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The Two-Dimensional Ising Model

7.1 Ode to the Model

The two-dimensional Ising model is a necessary rite of passage in our transition from
basics to hardcore topics. Like the harmonic oscillator in quantum mechanics, it is the
easiest example of a completely solvable problem. By studying it one can learn many
valuable lessons, notably about perturbative methods, the concept of duality, and the exact
modeling of a phase transition.

Phase transitions will occupy much of this book, and we will return to study them in
detail. For now, let us focus on the magnetic transition in the Ising model. The most detailed
book on this subject is the one by B. McCoy and T. T. Wu [1].

On a square lattice with N columns and M rows, we define the model by

Z =
∑

si

exp

⎡
⎣K

∑
〈i,j〉

sisj

⎤
⎦ , (7.1)

where K = J/kT and the symbol 〈i, j〉 means that sites i and j are nearest neighbors, as
shown in Figure 7.1. There are many options at the edges: open boundary conditions
in which the spins at the edges have no neighbors in one direction, periodic boundary
conditions along one direction, which makes the system a cylinder, or along both
directions, which makes it a torus. For now, let us just say that M and N and the number
of sites N = MN are huge and we are nowhere near the ends. There are 2N bonds on a
square lattice with N sites because each site has four bonds emanating from it, but each
bond is counted twice, once at each of its end points.

Consider the extreme limits. As K = J/kT →∞ or T → 0, the spins will be all up or
all down, the system will be magnetized, and 〈M〉, the average spin per site, will be at its
maximum of ±1. Let us pick 〈M〉 =+1. As K→ 0 or T→∞, the Boltzmann weight will
be 1 for all configurations, the spins will fluctuate independently, and 〈M〉 will vanish. The
graph of 〈M(T)〉 will thus start out at +1 and decrease as we heat the system. It should
be zero at T =∞. One possibility is that it does not reach zero until we reach T =∞. If,
however, it vanishes at some finite T = Tc and remains zero thereafter, we have a phase
transition. There must be a singularity at Tc, since a non-trivial analytic function cannot
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Figure 7.1 The square lattice with M rows and N columns. The site j is a nearest neighbor of i; there
are three more. The solid rectangles correspond to terms at fourth and sixth orders in the tanhK
(high-T) expansion.

identically vanish beyond some point. This singularity or non-analyticity is the signature
of a phase transition. The free energy and its derivatives will also be singular at this point.

If we are to see this singular behavior analytically, we must go to the thermodynamic
limit. Let us understand why. For any finite system, Z is a finite sum over positive terms,
and its logarithm (the free energy F) will be analytic at any real T or K. But, Z could
vanish arbitrarily close to the real axis, and in the limit of infinite system size these zeros
could pinch the real axis, producing a singularity. However, we cannot simply compute F
in this limit since it is extensive in system size like the energy, and will not approach a
limit. However, under normal conditions f , the free energy per site will have a limit and
this is what we are after. In the d = 1 Ising model we were able to obtain f , but it did
not exhibit a finite-T phase transition; the system was unmagnetized at all T > 0. The
d = 2 case is the celebrated example with a finite-T transition, displayed rigorously in
Onsager’s solution. Prior to Onsager it was not universally accepted that the innocuous
sum over Boltzmann weights could reproduce a phenomenon as complex as a phase
transition.

Before we plunge into the exact solution, let us learn some approximate methods that
work in generic situations.
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7.2 High-Temperature Expansion

This is a perturbative expansion around the point K = 0 when the Boltzmann weight is
unity for all states, the spins do not talk to each other, and Z = 2N . For any one bond we
may write

eKsisj = coshK+ sisj sinhK = coshK(1+ sisj tanhK), (7.2)

a result that follows from (sisj)
2 = 1. So

Z(K)=
∑

si

∏
bond ij

coshK(1+ sisj tanhK). (7.3)

Each bond can contribute either a 1 or a tanhK, and there are 2N terms in the product over
bonds. The leading term in the tanhK expansion has a 1 from every bond and contributes
2N (coshK)2N . The sum over 1 at each site gives us the 2N , while the product of coshK
over the 2N bonds gives the rest. The next term has a tanhK from one bond and a 1
from the others. There are 2N such terms. These 2N terms do not survive the sum over
si since

∑
s=±1 s = 0 and we have two such free or dangling spins at each end. To order

tanh2 K, we still get nothing: if the bonds share no sites, we have four spin sums that
vanish, and if they do share a site we have a spin sum over the other two that vanish. The
first non-zero contribution is at order tanh4 K, when we pick four bonds that form a square,
as shown by the dark square in Figure 7.1. Now the spins at each corner appear twice (since
there are two bonds from the square incident at each site), and we now get a contribution
2N (coshK)2N ·N tanh4 K to Z(K). The factor of N comes from the number of squares
we can have, and this equals N because we can label each square by the site at its lower
left-hand corner. The series so far looks as follows:

Z(K)

2N (coshK)2N
= 1+N tanh4 K+ 2N tanh6 K+·· · , (7.4)

where the derivation of the tanh6 K term is left to Exercise 7.2.1. We expect this series to
work for small K.

Exercise 7.2.1 Derive the sixth-order term in Eq. (7.4).

The high-temperature series takes the form

Z(K)

2N (coshK)2N
=

∑
closed loops

C(L) tanhL K, (7.5)

where C(L) is the number of closed loops of length L we can draw on the lattice without
covering any bond more than once.
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The free energy per site is, to this order,

− f

kT
= 1

N lnZ = ln
[
2cosh2 K

]
+ 1

N ln(1+N tanh4 K+·· ·)
= ln

[
2cosh2 K

]
+ tanh4 K+·· · (7.6)

using ln(1+ x) = x+ ·· · . It is significant but not obvious that as we go to higher orders,
we will keep getting a limit for f that is independent of N . For example, if you consider
the case of two disjoint elementary squares that contribute with factor tanh8 K, there will
be N (N − 5)/2 of them since the two squares cannot share an edge or be on top of each
other. In addition, there are single loops with perimeter 8. Upon taking the logarithm, the
N 2/2 part of this cancels against the square of the N term due to the elementary square
when ln(1+ x)= x− 1

2 x2+·· · is expanded. For more practice, do Exercise 7.2.2.

Exercise 7.2.2 Show that to order tanh8 K,

− f

kT
= ln

[
2cosh2 K

]
+ tanh4 K+ 2tanh6 K+ 9

2
tanh8 K+·· · (7.7)

7.3 Low-Temperature Expansion

Consider now the regime near T = 0 or K =∞. The spins will tend to be aligned in one
direction, say up. The Boltzmann weight is eK on each of the 2N bonds. We say the bonds
are all unbroken. If a spin is now flipped down, the four bonds linking it to its four nearest
neighbors will be broken and the Boltzmann factor will be reduced by e−8K . Since the spin
flip can occur in any of N sites, we have

Z = e2NK(1+N e−8K +·· ·). (7.8)

Let us now consider flipping two spins. The energy cost depends on their relative locations.
It is lowest if they are neighbors: the bond connecting them is unbroken, but the six other
bonds linking them to all other neighbors will be broken. There are N ways to pick the first
spin and two ways to pick the second: to its north or east. (Positions to the south and west
are not needed since we will then be double counting.) Thus we have

Z

e2NK
= (1+N e−8K + 2N e−12K +·· ·). (7.9)

We expect this series to work for small e−2K or large K.
The obvious way to represent these configurations in the low-temperature expansion is

to show flipped spins, as in Figure 7.2. A cleverer way due to Kramers and Wannier [2] is
to surround the flipped spins by a contour that is made up of perpendicular bisectors of the
broken bonds. The dotted lines in the figure correspond to the dual lattice.

If we create an island of spins pointing opposite to the majority, it costs an energy
proportional to the perimeter of the island, as reflected in the Boltzmann factor e−2KL.
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N

M

Figure 7.2 The low-temperature expansion in which only spins flipped relative to a fully aligned
state are shown as tiny circles. These are then surrounded by bonds on a dual lattice of dotted lines.
Note that the two such closed figures are topologically identical in shape and multiplicity to the
leading ones in the high-temperature tanhK expansion.

Compare this to the d = 1 case where the cost of an island is just e−2K regardless of its
size. (The “perimeter” of this island is made of just the two end points.) This is why the
d = 1 system loses its magnetization at any non-zero T . In d = 2, we can estimate the
critical temperature by asking when large islands will go unsuppressed. Imagine laying out
a loop of length L. At each stage we can move in three directions, since going back is not
an option because each bond can be covered only once. Ignoring the condition that we end
up where we began, and that we cannot run into other loops starting in other places and
so on, we roughly get a factor 3Le−2KL, so that loops of arbitrarily large size are no longer
suppressed when we reach

e(−2Kc+ln3)L = 1, or K = Kc = 0.5493, (7.10)

which you can compare to the exact result Kc = 0.4407 (to four places).
We can also do a similar analysis for the high-temperature series to estimate Kc:

(tanhKc)
L · 3L � 1 (7.11)

tanhKc = 1

3
, or K = Kc = 0.3466. (7.12)

The correct answer is seen to lie between these two estimates.
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7.4 Kramer–Wannier Duality

Let us now note that the low-T expansion resembles the high-T expansion on the dual
lattice: the lattice whose edges are the perpendicular bisectors of the original ones and
whose sites are located at the center of each square element (plaquette) in the original
lattice. You will agree that up to the order considered, the diagrams for the high- and
low-temperature series have the same shapes (unit squares, 2 × 1 rectangles, etc.) and
multiplicity (N , 2N , etc.).

They do not, however, have the same weights. So we do the following: Since K is a
dummy variable in Eq. (7.9), let us replace it by K∗ to obtain

Z(K∗)
e2NK∗ = (1+N e−8K∗ + 2N e−12K∗ + · · ·). (7.13)

So far, K∗ is just a dummy variable. Let us now choose, for each K, a dual temperature
K∗(K) such that

e−2K∗(K) = tanhK. (7.14)

Now the two series in Eqs. (7.4) and (7.13) agree numerically to the order shown. It can be
shown that the agreement is good to all orders, implying the self-duality relation

Z(K)

2N (coshK)2N
= Z(K∗)

e2NK∗ . (7.15)

Using

sinh2K · sinh2K∗ = 1, (7.16)

one can rewrite Eq. (7.15) more symmetrically as

Z(K)

(sinh2K)
N
2

= Z(K∗)
(sinh2K∗)N2

. (7.17)

Exercise 7.4.1 Prove Eqs. (7.16) and (7.17).

If K is small, then in order to satisfy Eq. (7.14) K∗(K) has to be large, which is fine, as
the low-temperature expansion works for large values of its argument. What is remarkable
is that the thermodynamics of the model at low and high energies are related even though
the physical properties are very different: one side has magnetization and one does not.
Self-duality, relating the model at weak coupling (at a small value of a parameter, K in our
example) to the same model at strong coupling (large K values) is quite rare. It is more
common to encounter simply duality, in which one model at strong coupling is related to
another model at weak coupling.

Recall from Chapter 1 that the inverse relation of Eq.(7.14) is

e−2K = tanhK∗. (7.18)
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In other words, K∗ as a function of K coincides with K as a function of K∗. Consequently,
the dual of the dual is the original K:

(K∗)∗ = K. (7.19)

(A trivial example of a function that is its own inverse is y= 1
x , which implies x= 1

y . The
relation between K and K∗ is, of course, much more interesting.)

Kramers and Wannier used duality to find the critical temperature of the Ising model as
follows: Equation (7.17) implies that in the thermodynamic limit any singularity at some
K, such as at a phase transition, implies one at K∗(K). If, however, we assume that there is
just one transition, it must occur at a critical value Kc that is its own dual:

K∗c = Kc, or e−2Kc = tanhKc, or e−2Kc =√2− 1, or Kc = 0.4407 . . . (7.20)

But bear in mind that there can be, and there are, problems where there are two phase
transitions at critical points related by duality, with nothing interesting going on at the
self-dual point itself.

We conclude this section with some remarks on the anisotropic Ising model with
couplings Kx and Kτ in the two directions. We label the second direction by τ rather than y
since it will play the role of imaginary time when we use the transfer matrix. By comparing
high- and low-T expansions we find that the dual couplings Kd

x and Kd
τ are given by

e−2Kd
x = tanhKτ , e−2Kd

τ = tanhKx. (7.21)

Now recall that we have defined the dual X∗ of any real number by the symmetric
relations

e−2X∗ = tanhX, e−2X = tanhX∗. (7.22)

Let us use this to trade the tanh’s in Eq. (7.21) for exponentials of the duals to obtain
exponentials on both sides:

e−2Kd
x = e−2K∗τ , e−2Kd

τ = e−2K∗x , (7.23)

which allows us to read off the coordinates dual to any Kx and Kτ :

Kd
x = K∗τ , Kd

τ = K∗x . (7.24)

To summarize, duality maps points in the (Kx,Kτ ) plane as follows:

(Kx,Kτ )
duality

(K∗τ ,K∗x ). (7.25)

The self-dual points obey

(Kx,Kτ )= (K∗τ ,K∗x ). (7.26)
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where m and n are neighbors connected by a bond, and common factors have been canceled
between numerator and denominator. The first non-zero term in the numerator occurs when
we have bonds starting at i and ending at f , yielding a product sisisi+1si+1si+2 · · ·sf−1sf sf ,
where i+1 is the neighbor to i. Now there are no free Ising spins that can be summed over
to give zero. In the simple case where the points lie on the same axis, this product will
occur with a factor (tanhK)|i−f |, where |i− f | is the distance between the end points. The
first non-zero term in the denominator is just 1, so that

〈sisf 〉 = (tanhK)|i−f |(1+·· ·), (7.30)

where the ellipses denote higher-order corrections from longer paths joining i and f , as
well as contributions from closed paths in the numerator and denominator. If the points
are not along the same axis, |i− j| will be simply the Manhattan distance and there will
be many paths of the shortest length; the 1 in the brackets above will be replaced by this
multiplicity. This most important dependence is, of course, in the exponential prefactor
exp (ln tanhK|i− f |).
Exercise 7.5.1 Use the tanhK expansion for the N-site d = 1 Ising model with periodic
boundary conditions to compute Z as well as 〈sisf 〉.
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