freedom of the

theory. Since the definition of the operators ρ involves the squares of two Fermi operators, we

expect the density operators to resemble bosonic excitations. Thus, as a first and essential

step towards the construction of the new picture, we explore the commutation relations

between the operators ρ̂sq.

From the definition (2.35) and the auxiliary identity (2.37) it is straightforward to verify

the commutation relation [ρ̂sq, ρ̂s′q′ ] = δss′
∑

k(a
†
sk+qask−q′−a†sk+q+q′ask). As it stands, this

relation is certainly not of much practical use. To make further progress, we must resort to a

(not very restrictive) approximation. Ultimately we will want to compute some observables

involving quantum averages taken on the ground state of the theory, 〈Ω| . . . |Ω〉. To simplify

the structure of the theory, we may thus replace the right-hand side of the relation by its

ground state expectation value:

[ρ̂sq, ρ̂s′q′ ] ≈ δss′
∑
k

〈Ω|a†sk+qask−q′ − a†sk+q+q′ask|Ω〉 = δss′δq,−q′
∑
k

〈Ω|(n̂sk+q − n̂sk)|Ω〉 ,

where, as usual, n̂sk = a†skask, and we have made use of the fact that 〈Ω|a†skask′ |Ω〉 = δkk′ .

Although this is an uncontrolled approximation, it is expected to become better the closer we

stay to the zero-temperature ground state |Ω〉 of the theory (i.e. at low excitation energies).
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EXERCISE Try to critically assess the validity of the approximation. (For a comprehensive

discussion, see the text by Giamarchi.17)

At first glance, it would seem that the right-hand side of our simplified commutator relation

actually vanishes. A simple shift of the summation index,
∑

k〈Ω|n̂sk+q|Ω〉 ?
=

∑
k〈Ω|n̂sk|Ω〉

indicates that the two terms contributing to the sum cancel. However, this argument is

certainly too naive. It ignores the fact that our summation is limited by a cut-off momentum

Γ. Since the shift k → k − q changes the cut-off, the interpretation above is invalid.

To obtain a more accurate result, let us consider the case s = R and q > 0. We know

that, in the ground state, all states with momentum k < 0 are occupied while all states

with k ≥ 0 are empty. This implies that

∑
k

〈Ω|(n̂Rk+q − n̂Rk)|Ω〉 =

⎛⎝ ∑
−Γ<k≤−q

+
∑

−q<k≤0

+
∑

0<k<Γ

⎞⎠ 〈Ω|(n̂Rk+q − n̂Rk)|Ω〉

=
∑

−q≤k≤0

〈Ω|(n̂Rk+q − n̂Rk)|Ω〉 = −qL

2π
,

where, with the last equality, we have used the fact that a momentum interval of size q

contains q/(2π/L) quantized momentum states. Similar reasoning for s = L shows that the

effective form of the commutator relation reads

[ρ̂sq, ρ̂s′q′ ] = −δss′δq,−q′σs
qL

2π
. (2.39)

Now, if it were not for the q-dependence of the right-hand side of this relation, we would

indeed have found (approximate) bosonic commutation relations. Therefore, to make the

connection to bosons explicit, let us define

bq ≡ nq ρ̂Lq, b†q ≡ nqρ̂L(−q),

b−q ≡ nqρ̂R(−q), b†−q ≡ nqρ̂Rq,

⎫⎪⎪⎬⎪⎪⎭ (2.40)

where q > 0 and nq ≡ (2π/Lq)1/2. It is easily confirmed that the newly defined operators bq
obey canonical commutation relations (exercise), i.e. we have indeed found that, apart from

the scaling factors nq, the density excitations of the system behave as bosonic “particles.”

Expressed in terms of the operators b, the interaction part of the Hamiltonian takes the

form (exercise)

Vee =
1

2π

∑
q>0

q (bq b†−q)

(
g4 g2
g2 g4

)(
b†q
b−q

)
.

Notice that we have succeeded in representing a genuine two-body interaction, a contribution

that usually renders a model unsolvable, in terms of a quadratic representation. However,

17 T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004).
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the free boson representation of the interaction term will be of little use until the kinetic

part of the Hamiltonian Ĥ0 is represented in terms of the b operators. There are various

ways of achieving this goal. The most straightforward route, a direct construction of a

representation of Ĥ0 in terms of the Bose operators, is cumbersome in practice. However,

there exists a more efficient way that is based on indirect reasoning. As follows from the

discussion of Section 2.1, the properties of second quantized operators are fixed by their

commutation relations.18 So what we are going to do is search for an operator Ĥ ′
0(b, b

†)
that has the same commutation relations with the boson operators (b, b†) as the original

kinetic energy operator Ĥ0(a, a
†). Using Eq. (2.34), the definition (2.35), and the auxiliary

identity (2.37), it is straightforward to verify that [Ĥ0, ρ̂sq] = qvFσsρ̂sq. On the other hand,

using Eq. (2.39) one finds that the same commutation relations hold with the operator

Ĥ ′
0 =

2πvF
L

∑
qs

ρ̂sqρ̂s−q ,

i.e. [Ĥ ′
0, ρ̂sq] = qvFσsρ̂sq. Following the logic of our argument we thus identify Ĥ0 = Ĥ ′

0 (up

to inessential constants) and substitute Ĥ ′
0 for the non-interacting Hamiltonian.

EXERCISE To gain some confidence in the identification Ĥ0 = Ĥ ′
0+const., and to show that the

undetermined constant actually equals zero, compute the energy expectation value of the state

|Ψsq〉 ≡ ρ̂sq|Ω〉 both as 〈Ψsq|Ĥ0|Ψsq〉 and as 〈Ψsq|Ĥ ′
0|Ψsq〉. Confirm that the two expressions

coincide.

Finally, using Eq. (2.40) and adding the interaction contribution Vee we arrive at the effective

Hamiltonian

Ĥ =
∑
q>0

q (bq b†−q)

(
vF + g4

2π
g2
2π

g2
2π vF + g4

2π

)(
b†q
b−q

)
. (2.41)

We have thus succeeded in mapping the full interacting problem onto a free bosonic theory.

The mapping a → ρ̂ → b is our first example of a technique known as bosonization.

Such techniques play an important role in 2(= 1 space+1 time)-dimensional field theory in

general. More sophisticated bosonization schemes will be discussed in Sections 4.3 and 9.4.4.

Conversely, it is sometimes useful to represent a boson problem in terms of fermions via

fermionization. One may wonder why it is indeed possible to effortlessly represent the low-

lying excitations of a gas of fermions in terms of bosons. Fermi–Bose transmutability

is indeed a peculiarity of one-dimensional quantum systems. Particles confined to a line

cannot pass “around” each other. That means that the whole issue of sign factors arising

from the interchange of particle coordinates does not arise, and much of the exclusion-type

18 This argument can be made quantitative by group theoretical reasoning: Eq. (2.4) and (2.7) define the irre-
ducible representation of an operator algebra – an algebra because [ , ] defines a product in the space of

generators {aλ, a
†
λ}, a representation because the operators act in a vector space (namely Fock space F), which

is irreducible because all states |λ1, . . . , λN 〉 ∈ F can be reached by iterative application of operators onto a
unique reference state (e.g. |Ω〉). Under these conditions, Schur’s lemma – to be discussed in more detail in

Chapter 4 – states that two operators Â1 and Â2 having identical commutation relations with all {aλ, a
†
λ} are

equal up to a constant.
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characteristics of the Fermi system are inactivated. A more systematic formulation of Fermi

↔ Bose transformations will be discussed in Chapter 4.

Now, there is one last problem that needs to be overcome to actually solve the interacting

problem. In Chapter 1, we learned how to interpret Hamiltonians of the structure
∑

q b
†
qbq as

superpositions of harmonic oscillators. However, in our present problem, terms of the type

bqb−q and b†−qb
†
q appear. To return to familiar terrain, we need to eliminate these terms.

However, before doing so, it is instructive to discuss the physical meaning of the problem.

Firstly, let us recall that the total number operator of a theory described by operators0
b†λ, bλ

1
is given by N̂ =

∑
λ b

†
λbλ. Now, if the Hamiltonian has the form Ĥ =

∑
μν b

†
μHμνbν ,

the total number operator commutes with Ĥ, i.e. [N̂ , Ĥ] = 0 (exercise). This means that Ĥ

and N̂ can be simultaneously diagonalized, or, in more physical terms, that the Hamiltonian

enjoys the feature of particle number conservation. More generally, any Hamiltonian in

which operators appear as polynomials containing equal numbers of creation and annihila-

tion operators (e.g. b†b†bb, b†b†b†bbb, etc.) has this property. This is because any operator

of this structure creates as many particles as it annihilates. In problems where the total

number of particles is conserved (e.g. the theory of interacting electrons in an isolated piece

of metal), the Hamiltonian is bound to have this structure. Conversely, in situations where

the number of excitations is not fixed (e.g. a theory of photons or phonons) particle number

violating terms like bb or b†b† can appear. Such a situation is realized in our present prob-

lem; the number of density excitations in an electron system is certainly not a conserved

quantity which explains why contributions like bqb−q appear in Ĥ.

To eliminate the non-particle-number-conserving contributions we should, somehow,

transform the matrix

K ≡
(

vF + g4
2π

g2
2π

g2
2π vF + g4

2π

)
,

to a diagonal structure. Transformations of K can be generated by transforming the opera-

tors bq and b†q to a different representation. Specifically, with Ψq ≡ (b†q, b−q)
T , we may define

Ψ′
q ≡ T−1Ψq, where T is a 2× 2 matrix acting on the two components of Ψ. (Since K does

not depend on q, T can be chosen to have the same property.) After the transformation,

the Hamiltonian will have the form

H =
∑
q>0

qΨ†
qKΨq →

∑
q>0

qΨ′†
q T †KT︸ ︷︷ ︸

K′

Ψ′
q , (2.42)

with a new matrix K ′ ≡ T †KT . We will seek for a transformation T that makes K ′ diag-
onal. However, an important point to be kept in mind is that not all 2 × 2 matrices T

qualify as transformations. We must ensure that the transformed “vector” again has the

structure Ψ′
q ≡

(
b′†q , b

′
−q

)T
, with a boson creation/annihilation operator in the first/second

component – i.e. the commutation relations of the operators must be conserved by the

transformation. Remembering that the algebraic properties of the operators b are speci-

fied through commutation relations, this condition can be cast in mathematical form by

requiring that the commutator
[
Ψqi,Ψ

†
qj

]
= (−σ3)ij

!
=

[
Ψ′

qi,Ψ
′†
qj

]
be invariant under the

transformation. Using the fact that Ψ′ = T−1Ψ, this condition is seen to be equivalent to

the pseudo-unitarity condition, T †σ3T
!
= σ3.
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With this background, we are now in a position to find a transformation that brings the

matrix K ′ to a 2×2 diagonal form. Multiplication of the definition K ′ = T †KT by σ3 leads

to

T †KT = K ′ ⇔ σ3T
†σ3︸ ︷︷ ︸

T−1

σ3KT = σ3K
′.

This means that the matrix σ3K
′ is obtained by a similarity transformation T−1(· · · )T

from the matrix σ3K, or, in other words, that the matrix σ3K
′ contains the eigenvalues ±u

of σ3K on its diagonal. (That the eigenvalues sum to 0 follows from the fact that the trace

vanishes, tr(σ3K) = 0.) However, the eigenvalues of σ3K are readily computed as

vρ =
1

2π

[
(2πvF + g4)

2 − g22
]1/2

. (2.43)

Thus, with σ3K
′ = σ3vρ we arrive at K ′ = vρ · id., where “id.” stands for the unit matrix.19

Substitution of this result into Eq. (2.42) finally leads to the diagonal Hamiltonian Ĥ =

vρ
∑

q>0 qΨ
′†
q Ψ

′
q, or equivalently, making use of the identity Ψ′†

q Ψ
′
q = b†qbq + b†−qb−q + 1,

Ĥ = vρ
∑
q

|q|b†qbq. (2.44)

Here we have ignored an overall constant and omitted the prime on our new Bose operators.

Nicolai Nikolaevich Bogoliubov 1909–92
A theoretical physicist acclaimed for his works in
nonlinear mechanics, statistical physics, theory of
superfluidity and superconductivity, quantum field
theory, renormalization group theory, proof of dis-
persion relations, and elementary particle theory.

In the literature, the transfor-

mation procedure outlined above is

known as a Bogoliubov trans-

formation. Transformations of this

type are frequently applied in quan-

tum magnetism (see below), super-

conductivity, or, more generally, all

problems where the particle number is not conserved. Notice that the possibility to trans-

form to a representation ∼ b†b does not imply that miraculously the theory has become

particle number conserving. The new “quasi-particle” operators b are related to the origi-

nal Bose operators through a transformation that mixes b and b†. While the quasi-particle

number is conserved, the number of original density excitations is not.

Equations (2.43) and (2.44) represent our final solution of the problem of spinless inter-

acting fermions in one dimension. We have suceeded in mapping the problem onto a form

analogous to our previous results (1.34) and (1.39) for the phonon and the photon sys-

tem, respectively. Indeed, all that has been said about those Hamiltonians applies equally

to Eq. (2.44): the basic elementary excitations of the one-dimensional fermion system are

waves, i.e. excitations with linear dispersion ω = vρ|q|. In the present context, they are

19 Explicit knowledge of the transformation matrix T , i.e. knowledge of the relation between the operators b and
b′, is not needed for our construction. However, for the sake of completeness, we mention that

T =

	
cosh θk sinh θk
sinh θk cosh θk



with tanh(2θ) = −g2/(2πvF + g4) represents a suitable parameterization.
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termed charge density waves (CDW). The Bose creation operators describing these exci-

tations are, up to the Bogoliubov transformation, and a momentum dependent scaling factor

(2π/Lq)1/2, equivalent to the density operators of the electron gas. For a non-interacting

system, g2 = g4 = 0, and the CDW propagates with the velocity of the free Fermi particles,

vF. A fictitious interaction that does not couple particles of opposite Fermi momentum,

g2 = 0, g4 �= 0, speeds up the CDW. Heuristically, this can be interpreted as an “acceleration

process” whereby a CDW pushes its own charge front. By contrast, interactions between

left and right movers, g2 �= 0, diminish the velocity, i.e. due to the Coulomb interaction it

is difficult for distortions of opposite velocities to penetrate each other. (Notice that, for

a theory with g2 = 0, no Bogoliubov transformation would be needed to diagonalize the

Hamiltonian, i.e. in this case, undisturbed left- and right-moving waves would be the basic

excitations of the theory.)

Our discussion above neglected the spin carried by the conduction electrons. Had we

included the electron spin, the following picture would have emerged (see Problem 2.4): the

long-range dynamics of the electron gas is governed by two independently propagating wave

modes, the charge density wave discussed above, and a spin density wave (SDW).20 The

SDW carries a spin current, but is electrically neutral. As with the CDW, its dispersion

is linear with an interaction-renormalized velocity, vs (which, however, is generally larger

than the velocity vρ of the CDW). To understand the consequences of this phenomenon,

imagine an electron had been thrown into the system (e.g. by attaching a tunnel contact

somewhere along the wire). As discussed above, a single electron does not represent a stable

excitation of the one-dimensional electron gas. What will happen is that the spectral weight

of the particle21 disintegrates into a collective charge excitation and a spin excitation. The

newly excited waves then propagate into the bulk of the system at different velocities ±vρ
and ±vs. In other words, the charge and the spin of the electron effectively “disintegrate”

into two separate excitations, a phenomenon known as spin–charge separation. Spin–

charge separation in one-dimensional metals exemplifies a mechanism frequently observed

in condensed matter systems: the set of quantum numbers carried by elementary particles

may get effectively absorbed by different excitation channels. One of the more spectacular

manifestations of this effect is the appearance of fractionally charged excitations in quantum

Hall systems, to be discussed in more detail in Chapter 9.

The theory of spin and charge density waves in one-dimensional conductors has a long

history spanning four decades. However, despite the rigor of the theory its experimental

verification has proved excruciatingly difficult! While various experiments are consistent

with theory (for a review, see Ref.17), only recently have signatures of spin and charge

density wave excitations been experimentally observed.

20 One may think of the charge density of the electron gas ρ = ρ↑ + ρ↓ as the sum of the densities of the spin up
and spin down populations, respectively. The local spin density is then given by ρs ≡ ρ↑ − ρ↓. After what has
been said above, it is perhaps not too surprising that fluctuations of these two quantities represent the dominant
excitations of the electron gas. What is surprising, though, is that these two excitations do not interact with
each other.

21 For a precise definition of this term, see Chapter 7.


