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Bosonization I: The Fermion–Boson Dictionary

“Bosonization” refers to the possibility of describing a theory of relativistic Dirac fermions
obeying standard anticommutation rules by a boson field theory. While this may be possible
in all dimensions, it has so far proved most useful in d = 1, where the bosonic version of
the given fermionic theory is local and simple, and often simpler than the Fermi theory.
This chapter should be viewed as a stepping stone toward a more thorough approach, for
which references are given at the end.

In this chapter I will set up the bosonization machine, explaining its basic logic and the
dictionary for transcribing a fermionic theory to a bosonic theory. The next chapter will be
devoted to applications.

To my knowledge, bosonization, as described here, was first carried out by Lieb and
Mattis [1] in their exact solution of the Luttinger model [2]. Later, Luther and Peschel [3]
showed how to use it to find asymptotic (low momentum and energy) correlation functions
for more generic interacting Fermi systems. It was independently discovered in particle
physics by Coleman [4], and further developed by Mandelstam [5]. Much of what I know
and use is inspired by the work of Luther and Peschel.

17.1 Preamble

Before getting into any details, I would first like to answer two questions. First, if
bosonization applies only to relativistic Dirac fermions, why is it of any interest to
condensed matter theory where relativity is not essential? Second, what is the magic by
which bosonization helps us tame interacting field theories?

As for the first question, there are two ways in which Dirac fermions enter condensed
matter physics. The first is in the study of two-dimensional Ising models, where we have
already encountered them. Recall that if we use the transfer matrix approach and convert
the classical problem on an N×N lattice to a quantum problem in one dimension we end
up with a 2N-dimensional Hilbert space, with a Pauli matrix at each of N sites. The two
dimensions at each site represent the twofold choice of values open to the Ising spins.
Consider now a spinless fermion degree of freedom at each site. Here too we have two
choices: the fermion state is occupied or empty. There is some need for cleverness in going
from the Pauli matrix problem to the fermion problem since Pauli matrices commute at
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320 Bosonization I: The Fermion–Boson Dictionary

different sites while fermions anticommute; this was provided by Jordan and Wigner. In
the critical region the fermion is relativistic since one obtains all the symmetries of the
continuum.

The second way in which Dirac fermions arise is familiar from our study of spinless
fermions on a linear lattice, described by

H =−
∞∑

n=−∞
ψ†(n)ψ(n+ 1)+ h.c. (17.1)

In the above, the spinless fermion field obeys the standard anticommutation rules

{ψ†(n),ψ(m)} = δmn, (17.2)

with all other anticommutators vanishing.
Going to momentum states, the Hamiltonian becomes

H =−
∫ π

−π
dk

2π
[cosk]ψ†(k)ψ(k). (17.3)

In the ground state we must fill all negative energy modes, that is, states between ±KF,
where KF = π/2. To study the low-energy properties of the system, we can focus on the
modes near just the Fermi points, as shown in Figure 15.2. We find that they have E=±k,
where k is measured from the respective Fermi points. These are the two components of
the massless Dirac field. Any interaction between the primordial fermions can be described
in terms of these two components at low energies.

Next, we ask how bosonization can make life easier. Say we have a problem where
H = H0 + V , where H0 is the free Dirac Hamiltonian and V is a perturbation. Assume
we can express all quantities of interest in terms of power series in V . In the interaction
picture the series will involve the correlation functions of various operators evolving under
H0. Bosonization now tells us that the same series is reproduced by starting with H =
HB

0 + VB, where HB
0 is a massless free boson Hamiltonian and VB is a bosonic operator

that depends on V and is specified by the bosonization dictionary. Consider the special
case V = ρ2, where ρ = ψ†(x)ψ(x), the Dirac charge density. This is a quartic interaction
in the Fermi language and obviously non-trivial. But according to the dictionary, we must
replace ρ by the bosonic operator 1√

π
∂xφ, φ being the boson field. Thus, V is replaced by

the quadratic interaction 1
π
(∂xφ)

2. The bosonic version is trivial! I must add that this is
not always the case; a simple mass term in the Fermi language becomes the formidable
interaction cos

√
4πφ.

Let us now begin. I will first remind you of some basic facts about massless fermions
and bosons in one dimension. This will be followed by the bosonization dictionary that
relates interacting theories in one language to the other.
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17.2 Massless Dirac Fermion

In one dimension, the Dirac equation

i
∂ψ

∂t
=Hψ (17.4)

will have as the Hamiltonian

H = αP+βm, (17.5)

where P is the momentum operator, and

α = σ3 = γ5, (17.6)

β = σ2 = γ0. (17.7)

Let us focus on the massless case. There is nothing to diagonalize now: ψ±, the upper
and lower components of ψ , called right and left movers, are decoupled. In terms of the
field operators obeying

{ψ†
±(x), ψ±(y)} = δ(x− y), (17.8)

the second quantized Hamiltonian is

H =
∫
ψ†(x)(αP)ψ(x)dx (17.9)

=
∫
ψ

†
+(x)(−i∂x)ψ+(x)dx+

∫
ψ

†
−(x)(i∂x)ψ−(x)dx. (17.10)

In terms of the Fourier transforms

ψ±(p)=
∫ ∞
−∞

ψ±(x)eipxdx (17.11)

obeying

{ψ†
±(p), ψ±(q)} = 2πδ(p− q), (17.12)

we find that

H =
∫
ψ

†
+(p) p ψ+(p)

dp

2π
+

∫
ψ

†
−(p) (−p)ψ−(p)

dp

2π
. (17.13)

From the above, it is clear that the right/left movers have energies E = ±p respectively.
The Dirac sea is thus filled with right movers of negative momentum and left movers with
positive momentum, as shown in Figure 17.1.

The inverse of Eq. (17.11) is

ψ±(x)=
∫ ∞
−∞

dp

2π
ψ±(p)eipxe−

1
2α|p|, (17.14)

where α is a convergence factor that will be sent to 0 at the end.
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E

Dirac Sea

E=−p E=p

p

Figure 17.1 Relativistic fermion with right and left movers E=±p. The Dirac sea is filled with right
movers of negative momentum and left movers with positive momentum. The two branches come
from the linearized spectrum near the Fermi points K =±KF of the non-relativistic fermion. (Only
states on the lines E=±p are occupied in the Fermi sea.)

Since the fields have trivial time evolution in this free-field theory, we can write down
the Heisenberg operators at all times:

ψ±(x t)=
∫ ∞
−∞

dp

2π
ψ±(p)eip(x∓t)e−

1
2α|p|. (17.15)

Notice that ψ± is a function only of x∓ t.
Consider now the equal-time correlation function in the ground state:

〈ψ+(x)ψ†
+(0)〉 =

∫ ∞
−∞

dp

2π
e−

1
2α|p|

∫ ∞
−∞

dq

2π
e−

1
2α|q|eipx 〈ψ+(p) ψ†

+(q)〉︸ ︷︷ ︸
2πδ(p−q)θ(q)

=
∫ ∞

0

dp

2π
eipxe−α|p|. (17.16)

We have used the fact that a right mover can be created only for positive momenta since
the Dirac sea is filled with negative momentum particles. So now we have

〈ψ+(x)ψ†
+(0)〉 =

∫ ∞
0

dp

2π
e−αpeipx (17.17)

= 1

2π

1

α− ix
. (17.18)

If we want the correlation function for unequal times, we just replace x by x− t since we
know that the right movers are functions of just this combination.

  



17.2 Massless Dirac Fermion 323

In the same way, we can show that

〈ψ±(x) ψ†
±(0)〉 =

±i/2π

x± iα
, (17.19)

〈ψ†
±(0) ψ±(x)〉 =

∓i/2π

x∓ iα
. (17.20)

Note that

〈ψ±(x) ψ†
±(0)+ψ†

±(0) ψ±(x)〉 =
α/π

x2+α2
(17.21)

� δ(x), (17.22)

where in the last equation we are considering the limit of vanishing α.
Besides the Fermi field, there are bilinears in the field that occur often. Let us look at

some key ones. The current density jμ has components

j0 =ψ†ψ (17.23)

=ψ†
+(x)ψ+(x)+ψ†

−(x)ψ−(x), (17.24)

j1 =ψ†αψ (17.25)

=ψ†
+(x)ψ+(x)−ψ†

−(x)ψ−(x). (17.26)

The axial current is given by j5μ = εμν jν = (j1,−j0). The last bilinear is the “mass term”

ψψ =ψ†(x)βψ(x) (17.27)

=−iψ†
+(x)ψ−(x)+ iψ†

−(x)ψ+(x). (17.28)

For later use, let us note that

〈ψψ(x) ψψ(0)〉 = 1

2π2

1

x2+α2
. (17.29)

The derivation of this result is left as an exercise. All you need are the anticommutation
rules and the correlation functions from Eqs. (17.19) and (17.20).

17.2.1 Majorana Fermions

We close the section by recalling some facts about Majorana fermions. These may be
viewed as Hermitian or real fermions. The Dirac field ψD can be expressed in terms of two
Hermitian fields ψ and χ :

ψD = ψ + iχ√
2

, (17.30)

ψ
†
D =

ψ − iχ√
2

. (17.31)
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(The components of the spinors ψD, ψ , and χ are implicit.) It is readily verified that

{ψa(x),ψb(y)} = δ(x− y)δab, (17.32)

where a and b label the two spinor components. There is a similar rule for χ . All other
anticommutators vanish.

Exercise 17.2.1 Show that∫
ψ

†
D(x)ψD(x)dx≡

∫
ψ

†
Da(x)ψDa(x)dx= (17.33)

=
∫
(iψaχa+ δ(0))dx≡

∫
(iψTχ + δ(0))dx. (17.34)

By computing the density of Dirac fermions in the vacuum, show that this means∫
:ψ†

D(x)ψD(x) : dx=
∫
(iψTχ)dx. (17.35)

If we write the massive Dirac Hamiltonian in terms of the Majorana fields defined above,
we will get, with α = σ3 and β = σ2,

HD =
∫
[ψ†

D(αP+βm)ψD]dx (17.36)

= 1

2

∫
[ψT(αP+βm)ψ +χT(αP+βm)χ]dx (17.37)

+1

2

∫ [
iψT(αP+βm)χ − iχT(αP+βm)ψ

]
dx.

You may check that the cross terms add to zero. (To make contact with the Majorana
fermions from Chapter 9, we should change the representation of the α matrix so that it
equals Pauli’s σ1. This change of variables with real coefficients is consistent with the
Hermitian nature of the Majorana fields.)

So remember: one free Dirac fermion equals two Majorana fermions, just as one
charged scalar field equals two real fields (not just in degrees of freedom, but at the level
of H).

Exercise 17.2.2 Using α= σ3 and β = σ2 and the components in explicit form, verify that
the non-interacting Hamiltonian for one Dirac fermion is the sum of the Hamiltonians for
two Majorana fermions.

17.3 Free Massless Scalar Field

The Hamiltonian for a massless scalar field is

HB = 1

2

∫
(�2+ (∂xφ)

2)dx, (17.38)
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where � and φ obey

[φ(x),�(y)] = iδ(x− y). (17.39)

The Schrödinger operators are expanded as follows:

φ(x)=
∫ ∞
−∞

dp

2π
√

2|p|
[
φ(p)eipx+φ†(p)e−ipx

]
e−

1
2α|p|, (17.40)

�(x)=
∫ ∞
−∞

dp|p|
2π
√

2|p|
[
−iφ(p)eipx+ iφ†(p)e−ipx

]
e−

1
2α|p|, (17.41)

where

[φ(p),φ†(p′)] = 2πδ(p− p′). (17.42)

Due to the convergence factors, φ and � will obey

[φ(x),�(y)] = iα/π

α2+ (x− y)2
(17.43)

� iδ(x− y). (17.44)

The Hamiltonian now takes the form:

H =
∫ ∞
−∞

dp

2π
φ†(p)φ(p)|p|. (17.45)

Exercise 17.3.1 Verify Eq. (17.45).

We now introduce right and left movers φ±:

φ±(x)= 1

2

[
φ(x)∓

∫ x

−∞
�(x′)dx′

]
(17.46)

= 1

2

∫ ∞
−∞

dp

2π
√

2|p|e
− 1

2α|p| [φ(p)(1±|p|/p)eipx+ h.c.
]

=±
∫ ±∞

0

dp

2π
√

2|p|
[
eipxφ(p)+ h.c.

]
e−

1
2α|p|. (17.47)

I leave it to you to verify, using Eq. (17.46), that

[
φ±(x),φ±(y)

]=± i

4
ε(x− y)≡± i

4
sgn(x− y), (17.48)

[
φ+(x),φ−(y)

]= i

4
. (17.49)

Exercise 17.3.2 Verify Eqs. (17.48) and (17.49) starting with Eq. (17.46). If you started
with Eq. (17.47), you would find that because of the convergence factors, a rounded-out
step function will arise in place of ε(x− y), and this will become a step function as α→ 0.
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If we use the Heisenberg equations of motion for φ(p) and φ†(p), we will find that φ±
are functions only of x∓ t.

We must next work out some correlation functions in this theory. It is claimed that

G±(x)= 〈φ±(x)φ±(0)−φ2±(0)〉 (17.50)

= 1

4π
ln

α

α∓ ix
, (17.51)

G(x)= 〈φ(x)φ(0)−φ2(0)〉 (17.52)

= 1

4π
ln

α2

α2+ x2
. (17.53)

I will now establish one of them, leaving the rest as exercises. Consider

G+(x)=
∫ ∞

0

dp

2π
√

2|p|e
− 1

2α|p|
∫ ∞

0

dq

2π
√

2|q|e
− 1

2α|q|〈(φ(p)φ†(q)〉(eipx− 1)

=
∫ ∞

0

dp

4π |p| (e
ipx− 1)e−αp (17.54)

= 1

4π
ln

α

α− ix
, (17.55)

where the last line comes from looking up a table of integrals. If you cannot find this
particular form of the result, I suggest you first differentiate both sides with respect to x,
thereby eliminating the 1/|p| factor. Now the integral is easily shown to be i/(4π(α− ix)).
Next, integrate this result with respect to x, with the boundary condition G+(0)= 0.

Finally, we consider a class of operators one sees a lot of in two-dimensional (spacetime)
theories. These are exponentials of the scalar field. Consider first

Gβ(x)≡ 〈eiβφ(x) e−iβφ(0)〉. (17.56)

For the correlator to be non-zero, the sum of the factors multiplying φ in the exponentials
has to vanish. This is because the theory (the Hamiltonian of the massless scalar field) is
invariant under a constant shift in φ. To evaluate this correlator, we need the following
identity:

eA · eB =: eA+B : e〈AB+ A2+B2
2 〉, (17.57)

where the normal-ordered operator : A : has all its destruction operators to the right and
creation operators to the left, as well as the fact that the vacuum expectation value of a
normal-ordered exponential operator is just 1. All other terms in the series annihilate the
vacuum state on the left or right or both. Thus,

〈: e� :〉 = 1. (17.58)
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Exercise 17.3.3 If you want to amuse yourself by proving Eq. (17.57), here is a possible
route. Start with the more familiar identity (which we will not prove):

eA+B = eAeBe−
1
2 [A,B] (17.59)

= eBeAe
1
2 [A,B], (17.60)

provided [A,B] commutes with A and B. Using this, first write eA = eA++A− , where A± are
the creation and destruction parts of A, in normal-ordered form. Now turn to eA+B, and
separate the exponentials using the identity above. Next, normal-order each part using this
formula again, and finally normal-order the whole thing. (The last step is needed because
:A::B: is not itself normal ordered.) Finally, remember that all commutators are c-numbers
and therefore equal to their vacuum expectation values.

We now use Eqs. (17.57) and (17.58) to evaluate Gβ :

Gβ(x)= 〈: eiβ(φ(x)−φ(0)) :〉eβ2[〈φ(x)φ(0)− φ2(0)+φ2(x)
2 〉] (17.61)

= e
β2 1

4π ln α2

α2+x2 (17.62)

=
(

α2

α2+ x2

)β2/4π

. (17.63)

Notice two things. First, by varying β we can get operators with a continuum of
power-law decays of correlations. Next, as we send α to 0, the correlator vanishes. To
avoid this we must begin with operators suitably boosted or renormalized. The thing to do
in the above example is to consider the renormalized operator

[eiβφ]R = (αμ)−β
2

4π eiβφ , (17.64)

where μ is an arbitrary mass. This operator will have finite correlations in the limit of zero
α: if we give it less of a boost, it dies; more, and it blows up.

One can similarly show, using Eqs. (17.50) and (17.53), that

〈eiβφ±(x)e−iβφ±(0)〉 =
(

α

α∓ ix

)β2/4π

. (17.65)

17.3.1 The Dual Field θ

So far we have focused on the combination

φ = φ++φ−. (17.66)

In some calculations one needs correlations of the dual field,

θ = φ−−φ+. (17.67)
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From Eq. (17.46),

θ(x)=
∫ x

−∞
�(x′)dx′, (17.68)

�(x)= dθ

dx
. (17.69)

The correlations of the dual field are just the same as those of φ:

〈eiβθ(x)e−iβθ(0)〉 =
(

α2

α2+ x2

)β2/4π

. (17.70)

Here is one way to derive Eq. (17.70):

〈eiβθ(x)e−iβθ(0)〉 = 〈eiβ(φ−(x)−φ+(x))e−iβ(φ−(0)−φ+(0))〉
= 〈eiβφ−(x)e−iβφ−(0)〉〈e−iβφ+(x)eiβφ+(0)〉
= eβ

2G−(x)eβ
2G+(x)

=
(

α2

α2+ x2

)β2/4π

, (17.71)

where I have not shown the (canceling) phase factors coming from separating and
recombining exponentials of φ±.

17.4 Bosonization Dictionary

So far we have dealt with massless Fermi and Bose theories and the behavior of various
correlation functions in each. Now we are ready to discuss the rules for trading the Fermi
theory for the Bose theory. The most important formula is this:

ψ±(x)= 1√
2πα

e±i
√

4πφ±(x). (17.72)

This is not an operator identity: no combination of boson operators can change the fermion
number the way ψ can. The equation above really means that any correlation function of
the Fermi field, calculated in the Fermi vacuum with the given (α) cut-off, is reproduced
by the correlator of the bosonic operator given on the right-hand side, if computed in the
bosonic vacuum with the same momentum cut-off. Given this equivalence, we can replace
any interaction term made out of the Fermi field by the corresponding bosonic counterpart.
Sometimes this will require some care, but this is the general idea.

Substituting Eq. (17.46) in Eq. (17.72), we find

ψ±(x)= 1√
2πα

exp

[
±i
√
π

[
φ(x)∓

∫ x

−∞
�(x′)dx′

]]
. (17.73)

The integral of � plays the role of the Jordan–Wigner string that ensures the global
anticommutation rules of fermions, as first shown by Mandelstam [5].
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There are several ways to convince you of the correctness of the master formula
Eq. (17.72). First, consider the correlation

〈ψ+(x)ψ†
+(0)〉 =

1

2π

1

α− ix
. (17.74)

Let us see this reproduced by the bosonic version:〈
1√
2πα

ei
√

4πφ+(x) 1√
2πα

e−i
√

4πφ+(0)
〉

(17.75)

= 1

2πα
〈: ei

√
4πφ+(x)e−i

√
4πφ+(0) :〉e4π〈φ+(x)φ+(0)−φ2+〉 (17.76)

= 1

2πα
e4πG+(x) (17.77)

= 1

2πα

α

α− ix
. (17.78)

In the above we have used Eq. (17.58), the normal-ordering formula Eq. (17.57), the
definition of G+ from Eq. (17.50), and its actual value from Eq. (17.51).

It is possible to verify in the same spirit that the bosonized version of the Fermi field
obeys all the anticommutation rules (with delta functions of width α). I leave this to the
more adventurous ones among you. Instead, I will now consider some composite operators
and show the care needed in dealing with their bosonization. The first of these is

ψψ =− 1

πα
cos
√

4πφ. (17.79)

The proof involves just the use of Eq. (17.60), and goes as follows:

ψψ(x)=−iψ†
+(x)ψ−(x)+ h.c.

= 1

2πα

[
e−i
√

4πφ+(x)e−i
√

4πφ−(x)(−i)+ h.c.
]

= 1

2πα

(
e−i
√

4πφ(x)e
1
2 4π(−1) i

4 (−i)+ h.c.
)

(17.80)

=− 1

πα
cos
√

4πφ. (17.81)

The factor i
4 in the exponent arises from the commutator of the right and left movers,

Eq. (17.49).
It can similarly be shown that

ψ iγ 5ψ =−
[
ψ

†
+(x)ψ−(x)+ψ†

−(x)ψ+(x)
]

(17.82)

= 1

πα
sin
√

4πφ. (17.83)

In the above manipulations we brought together two operators at the same point. Each
one has been judiciously scaled to give sensible matrix elements (neither zero nor infinite)
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acting on the vacuum. There is no guarantee that a product of two such well-behaved
operators at the same point is itself well behaved. A simple test is to see if the product has
a finite matrix element in the vacuum as the points approach each other. In the example
above, this was the case; in fact, the mean value of the composite operator is zero since its
factors create and destroy different (right- or left-moving) fermions. This is not the case for
the next item: the operator ψ†

+(x)ψ+(x), say for x = 0. We define it by a limiting process
called point splitting as follows:

ψ
†
+(0)ψ+(0)= lim

x→0

1

2πα
e−i
√

4πφ+(x)ei
√

4πφ+(0)

= lim
x→0

1

2πα
: e−i

√
4πφ+(x)ei

√
4πφ+(0) : e4πG+(x)

= lim
x→0

i

2π(x+ iα)
: 1− i

√
4π
∂φ+
∂x

x+·· · : (17.84)

= lim
x→0

i

2πx
+ 1√

π

∂φ+
∂x
+·· · (17.85)

These manipulations need some explanation. We perform a Taylor expansion only
within the normal-ordering symbols because only the normal-ordered operators have nice
(differentiable) matrix elements. Thus, terms of higher order in x and sitting within the
symbol are indeed small and can be dropped as x→ 0. Consider next the x+ iα in the
denominator. Is it permissible to drop the α in comparison to x, even though x itself is
being sent to 0? Yes. We must always treat any distance x in the continuum theory as being
much larger than α, which is to be sent to 0 whenever possible. Finally, note that the density
operator in question has an infinite c-number part which is displayed in front. This reflects
the fact that the vacuum density of right movers is infinite due to the Dirac sea. If we define
a normal-ordered density, i.e., take away the singular vacuum average from it, we obtain

:ψ†
+(x)ψ+(x) : = 1√

π

∂φ+
∂x

. (17.86)

A similar result obtains for the left-mover density. Combining the two, we get some very
famous formulae in bosonization:

j0 = 1√
π

∂φ

∂x
, (17.87)

j1 = 1√
π

∂(φ+−φ−)
∂x

(17.88)

=− ∂xθ√
π
=− �√

π
. (17.89)

For the Lagrangian formalism, we may assemble these into

jμ = εμν√
π
∂νφ. (17.90)
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We close this section with two more results. First, a very useful but odd-looking relation:[−1

πα
cos
√

4πφ

]2

=− 1

π

(
∂φ

∂x

)2

+ 1

2π2α2
cos
√

16πφ, (17.91)

dropping c-numbers.
Here is a sketch of the derivation.[−1

πα
cos
√

4πφ(0)

]2

= 1

4π2α2
lim
x→0

[
ei
√

4πφ(x)+ cc
]
·
[
ei
√

4πφ(0)+ cc
]

.

(17.92)

Now we combine exponentials easily because everything commutes. We find that[−1

πα
cos
√

4πφ(0)

]2

(17.93)

= 1

2π2α2
lim
x→0

[
cos(
√

4π(φ(x)+φ(0)))+ cos(
√

4π(φ(x)−φ(0)))
]

.

(17.94)

In the first cosine we can simply double the angle to
√

16πφ(0). In the second, we want to
do a Taylor expansion, but can only do it within a normal-ordered operator. So we proceed
as follows, using Eq. (17.57) along the way:

1

2π2α2
lim
x→0

cos(
√

4π(φ(x)−φ(0))

= lim
x→0

1

2π2α2
: cos(

√
4π(φ(x)−φ(0)) :

α2

x2+α2
(17.95)

= lim
x→0

1

2π2α2
: 1− x2

2
(4π)(∂xφ)

2+·· · : α2

x2+α2

=− 1

π

(
∂φ

∂x

)2

+ c-number, (17.96)

where in the last line you must remember that x α even at small x. Substituting this into
Eq. (17.94), we arrive at Eq. (17.91).

Similar arguments lead to[
1

πα
sin
√

4πφ

]2

=− 1

π

(
∂φ

∂x

)2

− 1

2π2α2
cos
√

16πφ. (17.97)

In the field theory literature you will not see the second term mentioned. The reason is
that at weak coupling this operator is highly irrelevant (or non-renormalizable). The reason
for our keeping it is that in the presence of strong interactions it will become relevant.

Finally, having seen the dictionary reproduce various fermionic operators in terms of
bosons, we may ask “What about the Hamiltonian?” Indeed, the dictionary may be used to
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show that

HF =
∫ (

ψ
†
+(x)(−i∂x)ψ+(x)+ψ†

−(x)(i∂x)ψ−(x)
)

dx

= 1

2

∫
(�2+ (∂xφ)

2)dx=HB. (17.98)

Exercise 17.4.1 Prove Eq. (17.98). I suggest you:

• use the symmetric derivatives; for example,

ψ
†
+(x)(∂x)ψ+(x)= lim

ε→0
ψ

†
+(x)

(
ψ+(x+ ε)−ψ+(x− ε)

2ε

)
; (17.99)

• expand bosonic exponentials to quadratic order in ε;
• remember that just as x  α, so is ε  α in combinations like ε ± iα; drop total

derivatives and c-numbers.

17.5 Relativistic Bosonization for the Lagrangians

Often one uses bosonization in a relativistic theory. Here is the dictionary in Euclidean
space with the notation defined for free fields:

ZF =
∫
[dψ̄][dψ]e−S0(ψ) =

∫
[dψ̄][dψ]e−

∫
ψ̄∂/ψd2x, (17.100)

ZB =
∫
[dφ]e−S0(φ) =

∫
[dφ]e−

∫ 1
2 (∇φ)2d2x, (17.101)

ψ̄∂/ψ→ 1

2
(∇φ)2 = 1

2

[
(∂τφ)

2+ ∂xφ)
2
]

, (17.102)

ψ̄γ μψ→ εμν√
π
∂νφ (= jμ), (17.103)

ψ̄ψ→−�cos
√

4πφ, (17.104)

ψ̄ iγ 5ψ→�sin
√

4πφ, (17.105)

(ψ̄ψ)2 =
[
−�cos

√
4πφ

]2 =− 1

2π
(∇φ)2 . (17.106)

Several points are worth noting:

• In the relativistic equations we make the replacement

1

πα
→�, (17.107)

where � is the cut-off in two-dimensional Euclidean momentum, in contrast to 1/α,
which was a momentum cut-off on spatial momenta.

• In the last equation the highly irrelevant cos
√

16πφ has been dropped and we have 2π
and not π in the denominator because the point-splitting is done in space and time and
there is a compensating sum over two squared derivatives.
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• In Eq. (17.100), I integrate e−S0(ψ) and not e+S0(ψ) as in earlier chapters where I wanted
to emphasize that the sign meant nothing for Grassmann actions. Here I use the e−S0 for
both to simplify the boson–fermion dictionary.
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Bosonization II: Selected Applications

We now pass from this rather sterile business of deriving the bosonization formulas to
actually using them. Of the countless applications, I have chosen a few that I am most
familiar with. While my treatment of the subject will not be exhaustive, it should prepare
you to read more material dealing with the subject.

The applications are to the massless Schwinger and Thirring models, the uniform- and
random-bond Ising models, and the Tomonaga–Luttinger and Hubbard models. There is an
enormous body of literature devoted to these models. I will simply focus on those aspects
that illustrate bosonization in the simplest possible terms.

18.1 Massless Schwinger and Thirring Models

The first two examples are the easiest since the Dirac fermion is present from the outset. In
later examples it will arise after some manipulations and approximations.

18.1.1 The Massless Schwinger Model

This model was invented by Schwinger [1] to describe electrodynamics in two dimensions.
The Euclidean Lagrangian density is

L= ψ̄∂/ψ − e0jμAμ+ 1

2
(εμν∂μAν)

2. (18.1)

Schwinger solved this by functional methods; we can now solve it by bosonization. Writing

jμAμ = 1√
π
εμν∂νφAμ =−φ 1√

π
εμν∂νAμ, (18.2)

we can complete the square on the A integral and find the bosonic Lagrangian density

L= 1

2
(∇φ)2+ e2

0

π
φ2. (18.3)

This means that there is a scalar pole (in the Minkowski space propagator) at

m2 = 2e2
0

π
. (18.4)

334
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Here is what is going on. In one space dimension there is no photon. In the gauge A0 = 0,
we just have an instantaneous electrostatic potential A1 between fermions. This Coulomb
interaction yields a linear potential or constant force because the flux cannot spread out in
d = 1. The density oscillations (sound) which would have been massless are now massive
due to the long-range interaction. Schwinger’s point was that gauge invariance did not
guarantee a massless electromagnetic field.

Note for now that if we add a fermion mass term, the problem cannot be solved exactly
because we are adding a cos

√
4πφ term.

18.1.2 Massless Thirring Model

The Thirring model [2] describes a current–current interaction:

L= ψ̄∂/ψ − g

2
jμjμ. (18.5)

Upon bosonizing, this becomes

L= 1

2

(
1+ g

π

)
(∇φ)2. (18.6)

This model was a milestone because it exhibited correlation functions that decayed with a
g-dependent power. Consider, for example, the ψ̄ψ − ψ̄ψ correlation at equal time. In the
non-interacting theory it has to fall as

〈ψ̄(r)ψ(r)ψ̄(0)ψ(0)〉 � 1

r2
(18.7)

just from dimensional analysis: [ψ]= 1
2 in momentum units. In the bosonized version this

would be reproduced as follows (in the Hamiltonian version):

〈ψ̄(r)ψ(r)ψ̄(0)ψ(0)〉 = 1

π2α2
〈cos
√

4πφ(r)cos
√

4πφ(0)〉

= 1

2π2α2

(
α2

r2

)4π/4π

� 1

r2
. (18.8)

(In the path integral version � would replace 1/(πα).) This formula is valid if the kinetic
term has a coefficient of 1

2 , whereas now it is 1
2

(
1+ g

π

)
due to interactions. So we define a

new field

φ′ =
√(

1+ g

π

)
φ, (18.9)

in terms of which

L= 1

2
(∇φ′)2, (18.10)
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ψ̄ψ =− 1

πα
cos

√
4π

1+ g
π

φ′, (18.11)

〈ψ̄(r)ψ(r)ψ̄(0)ψ(0)〉 = 1

2π2α2

(
α2

r2

)4π/4π(1+ g
π
)

� 1

rγ
, where

γ = 2

(1+ g
π
)
. (18.12)

The thing to notice is that the anomalous power or dimension of the correlation function
varies continuously with the interaction strength. Once again, we see how in a massless
theory the correlations can decay with a power not dictated by the engineering dimension
of the operator: the cut-off, which has to be introduced to make sense of the theory (now
in the guise of α), serves as the additional dimensional parameter.

The massive Thirring model is defined by adding −mψ̄ψ , which leads to the following
bosonized Euclidean Lagrangian density:

L= 1

2

(
1+ g

π

)
(∇φ)2− m

πα
cos
√

4πφ (18.13)

= 1

2

(
1+ g

π

)
(∇φ)2−m�cos

√
4πφ. (18.14)

We shall return to this model in the next chapter. We now move on to two applications of
bosonization to condensed matter: the correlation functions of the Ising model at criticality
and of the random-bond Ising model whose bonds fluctuate from site to site around their
critical value. In the latter case we have to find the correlation function averaged over bond
realizations. We will see how to do this using what is called the replica trick.

18.2 Ising Correlations at Criticality

Let us recall some key features of the d= 2 Ising model. The partition function is

Z =
∑

s=±1

eK
∑
〈ij〉 sisj , (18.15)

where 〈i, j〉 tells us that the Ising spins si = ±1 and sj = ±1 are nearest neighbors on the
square lattice. The sum in the exponent is over bonds of the square lattice.

The correlation function

G(r)= 〈srs0〉, (18.16)

where 0 is the origin and r a point a distance r away, is known to fall at the critical point as

G(r)� 1

rη
= 1

r
1
4

. (18.17)
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This power is universal. This exponent of η= 1
4 is rather difficult to derive and the reason

will become clear as we go along. I will now describe a trick due to Itzykson and Zuber [3]
that uses bosonization to circumvent this.

Let us recall the extreme anisotropic τ -continuum limit of Fradkin and Susskind [4],

Kx = τ , (18.18)

K∗τ = λτ (τ→ 0), (18.19)

which leads to the transfer matrix

T = e−τH , where (18.20)

H =−λ
∑

σ1(m)−
∑

σ3(m)σ3(m+ 1). (18.21)

The idea of Fradkin and Susskind is that anisotropy will change the metric but not the
exponent for decay or any other universal quantity.

Next, we follow Schultz, Mattis, and Lieb [5] and trade the Pauli matrices for
full-fledged Fermi operators defined by

ψ1(n)= 1√
2

(
n−1∏
−∞

σ1

)
σ2(n), (18.22)

ψ2(n)= 1√
2

(
n−1∏
−∞

σ1

)
σ3(n). (18.23)

We are now considering an infinite spatial lattice, and the “string” of σ1’s comes from the
far left to the point n− 1. The Majorana fermions obey

{ψi(n),ψj(m)} = δijδmn. (18.24)

Let us imagine that our lattice has a spacing a. Define continuum operators ψc =ψ/√a
that obey Dirac δ-function anticommutation rules as a→ 0. In terms of these, we get in the
continuum limit the following continuum Hamiltonian Hc =H/a:

Hc = 1

2

∫
ψT(αP+βm)ψdx, m= (1−λ)/a, (18.25)

where α is now σ1, as mentioned earlier.
We have seen in Chapter 8 how this quadratic Hamiltonian is diagonalized. By filling all

the negative energy levels we get the ground-state energy E0. This energy (per unit spatial
volume) is essentially the free energy per site of the square lattice model.

Let us turn instead to the two-point correlation functions. Now, it may seem that in a
free-field theory this should be trivial. But it is not, because we want the two-point function
of the spins, which are non-local functions of the Fermi field.

Let us find the equal-time correlation of two spins a distance n apart in space. (The
power law for decay should be the same in all directions even though length scales are
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not.) Thus, we need to look at

〈0|σ3(0)σ3(n)|0〉 = 〈0|σ3(0)σ3(1)σ3(1) · · ·σ3(n− 1)σ3(n)|0〉
= 〈0|[2iψ1(0)ψ2(1) · 2iψ1(1)ψ2(2) · · ·
· · ·× 2iψ1(n− 1)ψ2(n)]|0〉. (18.26)

We find that the two-point function of spins is a 2n-point function of fermions. This
becomes very hard to evaluate if we want the limit of large n: we must evaluate a Pfaffian
of arbitrarily large size. We are, however, presently interested in obtaining just the power
law of the asymptotic decay of the spin–spin correlation.

Bosonization cannot be invoked since it applies only to Dirac fermions, so we follow
the trick of Itzykson and Zuber [3]. First, note that apart from the end factors, ψ1(0) at the
left and ψ2(n) at the right, we have the product over sites of

2iψ2(i)ψ1(i)=−ie
iπ
2 [2iψ2(i)ψ1(i)] (18.27)

= e
iπ
2 [2iψ2(i)ψ1(i)−1]. (18.28)

This equation follows from the fact that 2iψ2(i)ψ1(i) is just like a Pauli matrix (with square
unity) for which

σ1 = (−i)ei π2 σ1 . (18.29)

The exponent in Eq. (18.28) is just iπ
2 (ψψ − 1). I will drop the 1 since it makes no

difference to the decay of the correlation function. When we form the product over sites
it becomes a sum, and in the continuum limit the integral of ψψ between 0 and R, where
R = na is the distance between the points in laboratory units. There is no simple way to
evaluate

G(R)� 〈0|e iπ
2

∫ R
0 ψ(x)ψ(x)dx|0〉. (18.30)

Consider now an auxiliary problem, where we have made two non-interacting copies
of the Ising system, with spins called s and t, and associated Pauli matrices σ and τ and
Majorana fermions ψ and χ . It is clear that

〈sntns0t0〉 = 〈sns0〉〈tnt0〉
= [G(n)]2 , (18.31)

since the thermal averages proceed independently and identically for the two sectors. The
trick is to find G2 and then take the square root. Let us see how this works. First, we will
be dealing with products of the following terms:

2iψ2ψ12iχ2χ1 =−[2iχ1ψ1] · [2iχ2ψ2] (18.32)

= e
iπ
2 [2iψ1χ1+2iψ2χ2] (18.33)

= eiπ :ψ†
DψD:. (18.34)
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The last step needs some explanation. Let us form a Dirac fermion

ψD = ψ + iχ√
2

(18.35)

and consider its charge density:

ψ
†
DψD = 1

2
(ψ1− iχ1)(ψ1+ iχ1)+ (1→ 2) (18.36)

= iψ1χ1+ iψ2χ2+ 1 (18.37)

:ψ†
DψD := iψ1χ1+ iψ2χ2, (18.38)

where I have used the fact that the vacuum density of the Dirac fermions is 1 per site: half
for the right movers, half for the left movers. (Recall that in momentum space half the
states are filled, which translates into half per site in real space.)

What about the fact that the Dirac fermion that comes out of the Ising model has a first
quantized Hamiltonian H = αP+βm, where α = σ1 and β = σ2, whereas the one used in
bosonization has α= σ3 and β = σ2? It does not matter: the two are connected by a unitary
transformation (a π

2 rotation generated by σ2), and ψ†
DψD is invariant under this.

We now reveal our punch line: in view of the above,

G2(R)= 〈0|eiπ
∫ R

0 :ψ†
D(x)ψD(x):dx|0〉 (18.39)

= 〈0|e
∫ R

0 i
√
π∂xφdx|0〉 (18.40)

= 〈0|ei
√
πφ(R)e−i

√
πφ(0)|0〉 (18.41)

� 1

R
1
2

, (18.42)

where I have recalled Eq. (17.63). Thanks to bosonization, a non-local Green’s function in
the Fermi language has become a local two-point function in the bosonic language. Several
points of explanation are needed. First, we have used Eq. (17.87) in going from the first to
the second equation in the above sequence. Next, we have used the fact that at the critical
point the Fermi theory has no mass. Thus, the bosonic ground state in which the bosonic
correlator is evaluated is the free-field vacuum. Lastly, we have used Eq. (17.63) to evaluate
the desired two-point function. (I have ignored α compared to R in the denominator and
dropped the power of α in the numerator since I just want the R dependence.) Taking the

square root, we find the desired decay law G(R)� R− 1
4 .

I have been careless about the end points, where the product does not follow the pattern.
If this is taken into account, one finds that we must use sin

√
πφ in place of ei

√
πφ . This

does not, however, change the critical exponent. If one tries the Itzykson–Zuber trick away
from criticality one finds that one has to find the correlation function of the same operator
but in the theory with an interaction cos

√
4πφ, which is the bosonized version of the

harmless-looking mass term in the free Dirac theory.
To conclude, the following were the highlights of our derivation of G(R):
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• The critical theory of the Ising model in the extreme anisotropic τ -continuum limit is a
massless Majorana theory.

• The two-point function of spins a distance R apart is given by the average of the
exponential of the integral of a Majorana fermion bilinear from 0 to R.

• By considering the square of G, we made the integrand referred to above into the
normal-ordered Dirac charge density.

• By bosonizing the latter into the derivative of φ, we got rid of the integral in the exponent
and were left with just a two-point function of ei

√
πφ’s coming from the end points of the

integration.

• By evaluating this in the free-field theory we found that G2 falls off like R− 1
2 . We then

took the square root of this answer.

18.3 Random-Bond Ising Model

Consider an Ising model in which the coupling between neighboring spins is not uniformly
K, but randomly chosen at each bond from an ensemble. This can happen in real systems
due to vacancies, lattice imperfections, and so on. We should therefore imagine that each
sample is different and translationally non-invariant. The study of the d = 2 Ising model
with such a complication was pioneered by Dotsenko and Dotsenko [6] (referred to as DD
hereafter) in a very influential paper. I will now describe their work, as well as further
contributions by others. You will see bosonization at work once more.

First, let us understand what we want to calculate in a random system. The behavior
of an individual system with bonds chosen in a sample-specific way from the ensemble of
possibilities is not interesting, unless by luck we are dealing with a property that is sample
independent. (The free energy per site in the infinite volume limit is one such object.)
In general, what one wants are physical quantities, first calculated sample by sample and
then averaged over samples. This is called a quenched average, and is a lot more difficult
problem than the annealed average in which one treats the bond strength as another
statistical variable in thermal equilibrium, just like the Ising spins themselves. Which one
should one use? If the bonds are frozen into some given values over the period of the
measurements, we must take them as a fixed external environment and do the quenched
average. If they fluctuate ergodically over the period of measurement, we must do the
annealed average. The DD problem deals with quenched averages. In this case one must
work with the averaged free energy f obtained by averaging lnZ over all samples. The
temperature-derivative of f gives the average internal energy, and so on. (As mentioned
above, it is known that in the infinite-volume limit, each sample will give the same f . This
is not true for all quantities.) Similarly, one can take two spins a distance R apart and
find the correlator G sample by sample. This will depend on the absolute values of the
coordinates, since there is no translational invariance. However, the ensemble average G
will depend only on R. Besides these mean values, one can calculate the fluctuations around
these mean values. Given the distance R and a temperature, there is a unique number G(R)
in a pure system describing the correlation. In our case there is probability P(G(R)) that
G(R) will have this or that value. We will return to this point at the end.
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We have seen that the Ising model is described by a non-interacting Majorana field
theory. We can take this Hamiltonian and write Z as a Euclidean path integral over
Grassmann numbers as follows [Eq. (9.71)]:

ZM(K)=
∫
[dψ]exp

[
−

∫
1

2
ψ(∂/+m)ψ d2x

]
. (18.43)

In the above, the mass m is determined by λ or equivalently the temperature. It vanishes
at the critical temperature. We are assuming we are close enough to criticality for this
continuum theory to be valid. Suppose now that the bonds, instead of being uniform,
vary from point to point on the two-dimensional lattice, never straying too far from
criticality. This means that m = m(x) varies with the two-dimensional coordinate x, and
ZM = ZM(m(x)) is therefore a functional of m(x). Let us assume that the probability
distribution for m is a Gaussian at each site:

P(m(x))=
∏

x

e−(m(x)−m0)
2/2g2

. (18.44)

Hereafter we will focus on the case of zero mean: m0 = 0. Thus, each bond fluctuates
symmetrically around the critical value. To find f we must calculate

f =
∫

P(m(x)) lnZM(m(x))dm(x). (18.45)

Since we are averaging lnZ and not Z, we see that the problem is not as easy as that of
adding an extra thermal variable m(x). We circumvent this using what is called the replica
trick. We use

lnZ = lim
n→0

Zn− 1

n
. (18.46)

In what follows, we will drop the minus one in the numerator since it adds a constant to
the answer, and also drop the factor of inverse n since it multiplies the answer by a factor
without changing any of the critical properties. In short, in Eq. (18.45) we can replace lnZ
by Zn (and of course send n to zero at the end). But Zn is just the partition function of n
replicas of the original model. Thus,

f =
∫ [

n∏
1

dψi

]
exp

[
−

∫ n∑
1

1

2
ψ i(∂/+m(x))ψid

2x

]
e−m2(x)/2g2

dm(x)

=
∫ [

n∏
1

dψi

]
exp

⎡
⎣∫ ⎛

⎝−1

2

n∑
1

ψ i(∂/)ψi+ g2

8

(
n∑
1

ψ iψi

)2
⎞
⎠d2x

⎤
⎦ .

(18.47)

Thus, the random model has been traded for an interacting but translationally invariant
theory, called the n-component Gross–Neveu model [7, 8]. The above is a shortened
derivation of the DD result. It is understood that all calculations are performed for general
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n, and that in any analytic expression where n occurs, the limit n→ 0 is taken. The value
of the DD work is that it shows in detail that this crazy replica procedure is indeed doing
the ensemble average we want to do.

Now DD proceed to deduce two results:

• The specific heat will have a ln ln divergence instead of the ln divergence of the pure
system. To derive this, one must also explore the case m0 �= 0.

• The average two-point function G(R) falls essentially like R0 as compared to the R−1/4

in the pure system.

While the first result seemed reasonable, the second did not for the following reason.
It is known (and we will see) that when n = 0, the Gross–Neveu model is essentially a
free-field theory at large distances, the interactions falling logarithmically. It is known in
that in such asymptotically free theories correlations are usually that of a free field up to
logarithms. Thus, we can accept the change in the specific heat from log to log-log, but
not the change of the decay exponent from 1

4 to 0. It was, however, difficult to see what
had gone wrong in the rather formidable calculation of DD, which involved an average like
Eq. (18.30), difficult enough in free-field theory, in an interacting theory.

I decided to approach the problem in a different way [9]. Recall how, in the pure case, by
considering the square of the correlation, we could convert the problem, via bosonization,
to the evaluation of a two-point function. Let us try the same trick here. Consider any
one sample with some given set of bonds. On it, imagine making two copies of the Ising
system. Then, following the reasoning from the last section.

G2(0,R,m(x))

=
∫ [dψD][dψD]exp

[−∫
d2xψD(∂/+m(x))ψD

]
exp

[
iπ

∫ R
0 :ψ†

DψD : dx
]

ZD(m(x))
.

(18.48)

In the above, G remembers that one spin was at the origin and the other at R (in both
copies). In principle one must move this pair over the lattice maintaining this separation
R. However, this is obviated by the subsequent replica averaging which restores translation
and rotational invariance.

The good news is that, due to the doubling, we have a Dirac fermion. The bad news
is that the normalizing partition function downstairs is itself a functional of m(x), which
makes it hard to average G2. So, we multiply top and bottom by Zn−1

D and set n= 0. This
gets rid of the denominator and adds n− 1 copies upstairs. We then have

G2(0,R,m(x)) (18.49)

=
∫ [

n∏
1

dψidψi

]
exp

[
−

∫ n∑
1

ψ i(∂/+m(x))ψid
2x

]
eiπ

∫ R
0 ψ

†
1ψ1dx, (18.50)

where the subscript 1 labels the species we started with and all fermions are understood to
be Dirac. If we now do the Gaussian average over m(x), we just complete the squares on
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the mass term and obtain

G2(R) (18.51)

=
∫ [

n∏
1

dψiψi

]
exp

⎡
⎣∫ ⎡

⎣ n∑
1

−ψ i(∂/)ψi+ g2

2

(
n∑
1

ψ iψi

)2
⎤
⎦d2x

⎤
⎦eiπ

∫ R
0 ψ

†
1ψ1dx.

(18.52)

Let us now bosonize this theory using the results from Section 17.5 to obtain:

G2(R)

=
∫ n∏

i=1

dφi exp

⎡
⎣∫

d2x
n∑
1

−1

2
(∇φi)

2+ g2�2

2

[
n∑
1

cos(
√

4πφi)

]2
⎤
⎦

× exp
[
i
√
π(φ1(R)−φ1(0))

]
. (18.53)

Consider the square of the sum over cosines. The diagonal terms can be lumped with the
free-field term using Eq. (17.106):[

�cos
√

4πφ
]2 =− 1

2π
(∇φ)2. (18.54)

(The relativistic formula ignores the cos
√

16πφ term, which is fortunately highly
irrelevant in the present weak coupling analysis.) In terms of the new field

φ′ =
(

1+ g2

2π

) 1
2

φ, (18.55)

once again called φ in what follows,

G2(R)=
〈
exp

[
i
√

π

1+ g2/2π
φ1(R)

]
exp

[
−i

√
π

1+ g2/2π
φ1(0)

]〉
g

, (18.56)

where the subscript g tells us that the average is taken with respect to the vacuum of an
interacting field theory with action

S=
∫

d2x

⎛
⎝ n∑

1

−1

2
(∇φi)

2+ g2�2

2

⎡
⎣∑

i

∑
j�=i

cos

(√
4π

1+ g2/2π
φi

)
cos

(√
4π

1+ g2/2π
φj

)⎤
⎦
⎞
⎠ .

(18.57)

Unlike in the homogeneous Ising model, where we had a two-point function to evaluate in
a free-field theory, we have here an interacting theory. Since g2 measures the width of the
bond distribution, perhaps we can work first with small g in a perturbation expansion?
For example, if g2 = 0.001 we could read off the answer using perturbation theory.
Unfortunately this is not possible. The problem is that the coupling in this theory cannot
be a constant, it has to be function g(�) because there are ultraviolet divergences. These
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divergences give �-dependent answers for quantities of interest, and to neutralize this
unwanted dependence we must choose g as a function of �, i.e., we must renormalize.

The first step is to compute the β-function:

β(g)= dg

d ln�
. (18.58)

This computation, best done in the fermionic version, involves finding, to any given
order, the contributions the eliminated modes make to the interaction between the surviving
modes. To second order in g2 one draws the three possible one-loop graphs and integrates
the loop momenta from the old � to the new. For the n-component Gross–Neveu model
[7, 8], one knows that

β(g)= (1− n)
g3

2π
+ higher order. (18.59)

Typically n≥ 2, and this leads to a theory where the coupling grows in the infrared, but
here, with n= 0, it is the opposite. If the initial bare coupling is g(a), where a= 1/� is the
lattice size, the coupling at scale R is obtained by integrating

dg

d ln�
= g3

2π
(18.60)

from �= 1/a to �= 1/R to obtain

g2(R)= g2(a)

1+ g2(a)
π

ln(R/a)
(18.61)

� π

lnR/a
for R/a→∞. (18.62)

This means the following. If we naively perturb the theory defined at scale a to find a
quantity like the correlation function at scale R, we will find that the effective parameter
is not g(a) but g2(a) lnR/a. This is because the result Eq. (18.61) will appear as a badly
behaved power series,

g2(R)= g2(a)

(
1− g2(a)

π
ln(R/a)+·· ·

)
. (18.63)

What the RG does for us is to sum the series and allow us to use a coupling at scale R that
is actually very small for large R/a. Not only will the effective coupling be small, there
will be no large logs when we describe physics at scale R.

To exploit this, we have to follow the familiar route of integrating the Callan–Symanzik
equations to relate G2(R,g(�),�= 1/a) computed with the initial coupling and cut-off to
G2(R,g(1/R),�= 1/R).

So let us recall the solution given in Eqs. (14.108)–(14.113):

G2(R,g(�),�)= exp

[∫ g(1/R)

g(�)

γ (g)

β(g)
dg

]
G2(R,g(1/R),1/R). (18.64)
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Now, the dimensionless function G2(R,g(1/R),1/R) = 〈sRs0〉2 is a function only of R ·
�(R) = R · R−1 = 1 and g(R) � 1/ lnR, which vanishes as R →∞. So the leading R
dependence is in the exponential integral.

We already have β(g), and we just need γ (g) defined as

γ (g)= d lnZ(g(�),�)

d ln�
, (18.65)

where Z is the factor that multiplies the given correlation function and makes it independent
of �.

The correlation function of interest is

G2(R)=
〈
exp

[
i
√

π

1+ g2/2π
φ1(R)

]
exp

[
−i

√
π

1+ g2/2π
φ1(0)

]〉
g

, (18.66)

where the subscript g means it is evaluated with coupling g. In particular, let g(�) be the
coupling in the lattice of size a= 1/�. Now,

〈eiβ(φ(x)−φ(0))〉 =
(

α2

α2+ x2

)β2/4π

=
(

1

π2x2�2

)β2/4π

, (18.67)

which follows from Eq. (17.63) and α = 1/(�π).
If we ignore the interaction term [the double sum over cosines in Eq. (18.57)], we find

that

G2(R)=
[

1

πR�

] 1
2(1+g2/2π) · (1+O(g4)). (18.68)

The term in square brackets comes from using Eq. (18.67), valid for the free-field theory,
and its g dependence comes from explicit factors of g in the definition of the operators.
The corrections due to the interactions begin at order g4 because the diagonal terms in the
double sum have been pulled out and the off-diagonal terms do not contribute to correlation
in question due to the constraint that the sum of all the exponents must add up to zero for
each boson.

We see that G2(R) can be made independent of the cut-off if we pick some arbitrary
mass μ and multiply it by

[
�

μ

] 1
2(1+g2/2π) �

[
�

μ

] 1
2− g2

4π

to order g2 (18.69)

≡
[
�

μ

]γ
, which means (18.70)

γ = 1

2
− g2

4π
. (18.71)
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Doing the integral in Eq. (18.64), it is easy to obtain (dropping corrections that fall as
inverse powers of lnR)

G2(R)= 〈sRs0〉2 ∼ (lnR)1/4

R1/2
, (18.72)

where the 1
2 and the − g2

4π in γ [Eq. (18.71)] contribute to R− 1
2 and (lnR)1/4 respectively.

Exercise 18.3.1 Do the g integral in Eq. (18.64) using the known expressions or β(g) and
γ (g), and derive Eq. (18.72).

We now use the fact that the mean of the square is an upper bound on the square of the
mean to obtain

〈sRs0〉 ≤ (lnR)1/8

R1/4
. (18.73)

Thus, we find that the DD formula G(R) � R0 cannot be right since it violates this
bound. It is also nice to see the kind of logs you expect in an asymptotically free theory.

Several developments have taken place since this work was done. First, I learned that
Shalayev [12] had independently done this, without using bosonization. Next, in my paper
I had claimed that if my arguments were repeated for higher moments one would find
that the average of the 2nth power of G would be the nth power of Ḡ2. A. W. W. Ludwig
pointed out [10, 11] that this was wrong: the error came from using the ei

√
πφ in place of

sin
√
πφ. Although this made no difference to the preceding derivation of Ḡ2, it does affect

the higher moments. Ludwig in fact carried out the very impressive task of obtaining the
full probability distribution P(G(R)).

Andreichenko and collaborators did a numerical study [13] to confirm the correctness
of my bound and some additional predictions made by Shalayev. For more technical details
of my derivation given above, see the excellent book by Itzykson and Drouffe [14].

18.4 Non-Relativistic Lattice Fermions in d = 1

We now turn to a family of problems where the fermion is present from the beginning
instead of arising from a treatment of Ising spins. However, the fermion is non-relativistic
to begin with and the Dirac fermion arises in the low-energy approximation. Some
excellent sources are Emery [15], Sachdev [16], and Giamarchi [17].

Here is a road map for what follows so you don’t fail to see the forest because of the
trees.

We will explore many aspects of the following model of non-relativistic fermions
hopping on a lattice in d= 1:

H =H0+HI
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=−1

2

∑
j

ψ†(j+ 1)ψ(j)+ h.c.

+�
∑

j

(
ψ†(j)ψ(j)− 1

2

)(
ψ†(j+ 1)ψ(j+ 1)− 1

2

)
. (18.74)

I will refer to this as the Tomonaga–Luttinger (TL) model, although these authors
[21, 22] only considered the low-energy continuum version of it. It is also related by the
Jordan–Wigner transformation to what is called the XXZ spin chain.

Let me remind you of what we know from our previous encounter with this model in
Section 15.3.

In real space it was clear that as �→∞, the particles would occupy one or the other
sublattice to avoid having nearest neighbors. Any movement of charge would produce
nearest neighbors and cost an energy of order �. This is the gapped CDW state.

For weak coupling, we went to momentum space using

ψ(j)=
∫ π

−π
ψ(K)eiKj dK

2π
, (18.75)

and found the kinetic energy

H0 =
∫ π

−π
ψ†(K)ψ(K)(−cosK)

dK

2π
. (18.76)

The Fermi sea was made of filled negative energy states with −π2 < K < π
2 . The Fermi

“surface” was made of two points R= KF = π
2 and L =−KF =−π2 . I will limit myself to

half-filling, where KF = π
2 , until I turn to the Hubbard model.

Keeping only modes within ±� of the Fermi points ±KF (see Figure 15.2), we found
that

H0 =
∑

i=L,R

∫ �

−�
dk

2π
ψ

†
i (k)ψi(k)k, (18.77)

where

k= |K|−KF, (18.78)

i= L,R (left or right). (18.79)

(Notice that the k above is the magnitude |K| minus KF. This definition is most suited for
going to higher dimensions, where the energy grows with the radial momentum. Soon we
will trade this for a k measured from the nearest Fermi point.)

We then found an RG transformation that left the corresponding action S0 invariant. We
considered the most general interaction and found that there remained just one marginal
interaction at tree level, namely u, which scattered particles from opposite Fermi points. (In
our specific model, u∝�.) A one-loop calculation showed β(u)= 0 due to the cancellation
between the ZS′ and BCS diagrams describing CDW and superconducting instabilities. It
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was then stated that β(u) vanished to all orders, implying a line of fixed points. It was not
clear from that analysis how the system would ever escape the fixed line and reach the
gapped CDW state, as it had to at strong coupling.

We now resume that tale. We rederive some of these old results of the fermionic RG
using bosonization, and then go beyond. In particular, we

• compute the varying exponents in several correlation functions along the fixed line;
• explain how we escape the fixed line as some operators that were irrelevant in the

fermionic weak coupling RG become relevant;
• explain the nature of the gapped states to which these relevant perturbations take us; and
• map the model to that of a spin chain using the Jordan–Wigner transformation and

interpret these results in spin language.

Since this chapter is long, I will also furnish a synopsis of the details to follow so that as
you go through the material, you know where we are in our odyssey.

The first step to bosonization is to unearth a Dirac fermion. We will do this by focusing
on the states near the Fermi surface, but this time in real space, by truncating the expansion
Eq. (18.75) to states within ±� of K =±KF =±π2 :

ψ(j)=
∫ π

−π
ψ(K)eiKj dK

2π
(18.80)

�
∫ �

−�
ψ(KF+ k)eiKFjeikj dk

2π
+

∫ �

−�
ψ(−KF+ k)e−iKFjeikj dk

2π
(18.81)

≡ a
1
2
[
eiKFjψ+(x= aj)+ e−iKFjψ−(x= aj)

]
(18.82)

= a
1
2

[
ei π2 jψ+(x)+ e−i π2 jψ−(x)

]
since KF = π

2 here. (18.83)

Observe that the k above is measured from the Fermi points ±KF. The subscript ± labels
the Fermi point (R or L) on which the low-energy field is centered. The lattice spacing a

converts position j on the lattice to position x = ja in the continuum, and the factor a
1
2

relates continuum Fermi fields ψ± with Dirac-δ anticommutators to lattice fermions with
Kronecker-δ anticommutators. The fields ψ±(x) have only small momenta (|k| < �) in
their mode expansion. For the field ψ±, the energy goes up (down) with k.

Substituting in Eq. (18.74), we will find that

Hc = H0

a
=

∫
dx

[
ψ

†
+(x)(−i∂x)ψ+(x)+ψ†

−(x)(i∂x)ψ−(x)
]

=
∫
ψ†(x)αPψ(x)dx, (18.84)

where Hc is the continuum version of H. This paves the way for bosonization.
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We will then express the interaction in terms of ψ± and bosonize it to get the
sine-Gordon model:

HcK =
∫

dx

(
1

2

[
K�2+ 1

K
(∂xφ)

2
]
+ y

2π2α2
cos
√

16πφ

)
, (18.85)

K = 1√
1+ 4�

π

, (18.86)

y= K ·�= �√
1+ 4�

π

. (18.87)

The interpolating steps will soon be provided in pitiless detail.
We will then analyze this bosonized Hamiltonian. Although at this stage its two

parameters y and K are functions of�, we will consider a two-parameter family of models
in which y and

x= 2− 4K (18.88)

are independent. The RG flows in the (x,y) plane will describe the fate of each starting
point. The original model will be described by a one-parameter curve (x(�),y(�)) of
starting points. The curve is reliably known only for small �. The nature of various fixed
points, the fixed line, and phases will be examined.

We will then interpret the same flows and fixed points in terms of the spin- 1
2 Heisenberg

chain,

H =
∑

j

Sx(j+ 1)Sx(j)+ Sy(j+ 1)Sy(j)+� · Sz(j+ 1)Sz(j), (18.89)

related to our spinless fermion Hamiltonian of Eq. (18.74) by a Jordan–Wigner
transformation.

Finally, we will consider the Hubbard model with on-site interaction of spin-up and
spin-down fermions. We will find that the inclusion of spin is far from being a cosmetic
change. It will dramatize the gruesome fate of the fermion, which gets torn limb from limb
when interactions are turned on.

18.4.1 Deriving the Sine-Gordon Hamiltonian

The first essential ingredient in bosonization is the massless Dirac fermion, which is
lurking within our non-relativistic fermion. To extract it, we first write the non-interacting
Hamiltonian in terms of the low-energy Dirac fields ψ± using Eq. (18.83):

H0 =−1

2

∑
j

ψ†(j+ 1)ψ(j)+ h.c. (18.90)
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=−1

2
a
∑

j

[
−ie−i π2 jψ

†
+(x= ja+ a)+ iei π2 jψ

†
−(x= ja+ a)

]

×
[
ei π2 jψ+(x= ja)+ e−i π2 jψ−(x= ja)

]
+ h.c. (18.91)

= a

2

∑
j

[
iψ†
+(x)ψ+(x)− iψ†

−(x)ψ−(x)+ ia
∂ψ

†
+(x)
∂x

ψ+(x)− ia
∂ψ

†
−(x)
∂x

ψ−(x)
]

+h.c.+ ignorable terms and terms oscillating at ±2KF, (18.92)

H0c = H0

a
=

∫
dx

[
ψ

†
+(x)(−i∂x)ψ+(x)+ψ†

−(x)(i∂x)ψ−(x)
]

, (18.93)

where H0c is the non-interacting continuum Hamiltonian and I have integrated by parts and
used a

∑
j→

∫
dx.

Now look at the interaction

HI =�
∑

j

(
ψ†(j)ψ(j)− 1

2

)(
ψ†(j+ 1)ψ(j+ 1)− 1

2

)
(18.94)

≡�
∑

j

:ψ†(j)ψ(j) : :ψ†(j+ 1)ψ(j+ 1) : . (18.95)

We may set

ψ†(j)ψ(j)− 1

2
= :ψ†(j)ψ(j) :, (18.96)

because we have half a fermion per site in the vacuum. Let us combine all this with
the expansion of the lattice fields in terms of the smooth continuum fields for KF = π

2
[Eq. (18.83)] to obtain

HIc = HI

a

= a�
∑

j

[
:ψ†
+(x)ψ+(x)+ψ†

−(x)ψ− :+(−1)j(ψ†
+(x)ψ−(x)+ψ†

−(x)ψ+(x))
]

×
[
:ψ†
+(x)ψ+(x)+ψ†

−(x)ψ−(x) :−(−1)j(ψ†
+(x)ψ−(x)+ψ†

−(x)ψ+(x))
]
(18.97)

= a�
∑

j

[
1√
π
∂xφ

]2

−
[
ψ

†
+(x)ψ−(x)+ψ†

−(x)ψ+(x)
]2+ (−1)j oscillations

=�
∫

dx

[
(∂xφ)

2

π
−

[
1

πα
sin
√

4πφ)

]2
]

(18.98)

=�
∫

dx

[
2(∂xφ)

2

π
+ 1

2π2α2
cos
√

16πφ)

]
using Eq. (17.97). (18.99)
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Notice that we ignore the change in ψ(x) from site j to j+ 1 (down by a power of a), but
not that of the factor (−1)j, which oscillates on the lattice scale. We are also using the fact
that at half-filling, the potentially oscillatory factor e4KFj, which comes from the product
of the second terms in each of the brackets in Eq. (18.97), becomes (−1)2j = 1. This is the
umklapp term which describes the process RR↔ LL with momentum change equal to a
reciprocal lattice vector.

This brings us to the continuum Hamiltonian in bosonized form,

Hc =
∫

dx

(
1

2

[
�2+

(
1+ 4�

π

)
(∂xφ)

2
]
+ �

2π2α2
cos
√

16πφ

)
. (18.100)

At this stage we introduce the Luttinger parameter

K =
[

1+ 4�

π

]− 1
2

, (18.101)

in terms of which

HcK =
∫

dx

(
1

2

[
K�2+ 1

K
(∂xφ)

2
]
+ y

2π2α2
cos
√

16πφ

)
, (18.102)

y= K ·�= �√
1+ 4�

π

. (18.103)

The rescaling of Hc by K, which we ignore, can be easily incorporated as another
parameter, a velocity.

We will take the view that y and K are two free parameters, rather than functions of a
single underlying �. The TL model will be a one-parameter curve in this two-dimensional
plane.

Let us now define a new field and momentum:

φ′ = 1√
K
φ, (18.104)

�′ = √K�, (18.105)

which still obey canonical commutation rules because they were scaled oppositely. By
contrast, the φ is a c-number in the path integral and can be rescaled as Eq. (18.55). The
Hamiltonian now becomes (upon dropping the primes)

Hc =
∫

dx

[
1

2

[
�2+ (∂xφ)

2
]
+ y

2π2α2
cos
√

16πKφ

]
, (18.106)

which is a special case of the sine-Gordon model whose canonical form is

HSG =
∫

dx

[
1

2

[
�2+ (∂xφ)

2
]
+ y

2π2α2
cosβφ

]
. (18.107)
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In the Luttinger model analysis,

β2 = 16πK. (18.108)

We will also use a related parameter (unfortunately also called x),

x= 2− 4K = 2

(
1− β

2

8π

)
, (18.109)

because the physics changes dramatically with the sign of x. It is most natural to envisage
the physics in the (x,y) plane.

18.4.2 Renormalization Group Analysis of the Sine-Gordon Model

We see that the model describes a massless scalar field plus the cosine interaction due to
the umklapp process (RR↔ LL). It is parametrized by K and y. We need to know what the
umklapp term does to the massless boson.

The answer depends on K, which determines whether or not the umklapp term is
relevant. For the RG analysis it is convenient to go from the Hamiltonian in Eq. (18.106)
to the Euclidean action

S=
∫ (

1

2
(∇φ)2+ y�2

2
cosβφ

)
d2x (18.110)

and the path integral over e−S(φ). Notice that we use the Lorentz-invariant bosonization
formulas of Section 17.5. The replacement

1

πα
=� (18.111)

trades the spatial momentum cut-off 1/α for �, the cut-off on k, the magnitude of the
two-dimensional Euclidean momentum k. The evolution of y will be found by integrating
out a thin shell of momenta near the cut-off k=�.

Let us write φ as a sum of slow and fast modes,

φ = φs+φf ≡ φ(0≤ k≤�(1− dt))+φ(�(1− dt) < k≤�). (18.112)

The free-field action separates as well:

S0 =
∫ [

1

2
(∇φs)

2+ 1

2
(∇φf)

2
]

d2x. (18.113)

The RG that leaves S0 invariant involves integrating out φf, followed by the rescaling of
spacetime coordinates:

d2x= s2d2x′, (18.114)
d

dx
= 1

s

d

dx′
, (18.115)

φ(x)= φ′(x′). (18.116)
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Now we introduce the interaction, integrate out φf as usual, and see happens to the
coupling y of the slow modes that remain. Here is the abridged analysis:

Z =
∫

dφs

∫
dφf exp

[
−

∫ [
1

2
(∇φs)

2+ 1

2
(∇φf)

2
]

d2x− y�2

2

∫
d2xcosβ(φs+φf)

]

=
∫

dφs exp

[
−

∫
1

2
(∇φs)

2d2x

]〈
exp

[
−y�2

2

∫
d2xcosβ(φs+φf)

]〉
f

(18.117)

�
∫

dφs exp

[
−

∫ (
1

2
(∇φs)

2+ y�2

2
cosβφs〈cosβφf〉f

)
d2x

]
, (18.118)

where 〈· · · 〉f is the average over fast modes and we are using the leading term in the
cumulant expansion (〈eA〉 � e〈A〉); the sinβφs sinβφf term is ignored because it has zero
average over fast modes. The average 〈· · · 〉f above is only over the sliver of width �dt.

To perform the average we first set A= iβφ, B= 0 in Eq. (17.57) to deduce that

〈eiβφ〉 = e−
1
2β

2〈φ2〉. (18.119)

Using this result, we find that

〈cos(βφf)〉 = e−
1
2β

2〈φ2
f 〉 (18.120)

= exp

[
−β

2

2

∫ �

�(1−dt)

kdkdθ

4π2

1

k2

]
(18.121)

= 1− β
2

4π
dt. (18.122)

Now we rescale the coordinates as per Eq. (18.114),

d2x= s2d2x′ = (1+ 2dt)d2x′, (18.123)

to obtain (on dropping primes)

y�2

2

∫
d2xcosβφ→ y�2

2

(
1+

(
2− β

2

4π

)
dt

)∫
d2xcosβφ,

dy

dt
=

[
2− β

2

4π

]
y (18.124)

= (2− 4K)y because (18.125)

β2 = 16πK in the Luttinger model. (18.126)

Thus, we find that the umklapp term is

irrelevant for K > 1
2 or β2 > 8π , (18.127)

relevant for K < 1
2 or β2 < 8π . (18.128)

We rescaled x but not �, which just stood there. Are we not supposed to rescale all
dimensionful quantities when we change units? The short answer is that in the Wilson
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approach the cut-off remains fixed because we use the cut-off as the unit of measurement.
We could call it � or we could call it 1. If we begin with the ball of radius 1010 GeV and
keep integrating away, in laboratory units then of course �lab is being steadily reduced,
but in rescaled units it will be fixed. It is this fixed value we are denoting by � above.

As a check, consider a Gaussian theory with action

S=
∫

d2x

[
1

2
(∇φ�)2+ 1

2
m2φ2

�

]
, (18.129)

where m is the mass in lab units and � is the cut-off on the momentum content of φ�.
Suppose we integrate out modes between �/s and �. We are left with

S=
∫

d2x

[
1

2
(∇φ�/s)2+ 1

2
m2φ2

�/s

]
, (18.130)

which tells us that in lab units the theory with the reduced cut-off�/s continues to describe
a particle of the same mass m, and asymptotic correlations will fall as e−mx. There has been
no change of units.

Let us now repeat this, but starting with the mass term expressed in terms of some initial
cut-off � and a dimensionless parameter r0:

S=
∫

d2x

[
1

2
(∇φ�)2+ 1

2
r0�

2φ2
�

]
. (18.131)

Upon mode elimination this becomes

S=
∫

d2x

[
1

2
(∇φ�/s)2+ 1

2
r0�

2φ2
�/s

]
. (18.132)

We now change units:

k= k′

s
, (18.133)

x= sx′, (18.134)
d

dx
= 1

s

d

dx′
. (18.135)

In these new units the momentum now goes all the way to � and we end up with

S =
∫

d2x′
[

1

2
(∇′φ�)2+ 1

2
r0s2�2φ2

�

]
(18.136)

def=
∫

d2x′
[

1

2
(∇′φ�)2+ 1

2
r0s�

2φ2
�

]
. (18.137)

We see that, under the RG,

r0→ r0s = r0s2. (18.138)
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(We could also lump the s2 with �2 in Eq. (18.136) and identify s2 times �2 in the new
units with the �2

lab original laboratory units, thereby showing that the m2 in laboratory
units is fixed at r0�

2
lab.)

18.4.3 Tomonaga–Luttinger Liquid: (K > 1
2 ,y = 0)

We consider the line of fixed points y = 0 and focus on the sector K > 1
2 where the

perturbation ycos
√

16πKφ is irrelevant. In terms of a variable

x= 2− 4K, (18.139)

the region where the cosine is irrelevant is

x= 2− 4K < 0. (18.140)

Not only does this line y = 0 for x < 0 describe the models with y = 0, it also describes
models which flow to y = 0 under the RG. Later we will see what range of y will flow
into this line under RG. In studying this line we are studying all systems in the basin of
attraction of this line. Remember, however, that if you begin at some (K,y) in this basin,
you will end up at (K∗,0), where K∗ �= K in general. (Equivalently, (x,y)→ (x∗,0) after
the RG.) So the K in what follows is in general the final K∗ of a system that started away
from the fixed line and got sucked into it.

For x > 0, the line is unstable to perturbations and the system must be tuned to stay
on it. Also bear in mind that we have assumed exactly half-filling; otherwise, the umklapp
term is not allowed: e4iKFn oscillates and averages to zero unless KF = π

2 . What if we are
just a little off KF = π

2 ? Then the oscillations will be very slow in space to begin with, but
after a lot of RG iterations, the oscillations will become rapid in the new lattice units and
the seemingly relevant growth will fizzle away.

The line of fixed points (K > 1
2 ,y = 0) ≡ (x < 0,y = 0) is ubiquitous and appears in

many guises and with different interpretations. Here it describes a fermionic liquid state
called the Tomonaga–Luttinger (TL) liquid. The name was coined by Haldane [19, 20],
who explored its properties and exposed the generality of the notion. It is the d= 1 version
of Landau theory. Recall that Landau’s Fermi liquid is parametrized by the F function, or
its harmonics um ≡ Fm. Even if we cannot calculate the um from some underlying theory,
we can measure them in some experiments and use them to describe others in terms of these
measured values. The main point is that many low-energy quantities can be described by
a few Landau parameters. Likewise, K and a velocity parameter, which I have suppressed,
fully define all aspects of the fermionic system – response functions, thermodynamics,
correlation functions – in the infrared.

The line of fixed points has one striking property: exponents that vary continuously
with K. (This is not so for the Landau Fermi liquid, which has canonical power laws as
F varies.) I will show this now, and as a by-product, establish the claim made earlier that
the fermion pole at ω = k (in Minkowski space) is immediately destroyed by the smallest
interaction, i.e., the smallest departure from K = 1.
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Consider 〈ψ†(x)ψ(0)〉. Without interactions, we had

H =
∫

dx

[
1

2
�2+ 1

2
(∂xφ)

2
]

dx, (18.141)

ψ±(x)= 1√
2πα

e±i
√

4πφ±(x), where (18.142)

φ±(x)= 1

2

[
φ(x)∓

∫ x

−∞
�(x′)dx′

]
≡ 1

2
(φ∓ θ), (18.143)

and where the dual field

θ(x)=
∫ x

−∞
�(x′)dx′. (18.144)

With interactions, we had

H =
∫

dx

[
K

2
�2+ 1

2K
(∂xφ)

2
]

dx. (18.145)

Introducing the rescaled variables of the interacting theory,

φ = K
1
2φ′, �= K−

1
2�′, θ = K−

1
2 θ ′, (18.146)

in terms of which the kinetic energy has the standard coefficient of 1
2 , and recalling that

φ = φ++φ−, (18.147)

θ = φ−−φ+, (18.148)

one finds that

ψ±(x)= 1√
2πα

exp±i
√
π
[
(K

1
2 ±K−

1
2 )φ′+ + (K

1
2 ∓K−

1
2 )φ′−

]
. (18.149)

Exercise 18.4.1 Derive Eq. (18.149).

It is now a routine exercise to show that

〈ψ†±(x)ψ±(0)〉 �
[

1

α∓ ix

] (K±1)2
4K ·

[
1

α± ix

] (K∓1)2
4K

(18.150)

= 1

α∓ ix
·
[

1

α2+ x2

]γ
, (18.151)

γ = (K− 1)2

4K
. (18.152)

Exercise 18.4.2 Derive Eq. (18.150).

  



18.5 Kosterlitz–Thouless Flow 357

For unequal-time correlations, we just need to remember that ψ± are functions of x∓ t
to obtain

〈ψ†±(x, t)ψ±(0)〉 � 1

α∓ i(x∓ t)
·
[

1

α2+ x2− t2

]γ
. (18.153)

We see that the decay power varies with K. Upon Fourier transforming to (ω,k), we see
that as soon as K �= 1, the pole (in Minkowski space)

G(ω,k)� 1

ω− k
(18.154)

morphs into a cut using just dimensional analysis: G(ω,k) has fractional dimension
in ω or k:

G� (ω,k)
K2−4K+1

2K . (18.155)

There is a huge body of literature on the response functions at non-zero T , ω, and q
that you are now ready to explore. For example, one can show that in the TL liquid the
occupation number n(k) has not a jump at kF, but a kink:

n(k)= n(kF)+ c sgn(k− kF)|k− kF|δ , (18.156)

δ = K+K−1− 2

4
. (18.157)

18.5 Kosterlitz–Thouless Flow

Let us now find the basin of attraction of the fixed TL line in the (x,y) plane and the manner
in which a transition to a gapped phase occurs when we cross the boundary of this basin.
We have seen from

dy

dt
= (2− 4K)y (18.158)

that on the axis labeled by

x= (2− 4K) (18.159)

y is relevant or irrelevant for x > 0 or x < 0 respectively. So in the (x,y) plane we expect
flow lines to terminate on or leave the x-axis in the y-direction as x goes from being negative
to positive. The flow slows down as we approach K = 1

2 (x= 0) and then reverses sign, as
depicted in Figure 18.1. How do these lines change direction as we cross this point? What
is the full story in the (x,y) plane?

For this we turn to the celebrated RG flow devised by Kosterlitz and Thouless [26]
in their analysis of the phase transition in the XY model of planar spins. Recall from
Chapter 10 that there too we have a line of fixed points with a T-dependent exponent.
As T→∞ the decay had be exponential based on the high-T series. This decay cannot be
brought about by spin waves, the small fluctuations about the constant field described by a
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that is, the flow is along hyperbolas. Of special interest are its asymptotes,

x=±y. (18.164)

Looking at Figure 18.2, for y > 0, the line x = −y in the second quadrant separates
flows into the massless fixed line from the ones that flow to massive or gapped theories.
The reflected asymptote x = y in the third quadrant defines the basin of attraction of the
TL line for y< 0. We focus on the y> 0 case since the mathematics is identical in the two
cases. The physics is different, as will be explained later.

Let us start at the far left at a point

y2(0)− x2(0)= δ (18.165)

just above the separatrix x=−y. This means that at any generic t,

y2(t)− x2(t)= δ. (18.166)

We want to know how ξ(δ) diverges as we approach the separatrix that flows into the fixed
point at the origin.

Néel-CDW

x =2–4K

y

δ

TL Line

PeierlsΔ =–1

Δ = 1

(K = 1, Δ = 0)

Figure 18.2 The Kosterlitz–Thouless (KT) flow. The origin is at (x
def= 2− 4K = 0,y = 0). The TL

liquid is found on the x-axis for x< 0 or K > 1
2 . The point K = 1,y= 0 describing a free fermion lies

on this line. The dotted line passing through it is a schematic of the TL model as its sole parameter�
is varied. That the point �= 1 is the last of the massless phase and flows under RG to the origin we
know from the exact solution. Larger values of � approach this end point and veer away to a gapped
CDW phase. The point �=−1 marks the other end of the gapless phase after which the flow is to

the Peierls phase. The correlation length diverges as eπ/
√
δ when we approach either separatix.
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This is determined by the flow

dx

dt
= y2(t)= (δ+ x2(t)), (18.167)

with a solution

t= 1√
δ

[
arctan

x(t)

δ
− arctan

x(0)

δ

]
, (18.168)

t� π√
δ

, (18.169)

assuming that we start at the far left and end at the far right.
Since the rescaling factor s= et, it follows that ξ(t)= e−tξ(0). Assuming that for large

t the correlation length ξ(t)→O(1) (because we are essentially on the line x= y, far from
the critical point at the origin),

ξ(0)= etξ(t)� exp

[
π√
δ

]
, (18.170)

implying the exponential divergence of the correlation length as δ→ 0.
What if we start on the line x= y? The solution to

dx

dt
= x2 (18.171)

is

x(t)= x(0)

1− x(0)t
=− |x(0)|

1+|x(0)|t �−
1

t
, (18.172)

which is the logarithmic, marginally irrelevant flow we saw earlier in φ4
4 . On the other side,

if we begin on the separatrix x= y, the solution

x(t)= x(0)

1− x(0)t
(18.173)

will grow to large values because now x(0) > 0. At some point the weak coupling analysis
will fail.

Besides these flows, there are the relevant lines flowing away from the fixed line for
x> 0. The behavior of various regions is shown in Figure 18.2. Although the analysis was
for small x and y, it is assumed that the overall topology will survive, though the flow lines
could deviate from what was shown above.

18.6 Analysis of the KT Flow Diagram

Figure 18.2 is worth more than the usual thousand words. As mentioned before, the
separatrix y = −x in the second quadrant, flowing into the origin, defines the domain
of attraction of the fixed line for y > 0, x < 0. When we cross it, ξ � e1/

√
δ , where the
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deviation δ is shown in the figure. If we start just above the separatrix, we initially flow
along it toward the origin and then veer away along the separatrix x = y, to a state with
a hefty gap. If we follow the original model along a curve parameterized by �, the point
where it intersects the separatrix y=−x is when � = 1. This because we know from the
exact solution that the gap develops for �> 1.

What is behind this gap? The state we are headed for has a large positive y and that
means we want, based on Eq. (18.102),

cos
√

16πφ = 1

2
(1− 2sin2

√
4πφ) (18.174)

to be maximally negative, i.e.,

sin2
√

4πφ = 1 (18.175)

sin
√

4πφ =±1. (18.176)

Thus there are two ground states. In them,

〈sin
√

4πφ〉 � 〈ψ†
+(x)ψ−(x)+ψ†

−(x)ψ+(x)〉 = 〈iψ̄γ 5ψ〉 = ±DCDW, (18.177)

where the CDW order parameter DCDW describes a variable that connects the left and right
Fermi points, and oscillates as (−1)j. Indeed, from Eq. (18.99),

:ψ†(x)ψ(x) : = :ψ†
+(x)ψ+(x)+ψ†

−(x)ψ−(x) :+(−1)j(ψ†
+(x)ψ−(x)+ψ†

−(x)ψ+(x)),
(18.178)

we see that the fermion charge density has one part that is smooth and one that oscillates
as (−1)j, and it is the latter which has developed a condensate or expectation value. This
was our early conclusion based on looking at the nearest-neighbor interaction at very large
coupling. As �→∞, one sublattice is occupied and the other is empty to get rid of the
nearest-neighbor repulsion. In such a state it costs energy to move the charge, forcing it to
have a nearest neighbor. That is the gap.

Suppose we turn on a negative � on the fixed line. There is another separatrix x = y
in the third quadrant that defines the domain of attraction of the TL fixed line. The exact
solution tells us that this end point corresponds to � = −1. If we go below, we first flow
toward the origin and then off to large negative values of y. This takes us to the Peierls
state. What happens here?

Because y< 0, we want

cos
√

16πφ = 1

2
(−1+ 2cos2

√
4πφ) (18.179)

to be maximally positive, i.e.,

cos2
√

4πφ = 1 (18.180)

cos
√

4πφ =±1. (18.181)
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Thus there are two “Peierls” ground states.
To interpret the physics of the Peierls state we recall that

〈ψ†(j+ 1)ψ(j)+ h.c.〉 = 〈(ψ†
R(x)(−i)j+ψ†

L(x)(i)
j)(j→ j+ 1)〉+ h.c.

= (−1)j〈(−iψ†
R(x)ψL(x)+ h.c.)〉+NOP (18.182)

= (−1)j

2πα
〈cos
√

4πφ〉 ≡ (−1)jDP. (18.183)

I have dropped the non-oscillatory part (NOP)ψ†
R(−i∂x)ψR+ψ†

L(+i∂x)ψL and emphasized
only that in the Peierls state the kinetic energy alternates as (−1)jDP.

The dotted line in the figure shows our original model with just one parameter �. For
small � we can start at a reliably known point in the (x,y) plane and follow the flow to the
x-axis. As y→ 0, x will move to the right. In general, we cannot precisely relate � to the
parameters K (or x) and y due to renormalization effects. However, we can say, based on
the Yang and Yang solution [23], that the gapless liquid phase is bounded by |�|< 1.

Finally, on the x > 0 side, we can go directly to the CDW and Peierls phases starting
with arbitrarily small y, as shown in Figure 18.2.

The y→−y symmetry of the KT flow diagram is consistent with the fact that

H(�)=−1

2

∑
j

ψ†(j+ 1)ψ(j)+ h.c.

+�
∑

j

(
ψ†(j)ψ(j)− 1

2

)(
ψ†(j+ 1)ψ(j+ 1)− 1

2

)
(18.184)

is unitarily equivalent to −H(−�):
U†H(�)U =−H(−�), (18.185)

where, under U,

ψ(j)→ (−1)jψ(j). (18.186)

This reverses the sign of the hopping term leading to Eq. (18.185). Despite this unitary
equivalence under �→−�, the physics can be very different: e.g., CDW versus Peierls
as |�|→∞.

The transition from a metal to insulator driven by interaction is generally very hard to
analyze with any exactitude. The preceding model is one of the rare examples, albeit in
d = 1. Since Yang and Yang and Baxter have established many exact results (such as the
expression for the CDW order parameter as a function of �), we can interpret them in the
light of the metal insulator transition. One such study is [28]. Despite the use of continuum
methods, many exact results are derived about conductivity as well as some surprising
results on the effect of a random potential. Other illustrations of bosonization can be found
in [29–32]; the list is not exhaustive or even representative – however, once you get your
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hands on these you can follow the leads given therein to find more. For the application of
bosonization to a single impurity problem, see Kane and Fisher [33].

18.7 The XXZ Spin Chain

The model of spinless fermions we have solved is mathematically identical to the spin- 1
2

chain with

HXXZ =
∑

j

[
Sx(j)Sx(j+ 1)+ Sy(j)Sy(j+ 1)+�Sz(j)Sz(j+ 1)

]
. (18.187)

The following Jordan–Wigner transformation relates the two:

Sz(j)=ψ†(j)ψ(j)− 1

2
, (18.188)

S+(j)= (−1)jψ†(j)exp

⎡
⎣iπ

∑
k<j

ψ†(k)ψ(k)

⎤
⎦= S†

−(j), (18.189)

where the (−1)j is introduced to give the kinetic term the same sign as in the Luttinger
model, with a minimum at zero momentum.

We can bodily lift our results from the fermion problem to the spin chain. In particular,
both have a gapless region that gives way to broken symmetry states with an order
parameter at momentum 2KF = π . The gapless region is bounded by �=±1, as we know
from the exact solutions of Yang and Yang [23] and Baxter [24, 25], who solved the XYZ
model with different couplings for the three terms by relating HXYZ to the transfer matrix
of the eight-vertex model. (I remind you once again that we can relate K to � only at
weak coupling. As we begin with larger values of�, the parameters K(�) or x(�) will get
renormalized as the irrelevant coupling y renormalizes to 0. The flow in the (x,y) planes is
not vertical, not known exactly, and the definition of y is sensitive to how we cut off the
theory, i.e., α.)

In the spin language, the CDW state when y→+∞ corresponds to a state with 〈Sz〉 �
(−1)j because Sz(j)= nj− 1

2 . In the limit y→−∞, we have the spin-Peierls state in which
the average bond energy 〈S+(j)S−(j+ 1)+ h.c.〉 oscillates as (−1)j.

While we can borrow these results from the mapping to the TL model, correlation
functions are a different matter. Whereas Sz − Sz correlations are easy because Sz is just
a fermion bilinear, correlation functions of S± are non-local in the fermion language and
involve the dual field θ .

Consider, for example, the simplest case �= 0 and the correlator

〈S+(0)S−(j)〉

= 〈ψ†(0)exp

⎡
⎣iπ

j−1∑
k=0

ψ†(k)ψ(k)

⎤
⎦ψ(j)〉 (18.190)
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� (−1)jψ†(0)ei
√
π(φ(x)−φ(0))+ikFxψ(x) (18.191)

= a(−1)j
[
ψ

†
+(0)+ψ†

−(0)
]

ei
√
π(φ(x)−φ(0))+ikFx

[
ψ+(x)eikFx+ψ−(x)e−ikFx)

]
,

(18.192)

where I have canceled the string to the left of j= 0 and used

iπ
j−1∑

k

ψ†(k)ψ(k)= i
∫ x

0

√
π ∂xφdx+

[
iπ j

2
= iKFj= ikFx

]
, (18.193)

where kF = KF/a is the dimensional Fermi momentum.
Now we have, from Eq. (18.189) (upon ignoring the factor a

2πα ),

〈S+(0)S−(j)〉 � (−1)j
[
e−i
√
π(φ(0)−θ(0))+ ei

√
π(φ(0)+θ(0))]

×ei
√
π(φ(x)−φ(0))eikFx

[
ei
√
π(φ(x)−θ(x))eikFx+ e−i

√
π(φ(x)+θ(x))e−ikFx

]
= (−1)j〈ei

√
π(θ(0)−θ(x))〉

〈(
1+ e−i

√
4πφ(0)

)(
1+ ei

√
4πφ(x)e2ikFx

)〉
= (−1)j

[
α2

α2+ x2

]1/4 [
1+ (−1)j

x2

]
. (18.194)

At K �= 1, the leading term will be

〈S+(0)S−(j)〉 � (−1)j
1

x(1/2K)
, (18.195)

whereas to leading order the Sz− Sz correlation that goes as (−1)j is

〈Sz(0)Sz(j)〉 � (−1)j
1

x2K
. (18.196)

We see that at K = 1
2 , we have the isotropic Heisenberg chain, described by the origin

in Figure 18.2. (This result does not follow from weak-coupling bosonization, which
is reliable only near K = 1. Rather, we take K as a phenomenological parameter.) The
main message is that the origin describes the isotropic Heisenberg antiferromagnet as we
approach it from the second quadrant on the separatrix y=−x. This problem was originally
solved by Bethe, who introduced the famous Bethe ansatz.

18.8 Hubbard Model

Now we consider fermions with spin. Usually, the inclusion of spin causes some
predictable changes. This is not so here.

The Hubbard model has a non-interacting part,

H0 =−1

2

∑
s,n

[
ψ†

s (n)ψs(n+ 1)+ h.c.
]+μ∑

s,n

ψ†
s (n)ψs(n), (18.197)
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where s=↑,↓ are two possible spin orientations. We do not assume KF = π
2 at this point,

and use a general chemical potential μ.
Following the usual route, we get two copies of the spinless model:

H0 =
∑

s

∫ π

−π
(μ− cosk)ψ†

s (k)ψs(k)
dk

2π
, (18.198)

and the continuum version

Hc = sinKF

∑
s

∫
dx(ψ†

s−(x)(i∂x)ψs−(x)+ψ†
s+(x)(−i∂x)ψs+(x)). (18.199)

Let us now turn on the Hubbard interaction,

Hint =U
∑

n

ψ
†
↑(n)ψ↑(n)ψ

†
↓(n)ψ↓(n), (18.200)

where ψ↑, ψ↓ stand for the original non-relativistic fermion. The Hubbard interaction is
just the extreme short-range version of the screened Coulomb potential between fermions.
Due to the Pauli principle, only opposite-spin electrons can occupy the same site. One can
extend the model to include nearest-neighbor interactions, but we won’t do so here.

Let us now express this interaction in terms of the Dirac fields. We get, in obvious
notation,

ψ
†
↑(n)ψ↑(n)ψ

†
↓(n)ψ↓(n)

= (ψ†
↑+(n)ψ↑+(n)+ψ†

↑−(n)ψ↑−(n)+ (ψ†
↑+(n)ψ↑−(n)e

−2iKFn+ h.c.))

×(↑→↓). (18.201)

If we expand out the products and keep only the parts with no rapidly oscillating factors
(momentum conservation), we will, for generic KF, get the following terms:

Hint =U(j0↑j0↓)+U(ψ†
↑+(n)ψ↑−(n)ψ

†
↓−(n)ψ↓+(n)+ h.c.). (18.202)

If we now bosonize these terms as per the dictionary, we get, in the continuum (dropping
the subscript c for continuum),

H =
∫

dx
1

2

[
�2↑ + (∂φ↑)2+ (↑→↓)

]
+U

[
∂φ↑∂φ↓
π

+ 1

π2α2
cos
√

4π(φ↑ −φ↓)
]

.

(18.203)

We can now separate the theory into two parts by introducing charge and spin fields φc

and φs:

φc/s = φ↑ ±φ↓√
2

. (18.204)
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This will give us

H =Hc+Hs, (18.205)

Kc ·Hc =
∫

1

2

[
Kc�

2
c +

1

Kc
(∂φc)

2
]

dx, (18.206)

Ks ·Hs =
∫ (

1

2

[
Ks�

2
s +

1

Ks
(∂φs)

2
]
+ U

π2α2
cos
√

8πφs

)
dx, (18.207)

K2
c/s =

1

1± U
π

. (18.208)

It is obvious that the charge sector is gapless and described by a quadratic Hamiltonian.
This means that there will be no gap to creating charge excitations, the system will be
metallic. The fate of the spin sector needs some work. Upon rescaling the kinetic term to
standard form we find the cosine interaction

cosβφs = cos

√
8π√

1−U/π
φs. (18.209)

We can now see that for weak positive U, this interaction does not produce any gap because
β2 > 8π , while for weak negative U, it does because β2 < 8π . The exact solution of Lieb
and Wu [18] and the following physical argument explain the spin gap for U< 0. If there is
an attraction between opposite spin electrons, they will tend to form on-site, singlet pairs.
To make a spin excitation, we must break a pair, and this will cost us, i.e., there will be a
gap in the spin sector.

The fact that Ks �= Kc means that charge and spin move at different velocities. This
spin–charge separation cannot be understood in terms of interacting electrons whose
charge and spin would be irrevocably bound. This is more evidence of the demise of the
quasiparticle, adiabatically connected to the primordial fermion.

In the special case of half-filling, another term comes in. If we look at Eq. (18.201),
we see that in the case of half-filling, since KF = π/2, the factors e±4iKFn are not rapidly
oscillating, but simply equal to unity. Thus, two previously neglected terms in which two
right movers are destroyed and two left movers are created, and vice versa, come into play.
(This is an umklapp process, in which lattice momentum is conserved modulo 2π [19,20]).
I leave it to you to verify that the bosonized form of this interaction, after rescaling of the
charge field in the manner described above for the spin field, is another cosβcφc, with

βc =
√

8π√
1+U/π

. (18.210)

Thus we find that the situation is exactly reversed in the charge sector: there is a gap in
repulsive case, and no gap in the attractive case. To see what is happening, think of very
large positive U. Now there will be one electron per site at half-filling, unable to move
without stepping on someone else’s toes, i.e., there is a charge gap of order U if you try to
move the charge. But the spin can do whatever it wants with no cost. If U were very large
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and negative, there would be tightly bound pairs on half the sites. These doubly charged
objects can be moved without cost. There will, however, be a cost for breaking the spin pair.

18.9 Conclusions

I have tried to show you how to use bosonization to solve a variety of problems. The
formalism is straightforward, but has some potential pitfalls which I avoided because I
know of them. So before I let you go, I need to inform you.

In this treatment we always work in infinite volume from the beginning and are cavalier
about boundary conditions at spatial infinity. The Fermi fields expressed in terms of
boson fields are meant to be used for computing correlation functions and not as operator
identities. After all, no combinations of bosonic operators φ or � can change the fermion
number the way ψ or ψ† can. But of course, this was never claimed.

There is a more comprehensive and careful development in which such an operator
correspondence may be set up, starting with finite volume. In these treatments the mode
expansions for φ(x) and �(x) have additional terms (of the form x

L ) that vanish as the
system size L→∞. Next, in our scheme we had [φ+(x),φ−(y)] = i

4 , which was needed
to ensure some anticommutators, while in the more careful treatments [φ+(x),φ−(y)] =
0, a feature that is central to conformal field theory, which treats right and left movers
completely independently. In these treatments there are compensating Klein factors, which
are operators tacked on to ensure that different species of fermions anticommute. (We did
not need them in the problems I discussed since the factors come in canceling pairs.)

The excellent article by van Delft and Schoeller [34] devotes an appendix to the
differences between what is presented here (called the field-theory approach) and what they
call the constructive approach. Other online articles I have benefited from are due to Voit
[35], Schulz [36], and Miranda [37]. A rigorous treatment may be found in Heidenreich et
al. [38]. A more intuitive review is due to Fisher and Glazman [39].

In addition, I have found lucid introductions in the books by Itzykson and Drouffe
(vol. 1) [14], Fradkin [40], Sachdev [16], Giamarchi [17], and Guiliani and Vignale [41].

There is a development called non-Abelian bosonization, due to Witten [42], in which
the internal symmetries of the model are explicitly preserved. For example, if we are
considering an N-component Gross–Neveu model, the U(N) symmetry is not explicit if
we bosonize each component with its own field φi. In non-Abelian bosonization, U(N)
group elements replace the φi and the symmetry is explicit. For a review, see [43].

Haldane expanded bosonization to d= 2 [44]. For an application, see [45].
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